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Abstract. The northern North Atlantic (NA) is an impor-
tant net sink of atmospheric CO2, though atmosphere–ocean
CO2 fluxes exhibit substantial variability across different
timescales. The underlying drivers of this variability remain
poorly understood across both temporal and regional scales.
Here, we investigate interannual to decadal CO2 flux vari-
ability in the northern NA using historical simulations from
the EC-Earth3-CC model. We assess the role of key dynam-
ical and physical processes in shaping CO2 flux variability
across five regions: the Nordic Seas (NS), eastern NS, the
eastern and western subpolar NA, and the full NA. Our anal-
ysis reveals that physical parameters – including sea ice con-
centration (SIC), sea surface temperature (SST), sea surface
salinity (SSS), and wind stress – along with dynamical pro-
cesses related to ocean mixing and circulation, play a cen-
tral role in regulating CO2 flux variability. Using regression
analysis, we demonstrate that these drivers exert regionally
and temporally varying influences, with our models achiev-
ing high R2 values indicating a strong degree of explanation
for CO2 flux variability. The regression models capture inter-
annual variability more effectively than decadal variability,
highlighting the dominant role of short-term fluctuations in
shaping CO2 flux dynamics. Overall, our results demonstrate
that the predictors of CO2 flux variability are both spatially
and temporally dependent. We find that CO2 flux variability
cannot be fully explained by simple linear correlations with
individual predictors but instead arises from complex interac-
tions among multiple physical and dynamical processes. No-
tably, CO2 flux variability is particularly sensitive to changes
in certain predictors, such as wind stress, consistent with ex-
pectations based on the gas transfer equation used to compute
atmosphere–ocean CO2 fluxes.

1 Introduction

The northern North Atlantic (NA) is a net sink of atmo-
spheric carbon dioxide (CO2; Fig. 1a; Gruber et al., 2002;
Takahashi et al., 2009; Yu et al., 2019). This sink is primar-
ily driven by the combined effects of the solubility pump and
the biological carbon pump. The solubility pump enhances
CO2 uptake through two key mechanisms: (1) the cooling of
northward-flowing warm waters, which increases CO2 sol-
ubility at the surface, and (2) the formation of dense, cold
deep water at high latitudes, which transports CO2-enriched
surface waters into the ocean interior as part of the Atlantic
thermohaline circulation (Volk and Hoffert, 1985). The bi-
ological carbon pump further contributes by fixating carbon
through photosynthesis and primary production (PP), export-
ing organic carbon to the deep ocean, and maintaining a net
sink of atmospheric CO2 in the region (Sigman and Boyle,
2000; Boyd and Trull, 2007; Sanders et al., 2014). Currently,
the NA absorbs a significant fraction of anthropogenic CO2
emissions, accounting for approximately one-quarter to one-
third of global anthropogenic carbon uptake (Khatiwala et
al., 2009; Sabine et al., 2004; Breeden and McKinley, 2016;
Le Quéré et al., 2018; Gruber et al., 2019). In contrast, the
global ocean uptake is approximately 25 % of annual emis-
sions due to outgassing in some ocean regions (Fig. 1; Land-
schützer et al., 2016; Mikaloff Fletcher et al., 2006; Khati-
wala et al., 2013; Le Quéré et al., 2015; Friedlingstein et al.,
2025; Gruber et al., 2023; Terhaar et al., 2022).

