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Abstract. Remote-sensing satellites provide the only means
to observe the entire ocean at high-temporal resolution. Op-
tical sensors assess ocean color through estimates of remote-
sensing reflectance (Rrs(λ)). We emphasize a physical degen-
eracy in the radiative transfer equation that relates Rrs(λ) to
the absorption and backscattering coefficients (a(λ), bb(λ))
known as inherent optical properties (IOPs). This degeneracy
stems from Rrs(λ) depending on the ratio bb(λ)/a(λ), pre-
venting the independent retrieval of non-water IOPs without
prior knowledge. We demonstrate that multi-spectral satel-
lite observations lack the statistical power to recover more
than three parameters describing non-water absorption and
backscattering. Due to exponential-like absorption by col-
ored dissolved organic matter and detritus at shorter wave-
lengths, multi-spectral Rrs(λ) data cannot detect phytoplank-
ton absorption without strict priors, leading to biased and
uncertain estimates. These results challenge decades of IOP
retrieval literature, including assessments of phytoplankton
growth and biomass. While hyperspectral observations hold
promise to recover additional parameters, significant hurdles
remain in accurately quantifying IOPs and phytoplankton
biomass at a global scale.

1 Introduction

Phytoplankton play essential roles within our ecosystem,
serving as the base of the ocean food web and performing
∼ 50% of all photosynthesis on Earth. Therefore, assessing
phytoplankton growth and death – especially in a changing

climate (Behrenfeld et al., 2016; Flombaum et al., 2020) –
is critical to any effort to track and predict the health of
our planet. Decades of phytoplankton research has revealed
significant regional variations in these process and demon-
strated that phytoplankton are highly dynamic on relatively
short timescales (hours to weeks, especially in coastal ar-
eas due to tides, upwelling, pulses of freshwater inflow, and
other episodic events (e.g., Cloern and Jassby, 2010)). There-
fore, to identify any long-term trend, one must first develop
a detailed picture of the variations on seasonal and shorter
timescales.

Unfortunately, our ability to measure phytoplankton in
situ is greatly hampered by the vast expanse of the ocean.
Measurements with high temporal frequency can only be
acquired at select, fixed stations such as OceanSITES
(Boss et al., 2022). Therefore, oceanographers have turned
to remote-sensing satellite observations to perform high-
cadence global analyses of the ocean surface. Beginning with
the Coastal Zone Color Scanner experiment (Hovis et al.,
1980), multi-band observations in optical channels have en-
abled the inference of phytoplankton and other seawater con-
stituent properties, such as chlorophyll-a concentration and
absorption by colored dissolved organic matter (CDOM) and
detritus (IOCCG, 2000; Siegel et al., 2002). These proper-
ties are obtained from satellite-derived remote-sensing re-
flectance:

Rrs(λ)≡
Lw(λ)

Ed(λ)
, (1)

with Lw the water-leaving radiance and Ed the incident solar
irradiance. Their retrieval relies on recovering the absorption
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coefficient:

a(λ)≡
dA(λ)

dr
, (2)

with A(λ) the fraction of incident power absorbed and the
backscattering coefficient of

bb(λ)≡
dB(λ)

dr
, (3)

with B(λ) the fractional incident power scattered out of the
beam, which governRrs(λ) and are known as inherent optical
properties (IOPs).

The underlying physics for IOP retrievals is radiative
transfer: the absorption and scattering of sunlight by sea-
water modulates and directs incident sunlight back to the
satellite. While the radiative transfer physics is straightfor-
ward (but not simple; Mobley, 2022), there are many fac-
tors that complicate the calculations. These include but are
not limited to the concentration of the constituents (typically
the desired unknown), their variation with depth, the precise
wavelength dependence of the absorption and scattering co-
efficients of each constituent, and the geometric factors as-
sociated with the Sun’s location relative to the satellite. In
addition, Earth’s atmosphere attenuates the signal and intro-
duces a dominant background radiation field that must first
be estimated and subtracted (“corrected”), which fundamen-
tally limits the precision of any space-based Rrs(λ) estima-
tion (e.g., Frouin et al., 2022).

For decades, researchers have attacked this radiative trans-
fer problem to attempt retrievals of scientifically valu-
able quantities, including an estimate of the phytoplankton
biomass. There is robust and well-founded literature describ-
ing (and performing) the translation of apparent optical prop-
erties (AOPs, e.g., Rrs(λ)) into inherent optical properties
(IOPs; a(λ), bb(λ)) that depend solely on the water con-
stituents and the water itself. Ideally, one first parameterizes
and then estimates (“retrieves”) the absorption and backscat-
tering spectra of the non-water component anw(λ), bb,p(λ)

and then infers concentrations or proxies for phytoplankton,
CDOM, detritus, etc. From these, one may examine the ge-
ographic distribution and temporal evolution of fundamental
biological processes across the global ocean (e.g., Behren-
feld et al., 2005; Siegel et al., 2014; Fox et al., 2022).

During the development of a diverse set of IOP retrieval
algorithms for this purpose (see Werdell et al., 2018, for
a review), the ocean optics community has acknowledged
key challenges in the problem that are largely indepen-
dent of those associated with radiative transfer. These in-
clude uncertainties related to the atmospheric corrections,
non-uniqueness between common constituents (e.g., CDOM
and detritus), and retrieving multiple unknowns from limited
datasets (e.g., multi-spectral observations). A few sparsely
cited works have also highlighted a more fundamental ob-
stacle to the process: a physical “ambiguity” in the inver-
sion of the radiative transfer equation (Sydor et al., 2004;

Defoin-Platel and Chami, 2007). Unfortunately, this prob-
lem has often been confused or conflated with the statisti-
cal limitations of an insufficient number of bands measuring
Rrs(λ) (Werdell et al., 2018; Cetinić et al., 2024). As such,
while the community has acknowledged challenges to IOP
retrievals from remote-sensing observations, rigorous assess-
ment of the algorithms themselves has been limited and usu-
ally only performed in the context of comparisons to sparse
in situ observations (e.g., Lee, 2006; Seegers et al., 2018).

Another fundamental aspect of the problem is that we do
not know the optimal basis functions that describe a(λ) and
bb(λ), nor even the complete set (e.g., Garver et al., 1994).
Indeed, it is an aspiration within the ocean color field to re-
cover (or even discover) the composition of phytoplankton
communities (e.g., Mouw et al., 2017). The ocean color re-
search community has hoped that the main limitation is the
sparsity of existing multi-spectral bands provided by current
satellites and that hyperspectral observations will lead to a
major breakthrough. Indeed, Cael et al. (2023) have demon-
strated its limited information content from a data-driven
analysis of Rrs(λ) spectra, i.e., only ∼ 2 degrees of freedom
in multi-spectral satellite observations. But they also con-
cluded that in situ hyperspectral datasets provide only 1 or 2
additional degrees of freedom to describe the seawater com-
position. In this paper, we examine this question from a new
angle – with the standard approach of IOP retrievals – and
reach similar conclusions.

Here, we introduce the Bayesian INferences with Gor-
don coefficients (BING) package for ocean retrievals in a
Bayesian context (see Erickson et al., 2020, 2023, for a com-
plementary Bayesian approach). Our approach follows many
of the standard assumptions of widely adopted algorithms
in the literature, e.g., the generalized IOP (GIOP) model
(Werdell et al., 2013) and the Garver–Siegel–Maritorena
(GSM) algorithm (Maritorena et al., 2002). In addition, we
emphasize and expand upon the “ambiguity” problem – a
physical degeneracy in the radiative transfer equation that
couples reflectances to IOPs – which fundamentally limits
IOP retrievals. In turn, we demonstrate that IOP retrievals
from multi-spectral datasets constrain at most three param-
eters describing anw(λ) and bb,p(λ). Consequently, if the
spectral shape of CDOM absorption is allowed to vary and
remains unconstrained, it becomes challenging, even im-
possible, to independently retrieve phytoplankton absorption
with high confidence. This limitation applies to previous
satellite missions equipped with multi-band sensors, empha-
sizing the need for additional constraints or improved ob-
servational capabilities for more accurate phytoplankton ab-
sorption retrievals. We then examine the prospects for IOP
retrievals with hyperspectral observations and discuss ad-
ditional opportunities to address the deep degeneracies that
lurk within.
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2 Methods

2.1 Bayesian formalism

At the heart of our analysis is an open-source Bayesian in-
ference algorithm developed for the retrieval of IOPs from
remote-sensing reflectances, the BING package. The primary
motivations for introducing a Bayesian framework are three-
fold:

i. it forces one to explicitly describe all of the priors that
influence the result;

ii. it leverages well-developed techniques to assess error
and correlations in the results without requiring Gaus-
sianity1, i.e., the assumption that errors, uncertainties,
or distributions of the retrieved parameters follow a
Gaussian (normal) distribution; and

iii. it permits well-established approaches for performing
model selection, i.e., estimating the maximum number
of free parameters one can use to describe the data.

BING is conceptually similar to the algorithm presented in
Erickson et al. (2020) to analyze diatoms and Noctiluca scin-
tillans, although BING adopts a Monte Carlo Markov chain
sampler. In addition, the code base incorporates several pre-
vious inference algorithms (e.g., GSM, GIOP) and is extensi-
ble to any new user-driven parameterization of the IOPs. The
BING package is purely Python and is available on GitHub
(Prochaska, 2024).

