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Abstract. Grasslands make up the majority of agricultural
land and provide fodder for livestock. Information on grass-
land yield is very limited, as fodder is directly used at farms.
However, data on grassland yields would be needed to in-
form politics and stakeholders on grassland ecosystem ser-
vices and interannual variations. Grassland yield patterns of-
ten vary on small scales in Germany, and estimations are fur-
ther complicated by missing information on grassland man-
agement. Here, we compare three different approaches to es-
timate annual grassland yield for a study region in south-
ern Germany. We apply (i) a novel approach based on a
model derived from field samples, satellite data and mow-
ing information (RS); (ii) the biogeochemical process-based
model LandscapeDNDC (LDNDC); and (iii) a rule set ap-
proach based on field measurements and spatial information
on grassland productivity (RVA) to derive grassland yields
per parcel for the Ammer catchment area in 2019. All three
approaches reach plausible results of annual yields of around
4–9 tha−1 and show overlapping as well as diverging spatial
patterns. For example, direct comparisons show that higher
yields were derived with LDNDC compared to RS and RVA,
in particular related to the first cut and for grasslands mown

only one or two times per year. The mowing frequency was
found to be the most important influencing factor for grass-
land yields of all three approaches. There were no significant
differences found in the effect of abiotic influencing factors,
such as climate or elevation, on grassland yields derived from
the different approaches. The potentials and limitations of the
three approaches are analyzed and discussed in depth, such
as the level of detail of required input data or the capabil-
ity of regional and interannual yield estimations. For the first
time, three different approaches to estimate grassland yields
were compared in depth, resulting in new insights into their
potentials and limitations. Grassland productivity maps pro-
vide the basis for the long-term analyses of climate and man-
agement impacts and comprehensive studies of the functions
of grassland ecosystems.
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1 Introduction

Grassland ecosystems provide fodder for livestock as well as
many other ecosystem services, such as carbon storage, pro-
vision of habitat, water purification, recreation and erosion
control (Bengtsson et al., 2019; Le Clec’h et al., 2019; Gi-
bon, 2005, 2009; Richter et al., 2021; White et al., 2000). In
Germany, grasslands cover almost one-third of the agricul-
turally used area (Statistisches Bundesamt, 2023) and are of
central importance for the meat and dairy industry (Schoof
et al., 2020b; Soussana and Lüscher, 2007). In large parts
of Europe, grassland ecosystems are managed and, hence,
strongly shaped by human activities. In Germany, for exam-
ple, almost all of the grassland is under some form of agri-
cultural use, i.e., grazed and/or mown with different frequen-
cies (Dengler et al., 2014; Schoof et al., 2020a, c). Grassland
management and use intensity, i.e., the number and timing of
grazing and/or mowing as well as fertilization events, have a
strong impact on grassland functions and ecology (Gossner
et al., 2016; Neyret et al., 2021; Socher et al., 2012). Apart
from climate and soil conditions, grassland management de-
termines the productivity (and thus yields) and species diver-
sity of these ecosystems (Gilhaus et al., 2017). In Germany,
grasslands are managed on small units (parcels) individually,
resulting in a wide variety of combinations of the number
and timing of mowing events on small spatial scales. As a
consequence, grassland landscapes can show high spatial and
temporal variability in their biomass availability and species
composition (Gerowitt et al., 2013).

Grassland biomass is usually directly used on farms as
fodder for livestock and not traded, which is why there
are usually no data on grassland yields resulting from sales
statistics. The lack of information on yields exacerbates ex-
tensive spatiotemporal analyses of drivers of grassland pro-
ductivity as well as modeling of grassland ecosystem ser-
vices, e.g., nitrogen and carbon fluxes. Long-term effects of
climate change and short-term weather extremes influence
grassland productivity and yields (Beniston, 2003; Berauer
et al., 2019). This is of particular importance in the Alpine
and pre-Alpine regions of southern Germany, as the tem-
perature in these areas increases twice as fast as the global
average (Auer et al., 2007; Kiese et al., 2018). In addition,
drought and heat episodes are expected to increase in the
region. Therefore, information on grassland yields and the
dependency on climate conditions is needed to support the
planning of fodder production and imports for farmers and to
inform administration and politics. Furthermore, information
on grassland yields is required for a comprehensive assess-
ment of grassland ecosystem services and sustainable man-
agement under changing climate conditions. Despite these
information needs, continuous and large-scale monitoring is
lacking.

There are different approaches to retrieve grassland yield
information. Ground measurements alone, such as cutting
and removing herbage from the grasslands for direct analy-

sis or estimating yields by the use of a rising plate meter, are
usually time-consuming processes, can hardly provide reg-
ular information and might not represent the conditions on
broader spatial scales (Murphy et al., 2021). This holds in
particular in grassland ecosystems characterized by a high
small-scale variability, like in southern Germany. To retrieve
spatially continuous and multi-temporal information, grass-
land yields can be (i) modeled empirically with a different
degree of complexity, e.g., taking in situ and remote-sensing
data into account; (ii) modeled bio-geochemically, e.g., with
process-based models; or (iii) derived from simple rule sets
used by authorities based on yield surveys and further spa-
tially extensive data, e.g., elevation and soil fertility index.

Remotely sensed reflectance, in particular vegetation in-
dices derived from them, depict vegetation greenness as well
as structure and photosynthetic activity and, thus, relate to
vegetation biomass (Holtgrave et al., 2020; Huete et al.,
2002). Grassland traits, such as aboveground biomass, can be
estimated using an empirical relationship employing remote-
sensing and in situ data to train and validate models, as
shown in many studies summarized in Reinermann et al.
(2020). Space-borne remote-sensing-based biomass models
have been applied in many different grassland ecosystems
using various sensors and regression models. Using satel-
lite remote-sensing data to quantify vegetation properties
enables large-scale, continuous, reproducible and compar-
atively cost-sensitive monitoring. Compared with the rela-
tively frequent application of empirical remote-sensing-data-
based biomass models for mostly grazed grassland ecosys-
tems (Wu et al., 2024; Yao and Ren, 2024), the number
of studies using this approach for grasslands dominated by
mowing is more limited (Reinermann et al., 2020). Previ-
ous studies from regions characterized by mown grasslands
investigated the potential of various vegetation indices de-
rived from medium-resolution sensors (the Moderate Reso-
lution Imaging Spectroradiometer, MODIS, or the Moder-
ate Resolution Imaging Spectrometer, MERIS) to estimate
grassland biomass for single sites in Ireland and the Nether-
lands (Ali et al., 2017a; Ullah et al., 2012). Based on Land-
sat and Sentinel-2, grassland biomass and height were es-
timated for study regions in Germany, France, Spain and
Austria using various regressors, such as multiple linear re-
gression, random forest or deep learning models (Barrachina
et al., 2015; Dusseux et al., 2022; Eder et al., 2023; Muro
et al., 2022; Schwieder et al., 2020). However, despite the
strong influence of grassland management on the productiv-
ity, to our knowledge, none of the previous remote-sensing-
based studies have directly included mowing information in
the biomass estimation approach. Further, grassland biomass
estimates are only a snapshot in time. In particular for grass-
lands dominated by frequent mowing activities, the amount
of standing biomass varies a lot over the course of a year.
A single biomass estimation is, therefore, not sufficient to
provide information on annual grassland productivity and
yields. One way to approach this is the combination of multi-
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temporal biomass estimations informed by the timing of
mowing events to retrieve annual grassland yields. To our
knowledge, to date, there is no remote-sensing-based study
that has estimated annual grassland yields using this ap-
proach.