Beyond these large-scale mechanisms, the strength of the
NA CO2 sink varies seasonally and interannually, influenced
by ocean–atmosphere interactions. Biological productivity
peaks in spring and summer, enhancing CO2 drawdown,
while wintertime cooling promotes solubility-driven uptake
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(Ardyna and Arrigo, 2020). These processes are modulated
by climate variability, particularly the NA Oscillation (NAO)
and the Atlantic Multidecadal Oscillation (AMO; Leseurre et
al., 2020). In addition, physical processes such as warming
and cooling cycles, deep convection, and changes in ocean
circulation and water masses in the subpolar gyre (SPG) play
a crucial role in regulating air–sea CO2 fluxes. These phys-
ical drivers are closely linked to NAO and AMO variability,
further influencing regional CO2 uptake dynamics (Chafik
and Rossby, 2019; Desbruyères et al., 2019). Breeden and
McKinley (2016) show that a NA basin-average sea surface
temperature (SST) is associated with the leading mode of
surface ocean pCO2 variability based on an analysis of a re-
gional model. The SST signal is affected by an upward trend
due to greenhouse gas emissions and a signal of internal vari-
ability due to the AMO (Kerr, 2000). Furthermore, they es-
tablish that physical (in contrast to chemical) variability is
the dominant driver of variability in the NA surface ocean
carbon cycle. During a positive phase of the AMO an in-
crease in sea (surface) temperature increases pCO2 due to the
reduction in solubility (an increase in the fugacity of CO2,
fCO2) resulting in a reduced flux of CO2 into the ocean (also
seen in Breeden and McKinley, 2016). Studies show that on a
decadal scale the AMO and fCO2 variability in the SPG cor-
relates (Breeden and McKinley, 2016; Landschützer et al.,
2016; Leseurre et al., 2020): as the AMO enters a positive
(warm) phase, reduced mixing (a shallowing of the mixed
layer depth (MLD)) results in a reduced supply of dissolved
inorganic carbon (DIC) from the subsurface layers, a process
that dominates the effect of warming on the solubility and
fCO2. The surface ocean’s ability to absorb anthropogenic
carbon is primarily regulated by carbonate chemistry, partic-
ularly alkalinity (Broecker et al., 1979; Terhaar et al., 2022).
While increasing anthropogenic carbon generally enhances
ocean carbon uptake, this relationship is moderated by rising
global temperatures, which reduce solubility, and is further
influenced by decadal variability and long-term trends. How-
ever, the underlying drivers of these trends remain poorly un-
derstood (Terhaar, 2024).

The subpolar NA has experienced significant interannual
to decadal variability in ventilation depth during the indus-
trial period (Polyakov et al., 2005; Holliday et al., 2020; Zou
et al., 2023; Thomas and Zhang, 2022). Recent studies high-
light pronounced ocean variability in the SPG region, includ-
ing the formation of cold and fresh anomalies. Holliday et
al. (2020) documented a substantial freshening event in the
eastern subpolar NA, the most significant in 120 years, at-
tributed to wind-driven circulation changes that redistributed
freshwater within the region. Similarly, Zou et al. (2023)
identified two sources of deep ocean variability in the cen-
tral Labrador Sea, furthering our understanding of long-term
property anomalies in the western subpolar NA. These find-
ings underscore the SPG’s dynamic nature and its sensitivity
to both atmospheric and oceanic forcing. The SPG, a anti-
clockwise gyre system, plays a crucial role in modulating

ocean circulation by introducing saline Atlantic water into
the northern NA. The NA Current follows the southern and
eastern boundaries of the SPG, transporting warm, saline wa-
ter from the Gulf Stream into the northern NA and eventually
the Arctic (Holliday et al., 2020; Daniault et al., 2016; Hátún
et al., 2017). At the same time, freshwater from the Arctic
is supplied to the SPG, contributing to temporal variability
in ocean properties. These processes are key regulators of
the Atlantic Meridional Ocean Circulation (AMOC) (Holli-
day et al., 2020; Hátún et al., 2005, 2017). The strength of
the SPG circulation strongly influences both physical and bi-
ological processes in the northern NA. A weak (strong) SPG
leads to a shallowing (deepening) of sea surface height (SSH)
and, consequently, a shallowing (deepening) of the MLD. In
addition, a weak SPG contracts westward, allowing nutrient-
poor subtropical waters to penetrate northward, warming the
gyre and reducing PP. In contrast, a strong SPG expands
eastward, accumulates Arctic fresh and nutrient-rich water
within the gyre system, increasing PP and solubility, and lim-
its the intrusion of warm, saline Atlantic water into the region
(Häkkinen et al., 2013; Hátún et al., 2005, 2017; Foukal and
Lozier, 2017). Importantly, variations in sea surface salinity
(SSS) serve as an indicator of these gyre dynamics and ocean
mixing processes, making it a valuable indirect predictor of
CO2 flux variability. Changes in salinity reflect shifts in water
mass distribution, stratification, and ventilation, all of which
influence air–sea gas exchange. Therefore, monitoring SSS
variability can provide critical insights into the mechanisms
driving CO2 flux variability in the North Atlantic (Thomas
and Zhang, 2022).