Provided that there is a forward model (described in the
following section) and a parameterization of a(λ) and bb(λ),
the Bayesian inference is straightforward, and a wealth of
well-trodden approaches and software packages are avail-
able. For BING, we adopt the Monte Carlo Markov Chain
(MCMC) formalism, which empirically derives the posterior
probabilities for the a(λ), bb(λ) parameterization P(X|Y ),
including full uncertainties and all of the cross-correlation
terms. This requires the definition of a likelihood function
P(Y |X), which will have the form

P(Y |X)∝ exp
{
−

1
2
[Y −H(X)]TC[Y −H(X)]

}
, (4)

where Y represents the measured Rrs(λ) values, C is the
full covariance matrix of Rrs(λ) including correlations, and
H(X) is the forward model of Rrs(λ) at the locations of Y .

It can be shown that an MCMC analysis converges to the
exact solution if run for an infinitely long time; in practice,
the calculations tend to converge after ≈ 10000 iterations.
For the analysis here, we generally run 75 000 trials with at
least 2 walkers per parameter (and at least 16 walkers) and
only analyze the last 7000 iterations of each. This release
of BING uses the EMCEE sampler (Foreman-Mackey et al.,

1In the following, we adopt Gaussian uncertainties but will in-
corporate correlated noise when it is provided by satellite missions.

2013), which was developed for astrophysical applications
and has seen widespread adoption in the field (over 8000 ci-
tations).

We have also implemented standard χ2 minimization
(Levenberg–Marquardt; L–M) as a fitting option to speed up
model development and portions of the analysis. This also
enables one to implement standard inference models in the
literature (e.g., GSM and GIOP), which generally use L–M
optimization.

Note that the Bayesian approach in BING involves us-
ing Bayes’ theorem to update the probability of a hypothe-
sis based on prior knowledge and new data. When retrieving
IOPs from Rrs(λ), this approach explicitly incorporates all
available prior information about the IOPs and their uncer-
tainties into the model. By doing so, it allows for a more
transparent and rigorous estimation process. The Bayesian
framework considers the likelihood of the observed Rrs(λ)

given the IOPs and combines it with the prior probability
distributions of the IOPs to obtain a posterior distribution.
This posterior distribution provides a probabilistic solution
to the inverse problem, highlighting the most likely values of
the IOPs while quantifying the uncertainties, leading to more
reliable and informed retrievals.

In reference to the detection of phytoplankton, we con-
sider a series of models with and without aph(λ) absorption.
We then examine the evidence for models with aph(λ) in the
Bayesian context by applying standard approaches for model
selection, i.e., assessing the balance between model fit and
complexity. Specifically, we have evaluated the Akaike and
Bayesian information criteria (AIC, BIC), which are akin to
χ2-difference tests (Bentler and Bonett, 1980):

AIC= 2k− 2lnL, (5)

and

BIC= k lnn− 2lnL, (6)

with n the number of Rrs(λ) measurements and L the like-
lihood function calculated assuming Gaussian statistics for
uncertainties σ(Rrs(λ)). The likelihood function L quanti-
fies the probability of observing the data given the specific
forward model and its parameters. Since it is calculated un-
der the assumption of Gaussian (normal) statistics for the
Rrs(λ) uncertainties, this means that the observed data, i.e.,
the Rrs(λ) measurements, are assumed to be normally dis-
tributed around the model predictions with the standard de-
viation. For our hyperspectral analysis where n� 10, BIC
offers a more stringent constraint, but the results with AIC
are qualitatively similar. A high AIC or BIC value implies
that the model is less likely to be the best model given the
data, considering both fit and complexity. Quantitatively, we
assess model selection by evaluating the difference in BIC
for any two models:

1BICi,j = BICi −BICj , (7)
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where 1BICi,j < 0 indicates that model i is preferred and
vice versa.

2.2 Radiative transfer with a physical degeneracy

To construct any such algorithm, one must have a well-
defined forward model to predict the observables, here
remote-sensing reflectances Rrs(λ). For IOP inversion, this
means a radiative transfer model – or its approximation –
which estimates Rrs(λ) from a(λ) and the backscattering co-
efficients bb(λ). The majority of IOP retrieval algorithms
developed by the community have used the quasi-single-
scattering approximation originally introduced by Hansen
(1971) and translated to ocean color by Gordon (1973) (see
also Zege et al., 1991). This approach was refined further by
Gordon (1986), who approximated the sub-surface remote
reflectances rrs(λ) with a Taylor series expansion:

rrs(λ)=

N∑
i=1

Gi u(λ)
i, (8)

with

u(λ)≡
bb(λ)

a(λ)+ bb(λ)
. (9)

Most IOP retrieval algorithms have taken N = 2 and set
the coefficients to constants, G1 = 0.0949 and G2 = 0.0794,
i.e., values independent of wavelength. In this paper and for
the default mode of BING, we adopt the same prescription
and coefficients and scrutinize the accuracy of this assump-
tion in Appendix A. For the results in the main text, we as-
sume a perfect forward model; i.e., we use Eq. (8) to generate
the target rrs(λ) and perform the fits on these values. In prac-
tice, we work with remote-sensing reflectances Rrs(λ) fol-
lowing a standard conversion from rrs(λ) (Lee et al., 2002):

rrs(λ)=
Rrs(λ)

0.52+ 1.17Rrs(λ)
. (10)

Despite the approximation of Eq. (8), it does capture a
salient aspect of the physics: the functional dependence of
Rrs(λ) on u(λ) and thereby on the IOPs a(λ) and bb(λ).
However, this dependence reveals an especially challenging
aspect of IOP retrievals: because u(λ) is a function of the
ratio of bb(λ)/a(λ),

rrs(λ)= Func
(
bb

a

)
, (11)

the radiative transfer solutions are physically degenerate in
bb/a. Put succinctly, any IOP solution that recovers a set
of Rrs(λ) observations can be replaced by an infinite set
that preserves the bb/a ratio. Therefore, the retrieval is only
tractable if one implements strong constraints (known as pri-
ors in Bayesian analysis) on the functional forms of a(λ)
and bb(λ). In Sect. 3.1, we examine the consequences of this
physical degeneracy for IOP retrievals.

2.3 A hyperspectral IOP dataset

For the development and testing of BING, we have leveraged
a hyperspectral dataset of a(λ),bb(λ) spectra made public
by Loisel et al. (2023) (hereafter L23). The spectra sam-
ple waters with both Case I and Case II properties, with
chlorophyll-a concentrations varying from Chl a≈ 0.01 to
10mgm−3.

The IOP spectra were generated from their database of in
situ measurements of phytoplankton aph(λ) and models of
several additional constituents: CDOM ag(λ), pure seawa-
ter aw(λ), and detritus ad(λ). L23 then generated estimates
of the backscattering coefficients bb,p(λ) following standard
assumptions based on in situ and laboratory work (see Loisel
et al., 2023, for additional details). These 3320 a(λ) and
bb(λ) spectra define our dataset, and while they range from
350 to 750 nm, we restrict analysis to λ= 400–700 nm.

Although IOP retrievals are greatly challenged by the
physical degeneracy in the radiative transfer described in the
previous section, a positive aspect of the problem is the pres-
ence of water, which introduces an ever-present and precisely
known constraint on the problem (except in the ultraviolet,
λ < 400 nm; Mason et al. (2016)). The absorption aw(λ) and
backscattering bb,w(λ) spectra of pure seawater impose pri-
ors on the model that serve to partially alleviate the physical
degeneracy described in the previous section. First, aw(λ)

and bb,w(λ) span the entire spectrum and therefore couple
the otherwise independent Rrs(λ) values. Second, to the ex-
tent that the shapes of aw and bb,w are unique relative to other
constituents, this helps one avoid the bb/a degeneracy. Third,
the strong absorption of water at λ > 500 nm and the rela-
tively high magnitude of bb,w(λ) at λ < 450 nm define re-
gions where one may retrieve information on the non-water
components (Sydor et al., 2004).

As for the last point, Fig. 1 compares the absorption and
backscattering coefficients of water versus one example of
non-water spectra anw(λ), bb,p(λ) from the L23 dataset. As
emphasized in the figure, at red wavelengths a ≈ aw(λ) and
bb,w ≈ bb,p such that the observations may constrain bb,p.
Similarly at λ < 450 nm, bb ≈ bb,w and anw(λ) > aw(λ) such
that the observations constrain anw. These inferences from
Fig. 1, however, rely on the strong (but frequently satis-
fied) prior that aw(λ) > anw(λ) at λ > 500 nm and bb,w(λ) >

bb,p(λ) at λ < 450 nm. If this is relaxed, e.g., if anw(λ) and
bb,p(λ) may take on any values, then the bb/a degeneracy
forces an infinite set of solutions (i.e., no unique retrieval is
possible; see Sect. 3.1).

2.4 Simulating satellite observations

For many of the analyses presented here, we have generated
simulated Rrs(λ) spectra for several multi-spectral and hy-
perspectral missions. For the fits presented in this paper, we
ignore the Rrs(λ) spectra provided by L23 (generated with
Hydrolight) and instead use Eqs. (8)–(10) to calculate Rrs(λ)
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J. X. Prochaska and R. J. Frouin: Retrieving phytoplankton from remote-sensing observations 4709

Figure 1. Comparison of the IOP spectra for water (aw,bb,w; solid
and dashed black curves) versus one example set of non-water spec-
tra (anw,bb,p; solid and dashed orange curves) from L23 (their in-
dex= 170, an example representative of the open ocean with low
Chl-a concentration). The red region indicates where absorption by
water dominates (aw > 5anw). In this region, reflectance measure-
ments constrain the non-water component of backscattering. Simi-
larly, the blue region is where water dominates backscattering, and
retrievals may constrain anw. In turn, for observations with noise,
the inversion problem has very limited constraints on the non-water
components.

from a(λ) and bb(λ). We then resample these spectra to the
bands/channels of several satellite missions.