Another method to obtain grassland yield estimates is
the use of deterministic process-based models, such as
LandscapeDNDC (Haas et al., 2013; Kraus et al., 2015; Pe-
tersen et al., 2021), Daycent (Del Grosso and Parton, 2019;
Parton et al., 1998), PaSim (Riedo et al., 1998, 2000), LPJmL
(Bondeau et al., 2007; Schaphoff et al., 2018), APSIM (Holz-
worth et al., 2014) or ORCHIDEE-GM (Chang et al., 2013).
An advantage of process-based models is the possibility to
assess all spatial levels, ranging from the site (Chang et al.,
2013; Liebermann et al., 2020; Petersen et al., 2021) to the
continental (Vuichard et al., 2007) and global (Rolinski et al.,
2018) scale. Additionally, the application of process-based
models opens the possibility to evaluate ecosystem produc-
tivity under various scenarios including climate change (Pe-
tersen et al., 2021) or management changes like adaptions in
fertilization regimes (Hong et al., 2023; Reis Martins et al.,
2024) or shifts in cutting frequencies (Rolinski et al., 2018).
However, as process-based models rely on the availability of
data for model development, the testing and, in particular,
up-scaling of large-scale applications are limited.

A third approach to estimate grassland yield is by mak-
ing use of measurements from field experiments or regional
census statistics (Smit et al., 2008). In Germany, some fed-
eral states provide reference values for grassland yields at
the county level that can be used by farmers to derive their
grassland’s fertilizer requirements. For instance, the refer-
ence values provided in the guideline for fertilization of crop-
and grassland by the Bavarian State Institute for Agriculture
(LfL) (LfL, 2018) are aggregated values for Bavaria based on
LfL internal research and field experiments (Diepolder et al.,
2016).

Here, a novel remote-sensing-based approach to derive
grassland yield in southern Germany is presented and ap-
plied. Annual grassland yields are compared to yield esti-
mates of the same year and region derived from two other ap-
proaches – either established in the scientific community or
used by authorities – optimized for the study region. Annual
yields are compared, and the advantages and disadvantages
of the approaches are highlighted. We estimate annual grass-
land yields for a study area in southern Germany in 2019 us-
ing (a) a novel empirical satellite remote-sensing (RS) model,
which is compared with results of (b) a process-based bio-
geochemical model (LandscapeDNDC) and with (c) a simple
rule set reference value approach used by authorities (RVA).
To represent grassland management intensity, all three ap-
proaches use information on satellite-derived mowing dates
retrieved from Reinermann et al. (2023, 2022). To examine
the conditions under which the results of the three various
approaches differ, we examined the influence of various fac-
tors – management and climate – on the grassland yields re-

sulting from the three methods. By examining the spatial and
temporal patterns of yields derived from the three approaches
and analyzing the influence of various factors, we assess the
differences and similarities in the methods. We aim to deter-
mine which method best represents specific conditions and
under which circumstances it is most reliable.

2 Study area

The study area is located in the pre-Alpine and Alpine region
of southern Germany (Fig. 1) and consists of the broader
Ammer catchment area including the TERENO Pre-Alpine
Observatory (Kiese et al., 2018). The area belongs to the tem-
perate oceanic climate according to Köppen and Geiger (Kot-
tek et al., 2006). The mean annual temperature was 8.9 °C
in 2019, and the long-term average (2012–2021) was 8.1 °C
for the region. The mean precipitation sum was 1175 mm in
2019, and the long-term average was 1141 mm for the area
(Boos et al., 2024; Petersen et al., 2021). The elevation of the
study area with grassland land use ranges between 500 and
1100 m above sea level (m a.s.l.), with grasslands dominating
agricultural land use, which totals to about 38 % of the region
area (Kiese et al., 2018). In the region, grasslands are of eco-
nomic importance not only for meat and dairy production but
also for tourism (Schmitt et al., 2024; Soussana and Lüscher,
2007). The grasslands of the Ammer region are grazed and/or
mown at intensities ranging from extensive (with one to two
mowing events) to highly intensive (with up to six mowing
events per year) use (Reinermann et al., 2022, 2023). The
timing of the management activities varies from grassland
parcel to parcel. Here, we focus on meadows and mowed
pastures, which make up around 657 km2 (27 138 parcels).

3 Material and methods

3.1 Spatial and field data

3.1.1 Spatial management data

All three yield modeling approaches used the same parcel
boundary and mowing information data. Parcel boundaries
were taken from the EU’s Integrated Administration and
Control System (IACS) provided by the LfL. The same data
source was used to exclude all parcels that were not used as
meadows or mowing pastures in 2019.

The dates of mowing events originate from Reinermann
et al. (2023, 2022), where mowing events were detected
based on Sentinel-2 time series. However, differing from the
original approach, no grassland mask was used for this study
to ensure that all meadows and mowed pastures identified
by the IACS data were covered. To transfer the 10m× 10m
pixel-based mowing dates to the parcel level, detected dates
within a time frame of 3 weeks were agglomerated per par-
cel using the majority vote. Only when the date was detected
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Figure 1. The top row presents maps of study area in southern Germany showing land use and elevation. The bottom row shows the hexagon
averages of the mowing frequency, mean annual air temperature, mean annual precipitation and elevation for the year 2019 (see Sect. 3.2.2).
The hexagon diagonal size is 1 km.

for 20 % of the parcel did the mowing event remain in the
dataset. Regional validation using information from farmers
and webcam images showed an accuracy (F1 score) of 0.65
for the mowing dates at the parcel level in the Ammer region
in 2019. The validation was conducted only with data from
the study region but in the same manner as in Reinermann
et al. (2022).

3.1.2 Biomass field data

In situ biomass measurements were used to train and validate
the empirical remote-sensing model and for regional quality
evaluation of LandscapeDNDC. A total of 14 grassland plots
of 20m×20m in the Ammer region (Fig. 1) were sampled in
the 2019–2021 period to obtain in situ aboveground biomass
(AGB) information (Schucknecht et al., 2023, 2020). The

sampling plots comprised homogeneous vegetation coverage
and were placed to be representative of the entire grassland
parcel. The sampled grassland parcels were characterized by
different land management intensities ranging from one to
six mowing events per year. The sampling campaigns took
place at multiple times during the growing season to ensure
that biomass samples from a variety of growth stages be-
fore and after mowing events were included. For each plot,
aboveground biomass was collected on four randomly placed
50cm×50cm subplots. The plot was divided into four equal
quadrants, with each subplot being randomly positioned in
one of the quadrants. The position of each subplot varied with
every measurement. To account for mowing height, AGB
was sampled from > 7cm on all subplots and complemented
by one biomass sampling from 2 to 7 cm vegetation height at
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one of the four subplots. The samples were dried at 60 °C
for at least 48 h until constant weight and then weighed.
The weight values of the dried biomass of the four samples
from above 7 cm were averaged, added to the measurements
of 2–7 cm to obtain the total AGB per site and date, and
scaled to 1 m2. In total, 111 biomass samples were collected.
Apart from three grassland plots that were used as alterna-
tives when the actual plots were freshly mown at the time of
the campaign, all plots were sampled five times in 2019, three
times in 2020, and once in 2021 between March and Octo-
ber. Among the 14 grassland plots, one was mown six times,
two were mown five times, four were mown four times, three
were mown three times, one was mown two times and three
were mown only once per year.