Understanding the vulnerability of the ocean carbon sink
to future climatic changes is the motivator for our analy-
sis. Expected future decline in the strength of the AMOC
(Fox-Kemper et al., 2021) will probably result in a declin-
ing ocean CO2 uptake due to less transport of CO2 enriched
surface waters into the deep ocean. Projections indicate a re-
duced CO2 uptake/sink in the global oceans correlating with
a gradual reduction of the strength of the AMOC (McKin-
ley et al., 2023; Liu et al., 2023). A slowing AMOC impacts
ocean biology and solubility carbon pumps: CMIP5 analy-
sis projects a weakening of the biological pump from surface
waters with the largest decreases in effective CO2 uptake un-
der the strongest warming scenarios (Bopp et al., 2013; Fu
et al., 2016; Laufkötter et al., 2016; Liu et al., 2023). This
is in part explained by ocean warming, which results in a
decline in PP, also contributing to a decrease in ocean CO2
uptake in some regions (Kwiatkowski et al., 2020); how-
ever, ocean warming and climate change also leads to sea ice
decline, which results in increased PP regionally (Vancop-
penolle et al., 2013). The projected climate-driven impacts
on the AMOC are yet not seen in the strength of regional
components of the AMOC in the northern NA (Østerhus et
al., 2019; Lozier et al., 2019; Orvik, 2022). Also, over the last
two decades the estimated AMOC strength at 26° N is dom-
inated by interannual to decadal variability with a marginal
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significant negative trend (Volkov et al., 2024). These find-
ings underscore how variability in the NA ocean and cli-
mate conditions, including fluctuations in AMOC strength,
can modulate both the magnitude and regional distribution
of oceanic CO2 sinks.

We aim to understand the sensitivity and drivers of the
atmosphere–ocean CO2 flux in an Earth system model on in-
terannual and decadal timescales. Through our analysis we
establish which predictors can explain the CO2 flux variabil-
ity in the five regions of the northern NA. We define regres-
sion models based on physical and dynamic predictors, to
explore how well we can predict and understand future CO2
flux variability.

1.1 Approach

The aim of this work is to understand how simulated in-
terannual to decadal variability can help build confidence
in future changes and a better understanding of uncertain-
ties related to ocean processes and variability. We analyse
ensemble data from 10 historical simulations with the EC-
Earth3-CC global climate model with interactive ocean bio-
geochemical cycling. To assess the drivers of the interannual
and decadal CO2 flux variability in the northern NA we ini-
tially establish an overview of the relationship between the
CO2 flux variability and parameters that could potentially
drive this variability across the northern NA and in defined
subregions (Fig. 1b).

First, we use the gas transfer equations to check if we can
reproduce the simulated CO2 flux variability in the different
regions from archived model data for the individual ocean re-
gion. Based on the gas transfer equation (Eqs. 1–3) we expect
SST, SSS, 1pCO2, wind, and sea ice concentration (SIC) to
be the controlling physical parameters driving the simulated
CO2 flux variability. We additionally explore the relation of
the integral between CO2 flux variability and parameters rep-
resenting ocean dynamics or processes by including parame-
ters such as MLD and sea surface height (SSH), which are
not direct drivers of atmosphere–ocean gas exchange. For
each region, we integrate the CO2 flux and define high and
low CO2 flux years for short and long timescales. We con-
struct ensemble mean composite two-dimensional maps of
the CO2 flux by subtracting the low flux years from the high
flux years and by combining all ensemble members. We use
the high and low flux years defined for the CO2 flux to also
construct composite maps of other key physical parameters.

Second, informed by the composite maps and identified
controls of the CO2 flux variability, we define 10 indexes
that can be correlated with the CO2 flux time series. The
indexes are based on the parameters contributing to the gas
exchange equations (Eqs. 1–3) SST (AMO), SSS, wind, and
SIC, climatic modes of variability such as NAO, the ocean
circulation strength (SSH index representing gyre circulation
strength), MLD, and AMOC. The specific definition of the
different indexes and why we have chosen them is described

in Sect. 3. We have chosen to exclude 1pCO2 and other bio-
geochemical parameters, to focus our analysis on the phys-
ical processes and dynamical parameters affecting CO2 flux
variability.

Finally, in order to understand how much of the CO2 flux
variability that can be explained and described by physical
variables and indexes alone, we set up simple linear multi-
variable regression models for each region and discuss differ-
ences in explained variability across interannual and decadal
timescales.

1.2 EC-Earth3-CC

EC-Earth3-CC is the carbon cycle (CC) version of the EC-
Earth3. EC-Earth3 is an Earth system model, developed by
the EC-Earth consortium (https://ec-earth.org, last access:
10 March 2025), and contributes to the Coupled Model In-
tercomparison Project (CMIP). EC-Earth3 comprises sev-
eral model components describing atmosphere, ocean, sea
ice, land surface, dynamic vegetation, atmospheric chemical
composition, ocean biogeochemistry, and the Greenland Ice
Sheet. EC-Earth3 (Döscher et al., 2022) consists of the atmo-
sphere model IFS, land surface module HTESSEL, and the
ocean model NEMO3.6 (Madec and the NEMO team, 2015).