– MODerate resolution Imaging Spectroradiometer
(MODIS)/Aqua. We adopt eight multi-spectral bands as
listed in Table 1 corresponding to MODIS/Aqua, and
we evaluate Rrs(λ) at the center of each. For uncertain-
ties, we have estimated the RMS difference between
satellite and in situ Rrs(λ) “match-up” measurements
collated with the SeaBASS database (Werdell and
Bailey, 2002) after iteratively clipping any 4σ outliers.
Figure 2 shows an example of the data and clipping
for one band. We further assumed that one-half of the
variance is due to the in situ observations themselves.
These RMS values are also provided in Table 1, and
we find that they are in good agreement with other
estimations (Zhang et al., 2022; Kudela et al., 2019).

– Sea-viewing Wide Field-of-view Sensor (SeaW-
iFS)/SeaStar. We followed a similar procedure for
SeaWiFS using six bands and the uncertainties
provided in Table 2.

– Ocean Color Instrument (OCI)/Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) Satellite. For simu-
lated OCI spectra, we assumed δ = 5 nm sampling and
limited the wavelength range between 400 and 700 nm.
The lower bound is due to (i) greater uncertainties in
the atmospheric corrections, (ii) greater uncertainty in
water absorption and scattering, and (iii) greater uncer-
tainty in how best to parameterize the non-water compo-
nents in the UV bands. The upper wavelength bound is
to avoid systematics that likely dominate the uncertainty

Table 1. MODIS data.

Band σ(Rrs(λ))

(nm) (sr−1)

412 0.0012
443 0.0009
488 0.0008
531 0.0007
547 0.0007
555 0.0007
667 0.0002
678 0.0001

Note that the error assumes
that 1/2 of the variance is
due to the in situ
measurements.

Table 2. SeaWiFS data.

Band σ(Rrs(λ))

(nm) (sr−1)

412 0.0014
443 0.0011
490 0.0009
510 0.0006
555 0.0007
670 0.0003

Note that the error assumes
that 1/2 of the variance is
due to the in situ
measurements.

at the lowest Rrs(λ) signals. Furthermore, we have lim-
ited measurements to the absorption of standard sea-
water constituents (e.g., phytoplankton) at these longer
wavelengths.

For the PACE noise model, we downloaded a sin-
gle granule (2 175 120 pixels) of Level 2 data, v2.0:
PACE_OCI.20240413T175656.L2.OC_AOP.V2_0.NRT.nc.
We then took the median uncertainty spectrum
(Rrs_unc; Zhang et al., 2022) for all non-flagged
data between 33–40° N and 73–78° W. This median
uncertainty spectrum is plotted in Fig. 3 at the Level 2
wavelength sampling (≈ 2.5 nm). We also show the
values adopted at our δ = 5 nm sampling, and one notes
that we did not adjust σ(Rrs(λ)) despite the larger
sampling size. This is because OCI is over-sampled
at δ = 2.5 nm; i.e., neighboring data points are highly
correlated. Further work should assess the degree of
this correlation to obtain a better noise estimate.

Note that the noise is independent across spectral bands,
meaning that no spectral correlation is assumed. However,
in standard atmospheric correction procedures, noise is ex-
pected to be spectrally correlated due to systematic uncer-
tainties in aerosol and Rayleigh scattering treatments, as well

https://doi.org/10.5194/bg-22-4705-2025 Biogeosciences, 22, 4705–4728, 2025
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Figure 2. (a) Comparison of the MODIS measurements of Rrs(λ) at λ= 443 nm versus in situ observations at the same wavelength. These
were taken from the SeaBASS site (Werdell and Bailey, 2002) dedicated to MODIS matchups (NASA Goddard Space Flight Center, 2024).
The points follow the over-plotted one-to-one line relatively well, albeit with significant scatter, which we assess to be the RMS noise in the
MODIS observations. (b) Distribution of the difference between in situ and satellite 1Rrs(λ)= Rrs(λ)

insitu
−Rrs(λ)

MODIS. The dashed red
lines show the 4σ interval beyond which we clipped the data when calculating the noise estimate (RMS).

Figure 3. The blue curve is the median PACE uncertainty in
Rrs(λ) estimated in the Level 2 product v2.0 for one granule
(PACE_OCI.20240413T175656.L2.OC_AOP.V2_0.NRT.nc). The
black dots are the values of σ(Rrs(λ)) adopted in this paper when
simulating PACE spectra with noise. The red stars show the signal-
to-noise (S /N) ratio for an example spectrum.

as instrumental effects. Ignoring these correlations could
introduce additional uncertainties in the retrievals by mis-
representing the spectral structure of the observed signals.
Whether treating noise as being uncorrelated maximizes or
underestimates the effective retrieval uncertainty depends on
the interplay between error propagation and the constraints
imposed by the retrieval algorithm. A more rigorous treat-
ment should incorporate spectral noise correlations to pro-
vide a more accurate error characterization.

2.5 IOP models

For the principal analysis of this paper, we will consider a
series of increasingly complex models for the IOPs anw(λ)

and bb,p(λ). We generally follow common practice for mod-
els of anw(λ) and bb,p(λ), which have been informed by in
situ and laboratory measurements of ocean constituents. In
turn, we will examine the maximum complexity that can be
statistically constrained by observations designed to mimic
satellite retrievals, e.g., data from multi-band and hyperspec-
tral observations.

Consider first the simplest scenario we may conceive of:
a two-parameter k = 2 model with both anw(λ) and bb,p(λ)

taken as constant at all wavelengths.

anw(λ)= Acst (12)
bb,p(λ)= Bnw (13)

This model may not have physical merit, but it serves as a
baseline for comparison with other physically motivated IOP
scenarios.

Now consider three additional models of increasing com-
plexity. The k = 3 model,

anw(λ)= Adg exp[−Sdg(λ− 400)] (14)
bb,p(λ)= Bnw, (15)

where λ is expressed in nm and where one assumes the
non-water absorption is strictly an exponential function. This
spectral shape is commonly used to describe the absorp-
tion by CDOM and/or detritus. In situ absorption measure-
ments show typical values of Sdg ≈ 0.015nm−1 for CDOM
(Roesler et al., 1989) and Sdg ≈ 0.010nm−1 for detritus
(Stramski et al., 2001). Our fiducial models only require

Biogeosciences, 22, 4705–4728, 2025 https://doi.org/10.5194/bg-22-4705-2025
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Sdg > 0, but we also consider stricter priors on this param-
eter.

The k = 4 model,

anw(λ)= Adg exp[−Sdg(λ− 400)] (16)

bb,p(λ)= Bnw (λ/600)βnw , (17)

adds the commonly adopted power law for backscattering by
particulate matter (Gordon and Morel, 1983). For the k = 4
and k = 5 models, we allow βnw to vary but consider fixed ex-
ponents for the other models introduced below (and, strictly
speaking, βnw = 0 for models k = 2 and k = 3).

Last in this sequence, the k = 5 model includes a phyto-
plankton component:

anw(λ)= Adg exp[−Sdg(λ− 400)] +Aphaph(λ) (18)

bb,p(λ)= Bnw (λ/600)βnw , (19)

with aph(λ) introduced to capture “typical” absorption by
phytoplankton. It is expected and has been observed that
this component may exhibit the greatest complexity. Indeed,
scientifically, the community aims to distinguish the poten-
tially large variations in phytoplankton families throughout
the ocean and inland waters. For this k = 5 model, we adopt
the parameterization of Bricaud et al. (1995):

aph(λ)= Cph(λ) [Chl a]Eph(λ), (20)

with Chl a as the Chlorophyll-a concentration in mgm−3,
and the tabulation of Cph(λ) and Eph(λ) are provided by
Bricaud et al. (1998). Furthermore, we follow L23 (and the
previous literature) and assume

Chl a = aph(440nm)/0.05582m−1 (21)

so that phytoplankton absorption is described by one free pa-
rameter: aph(440nm) (a.k.a. Aph).

We also include a k = 2b model that has two parameters,
Chl a and Bnw (we assume a constant value), and we set the
Aph using Eq. (21). This model has no CDOM or detritus
absorption.

For these models, we impose the following priors (con-
straints) on the five parameters. For each amplitude (Adg,
Aph, Bnw), we assume a uniform log prior from 10−6 to
105 m−1 in magnitude. For the shape parameters, we assume
a uniform prior for Sdg in the interval U = [0.1,0.2] and that
βnw has a uniform prior with values U = [0,2]. These priors
for the shape parameters are motivated by the range of mea-
sured in situ values for each (Roesler et al., 1989; Lee et al.,
2002).

We have also generated a series of “flexible” models with
one free parameter at each of 61 wavelengths, and the model
is the linear interpolation between each parameter. We will
refer to this as the arbitrary IOP model.

For a portion of the analysis, we consider the GIOP
and GSM models, which have been widely adopted within

the community, including operational implementations by
NASA. These two models are effectively constrained ver-
sions of the k = 5 model with different priors on the param-
eters. In particular, both GSM and GIOP adopt a fixed Sdg –
0.018nm−1 for GIOP and 0.0206nm−1 for GSM. The mod-
els also either adopt a fixed value for βnw (1.0337 for GSM)
or estimate it from the Rrs(λ) measurements (GIOP) with a
separate prescription (Lee et al., 2002).