3.2 Yield estimation approaches

The three grassland yield estimation approaches applied
in this study, i.e., the remote-sensing (RS) approach, the
process-based LandscapeDNDC model approach (LDNDC)
and an estimation based on reference values (RVA), are de-
scribed in detail in Sects. 3.2.1–3.2.3 (Fig. 2).

3.2.1 Remote-sensing-based approach

For the remote-sensing model, MAJA (version 3.3) Sentinel-
2 (S2) level 2a (Hagolle et al., 2017) time series from the
years 2019–2021 and tiles 32TPT and 32UPU were used to
match the biomass sampling campaigns. The optical satel-
lite reflectance data consist of acquisitions from two identical
satellites (S2A and S2B) acquiring information in 12 spectral
bands (Drusch et al., 2012). The bands used here are the 10
bands relevant for vegetation monitoring, namely, bands 2,
3, 4, 5, 6, 7, 8, 8A, 11 and 12, covering the red, green, vege-
tation red-edge, near-infrared and shortwave-infrared wave-
lengths. The bands that have a 20 m spatial resolution were
resampled to 10 m by the nearest-neighbor method to achieve
a consistent spatial resolution of 10 m for all bands.

Based on S2 satellite data and in situ total AGB samples
(Sect. 3.1.2), an empirical model was trained and optimized
to estimate grassland biomass. Satellite data influenced by
clouds, cloud shadows or unfavorable terrain conditions were
excluded according to the MAJA algorithm. The empirical
model was built based on the S2 reflectances from the 10
selected bands and additional spectral indices as predictor
variables. Specifically, the enhanced vegetation index (EVI,
Eq. 1; Huete et al., 2002) and the tasseled cap wetness index
(Wetness, Eq. 2; Indexdatabase, 2024; Krauth and Thomas,
1976) were calculated and included as they relate to vegeta-
tion biomass:

EVI= 2.5
B8−B4

B8+ 6 ·B4− 7.5 ·B2+ 1
, (1)

Wetness=0.1509 ·B2+ 0.1973 ·B3+ 0.3279 ·B4

+ 0.3406 ·B8− 0.7112 ·B11
− 0.4572 ·B12 ,

(2)

where B2, B3, B4, B8 and B11 are reflectance bands in the
blue, green, red, near-infrared and shortwave infrared areas,
respectively.

In addition, information on the timing of mowing events
(Sect. 3.1.1) was directly included in the modeling process
by adding an additional predictor variable representing the
days since the last mowing event. For each S2 acquisition, a
layer was calculated giving the days since the last mowing
event on a pixel basis. When no mowing event took place
before the S2 acquisition, the number of days since the start
of the growing season was calculated. To retrieve the start of
the growing season, the Copernicus Land Monitoring Service
(CLMS) High Resolution Vegetation Phenology and Produc-
tivity (HR-VPP) Start of Season product was used (CLMS,
2019). Further, the S2 acquisition date was included as a pre-
dictor variable. This resulted in 14 input features for the em-
pirical modeling, i.e., 10 spectral bands, 2 spectral indices,
the number of days since last mowing or start of growing
season, and the date of the satellite acquisition.

To prepare the input data for model training, pairs of
cloud-free S2 acquisitions and corresponding in situ biomass
samples were built by allowing a maximum of 5 d between
a satellite acquisition and field sampling in both directions.
If there were multiple satellite acquisitions in the allowed
range, closer acquisitions and acquisitions after field sam-
pling dates were preferred. It was also checked that there was
no mowing event in between a satellite acquisition and a field
sampling date to maintain representative data pairs. Due to
cloud conditions in 2021, only data from 2019 and 2020 re-
mained in the data table after this procedure. Data pairs from
sampling campaigns from every month between April and
October, apart from July and August, were available.

An extreme gradient boosting model was trained on the
input features and the corresponding AGB values (Friedman,
2001). Initial tests showed that the extreme gradient boosting
model outperformed others, such as random forest, support
vector machines or multiple linear models. The XGBoost
package (version 1.5.2) was used in Python. In total, 74 data
pairs were available, from which 82 % (n= 61) of data pairs
were used for training and testing, while 18 % (n= 13) of
data pairs were used as an independent test of the trained
model. A stratified sampling of the test data was conducted to
ensure that the value range of the test data was representative.
With the data used for training, the hyperparameters for an
optimized model were searched for, using grid search, 5-fold
cross-validation (CV) and 10 iterations each. To find the best
model, the coefficient of determination (R2) was used. The
best model according to the training was then tested against
the independent test dataset.

https://doi.org/10.5194/bg-22-4969-2025 Biogeosciences, 22, 4969–4992, 2025



4974 S. Reinermann et al.: Grassland yield estimations – potentials and limitations of remote sensing

Figure 2. Conceptual scheme of the three yield estimation approaches.

The best-trained biomass model was applied to estimate
the AGB of all available S2 scenes to generate a biomass time
series. This biomass time series was used in combination
with the mowing dates and IACS parcel information to es-
timate annual yields per parcel. This was approached by go-
ing through the parcel-based mowing dates. For each mow-
ing date, the pixel-based biomass estimates from all observa-
tions of up to 3 weeks before and 1 week after the mowing
date were extracted. The 95th percentile was calculated from
this biomass data to estimate the yield per mowing event and
parcel, minimizing the influence of parcel boundaries. This
time frame was used to ensure that the biomass was captured
shortly before a mowing event, as there is an uncertainty in
the timing of the mowing dates. These single-mowing-event
yields were then summed up to calculate the annual yields
per parcel.

3.2.2 LandscapeDNDC modeling approach

The process-based biogeochemical model LDNDC was run
for the whole study region with individual high-quality input
data combinations of soil, climate and management for ev-
ery field (Boos et al., 2024). This was made possible by the
availability of (1) accurate small-scale grassland soil profile
data, (2) interpolated reference climate data based on con-
tinuous measurements from weather stations and (3) cutting
dates from remote sensing at the field level.

The model calibration and validation for yields was
performed on extensive lysimeter measurements from the
TERENO Pre-Alpine Observatory covering three sites at dif-
ferent elevations within the study area with intensive and
extensive management (Kiese et al., 2018; Petersen et al.,
2021). Running the model with regional input data for the
sites, which are used for RS training and validation (see
Sect. 3.1.2), and comparing to standing biomass before cut-
ting events lead to a coefficient of determination of 0.67 and
a root-mean-square error (RMSE) of 1.46 tha−1 a−1 (Boos
et al., 2024).

Climate inputs were generated from the reference data of
the ClimEx project (Poschlod et al., 2020; Willkofer et al.,
2020) – interpolated from station measurements of the Ger-
man Weather Service – which we aggregated to daily climate
inputs (minimum, maximum and mean air temperature; pre-
cipitation sum; mean relative humidity; mean global radia-
tion; and mean wind speed) and assigned the nearest virtual
climate station to every field to run LDNDC. Regional soil
data were derived from the soil database of the LfU (LfU,
2020). Only mineral grassland soils were considered, and a
unique, i.e., with a single profile per polygon, soil map was
compiled. More details can be found in Boos et al. (2024).