EC-Earth3-CC describes the CC and is used for the Cou-
pled Climate-Carbon Cycle Model Intercomparison Project
(C4MIP; Jones et al., 2016). The configuration allows for
concentration-driven simulations and with emissions forc-
ings. The CO2 flux is calculated from and proportional to
the difference in partial pressure of CO2 (1pCO2) between
the atmosphere and the surface of the ocean (Döscher et al.,
2022).

EC-Earth3-CC runs with NEMO3.6 coupled to PISCES-
v2 (Pelagic Interactions Scheme for Carbon and Ecosystem
Studies volume 2; Aumont et al., 2015), a biogeochemical
model simulating marine biological productivity and the bio-
geochemical cycling of carbon and the main nutrients. Pri-
mary productivity is computed based on the availability of
the main nutrients (P, N, Si, Fe), with a constant Redfield
ratio (P : N : C= 1 : 16 : 122) (Redfield ratio from Takahashi
et al., 1985; Aumont et al., 2015). Air–sea gas exchange for
carbon dioxide is parameterized from Wanninkhof (1992),
updated in Wanninkhof (2014) to Eq. (1):

F = kK0(pCO2w− pCO2a), (1)

where F is the flux (mass area−1 time−1), k is the gas trans-
fer velocity (length time−1), and K0 is the solubility (mass
volume−1 pressure−1), which is dependent on water temper-
ature and salinity; pCO2w and pCO2a (pressure) are the par-
tial pressures of CO2 in equilibrium with surface water and
the above lying air, respectively. The gas transfer velocity is
dependent on wind speed according to Eq. (2):

k = 0.251U2
(

Sc
660

)−0.5

, (2)
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where U is the wind speed (10 m height) and Sc is the
Schmidt number. The Schmidt number is dependent on water
temperature. Furthermore, the CO2 flux is dependent on SIC
in the region, as no exchange is allowed between the atmo-
sphere and sea water across sea ice Eq. (3):

kgCO2 = k′gCO2× (1%ice) , (3)

where kgCO2 is the atmosphere–ocean CO2 flux after cor-
recting for SIC, k′gCO2 is the atmosphere–ocean CO2 flux
before correcting for SIC, %ice is the concentration of sea
ice, which varies between 0 and 1 (Döscher et al., 2022; Au-
mont et al., 2015).

The present-day (1982–2014) averaged air–sea CO2 flux
shows a general flux into the ocean in the NA and Nordic
Seas (NS) (positive CO2 flux, Fig. 1a–c). Observations show
a similar pattern of a positive flux (CO2 uptake in the ocean)
in the NA and Arctic region, and a negative flux (outgassing
to the atmosphere) off the western coast of Africa across
the Atlantic and off the coast of South America (Fig. 1b).
However, observations generally show a smaller air–sea CO2
flux than simulated in EC-Earth3-CC (Fig. 1c). Döscher et
al. (2022) shows that the EC-Earth3-CC air–sea CO2 flux
is in general overestimated in the high northern latitudes
(> 50° N) in the Northern Hemisphere, and underestimated
in the high latitudes in the Southern Hemisphere. However,
the general distribution of the air–sea CO2 flux is well repre-
sented in EC-Earth3-CC (Fig. 1a–c).

The sea ice extent of EC-Earth3 (and therefore also EC-
Earth3-CC) is in general overestimated in the NS and NA
compared to observations (Döscher et al., 2022; Tian et al.,
2021). As no exchange between the atmosphere and seawater
is allowed across sea ice in EC-Earth3, an overestimation of
the sea ice extent will inevitably affect the CO2 flux. The
global pattern of the CO2 flux and the overestimation of the
sea ice extent emphasizes the importance of sea ice and high
latitude processes in the global climate system (Fig. 1).

2 Data and methods

The analysis is based on EC-Earth3-CC historical runs
1850–2014 from all available ensemble members on ESGF
(https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/, last ac-
cess: 15 September 2025) (10 ensemble members: r1i1p1f1,
r4i1p1f1, r6i1p1f1, r7i1p1f1, r8i1p1f1, r9i1p1f1, r10i1p1f1,
r11i1p1f1, r12i1p1f1, r13i1p1f1). We make use of monthly
mean fields of the parameters listed in Table 1. The
data are preprocessed pointwise for analysis on two sep-
arate timescales: decadal and interannual. For the decadal
timescale a 10-year low-pass filter (using CDO, filtering the
data in the frequency domain; Schulzweida et al., 2012)
has been applied to the data. Following the low-pass filter-
ing the data have been linearly detrended to remove the an-
thropogenic forced changes due to increases in atmospheric
greenhouse gases and to be able to focus on the internal cli-