Each model also has a different approach to setting the
shape of aph(λ) compared to our k = 5 model. The standard
GIOP model estimates Chl a from a separate prescription
(typically the OC4 algorithm from O’Reilly et al. (1998) and
then adopts Eq. (18) for the shape of aph(λ). For GSM, we
adopt their multi-spectral description of aph(λ) and interpo-
late to hyperspectral resolution as needed.

We consider one final scenario, a many-parameter model
(k = free) with one free parameter per wavelength channel
for each anw(λ) and bb,p(λ) This model is used to attempt
retrievals with any arbitrary shape for the IOPs.

3 Results

3.1 Failed attempts at arbitrary IOP retrievals

The physical degeneracy in the radiative transfer relating
Rrs(λ) to IOPs (Sect. 2.2) implies that the greater the free-
dom that one allows for anw(λ) or bb,p(λ), the more degen-
erate the solutions. This fundamentally limits our ability to
retrieve arbitrary a(λ) or bb(λ), even in the presence of per-
fect data (an infinite number of channels and no uncertainty).
Therefore, no algorithm can retrieve arbitrary or even highly
complex a(λ) and bb(λ). To make progress, one most also
impose strong constraints on anw(λ) and bb,p(λ) to recover
unique or most probable solutions. These priors, however,
must ensure that the values of a and bb cannot vary freely at
any individual wavelength, where one seeks a retrieval in a
way that holds their ratio constant.

To demonstrate this with an example, we performed a se-
ries of IOP retrievals of bb,p(λ) assuming a perfect forward
model (Eq. 8), perfect knowledge of the uncertainties, and
perfect knowledge of water (aw, bb,w). In this case, we adopt
the arbitrary IOP model and show the fits to Rrs(λ) for the
index= 170 spectra of L23 in Fig. 4, assuming the exact an-
swer, and then anw(λ) with a series of assumed scale factors.
We then solved for the corresponding bb,p(λ) spectra that
provide the same best fit to Rrs(λ). Indeed, there are an infi-
nite number of anw(λ), bb,p(λ) solutions; one cannot retrieve
arbitrary IOPs from Rrs(λ) spectra.

This physical degeneracy limits the information content
of retrievals and precludes arbitrary functional forms for
anw(λ) and bb,p(λ), e.g., models that strive to retrieve arbi-
trary anw(λ) are ruled out (e.g., Loisel et al., 2018). Instead,
one must impose constraints (priors) on the functional forms
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Figure 4. A series of Rrs(λ) “fits” to an example Rrs(λ) spectrum (a) for varying anw(λ) (b) and bb,p(λ) (c) using the arbitrary IOP model.
We show a series of solutions with scaling factors of 0.9, 1.0, 3.0, 10.0, and 100.0 relative to the true model for a(λ). Owing to the physical
degeneracy in the radiative transfer equation, Rrs(λ)= F(a/bb), there are an infinite number of such solutions, yielding infinite uncertainty
in anw(λ) and bb,p(λ).

of anw(λ) and bb,p(λ) (i.e., parameterize them) and, ideally,
priors on the parameters themselves.

3.2 Parameterized IOP retrievals with BING

We now perform attempted retrievals of the IOPs anw(λ)

and bb,p(λ) using assumed spectral shapes with a set of in-
creasingly complex prescriptions. We begin by fitting the
k = 2 model to two examples from the L23 dataset (Fig. 5):
one chosen to be representative of their full dataset and the
other chosen to have a higher-than-typical phytoplankton ab-
sorption aph(λ) relative to the combined CDOM and detritus
components adg(λ) (i.e., aph(440nm) > adg(440nm). Both
have relatively low Chl-a concentrations (≈ 0.1mgm−3). For
these, we fit to the Rrs(λ) values calculated directly from
Eq. (8) and assume a constant S/N= 50 for theRrs(λ) values
for the likelihood calculation. Despite the extreme simplicity
of this k = 2 model, theRrs(λ) fits are not too dissimilar from
the true values, especially for the high-aph(λ)/adg(λ) exam-
ple, and we note that this aph-dominated spectrum has a low
total non-water absorption, i.e., weak adg absorption. This
follows from our discussion in Fig. 1: water backscattering
and absorption dominate the solution at short and long wave-
lengths, respectively, and the non-water components have
limited impact on the Rrs(λ); i.e., we primarily measure sea-
water from IOP retrievals, especially for ocean waters with
low chlorophyll concentrations.

Figure 5 shows the best solutions derived with BING for
the k = 2–5 models. While the log scaling of the Rrs(λ) pan-
els hides differences at the few percent level, it emphasizes
that distinguishing between models requires nearly perfect

observations. Notably, when k = 2, the model does not fit the
observed anw(λ) and bb,p(λ) well, suggesting that this level
of complexity is insufficient to fully capture the IOP variabil-
ity. However, despite these discrepancies in IOPs, the Rrs(λ)

fit remains relatively good, which indicates that multiple IOP
configurations can produce similar reflectance spectra due to
the underlying ill-posed nature of the inversion problem. As
model complexity increases, the Rrs(λ) fit improves. k = 3
reproduces the reflectance spectrum to within 10 % at all
wavelengths, and the k = 4 and k = 5 models achieve even
better agreement, at the several percent level or less. The
k = 4 model achieves a reduced chi-squared χ2

ν ≈ 1 when as-
suming 5 % uncertainties (S /N= 20) in Rrs(λ), suggesting
that the model complexity is well-matched to the informa-
tion content in the data. We have also considered the k = 2b
model (not shown) but find that because it does not capture
the exponential-like absorption of CDOM and detritus, it is
generally a poorer model.

This progression implies that increasing k improves re-
trieval fidelity up to a certain point. If k = 5 continues this
trend, one might expect a reasonably good retrieval of anw(λ)

and bb,p(λ) under ideal conditions. However, Fig. 5 also un-
derscores a fundamental limitation in IOP retrievals: beyond
a certain level of complexity, additional parameters may not
significantly enhance the retrieval unless supported by suffi-
ciently independent spectral information. This illustrates the
inherent degeneracy in the inversion problem, where differ-
ent IOP parameterizations can yield similarRrs(λ), making it
difficult to extract unique IOP solutions. Thus, while a k = 5
model might provide a better fit, it remains constrained by
the amount of independent spectral information available in
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Figure 5. Retrievals of IOPs – (b, e) anw(λ) and (c, f) bb,p(λ) – from fits to (a, d) remote-sensing reflectances Rrs(λ) assuming perfect
radiative transfer and without adding noise. The black points are the true values of Rrs(λ), anw(λ), and bb,p(λ) for two examples from the
L23 dataset: index= 170, which we chose as representative of the full dataset, and index= 1032, which has aph > adg at 440 nm. The figure
shows solutions for a series of models with increasing complexity and number of free parameters k. These models are (k = 2; red) constant
anw(λ) and bb,p(λ), (k = 3; green) constant bb,p(λ) and a two-parameter exponential for anw(λ), (k = 4; blue) exponential anw(λ) and a
power law for bb,p(λ), and (k = 5; orange) power law bb,p(λ) and anw(λ) modeled by the exponential and a phytoplankton function (see
text for further details). It is evident that all of the k ≥ 3 models produce excellent fits to the Rrs(λ) data at the few percent level.

the data, reinforcing the challenge of retrieving detailed IOP
spectra from multi-spectral or even hyperspectral observa-
tions.

We can statistically evaluate the constraining power of the
data with the BIC formalism introduced in Sect. 2.1. Figure 6
shows the 1BIC values for simulated MODIS observations
of the L23 spectra (see Sect. 2.3 for details). The cumula-
tive distribution function (CDF) on the y axis represents the
cumulative probability that the 1BIC values (Eq. 7) for the
3320 fits to the L23Rrs(λ) data are less than or equal to a spe-
cific value. Each 1BIC value corresponds to a comparison
between two models, specifically the BIC values for a model
with and without phytoplankton parameters (k = 3 and k = 5
in the multi-spectral case (Fig. 6a) and k = 4 and k = 5 in the
hyper-spectral case (Fig. 6b)). If the CDF value is yCDF at a
specific 1BIC value, it means that the 100× yCDF % of the
1BIC values in the dataset are less than or equal to that spe-
cific value. Thus, the CDF curve shows the proportion of the
dataset for which the simpler model is preferred as a function
of the 1BIC value. The higher the CDF value at 1BIC= 0,
the higher the fraction of the dataset that favors the simpler
model over the more complex one.

For the analysis with a realistic MODIS noise model,
fewer than 1 % of the spectra prefer the k = 5 model with
phytoplankton. This holds true even though our analysis as-
sumed a perfect forward model and perfect knowledge of the
measurement uncertainties, without correlated errors. Allow-
ing for these uncertainties would result in zero cases with

1BIC< 0. In fact, we find that one cannot retrieve more than
three parameters from MODIS observations and that even
the k = 2 model is satisfactory for low-Chl-a waters (Ap-
pendix B). Without perfect knowledge of the absorption by
CDOM, one cannot retrieve phytoplankton from MODIS ob-
servations alone.

The curve corresponding to S/N= 20 in Fig. 6a shows
that while there is some support for the simpler model, indi-
cated by the CDF values for positive 1BIC, the more com-
plex model, which includes additional parameters for phy-
toplankton, is generally preferred. This is because the CDF
for negative 1BIC values is low, indicating that the simpler
model is not favored in most of the dataset. In other words,
although the simpler model is supported in some cases, the
overall trend indicates that the more complex model is usu-
ally favored for S/N= 20. Thus, reducing noise in theRrs(λ)

data is essential when increasing model complexity. How-
ever, achieving S/N= 20 is challenging, even at blue wave-
lengths in open-ocean Case 1 waters, as demonstrated in
numerous validation studies. Moreover, achieving S/N= 20
at λ > 600 nm, where absorption by seawater alone is very
high, may be impossible (Zhang et al., 2022).