The model simulates plant growth depending on factors
like photosynthesis, nitrogen and water availability, phenol-
ogy, and temperature (Petersen et al., 2021). At a prescribed
cutting date, the aboveground biomass is reduced to a pre-
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set value for the remaining biomass, which equals the stand-
ing biomass after the cutting event and is assigned accord-
ing to the farmers’ practice calibrated to a cutting height of
about 7 cm. The harvested biomass from all events in a year
is then summed to calculate the annual yield per field. There-
fore, management is another key model driver and was set
for every parcel individually. The cutting dates in the study
year 2019 were taken from the dataset generated by Rein-
ermann et al. (2022), as described in Sect. 3.1.1. Fertilizer,
in the form of slurry, was applied according to the mowing
information following the farmers’ practice in the study re-
gion. For parcels with three or more mowing events per year,
the number of manuring events equalled the number of cuts.
For parcels with less than three mowing events per year, the
number of fertilizer applications was one less than the num-
ber of cuts, which corresponds to local farmers’ practices.
The amount of manure varied between 40 and 55 kgNha−1

per event and decreased per application. For further details
on the applied regional model drivers for LDNDC, see Boos
et al. (2024).

For every grassland field simulation (N = 27138), cli-
mate, soil and management input were derived from super-
imposing field boundaries with the respective spatial prod-
ucts. The model (LDNDC revision: 10786; crabmeat revi-
sion: 8136) was run with an hourly time step with the follow-
ing submodels: CanopyECM (Grote et al., 2009) as the mi-
croclimate module; WatercycleDNDC (Kiese et al., 2011) as
the water cycle module; MeTrx (Kraus et al., 2015) as the soil
chemistry module; and PlaMox (Kraus et al., 2016; Lieber-
mann et al., 2020), employing the PhotoFarquhar model
(Ball et al., 1987; Farquhar et al., 1980) for photosynthe-
sis, as the physiology module. For a general description of
LDNDC and the functioning and interaction of the different
submodules, see Petersen et al. (2021).

3.2.3 Reference values approach

The reference values approach (RVA) is mainly based on a
look-up table from the LfL that includes yield reference val-
ues of the farmers’ yield for Bavaria for (i) different types
of grassland uses and intensities (number of cutting events,
low/medium/high grazing intensity) as well as yield levels
(low/medium/high) (see Table A1). Apart from the mowing
information (Sect. 3.1.1), cattle numbers (Sect. 3.1.1) were
used to identify the management intensity (i). We further
used the land appraisal dataset (LDBV, 2018) to obtain grass-
land indices (German “Grünlandzahl”) for each field to get
the yield levels (ii). This index represents the quality of a lo-
cation for grassland production, considering factors such as
soil type, soil properties, climate and water availability. The
index ranges from 1 (poor) to 100 (best). As the grassland in-
dex can vary within a parcel, we assigned the value that cov-
ered the largest portion of the parcel area. In cases where the
grassland index was unavailable, we substituted it with the
field’s maximum slope (ASTER GDEM, 2018) instead. The

assumption was that the management intensity and, conse-
quently, the grassland yields decrease with increasing slope.
The management intensity dataset described in Sect. 3.1.1
was used to allocate the number of cutting events to each
grassland field. For mowed pastures, the share between mow-
ing and grazing first had to be identified in order to determine
their use intensities. Mowed pastures with one cutting event
were defined as having 60 % grazing use, while all mowed
pastures with at least two cutting events were defined as hav-
ing 20 % grazing use. Second, the management intensity of
mowed pastures was approximated by the farm’s stocking
rate (SR) for all parcels with zero to three cuts; i.e., the higher
the SR, the higher the use intensity. SR is defined as LSU
per P , with LSU being the number of cattle per farm in live-
stock units and P being the farm’s total grazing area. Mowed
pastures with more than three cuts were assumed to have a
high use intensity (Table A2). All assumptions regarding the
slope, share of grazing in mowed pastures and SR were dis-
cussed with and approved by scientific grassland experts and
experts from the Office of Food, Agriculture and Forestry
(AELF) Weilheim, Germany – a local stakeholder from the
study region. More information can be found in Kaim et al.
(2025).

3.3 Spatial aggregation of yield data and comparisons

The annual yields estimated by all three approaches are com-
pared for any individual parcel (N = 27138 meadows and
mowed pastures) as well as for mean values of hexagons
(1 km diagonal), with a total of 2571 hexagons covering the
full study region. The yields were averaged per hexagon
by weighting them by the parcel areas. The aggregation on
hexagons is done for several reasons: firstly, the publication
of the parcel shapes and locations is not permitted due to data
privacy regulations; secondly, the visibility of spatial patterns
is improved; and, lastly, outlier effects are minimized.

To compare the yields per parcel and hexagon resulting
from the three different approaches, the Pearson correlation
coefficient was calculated. To analyze the effect of influenc-
ing factors, the relationships between yields and mowing fre-
quency, temperature, precipitation and elevation were plot-
ted, and the Pearson correlation coefficients were calculated.

4 Results

4.1 Grassland biomass estimation

4.1.1 Biomass estimation based on the RS approach

Sub-parcel biomass estimations are intermediate products of
the RS approach. Figure 3 shows the estimated biomass for
single satellite observations at the pixel resolution (10m×
10m), highlighting the potential to capture small-scale vari-
ability in patterns of standing biomass and grassland produc-
tivity using the RS approach.
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Figure 3. Estimated grassland biomass using the RS approach for single time steps (30 March, 19 April, 24 May, 13 June, 23 July, 27
August, 16 September and 16 October) and annual mean biomass for the entire study region with a 10m× 10m pixel resolution. The top
panel location is indicated as a square in the map of the whole study region.

The estimated biomass values from RS were validated
with the part (18 %) of the in situ measurements that were
not used for model training (i.e., the test data). The best RS
model – extreme gradient boosting regressor, parameterized
with a learning rate of 0.05, a maximum depth of each tree
of three and a number of features used in each tree of 40 % –
reached an average R2 (CV) of 0.97 and a RMSE (CV) of
0.18 tha−1 during the internal validation. Band 12 (short-
wave infrared), wetness index and days since the last mowing
were the most important features according to the relative in-
fluence measure. The validation of the model with the test
dataset (n= 13) lead to an R2 value of 0.68 and a RMSE of
0.43 tha−1 (see Fig. 4).

4.1.2 Comparison of RS and LDNDC biomass
estimations

Time series of AGB for the year 2019 for three example
parcels from the measurement campaign that were used for
the RS biomass model training and validation (Sect. 3.1.2)
are illustrated in Fig. 5. The figure includes the AGB of in situ
measurements, estimated AGB derived by the RS and LD-
NDC approaches (not available for RVA), and the annual
yield based on all three estimation methods. The temporal
pattern of LDNDC biomass estimations shows an increase
in spring, a drop after mowing and an increase thereafter.