We reach even stronger conclusions for simulated SeaW-
iFS observations that have fewer bands. Unless one identifies
an approach to regularly achieve S/N� 10 measurements in
the presence of all error terms (e.g., atmospheric corrections),
phytoplankton cannot be retrieved from multi-spectral obser-
vations without strong additional priors. In Appendix B, we
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Figure 6. Evaluations of the difference in BIC values, 1BIC, for fits to reflectance data derived from the 3320 spectra of L23. The curves
describe the cumulative distribution function of the 1BIC values. (a) Simulated MODIS observations (eight bands) with a series of signal-
to-noise (S /N) assumptions (colored curves) and for retrievals adopting actual MODIS noise estimates from NASA validation (Werdell and
Bailey, 2002). The > 99% negative 1BIC3,5 values for the realistic noise case indicate that the L23 spectra greatly favor models with only
three parameters and without phytoplankton. (b) Similar analysis but for OCI-/PACE-simulated observations with fixed S /N and for a best
guess at nominal OCI/PACE performance (Sect. 2.3). We find, even with OCI, that only ≈ 30% of the L23 dataset favors the model with
phytoplankton.

examine the GIOP and GSM models, which assume a fixed
and steep Sdg shape parameter and examine the negative out-
comes of this assumption. These results are central to our
broader conclusion that multi-spectral satellite observations,
such as from MODIS and SeaWiFS, lack the statistical power
to constrain more than three parameters describing non-water
absorption and backscattering. They also emphasize that re-
trieval performance depends on not only the number of pa-
rameters but also how they are structured within the model.
Model design must account for both physical realism and sta-
tistical identifiability, especially when working with data of
limited spectral resolution and a limited signal-to-noise ratio.

Now consider an assessment with simulated OCI hyper-
spectral observations for the PACE satellite (see Sect. 2.3 for
details). Our fiducial case uses the L23 spectral sampling,
and we limit the observations to 400nm< λ < 700 nm, out-
side of which systematics of the L23 dataset and instru-
mentation dominate the uncertainties in Rrs(λ), and poor
knowledge of the wavelength dependence of the ocean’s con-
stituents precludes confident analysis. Figure 6b shows the
distribution of the difference in BIC values, 1BIC, between
the k = 4 and 5 models, assuming several choices for the
S /N ratio and our estimate for the OCI/PACE noise from
v2.0 Level 2 products. We find that OCI/PACE may not re-
cover an absorption signature of phytoplankton from water
with properties similar to those represented by less than half
of the L23 dataset (primarily those with lower Chl-a concen-
trations). We are led to conclude that one may retrieve four
parameters for IOPs from an OCI-like observation and possi-
bly a fifth. Two of these numbers describe the amplitude and
shape of anw(λ) parameterized as an exponential, and two

numbers describe bb,p(λ) modeled as a power law. Absent
strong priors that account for one of these four, extracting
even one number describing aph(λ) (at all wavelengths) will
be challenging. The following section explores such hyper-
spectral retrievals in greater depth.

3.3 Retrieving aph(λ) with NASA/PACE

The results in Fig. 6b indicate that hyperspectral observations
with characteristics representative of data from the NASA/-
PACE mission should have the statistical power to infer the
presence of phytoplankton in the majority of ocean waters.
With BING, we may explore further the promise of such
aph(λ) retrievals, as well as assess potential biases. This anal-
ysis complements the hyperspectral assessment of a portion
of the NOMAD dataset of in situ observations by Erickson
et al. (2023).

For the following analysis, we adopt the k = 5 model and
compare results with the GIOP and GSM algorithms, re-
emphasizing that the latter was only designed for multi-
spectral observations and is only included for illustration.
Figure 7 shows the results for the k = 5 model fit to the top
spectrum in Fig. 5 but now with random noise included and
with the 68% confidence interval illustrated. The model pro-
vides an excellent description of the Rrs(λ) measurements,
but the reduced χ2

ν being much less than 1 suggests potential
overfitting of the data. Furthermore, the retrievals are well
matched to the known anw(λ) and bb,p(λ) spectra and are
fully encompassed by the uncertainty. This includes the indi-
vidual adg(λ) and aph(λ) spectra that comprise anw(λ).

Quantitatively, on the positive side, we recover
aph(440nm) = 0.0084± 0.0033m−1, which lies within 1σ
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Figure 7. IOP retrievals from a BING analysis of a PACE-simulated spectrum (a) for the k = 5 model with its standard priors. For this
low-Chl-a example (index= 175 of the L23 dataset), we recover estimates of anw(λ) and bb,p(λ) and their uncertainties (colored curves and
shaded regions that encompass the 68 % confidence intervals) that are in good agreement with the true values (solid points). However, the
99 % uncertainty interval for aph(440nm) includes vanishingly small values, and we would not conclude that phytoplankton is detected at
even 3σ significance.

of the correct value (0.0073 m−1). On the negative side, the
uncertainty implies less than 3σ detection; i.e., over 1 %
of the MCMC samples have values 10× lower than the
true aph(440nm). This is due to the degeneracy between
adg(λ) and aph(λ), as illustrated in Fig. 8, which shows a
“corner” plot for the five-parameter model. The very low
aph(440nm) values (< 10−3 m−1) are correlated with lower
(shallower) Sdg and higher Adg, i.e., a degeneracy between
CDOM/detritus and phytoplankton absorption. We also see
from Fig. 8 that the Rrs(λ) offers effectively no constraint
on βnw; its values are almost entirely defined by the prior we
have imposed.

Now consider an example with high Chl-a concentration.
Figure 9 presents the BING fit for the k = 5 model to an
example representative of eutrophic (Case II) waters (in-
dex= 2773 of the L23 dataset). The resultant Rrs(λ) spec-
trum shows the effects of strong detrital and phytoplankton
absorption at blue wavelengths, peaking at λ≈ 550 nm. As
with the low-Chl-a example, the aph(λ) and adg(λ) retrievals
are generally in agreement with their true values, aside from
an excess of adg(λ) absorption at the shortest wavelengths.

This excess is due to the combination of a lower S /N ratio in
the Rrs(λ) data at λ < 450 nm and errors in the adopted basis
functions. In particular, our model does not capture the vari-
ations in bb,p(λ) at λ < 500 nm due to phytoplankton, and
these are compensated (in part) by the higher adg(λ): yet an-
other manifestation of the bb/a degeneracy in IOP retrievals.
Despite these issues, the resultant χ2

ν is approximately 1
(i.e., the model fits the data well), and a more sophisticated
model introduced to capture the variations in bb,p(λ) may
result in over-fitting.

We may explore the impacts of imposing priors on model
parameters by comparing the fits from GIOP and GSM to
this high-Chl-a example. Figure 10 shows the fits to Rrs(λ)

and the IOP retrievals for these three models. All three yield
a reduced χ2

ν ≈ 1 and would be considered acceptable mod-
els (GSM is marginal). These results further demonstrate the
physical degeneracy within the radiative transfer; here, the
GIOP model systematically underestimates both aph(λ) and
bb,p(λ), but these compensate to yield very similar Rrs(λ) to
that of the k = 5 model. We also emphasize that the GIOP
model is driven to this solution by the strong prior on Sdg,
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Figure 8. A corner plot showing the ≈ 500000 samples of the k = 5 model fit shown in Fig. 7. The histogram panels show the marginalized
posterior distributions of each parameter, with the dotted blue lines showing the 68 % confidence interval. The contour plots describe the
correlations between parameters. Note especially the correlations between Aph and both Adg and Sdg: models with shallower Sdg and higher
Adg can describe the data without any phytoplankton absorption. Also note the very poor constraint on βnw.

the error in the estimate of Chl a from the OC4 algorithm,
and the shallower slope for βnw estimated from the Lee et al.
(2002) prescription. As is obvious from Fig. 10, the best-fit
aph(440nm) values vary by a factor of over 400 %, much
larger than the estimated uncertainties for each. These large
variations occur even though the models have statistically ac-
ceptable fits. The low χ2

ν values of the k = 5 and GIOP mod-
els further emphasize that the data have limited statistical
power to retrieve any additional constraints on phytoplank-
ton beyond what is described in the Bricaud et al. (1998) pre-
scription. While different retrieval models yield substantially
different estimates of aph(440nm), the spectral information
inRrs(λ) alone is insufficient to independently resolve phyto-
plankton absorption without relying on empirical parameter-
izations. This points to the need for additional observational

constraints, such as hyperspectral measurements, to break the
degeneracy and improve the accuracy of phytoplankton ab-
sorption retrievals.