Figure 4. Predicted against sampled biomass (AGB; gm−2) for
cross-validation and test data using the RS approach.
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The LDNDC biomass at the first cut is the highest. The tem-
poral profile of the RS-based biomass follows the mowing
dates less strictly compared with LDNDC; however, for most
mowing events, there is a peak before the mowing event,
followed by a drop and a regrowth pattern (Fig. 5). When
comparing the two biomass time series it becomes clear that
the yield of the first mowing event from LDNDC is notably
higher than from RS. In contrast, at times, RS shows a grad-
ual decline in the local maxima during the growing season
(e.g., Fig. 5, top panel).

The LDNDC model and the regional input data have also
been evaluated against the AGB measurements/in situ data
of the abovementioned field campaign (Sect. 2.2.2) in a pre-
vious study (Boos et al., 2024). To this end, only biomass
measurements from within 1 week before a mowing event
were considered and summed to yearly values per parcel.
With this procedure, an R2 value of 0.67 and a RMSE value
of 1.46 tha−1 a−1 were found.

4.2 Estimated annual grassland yields

The spatial patterns of the annual grassland yield averaged
per hexagon estimated with each method are depicted in
Fig. 6. All three models achieve plausible results, with re-
spect to annual grassland yields ranging mostly between 3
and 9 tha−1 for the Ammer region in 2019. The average an-
nual grassland yields of the entire study region estimated
by the three models are as follows: 6.5 tha−1 (372.9 kt) for
RS, 7.4 tha−1 (445.5 kt) for LDNDC and 6.9 tha−1 (419 kt)
for RVA. The yield maps highlight the spatial variability in
grassland yields in the study region, which is consistent in
many cases for the three modeling approaches. Noticeable
patterns are grasslands with relatively high annual yields in
the north of the study region according to the RS and LD-
NDC models and, to a lesser degree, according to the RVA.
Grasslands with lower annual yields are present in the north-
eastern and the eastern parts of the study area, as is mostly
visible in the RS and RVA maps. The center of the study area
shows grasslands with above-average yields mostly based on
the RS and, even more so, the LDNDC model results. Grass-
lands in the southern part of the study area located within
Alpine valleys show lower yields, in particular for the RS
and RVA maps. The entire southwestern part of the region
shows overall lower grassland yields from the RS and LD-
NDC models but not the RVA model (Fig. 6).

The differences in yields based on RS and LDNDC are
not concentrated in specific locations; rather, they are dis-
tributed throughout the Ammer region (Fig. 7). In both cases,
the yield differences of RS and LDNDC with RVA show a
northeast–southwest pattern, as yields derived from RVA are
higher in the southwestern part of the study region compared
with yields based on RS and LDNDC. Direct comparisons of
hexagon yields reveal that 36 % of the Ammer region shows
differences smaller than 1 tha−1 among all three approaches.

The standard deviation of yield averages of all three methods
shows no distinctive spatial patterns (see Fig. A2).

In order to compare the estimated annual grassland yields
averaged per hexagon for the three approaches, the frequency
distributions were plotted along with the correlation of the
annual yield estimates from the different approaches (Fig. 8).
The frequency distribution shows the largest range for the RS
method (variance of 2.0 compared to 0.9 for LDNDC and 1.2
for RVA). The peaks showing the highest estimated yields are
around 7 tha−1 for RS and around 7.8 tha−1 for LDNDC and
RVA. The comparison of the hexagon yields of the RS and
LDNDC approaches shows that they largely overlap, in par-
ticular for the most common yield values of 6–8 tha−1. The
Pearson correlation coefficient is 0.67 for the hexagon yields
based on RS and LDNDC. It shows significant relationships
in all combinations of methods. In general, although par-
ticularly for yields below approximately 5 tha−1, LDNDC
shows higher values compared to the RS (and RVA) results.
The comparison of annual yields averaged per hexagon from
the RS and RVA models also show generally good agree-
ment (Pearson’s r = 0.64) but an overall larger scattering.
The hexagon yields of RVA compare well with the RS yields
and also show a tendency toward over- or underestimation,
respectively, for smaller value ranges below approximately
6 tha−1 when compared to LDNDC yields (Fig. 8). The re-
lationship between RVA and LDNDC yields is the weakest,
with a Pearson r value of 0.47.

The frequency distributions and pairwise comparisons of
the estimated annual grassland yields per single parcel are
shown in Fig. A1. The higher spatial resolution leads to in-
creased scattering for all three approaches compared to the
hexagon averages. The yields derived from RS show a vari-
ance of 4.6, a 95th percentile of 9.7 % and a 5th percentile
of 2.5 tha−1. LDNDC and RVA yields have a variance of 2.2
and 2.7, a 95th percentile of 9.8 and 9.4, and a 5th percentile
of 4.9 and 3.9 tha−1, respectively. The RVA method results
in discrete values, in contrast to the other two approaches,
and does not predict values higher than 10 tha−1. Due to the
discrete values of RVA, there is a much higher overlap of
yield values, resulting in higher counts for the relationships
including RVA and varying count scales in Fig. A1. The re-
lationships between the estimated yield based on the three
approaches are relatively similar to those for the hexagon
means, with a Pearson r value of 0.64 between RS and LD-
NDC, 0.54 between RS and RVA, and 0.44 between LDNDC
and RVA. While the LDNDC yields shows maximum val-
ues of around 12 tha−1, there are a few values reaching up
to 15 tha−1 based on the RS model. LDNDC overestimates
lower yields compared to RVA and RS.
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Figure 5. Temporal patterns in grassland AGB estimated by the RS and LDNDC models, in situ measurements of AGB, annual yields of all
three models (on the right of each subfigure), and mowing dates (vertical dashed lines) of three grassland parcels in the study area.

4.3 Yield estimates in relation to influencing factors

4.3.1 Impact of mowing frequency

It can be assumed that the frequency of mowing and asso-
ciated fertilization events per year largely influences tempo-
ral grassland vegetation growth dynamics and annual yields.
We investigated the estimated annual yields per mowing
frequency to compare how the relationship found for the
remote-sensing-based approach differs from the results of the
other two approaches. The RS and LDNDC models consider
the same mowing dates, and all approaches consider the same
frequencies of mowing events. Box plots of parcel-based an-

nual yields per mowing frequency show that the estimated
yield rises with the number of mowing events per year for
all models (Fig. 9). The mowing frequency has the strongest
impact on the yield derived by the RS method, as the esti-
mated yields show a continuous and clear increase with each
additional number of annual mowing events. The Pearson
correlation coefficient, which is significant for all three ap-
proaches, is 0.81 for the number of mowing events and the
RS yields, 0.74 for LDNDC, and 0.66 for RVA. While the av-
erage yields for parcels mown three to five times correspond
relatively well for all three methods, the yields for parcels
mown only one to two times per year are lower for the RS
model compared to the other two models. For a single-cut
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Figure 6. Spatially aggregated (hexagon diagonal length of 1 km) annual yield estimates for meadows and mowed pastures in the study area
in 2019 based on remote sensing, LandscapeDNDC simulations and the reference values approach. Hexagons for which the grassland area
is smaller than 1 ha are not shown.

Figure 7. Differences between spatially aggregated (hexagon diagonal length of 1 km) annual yield estimates for meadows and mowed
pastures in the study area in 2019 based on remote sensing, LandscapeDNDC simulations and the reference values approach. Hexagons for
which the grassland area is smaller than 1 ha are not shown.

(twice-cut) field, the RS approach shows an average annual
yield of 2.1 tha−1 (4.3 tha−1), LDNDC predicts 4.4 tha−1

(6.5 tha−1) and RVA predicts 4.4 tha−1 (5.7 tha−1).

4.3.2 Precipitation, temperature and elevation

The annual grassland yields increase with increasing mean
annual temperature (MAT), mainly for RS and LDNDC and
less for RVA (Fig. 10); however, the increase in yields is as-
sociated with a higher variability in yields for higher temper-
ature classes. RVA yields stagnate at a MAT above 12.25 °C.
The Pearson r value is significant for all relationships be-
tween the annual yield and MAT but generally show a low
positive correlation (RS: r = 0.2; LDNDC: r = 0.26; RVA:
r = 0.1). The yields estimated by all three methods stay rela-

tively constant for all precipitation levels present in the study
region. Pearson’s r values are −0.2 (RS), −0.18 (LDNDC)
and −0.05 (RVA). Yield and elevation show a negative re-
lationship, as annual yields decrease with elevation for all
methods. Pearson’s r values for the relationships between the
estimated yields and elevation are −0.19 (RS), −0.23 (LD-
NDC) and −0.08 (RVA). However, for the RVA yield, esti-
mates stay on average constant for an elevation of 500–900 m
a.s.l. and only decline afterwards. Overall, the relationships
between estimated yields and site conditions, such as tem-
perature, precipitation and elevation, are relatively low and
similar for the three methods (Fig. 10). These patterns stayed
the same when the relationships were tested for individual
mowing frequencies (see Fig. A3).
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Figure 8. Pairwise relationships of spatially aggregated (hexagon diagonal length of 1 km) annual yield estimates for meadows and mowed
pastures in the study area in 2019 based on remote sensing, LandscapeDNDC simulations and the reference values approach with histograms
of the three modeling approaches.

Figure 9. Estimated annual grassland yields per mowing frequency, based on the three models: RS, LDNDC and RVA. An asterisk (*) on
the x axis denotes that only six parcels were mown six times per year which might not be representative.

5 Discussion

5.1 Performance of biomass modeling results

Despite the numerous studies on empirical grassland biomass
modeling based on satellite and field data, only a few stud-
ies have been carried out in areas characterized by hetero-
geneous and small grassland parcels that are mowed multi-
ple times on different dates during the year. Of these pre-
vious studies, the potential of various vegetation indices de-
rived from medium-resolution sensors (MODIS and MERIS)
to estimate grassland biomass for single sites in Ireland and
the Netherlands were investigated (Ali et al., 2017b; Ullah
et al., 2012). Based on Landsat and Sentinel-2 data, grass-
land biomass and height were estimated for study regions
in Germany, France, Spain and Austria using various re-
gressors, such as multiple linear regression, random forest
or deep learning models, resulting in accuracies (R2 values)

of 0.45–0.79 (Barrachina et al., 2015; Dusseux et al., 2022;
Eder et al., 2023; Muro et al., 2022; Schwieder et al., 2020).
The performance of empirical models seems to depend more
on the number of the training data and the variety of grass-
land types and use intensities included than on the tested re-
gressors and model parameters. Regarding the tested indices
and bands, wetness indices (Barrachina et al., 2015) and red-
edge, near-infrared and shortwave infrared bands (Dusseux
et al., 2022) were found to be valuable for grassland biomass
modeling. With an R2 of 0.68 for the test dataset, we reach
comparable results with the RS approach. In our case, the R2

of the cross-validation was relatively high (0.97); this might
indicate overfitting, which should be avoided. As far as we
know, information on the time since the last mowing event
has not been included in previous existing studies. This pa-
rameter, however, was among the most important input fea-
tures for the extreme gradient boosting model applied. More-
over, including information on mowing dates seems to be ad-
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Figure 10. Aggregation statistics of estimated annual yields based on the three models per temperature, precipitation and elevation class.

vantageous for grassland biomass estimation in study regions
characterized by intensive grassland management.

The performance of LDNDC with respect to reproducing
grassland yields of individual mowing events was found to
be comparable to or better than other process-based models.
For the annual yields, where regional input data were em-
ployed, the performance measures were even better than for
single cuts. For further details, see Boos et al. (2024). We as-
sume that the results for LDNDC can be transferred to other
process-based models (e.g., Daycent and APSIM).

The comparison of the temporal patterns on estimated
aboveground biomass shows that both results (RS and
LDNDC) follow the mowing dynamics closely. This behav-
ior is expected, as the mowing dates are directly included
in both modeling approaches. However, the RS biomass esti-
mates fluctuate more than those stemming from LDNDC and
clearly depend on the availability of cloud-free satellite ob-
servations. LDNDC biomass values show a very high peak
in the first growth cycle that is often double the value of the
RS-based estimates. It is known from previous works that
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LandscapeDNDC overestimates yields from the first cut of
the year and underestimates those of later cuts (Boos et al.,
2024). However, it is also possible that the RS method under-
estimates the first-cut yield, as the AGB estimation might be
prone to a saturation effect. In addition, AGB values at the
higher end of the training data distribution are less likely to
be predicted and strongly depend on a well-balanced training
dataset.

Another important aspect that needs to be estimated is
the AGB. Here, the goal was to estimate the biomass per
cut, which corresponds to the yield. Farmers are generally
advised to cut at 7 cm, although this can vary in practice.
In the RS approach, the total AGB was used because the
sensor only provides data from a certain height upwards.
The LDNDC was calibrated using AGB samples taken from
7 cm. The cutting height for the reference values in the RVA
approach likely varies considerably and cannot be recon-
structed. Therefore, potential uncertainties due to AGB in-
formation from different cutting heights must be assumed.

5.2 Spatial patterns of annual grassland yield and
influencing factors

The spatial yield patterns from all three methods match in
some regions and differ in others. The spatial patterns mostly
resemble the mowing frequency, which is a major influencing
factor determining grassland yields (Bernhardt-Römermann
et al., 2011). In many cases, areas with high yield match with
areas showing a higher number of mowing events. For ex-
ample, in the east or the north of the study area, for many
grasslands, high annual yield estimates, in particular from
the LDNDC and RS models, fit well to a large number of
mowing events. This relationship is also underlined by the
significant Pearson correlation coefficients of 0.66–0.81 be-
tween the annual yield and number of mowing events for the
three models. Other regions, for example, east of Lake Starn-
berg and in the center of the study area, show high yield esti-
mates but rather low to intermediate mowing frequencies (see
Figs. 1 and 6). This discrepancy must be explained by other
factors that influence grassland yields which were not looked
into in detail here, such as soil conditions or an optimal in-
terplay of influencing factors. Intensified mowing, usually
accompanied by more fertilization, enhances biomass pro-
duction and changes the species composition towards more
productive, less diverse (lower number of species) vegeta-
tion in systems not strongly limited by other factors (Isbell
et al., 2013; Mayel et al., 2021; Savage et al., 2021). The
influence of site conditions, in particular climatic conditions,
on the spatial annual yield patterns is twofold: firstly, the con-
ditions in the year of interest influence vegetation growth in
that particular year; secondly, climatic site conditions deter-
mine the species composition and management options of
grasslands in the long term as well as soil properties like soil
organic carbon. There are overall smaller yields visible in the
south and southwest of the study region, matching the tem-