We have performed BING fits with the k = 5 and GIOP
models to simulated PACE spectra for the full L23 dataset to
estimate aph(440nm) and bb,p(440). As above, we limit the
range to 400–700 nm, adopt the PACE uncertainties (Fig. 3),
and have injected random noise into each spectrum. Fig-
ure 11 compares the aph(440nm) and bb,p(440) retrievals
with BING versus the true values. For aph(440nm), on the
positive side, the retrievals track the known values over
nearly 3 orders of magnitude. At low aph(440nm), however,
the k = 5 model systematically underpredicts aph(440nm)
for many of the retrievals, leading to a negative bias, and
the majority of these are formally upper limits (plotted in a
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Figure 9. Similar to Fig. 7 but for an example spectrum with high Chl-a concentration and strong detrital absorption. As with the low-Chl-a
case, this fit yields χ2

ν < 1 despite the overestimates of anw(λ) and bb,p(λ) at λ < 450 nm. This is because of the degeneracy in the radiative
transfer (bb/a) and the poorer S /N ratio in Rrs(λ) at these wavelengths.

lighter shade of blue). Furthermore, the scatter is higher than
the PACE Level 2 requirements (35 %; Cetinić et al., 2018).
If we limit to cases with true aph(440nm) > 0.01m−1, the
bias is reduced (15 %), but the MAE remains large (40 %).
One of the primary reasons the k = 5 model underestimates
low aph(440nm) values is the spectral degeneracy between
aph(λ) and adg(λ). When aph(440nm) is weak, the total
absorption is largely dominated by CDOM, making it dif-
ficult to separate the phytoplankton contribution from the
background absorption (Houskeeper and Hooker, 2025). The
k = 5 model allows for flexibility in the spectral shape of
adg(λ), which can lead to overestimation of CDOM/detri-
tus absorption and a corresponding underestimation of phy-
toplankton absorption.

The GIOP model, in contrast, constrains CDOM absorp-
tion using a fixed spectral slope (Sdg) that is typically pre-
scribed from empirical studies such as Lee et al. (2002). This
constraint prevents the retrieval from assigning excess ab-
sorption to adg(λ) at short wavelengths, reducing the risk
of underestimating aph(440nm). While this approach limits
retrieval flexibility, it also helps stabilize the separation be-
tween phytoplankton and CDOM absorption, ensuring that

even at low aph(λ) values, the retrieval does not shift exces-
sive absorption to CDOM. The right panels of Fig. 11 show
the retrievals for bb,p(440). The k = 5 model provides better
overall agreement with the true values, although some scat-
ter persists, particularly at low bb,p(440) values. The bias and
MAE are smaller compared to the GIOP results, suggesting
that the additional flexibility in the k = 5 model helps capture
variations in backscattering more accurately. In contrast, the
GIOP retrievals exhibit a consistent bias in bb,p(440). This
can be attributed to the model’s prescribed functional form
for backscattering, which lacks flexibility when representing
natural variations in bb,p(440) across different water types.
The constrained power law exponent used in GIOP may not
accurately reflect regional or case-specific spectral slopes,
leading to systematic errors. As a result, while GIOP pro-
vides a reasonable fit to Rrs(λ), its retrieved bb,p(440) values
tend to be biased relative to the true values, particularly in
optically complex waters.

To improve the Bayesian approach and reduce the un-
derestimation of aph(440nm) at low values, one may con-
sider refining prior constraints on CDOM absorption, incor-
porating additional spectral information, and enhancing reg-
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Figure 10. A series of fits and IOP retrievals for the high-Chl-a spectrum also shown in Fig. 9. The solid, dashed, and dotted curves are the
results for the k = 5, GIOP, and GSM models, respectively, each with an uncertainty similar to that for the k = 5 model in Fig. 9. We find
that each model provides a statistically acceptable fit to the Rrs(λ) data (χ2

ν ≈ 1) despite the large differences in their IOP retrievals.

ularization techniques. Strengthening Bayesian priors on the
CDOM spectral slope (Sdg) based on climatologies or inde-
pendent datasets can help prevent over-attribution of absorp-
tion to CDOM. Incorporating near-UV bands (350–400 nm),
where CDOM absorption dominates, provides an additional
constraint to improve separation from phytoplankton absorp-
tion. Enhancing Bayesian regularization with priors that fa-
vor realistic aph(λ) spectral shapes and implementing adap-
tive noise weighting can help mitigate retrieval biases in low-
absorption regimes. Finally, performing ensemble retrievals,
where multiple runs with varied priors are averaged, can fur-
ther stabilize the retrieval versus noise. These refinements
will improve retrieval accuracy and reduce systematic under-
estimation of aph(440nm) in low-chlorophyll waters.

4 Discussion and future prospects

In this paper, we have introduced BING, a Bayesian infer-
ence algorithm for IOP retrievals utilizing the Gordon coeffi-
cients for radiative transfer. We have reemphasized a known
but underappreciated physical degeneracy in the radiative
transfer – rrs(λ) as a function of bb/a – which strictly limits

one’s ability to retrieve a(λ) and bb(λ) without strong priors.
Two of the priors are natural: water both absorbs and scatters
light with precisely known coefficients, at least for wave-
lengths λ > 400 nm. We demonstrated, however, that even
these constraints are insufficient; indeed, water frequently
dominates the model, limiting the extraction of additional in-
formation. Consequently, we found that multi-spectral obser-
vations with published uncertainties (Zhang et al., 2022) can-
not reliably retrieve phytoplankton absorption and that even
hyperspectral observations (e.g., OCI/PACE) will be chal-
lenged (Fig. 6).

Previously, Cael et al. (2023) reached a similar infer-
ence as one of our primary conclusions – the limited infor-
mation content of remote-sensing observations. Specifically,
they analyzed the degrees of freedom (DoFs) of Rrs(λ) data
through a standard principal component analysis, finding that
in situ Rrs(λ) data with MODIS sampling has only 3 DoFs
and inferred only DoF=2 for remotely sensed Rrs(λ). Our
analysis, which includes several constraints such as water
absorption and scattering, yields at least one additional pa-
rameter, but the overarching implication is similar: retrievals
from Rrs(λ) observations have limited information content.
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Figure 11. Panels (a) and (c) show the retrievals of aph(440nm) for simulated PACE spectra versus the true values for the k = 5 (a, b) and
GIOP models (c, d) using the BING package. When the error in aph(440nm) exceeds 3 times the best value, we plot the measurement in light
blue. The dashed curve is the 1 : 1 line. The right panels show the retrievals for the particulate backscattering at 440 nm. The bias, median
absolute error (MAE), and root mean square (RMS) are indicated in each panel.

On statistical grounds, retrieving aph(λ) from Rrs(λ) is
fundamentally challenging because CDOM and detrital ab-
sorption, which are always present, exhibit strong spectral
overlap with phytoplankton absorption in the blue region. In
fact, this component (adg) tends to exceed aph, even in the
open ocean (Siegel et al., 2013; Hooker et al., 2020; Hous-
keeper and Hooker, 2025). When adg(λ) is parameterized as
an exponential function, small variations in its spectral slope
can lead to compensatory shifts in aph(λ), making it diffi-
cult to separate their contributions. Since Rrs(λ) depends on
the combined effects of absorption and backscattering rather
than direct measurement of individual IOPs, this spectral de-
generacy prevents a unique retrieval of aph(λ) without ad-
ditional constraints or priors. Previous work that published
estimates of aph(λ) required very strict priors on the shape
of Sdg (Appendix B), leading to significant bias in estimates
of aph(λ). In the cases where Sdg was allowed to vary (Boss
& Roesler, Chapter 5 Lee, 2006), the errors in aph(λ) were

severe and limited retrievals to only upper limits, consistent
with this work.

Do our results therefore invalidate the past several decades
of research and data products using satellite-based ocean
color observations? At the very least, all previous retrievals
from Rrs(λ) must be further scrutinized. We assert that un-
certainties and biases were frequently (possibly always) un-
derestimated, and substantial correlations between retrieved
parameters will be present. Unfortunately, even relative anal-
yses of aph(λ) may be subject to large error. There are,
however, key products that are primarily (and very nearly
exclusively) empirical, i.e., generated without any radiative
transfer modeling (Stramski et al., 2022). These empirically
based algorithms may circumvent the radiative transfer is-
sues raised here, but, as emphasized by Cael et al. (2023), one
cannot retrieve an arbitrary number of such quantities from
visible-domain Rrs(λ) observations. Therefore, the suite of
products generated by the community to date are highly
coupled and correlated. The limited information content of
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Rrs(λ) measurements subject to realistic uncertainties is in-
herent to the problem.

While the results from Fig. 6b indicate that hyperspec-
tral observations offer a substantial improvement over multi-
spectra data, even detecting phytoplankton remains challeng-
ing. We reemphasize that the results presented here have as-
sumed a perfect forward model (i.e., no error in the radia-
tive transfer calculation), uncorrelated uncertainties, a per-
fect model for water absorption and backscattering, and ho-
mogeneous seawater (no vertical or horizontal spatial vari-
ations). Furthermore, even if we surmount these issues, we
may only be able to extract a single parameter describing
phytoplankton, e.g., the aph amplitude at λ≈ 440 nm. And,
strictly speaking, this may be attributed to any absorption
component (not solely aph) that does not follow the expo-
nential description of CDOM and detritus absorption.

Note that our findings refer to the number of statistically
independent parameters that can be retrieved from ocean
color reflectance data under realistic noise conditions. This
does not imply that the true biogeochemical variables in na-
ture are independent. On the contrary, many of the optical
components, such as phytoplankton absorption and backscat-
tering, are physically coupled. For example, phytoplankton
both absorb and scatter light, and their associated IOPs are
often correlated through cell size, composition, and pigment
content. Such natural correlations are reflected in datasets
like those shown in Fig. B3.

However, in an inverse problem, retrieving both compo-
nents independently from reflectance requires that the re-
flectance spectrum contain sufficient information to statis-
tically distinguish them. The BIC and MCMC approaches
quantify how many distinct degrees of freedom are supported
by the measurements and not how many physically or bio-
logically separate variables exist, which in turn determines
the number of parameters that can be reliably estimated in
models of a(λ) and bb(λ). In situations where optical prop-
erties are highly correlated, as is often the case for aph(λ) and
bb,p(λ), the effective dimensionality of the solution space
is reduced. This reinforces our conclusion that even when
additional parameters are included in the forward model,
they are not necessarily identifiable unless the reflectance
data provide enough information to constrain them indepen-
dently. Incorporating prior knowledge about natural covaria-
tion between variables is one promising strategy to improve
retrievals. Future work should explore how physically in-
formed priors can be integrated into the inversion framework
without artificially inflating confidence in individual param-
eter estimates.