perature patterns. Apart from that, the resemblance between
annual yield maps and temperature, precipitation and eleva-
tion is relatively low (see Figs. 1 and 6). The Pearson correla-
tion coefficients were significant but low for all combinations
(−0.23 to 0.26). For correlation tests with as many data, as
in our case, correlations tend to be significant (Rouder et al.,
2009). It can be assumed that climatic effects have a more
significant influence on grassland yields on a larger spatial
scale, e.g., continental scale (Emadodin et al., 2021; Goliski
et al., 2018; Zhang et al., 2018). Either the climatic gradients
are not large enough in our study area to explain grassland
yields or climatic conditions play only a minor role, as yields
are mostly determined by management. A previously antic-
ipated difference in the relationship between site conditions
and yields for the three models (as LDNDC includes these
data directly and RS captures the effects indirectly) was not
found. Furthermore, in this study, only 1 year was examined
that showed relatively normal climatic conditions. The dif-
ferences between the models are most probably higher in ex-
treme years, e.g., 2018, as extreme climatic effects can be
depicted by LDNDC and RS but not by RVA (see Boos et al.,
2024).

5.3 Differences between the modeling results

When comparing the annual yield values, the RS method
leads to overall lower estimates compared to LDNDC and
RVA, which can be explained in several ways. On the one
hand, the RS method is prone to underestimation of annual
yields, as the empirical model of aboveground biomass tends
to provide underestimates. This is related to the available
training data, which stem from field measurements through-
out the year, with only a few samples from shortly before
a mowing event. In this regard, the distribution of training
samples might not be optimal and high-biomass data may
be missing, resulting in an underestimation of the empirical
model. In addition, the biomass estimation and the mowing
detection are both dependent on the availability of cloud-
free satellite observations. Biomass estimates from periods
shortly before mowing events might be missed and, conse-
quently, the yield related to the mowing event is potentially
lower than in reality. Further, mowing events are potentially
missed entirely due to cloud coverage (Reinermann et al.,
2023) which additionally leads to these yields missing in the
annual estimate. As the mowing information is included in
all three approaches, missed mowing events due to clouds
also affects the LDNDC and RVA yields.

On the other hand, while the RS method is more likely
underestimating yields, LDNDC and RVA are more prone to
overestimation. This is related to the fact that some factors
which negatively influence vegetation growth and, therefore,
yields are not included in the LDNDC and RVA models. For
LDNDC, these are neglected local factors, like north-facing
slopes and lateral runoff as well as the calibration on lysime-
ter data taken under favorable conditions (Haas et al., 2013).
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The input into the RVA model is very limited in the sense
that local factors influencing the current growing conditions
as well as yearly climate data are not included. Therefore,
both models tend to represent optimal growing conditions
and, hence, overestimate yields. Even though the RS model
does not specifically address these factors, they are captured
by the spatially varying reflectance signal.

When examining the lower yields resulting from the RS
model compared to the other model estimates, it becomes
clear that this effect is most prominent for grasslands mown
one or two times per year (see Fig. 9). This could be re-
lated to a grazing effect. Such extensively used grasslands
are very often also grazed (Schoof et al., 2020a, c). In the
LandscapeDNDC simulations, the amount of grazed mate-
rial remains on the field and leads to an overestimation of the
yield from the next cut, either directly within the same year
or via plant storage over the winter in the first cut of the fol-
lowing year. The RS method does not specifically account for
grazing, and as the estimated biomass before mowing events
is used, there is no such accumulation effect. Assuming that
the difference between the RS and LDNDC yields of exten-
sively used grasslands stems mostly from the grazing effect,
it might be used to calculate grazed yields (e.g., Chang et al.,
2015). The RVA considers grazing on mowed pastures. How-
ever, it follows a rather simple approach that estimates the
grazing intensities using a farm’s stocking rate. The stock-
ing density, i.e., the number of LSU per hectare of field area,
would be a more meaningful measure, but the IACS data do
not include any information on the type of animal husbandry
or grazing intensities. Therefore, yields of mowed pastures
might be over- or underestimated in the RVA due to lack of
detail in the information on grazing intensity.

It is also important to mention that all three approaches
depend on mowing information as input data. RS and LD-
NDC use the mowing dates of grassland parcels in their al-
gorithms, whereas RVA uses the mowing frequency. As the
same mowing data were used for all three approaches, the
results are comparable to each other. The importance of the
mowing data for model performance is difficult to assess, as
the methods do not work without them; however, one could
investigate the impact of using various sources for mowing
dates. In addition, there is also an uncertainty in the mowing
data, as they were derived from the Sentinel-2 time series,
which is prone to gaps due to cloudy weather conditions. The
R2 for the mowing detection in the study area is 0.65.

Other studies investigating grassland yield in Europe have
mostly focused on the continental scale and have not been
conducted at the parcel level. However, the estimated yields
are in similar value ranges to our results (e.g., Chang
et al., 2015; Smit et al., 2008).

5.4 Advantages and limitations of the approaches and
implications drawn from them

All three approaches investigated in this study hold indi-
vidual advantages and limitations to estimate annual grass-
land yields in southern Germany (see Table 1). The RS ap-
proach depends on well-distributed training data and cloud-
free satellite observations. The value distribution of the train-
ing data determines the range of potential predictions of the
empirical model and is, therefore, crucial. This also plays an
important role with respect to the transferability (in space
and time) of the approach. Without additional training data,
the approach can hardly be applied in regions with different
conditions. The necessity for satellite data can be particularly
problematic for regions or time periods with relatively high
cloud coverage. For instance, in Germany, the year 2021 was
characterized by an overall relatively low number of cloud-
free satellite observations, making the provision of satellite-
data-based products, such as mowing detection or biomass
estimation, more challenging (Reinermann et al., 2023). De-
spite these limitations, estimating grassland yields based on
RS has several advantages. For example, even small-scale
spatial effects are depicted, enabling the detection of parcels
with reduced yields. Current spatiotemporal variation is mir-
rored, such as yield reduction through drought periods. In
addition, despite the need for training data, no large input
dataset or parameterization is needed for the RS approach,
which might enhance the transferability.

Major advantages of LandscapeDNDC – as a bio-
geochemical model – are as follows: firstly, spatial and tem-
poral variations are accounted for; secondly, the direct rela-
tion to input data, like climate, soil and air chemistry, is pos-
sible; thirdly, carbon, nitrogen and water budgets are mod-
eled as well; and, lastly, scenarios (climate or management)
can be studied. This also means that high-resolution input
data (climate, soil, management and air chemistry) need to be
available for the modeled domains. Generally, the model per-
forms best if individual, detailed simulations are performed
that are than aggregated to a larger spatiotemporal scale
(e.g., field scale to hexagons). However, the slope and orien-
tation as well as the species composition are not accounted
for. To transfer the model, it is ideally recalibrated based on
local measurements, although it has performed very well for
crops (even on a global scale) without this step (Jägermeyr
et al., 2021). For grasslands, so far, LDNDC has been used
successfully in Switzerland, the UK and Germany (Houska
et al., 2017; Molina-Herrera et al., 2016; Petersen et al.,
2021).