5 Conclusions

The ocean color remote-sensing community faces a funda-
mental challenge in retrieving IOPs from remote-sensing re-
flectance due to a physical degeneracy in the radiative trans-

fer equation. Our analysis demonstrates that this degeneracy
severely limits the number of parameters that can be reli-
ably extracted from Rrs(λ) observations. For multi-spectral
satellite data with realistic noise levels (e.g., MODIS, Sea-
WiFS), we find that only three parameters can be reliably
constrained, which is insufficient to independently retrieve
phytoplankton absorption without strong, potentially biasing
priors on the spectral shape of CDOM/detritus absorption.
Even with hyperspectral observations like those from OCI/-
PACE, retrievals remain limited to four or five parameters at
most, and the detection of phytoplankton absorption is still
challenging in many oceanic conditions. In essence, this sets
a limit on the information content available in ocean color
observations (Cael et al., 2023).

These findings suggest that previous IOP retrieval algo-
rithms likely underestimated uncertainties and may have in-
troduced systematic biases into their estimates of phyto-
plankton absorption. The widespread practice of fixing the
spectral slope of CDOM/detritus absorption (Sdg) to a steep
value in models like GSM and GIOP allows for phytoplank-
ton detection but at the cost of potentially significant biases
in aph(λ) estimates. Our Bayesian approach explicitly in-
corporates priors and their uncertainties, providing a more
transparent and rigorous assessment of the retrieval problem.
While hyperspectral observations offer improvement over
multi-spectral data, they still cannot fully overcome the fun-
damental limitations imposed by the physical degeneracy in
the radiative transfer equation.

How might we proceed? It is abundantly clear that we
must identify the optimal way to parameterize the problem
to make the most effective use of the four or five parameters
that describe anw(λ) and bb,p(λ). For example, if we know
βnw (i.e., fix its value as a prior), we would not “waste” a free
parameter to estimate its value. In short, we must harness our
knowledge of the ocean from previous in situ measurements
(or current, if one can afford them) to set priors on the model.
These priors should be geographically and temporally vari-
able to reflect different oceanic conditions. Because strict and
biased priors have been shown to lead to inaccurate and un-
certain retrievals, one must proceed cautiously. Empirically
derived priors can help mitigate these issues by providing a
more accurate representation of the ocean’s optical proper-
ties.

One obvious community-wide effort would be to develop
and agree upon strong priors for Sdg. This is current prac-
tice in many existing algorithms (e.g., GIOP or GSM, which
set Sdg to a single value), but we describe the negative conse-
quences of this extreme approach in Appendix B. Instead, we
encourage the community to generate Sdg priors as probabil-
ity distribution functions that vary with geographic location
and time and then revisit these in our changing climate. Addi-
tionally, we must include more observations from both space
and in situ measurements. From space, we must leverage the
Chl-a fluorescence signal at≈ 685 nm (Wolanin et al., 2015),
whose production and radiative transfer are distinct from that
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of IOP retrievals. From the ocean, in situ observations pro-
vide invaluable validation data and may establish priors like
those for Sdg. Non-visible in situ optical observations have
been shown to improve retrievals of CDOM absorption and
could be retained to better partition signals related to CDOM
and phytoplankton biomass. Constraints on βnw, as a func-
tion of location and season, and physical priors on the cou-
pling of a(λ) to bb(λ) for individual components from the
physics of absorption and scattering could be impactful.

Developing community-wide Bayesian retrieval algo-
rithms is also recommended. The ocean color remote-sensing
community should be encouraged to adopt a Bayesian frame-
work for IOP retrievals such as BING, explicitly including
all priors and their uncertainties. A Bayesian approach al-
lows for a more transparent and rigorous incorporation of
prior knowledge and uncertainties, leading to more reliable
retrievals. Unlike BING, however, Bayesian algorithms must
adopt an accurate forward model and its uncertainties, in-
clude correlated and systematic error in the observations,
and harness new data sources. We have initiated such a
project – Intensities to Hydrolight Optical Properties (IHOP)
– and encourage community adoption and development. The
scientists focused on atmospheric corrections have already
embarked on this journey, following the original insight of
Frouin and Pelletier (2015).

The development of machine learning techniques for sci-
entific exploitation is another tempting and potentially viable
path to address some of the challenges presented in this pa-
per. Optimistically, one can hope to train models that learn
correlations in the Rrs(λ) spectra to predict quantities like
Chl a or even signatures of phytoplankton communities (e.g.,
Woo Kim et al., 2022; Kramer et al., 2022). While we ap-
preciate the potential power of such data-driven approaches,
one must be mindful of the physical degeneracy of Eq. (8),
which leads to very similar or even identical Rrs(λ) spectra
from distinct IOPs (e.g., Fig. 10). A machine learning model
cannot learn how to distinguish between these, especially in
the presence of noise, nor will most industry-developed algo-
rithms properly assess the uncertainties in such degeneracies.
In practice, they would behave only according to the datasets
they were trained upon; this is an implicit prior (Gray et al.,
2024). Lastly, such models will not, on their own, discover
new signatures of absorption in the ocean.

Increasing the spectral resolution of satellite observations
can provide more detailed information about the absorption
and backscattering properties of phytoplankton, thereby re-
ducing the impact of degeneracies. Thus, the development
and deployment of hyperspectral satellites with high spec-
tral resolution across the visible and near-infrared spec-
trum are recommended. The recently launched PACE satel-
lite will lead the way. Additionally, exploring alternative
remote-sensing techniques, such as lidar and fluorescence-
based methods, and incorporating polarization information
to complement traditional ocean color observations should
be considered. It is possible that inelastic processes, such as

Raman scattering and chlorophyll fluorescence, will at least
partially mitigate the degeneracies emphasized here by intro-
ducing spectrally distinct signals that, when accurately mod-
eled, will provide independent constraints on phytoplankton
absorption and scattering, thereby improving retrieval accu-
racy. These advanced techniques may provide independent
measurements that help resolve ambiguities and improve the
overall accuracy of phytoplankton estimates, although infor-
mation gained using these new techniques should be clearly
demonstrated and defined first in the field.

Several of the strategies we proposed can be practi-
cally implemented with modest adaptation of existing work-
flows. For instance, incorporating near-UV bands (e.g.,
350–400 nm) into standard atmospheric correction and re-
trieval chains could significantly improve the ability to con-
strain CDOM absorption. Many modern sensors (such as
PACE/OCI) already acquire data in this spectral region, al-
though it is typically excluded from ocean color retrievals
due to atmospheric correction uncertainties. Operational im-
plementation would require further validation of atmospheric
correction performance in the UV bands, but the gains in
constraining adg(λ) could justify the investments in refining
these procedures. UV bands could also be incorporated into
empirical and semi-analytical models by extending existing
parameterizations (e.g., for Sdg) and evaluating retrieval sen-
sitivity in this region.

Refining priors on CDOM spectral slope (Sdg) can also
be made operational by leveraging existing climatology and
in situ datasets to generate geographically and seasonally
resolved prior distributions. These priors could be imple-
mented in a Bayesian retrieval framework as either lookup
tables or probability distributions that are dynamically as-
signed by location and time. NASA and other agencies al-
ready maintain in situ repositories (e.g., SeaBASS), and
these could support the development of such prior climatol-
ogy. Incorporating them would not necessarily require a full
Bayesian inversion at the operational level but could instead
inform constrained retrievals with flexible priors, much like
how empirical coefficients are regionally tuned in current al-
gorithms.

Adaptive regularization techniques, which vary the
strength of constraints based on the apparent information
content of the input Rrs(λ) spectrum, can be integrated into
operational pipelines through data-driven diagnostic metrics.
For example, spectra with low S /N ratios or low total ab-
sorption could trigger stronger regularization (e.g., narrower
priors or more constrained parameterizations), while higher-
quality spectra would allow for more flexible models. This
adaptive scheme could be encoded through decision trees or
lookup-based thresholding embedded in the processing ar-
chitecture. Given the modular nature of existing algorithm
frameworks like GIOP, such adaptive behavior could be im-
plemented with minimal disruption.

Promoting interdisciplinary collaboration is also essential.
Fostering collaboration between oceanographers, remote-
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sensing experts, and radiative transfer modelers to address
the complex challenges of IOP retrievals can bring together
diverse expertise and perspectives, leading to more innova-
tive and effective solutions. These should include individuals
with mastery of statistics, who can rigorously assess uncer-
tainty and help develop robust and transparent algorithms.

By implementing these recommendations, the remote-
sensing community can significantly enhance the accuracy
and reliability of phytoplankton IOP retrievals, leading to
better-informed biogeochemical models and ecological as-
sessments. This comprehensive approach will help ensure
that remote-sensing data accurately reflect the true state of
the ocean’s biological and chemical processes, thereby sup-
porting more effective environmental monitoring and man-
agement efforts.