The RVA is based on field measurements and mostly static
input data, apart from the mowing frequency and stocking
rate. Therefore, it is not able to depict spatial and temporal
variations, such as drought episodes (Diepolder et al., 2016).
It also needs input data such as the yield reference values,
which are rarely provided on a larger scale. Further, cattle
numbers, land use type (i.e., meadow or mowed pasture) and
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Table 1. Overview of methodological properties, both advantages and drawbacks, comparing the three yield estimation approaches. The
strongest relative fit between a method and property is indicated by +++, the weakest fit is indicated by +, and an asterisk (*) indicates
“unknown”.

Methodological properties Yield estimation approaches

RS LDNDC RVA

Applicability without expert knowledge + + ++

Low necessary hardware and processing time + + +++

Independent of closed-access data ++ + +

Low data requirement ++ + +++

Sub-parcel variability +++ + +

Interannual variability +++ +++ +

Internal test accuracy ++ ++
∗

Plausibility of results +++ +++ ++

Distribution range and data continuity of results +++ +++ +

Transferability + ++ ++

mowing frequency data are needed, which are – especially
on scales larger than farm scale – difficult to obtain at times,
as they are either not openly accessible or do not exist. An
advantage of RVA is that the approach is relatively straight-
forward and does not need large amounts of computational
power. Additionally, reference values are usually used by
farmers to calculate their field’s fertilizer requirements. The
approach is, thus, more useful at the farm scale, where data
can easily be obtained, and becomes more difficult to use at
larger scales, due to restricted data availability.

All three approaches are, in a way, calibrated with regional
data; therefore, their applicability is limited to regions with
relatively similar grassland ecosystems. The RS approach re-
lies on biomass samples, LDNDC relies on regional model
calibration (input data) and RVA relies on the grassland in-
dex. As the management is highly relevant for the produc-
tivity and yield of grasslands in intensively used areas, such
as in our study area, not only the geographic conditions and
species composition but also the management strategies and
use intensities of grassland ecosystems need to be compara-
ble in order to transfer the calibrated models. Including addi-
tional ground-truth data from the target region for calibration
would largely improve the transferability. However, the mod-
els also rely on data such as IACS or mowing data, which
need to be available in potential target regions.

6 Conclusions and outlook

Within this study, the annual grassland yield was estimated
for a study region in southern Germany in 2019 based on
three different approaches: (i) an empirical remote-sensing
model, (ii) a bio-geochemical model (LandscapeDNDC) and
(iii) a rule-based reference value approach. It was shown
that grassland yields can be estimated based on three com-
pletely different approaches, as plausible and comparable re-
sults were reached for the study area. The three models con-

tain varying input datasets; however, all of them use mowing
information as a driver. The mowing frequency was found to
be the most important influencing factor for grassland yields
in the study region for all three approaches.

Yield patterns and comparisons between the approaches
showed that all three methods can be legitimately used for
yield estimation (value ranges of approximately 4–9 tha−1)
in pre-Alpine grassland ecosystems, considering individual
limitations. All approaches need mowing information at the
parcel level as input data. When a training dataset including
well-balanced AGB samples and cloud-free satellite obser-
vations is available, it is advisable to use the RS approach.
Depending on the training data distribution, the RS approach
is capable of estimating grassland yields at the regional level
and of capturing small-scale patterns at the field level (and
beyond). LandscapeDNDC is also recommended for use at a
regional or even continental level. Detailed data on climate,
soil and management are needed and strongly determine the
performance. For the field scale, the RVA can also be used, as
the required data can be more easily obtained at the field level
compared with at the regional level. To investigate single-cut
yields only, RS and LDNDC can be used, as RVA solely pro-
vides an annual yield estimate.

The expected biases include a likely overestimation of the
first-cut yield by LDNDC and an underestimation of the first-
cut yield and, to a lesser degree, annual yields in general by
the RS approach. To investigate yield patterns over time, only
RS and LDNDC are useful, as the RVA does not include ac-
tual conditions. Improved grassland yield estimations could
be obtained with more AGB sample data, in particular when
analyzing years with climatic extremes, as the AGB data
might not be representative. In addition, validation data on
annual grassland yields would be needed to evaluate the ap-
proaches in more detail.

The study presents synergies of grassland yield estima-
tion approaches; this is particularly important because spatial
information on grassland yield is limited. Based on robust

Biogeosciences, 22, 4969–4992, 2025 https://doi.org/10.5194/bg-22-4969-2025



S. Reinermann et al.: Grassland yield estimations – potentials and limitations of remote sensing 4985

grassland yield estimations, multiyear analyses can be con-
ducted and the effects of factors such as climate change can
be investigated. In addition, a comprehensive understanding
of grassland ecosystems is facilitated, thereby supporting au-
thorities and science.

Appendix A:

Table A1. Bavarian reference values for farmers’ grassland yield from field measurements for meadows and mowed pastures of different use
types and yield levels.

Use type and intensity Farmers’ yield (t ha−1 a−1)

Low Medium High

Meadow, one cut 2.8 3.4 4.0
Meadow, two cuts 3.9 4.7 5.5
Meadow, three cuts 5.6 6.8 8.0
Meadow, four cuts 6.3 7.7 9.0
Meadow, five cuts 7.7 9.4 11.0
Meadow, six cuts 8.4 10.2 12.0
Mowed pasture, extensive, 20 % pasture 4.8 5.9 6.9
Mowed pasture, medium intensity, 20 % pasture 6.9 8.3 9.8
Mowed pasture, intensive, 20 % pasture 7.7 9.4 11.0
Mowed pasture, extensive, 60 % pasture 4.7 5.7 6.7
Mowed pasture, medium intensity, 60 % pasture 5.7 6.9 8.1
Mowed pasture, intensive, 60 % pasture 6.6 8.0 9.4

Table A2. Grassland yield level/grazing intensity according to grassland index and slope stocking rate which is used as input for Table A1.

Yield level/grazing intensity Grassland index (GI) Slope Stocking rate (SR)

Low 0≤ GI≤ 33 50%≤ slope 0= SR≤ 1.5
Medium 33 < GI≤ 67 25%≤ slope < 50% 1.5 < SR≤ 3
High 67 < GI≤ 100 0%≤ slope < 25% 3 < SR

https://doi.org/10.5194/bg-22-4969-2025 Biogeosciences, 22, 4969–4992, 2025
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Figure A1. Pairwise relationships of parcel-level annual yield estimates for meadows and mowed pastures in the study area in 2019 based
on remote sensing, LandscapeDNDC simulations and the reference values approach with histograms of the three modeling approaches. Note
that the color ranges differ for the subplots.

Figure A2. Mean and standard deviation of spatially aggregated (hexagon diagonal length of 1 km) annual yield estimates for meadows and
mowed pastures in the study area in 2019 for all three approaches. Hexagons for which the grassland area is smaller than 1 ha are not shown.

Biogeosciences, 22, 4969–4992, 2025 https://doi.org/10.5194/bg-22-4969-2025
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Figure A3. Aggregation statistics of estimated annual yields based on the three models per temperature, precipitation and elevation class for
grasslands mown one to five times per year.
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