Appendix A: Scrutinizing the Taylor series expansion
approximation to the radiative transfer

To examine the use of Eq. (8) as an approximation for
the radiative transfer, consider Fig. A1, which plots the
Hydrolight-derived Rrs(λ) of L23 converted to rrs(λ) with
Eq. (8) versus the evaluated u(λ) values using Eq. (9) at four
distinct wavelengths. These evaluations follow an approxi-
mately quadratic pattern with zero y intercept. Overplotted
with a dashed line is the Gordon approximation using the
standard G1, G2 coefficients and Eq. (8). Qualitatively, the
Hydrolight outputs follow the relation yet lie systematically
above the curve. At its extreme, the Taylor series approxima-
tion is offset by ≈ 10% at λ= 370 nm and u(λ)= 0.35.

To further illustrate the difference, we have fitted the G1,
G2 coefficients to the data at select wavelengths and re-
cover similar G1 values but G2 values that vary significantly
with wavelength (G2 ≈ 0.07 at λ= 370 nm, G2 ≈−1.2 at
λ= 600 nm). We also find that there is significant scatter
around each of the fits, with a relative RMS of ≈ 5% at
shorter wavelengths and of 20% at the reddest wavelengths.
We expect that this scatter is inherent to Eq. (8) and would
be unavoidable if one uses this approximation, even with
wavelength-dependent coefficients. An accurate retrieval al-
gorithm would need to account for these variations or other-
wise suffer from this systematic error. This is the focus of a
separate algorithm that we are developing, and we also re-
fer the readers to recent advances in approximations of the
radiative transfer equation (Twardowski et al., 2018).

Figure A1. Sub-surface reflectances rrs(λ) generated with the Hy-
drolight radiative transfer code by L23 (converted from Rrs(λ) us-
ing Eq. 10) versus u(λ) as defined by Eq. (9). The dashed black
line shows the second-order Taylor expansion of rrs(λ) in u(λ)

(Eq. 8) with the Gordon coefficients that are most widely adopted
by the community. In general, this curve underpredicts the rrs(λ)
calculated with Hydrolight, with a maximum offset of ≈ 10% at
u(λ)= 0.35 and λ= 370 nm. We also show a series of individ-
ual fits of Eq. (8) to the data, with the legend indicating the de-
rived G1,G2 coefficients. Note that G1 is largely independent of
wavelength but thatG2 is strongly wavelength dependent (and anti-
correlated).

Appendix B: Revisiting previous models

The simple IOP models examined in Sect. 3.2 resemble pre-
scriptions adopted previously in the literature and/or imple-
mented operationally by NASA. In light of our results, we
are motivated to further examine two such models: GSM and
GIOP. As described in Sect. 2.5, both GSM and GIOP adopt
strict (fixed) priors on Sdg and βnw such that these are effec-
tively three-parameter models.

We find that by adopting these priors, these three-
parameter GSM and GIOP models are statistically favored
(1BIC> 0) relative to the k = 3 model without phytoplank-
ton for ≈ 50% (GSM on SeaWiFS) or more (GIOP on
MODIS) of the simulated spectra (Figs. B1 and B2). At
the same time, if we relax the prior on either Sdg or Bnw,
over 99 % of the spectra have 1BIC< 0 and favor the
k = 3 model.
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Figure B1. These panels describe the BIC analysis assuming MODIS-like observations for two models designed to match standard GIOP
configurations. Panel (a) compares our k = 3 model versus the standard k = 3 parameter configuration of GIOP (see text for full details). We
find that this GIOP model is preferred, which we speculate is due to the extra freedom to fit the Rrs(λ) at blue wavelengths where the S /N
ratio in MODIS is highest. (b) Results for the GIOP+ model (k = 4 parameters), which lets βnw be an additional free parameter. This model
is not favored for the entire dataset, further evidence that one cannot recover four parameters from MODIS observations.

Figure B2. Similar to Fig. B1 but for GSM models and using simulated SeaWiFS spectra. As with the GIOP models, we find that the GSM
model is favored over our k = 3 model but that a k = 4 parameter version – GSM+, which lets βnw be free – is highly disfavored.

Furthermore, the fixed Sdg value adopted in each of these
models is relatively steep, which imposes a significant bias
on the aph(λ) retrievals. Let us scrutinize these priors, as they
affect the potential to retrieve phytoplankton and any other
constituents. Figure B3 shows the Sdg values derived with the
k = 4 model (no phytoplankton) versus the fraction of non-
water absorption associated with phytoplankton at 440 nm
in the L23 spectra, aph/anw. The two quantities are anti-
correlated because the increased presence of phytoplankton
relative to CDOM and detritus tends to give a shallower non-
water absorption spectrum. We find, as anticipated, that the
majority of retrieved Sdg values lie within the loci of shape
parameters assumed by L23 for CDOM and detritus based
on Lee (2006). There is, however, a non-negligible set of re-
trieved Sdg values that are lower than the lowest value as-
sumed by L23; these are partially due to strong

phytoplankton absorption. Overplotted on the figure are the
fixed values of Sdg for the GSM and GIOP models, where we
see that their priors lie at the upper end of Sdg values mea-
sured in the ocean (GIOP) or even beyond (GSM). This was
intentional for GSM (Maritorena and Siegel, 2005), as its de-
signers derived fixed values for Sdg and βnw by achieving the
best retrievals compared to in situ data. When one adopts a
relatively steep Sdg value, the absorption at λ > 450 nm can-
not be correctly described by CDOM/detritus, and the model
will favor a higher phytoplankton contribution. If, however,
the Sdg values are too steep, then one may anticipate biased
aph(440nm) retrievals.
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Figure B3. The dots plot the best-fit shape parameter Sdg for the L23 spectra using the k = 4 model (no phytoplankton component) versus
the amplitude of aph to anw at 440 nm. The two are correlated, albeit with large scatter. The blue and yellow shaded regions indicate the
ranges of exponential shapes for CDOM and detritus (Sg,Sd ), respectively, adopted by L23. Not surprisingly, the majority of retrieved Sdg
lie within these loci. The ones with shallower slope, however, may be attributed to the presence of phytoplankton, which effectively flattens
anw(λ) at λ≈ 450 nm. The dotted/dashed black lines demarcate the fixed values of Sdg assumed by the GIOP/GSM algorithms for adg(λ).
These are steeper values than the typical Sg (and all Sd ) values adopted by L23. In addition, we show the Sdg derived from an extreme
CDOM-subtracted Tara absorption spectrum collected off the coast of Africa (see Prochaska and Gray, 2024), which demonstrates at least
one instance of a very low Sdg in the ocean.

Figure B4. Retrievals of aph(440nm) and bb,p at 600 nm for the GIOP model, with simulated MODIS spectra and perturbations of the
Rrs(λ) values by the typical noise. We find that the values are biased and scatter by 1 order of magnitude or more.

Figure B5. Same as Fig. B4 but for the GSM model and the simulated SeaWiFS spectra.
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We then performed a new set of inferences on the en-
tire L23 dataset, assuming MODIS- and SeaWiFS-simulated
spectra for the GIOP and GSM models, respectively. In both
cases, we calculated Rrs(λ) from Eqs. (8) and (10) and per-
formed the inversion with the same model after perturbing
the Rrs(λ) values due to the presence of noise. The retrievals
are presented in Figs. B4 and B5. Clearly, the retrievals of
aph and bb,p are biased and highly uncertain at all values,
with nearly 2 orders of magnitude of scatter. Therefore, the
detection of aph(λ), if it were possible with multi-spectral
observations, would be highly uncertain.

The constraints inherent within inversion algorithms like
GSM and GIOP do affect the confidence when interpret-
ing changes in maps of retrieved variables such as chloro-
phyll concentration, absorption coefficients, and backscatter-
ing coefficients. The spectral ambiguity in Rrs(λ) data can
lead to changes influenced by variations in other optical prop-
erties not fully addressed by the models, making it diffi-
cult to attribute changes solely to biological factors. More-
over, the interdependence of retrieved parameters, such as
chlorophyll, aCDOM, and bb,p, means that errors in one can
propagate to others, complicating the interpretation of these
maps. For example, inaccuracies in backscatter coefficient
estimates can affect chlorophyll retrievals. Additionally, vari-
ability in environmental conditions can impact the accuracy
of the retrieved variables. Algorithm performance may vary
across different water types and regions, necessitating further
caution when interpreting these changes.

Results from tests of IOP retrieval models have been
presented in multiple publications over the years since the
beginning of their development (e.g., Mouw et al., 2017;
Werdell et al., 2018; Seegers et al., 2018), and a discus-
sion of all of these lies beyond the scope of this paper.
Nevertheless, we wish to highlight one in-depth effort sum-
marized by the International Ocean Colour Coordinating
Group (IOCCG) Report 5 (Lee, 2006). Similar to our work,
the participants applied their IOP retrieval algorithms to a
simulated (i.e., known) dataset to assess performance. The
majority of these algorithms assumed an exponential term
for CDOM/detritus absorption with fixed Sdg and a steep
value (Sdg > 0.015 nm−1). Similar to the results we found
for GIOP and GSM (Figs. B5, B4), these consistently over-
estimated aph(λ) at 440 nm.

Only one team (Boss and Roesler) allowed Sdg to vary
(from 0.008 to 0.023 nm−1) in their algorithm, which fol-
lowed from the Roesler et al. (1989) publication. Referring
to their Fig. 8.1, one notes less biased aph(λ) values than
from the other algorithms and sees that they were the only
group to include an error estimation. Given that the axes are
a log scaling, one might miss that the uncertainties in aph(λ)

are large enough to be consistent with zero. This implies that
the retrieved values are not statistically distinguishable from
zero at the given confidence level. In other words, the results
from the only algorithm that allowed Sdg to vary freely in-

dicate that aph(λ) could not be reliably constrained by the
simulated data.
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