mate and ocean variability of the NA. The atmosphere–ocean
CO2 flux (and 1pCO2) shows a modest linear increase from
1850 to 1950 and then a transition to a steeper increase until
2015 (see also Sect. 2.2, Fig. 2). Therefore, in this case a two-
step piecewise linear fit has been used to detrend the dataset.
The model dataset has been detrended along the time axis
for every grid cell, allowing for analysing the detrended data
on a regional scale. Other parameters have been detrended
using a linear fit. We choose not to apply any detrending to
the streamfunction data at grid point level. A second prepro-
cessed dataset of interannual variability is prepared by sub-
tracting the low-pass filtered time series from the original
model data. Also here, the interannual CO2 flux and 1pCO2
dataset has similarly been detrended using a two-step linear
fit, and other parameters using a linear fit.

2.1 Regions

This study looks into the CO2 flux variability in multiple
regions in the NA (Fig. 1b) to investigate the regional dif-
ferences in the relationship between the CO2 flux and the
physical and dynamical processes. The geographic regions
are defined considering the model representation of oceano-
graphic domains. The NA region covers all of the ocean in
the region 40–90° N, −78–45° W, with average ocean CO2
uptake. The NS is defined approximately where warmer sub-
polar NA waters in the model meet waters of the NS at the
latitude of the Greenland Scotland Ridge and defined as the
region 60–90° N, 28–18° W. The NS East (NSE) is defined as
the NS, but only where model climatology has less than 15 %
sea ice and as such, representing the sea-ice-free part of the
NS, allowing for unbiased investigation of the dynamics not
related to the overestimated sea ice extent. The subpolar re-
gion of the NA is divided into two oceanic domains: the sub-
polar West (SPW) and the subpolar East (SPE). The SPW is
defined as where the annual mean SSS is < 34.2 within the
region 45–60° N, 52–10° W, the part of the subpolar gyre re-
circulating water masses modified by low salinity polar out-
flow and melting sea ice. The SPE is defined as SSS > 34.2
within the region 45–64° N, 52–10° W in the path of the NA
current. The SPE, like the NSE, represents a region with no
sea ice cover (climatological SIC < 15 %).

2.2 CO2 flux variability

Archived climate model data available from CMIP6 on the
ESGF nodes typically consist of monthly mean fields of
physical, biological, and chemical parameters. These in-
cludes surface air–sea CO2 fluxes from EC-Earth3-carbon
cycle as well as ocean properties. The reproducibility of
simulated integrated fluxes (F ) derived from other param-
eters (Eqs. 1–3), particularly their variability across differ-
ent timescales, provide a useful benchmark. It sets an upper
limit on how much of the model variability we can expect
to explain using physical quantities from archived monthly
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Figure 1. Atmosphere–ocean CO2 flux averaged over the period 1982–2014 for (a) EC-Earth3-CC and (b) observation-based reconstruction
CO2 flux data from Gregor and Fay (2021), as well as (c) their difference. Black lines show the mean barotropic streamfunction of the SPG
circulation of 10 ensemble members in Sv. Full lines indicate positive values, and dashed lines indicate negative values. Fully closed dashed
lines indicate the shape and mean extent of the SPG in contrast to the open mean barotropic streamfunction contours. (d) Study regions: NA
covering all regions (dark grey), SPW (beige), SPE (orange), NSE (blue), NS covering NSE as well (light blue), and global average 15 %
SIC line (white contour) indicating the boundary between sea-ice-covered regions and sea-ice-free areas.

Table 1. Parameters from EC-Earth3-CC.

Parameter Output variable name Form of detrending Unit

CO2 flux fgCO2 two-step linear kg m−2 s−1

1pCO2 dpCO2 two-step linear Pa
Sea surface temperature (SST) tos linear °C
Sea surface salinity (SSS) sos linear
Wind sfcWind linear m s−1

Mixed layer depth (MLD) mlotstmax linear m
Sea surface height (SSH) zos linear m
Sea ice concentration (SIC) siconc linear %
Pressure at sea level psl linear Pa
AMOC msftyz None kg s−1

Barotropic mass streamfunction msftbarot None kg s−1

averages data. Figure 2 also shows the time evolution of
Fcalc (CO2 flux calculated according to Eqs. 1–3) of a se-
lected ensemble member (r4i1p1f1) and for the NS, NSE,
and SPE region only. To accurately reproduce the simulated
flux, Fcalc is computed using a scaled wind speed. Since Fcalc
is derived from monthly mean values of all parameters, some
of the short-term variability in dynamic factors – particu-
larly wind speed – is smoothed out, leading to a lower mean
wind speed compared to the daily mean used in EC-Earth3-
CC. Hughes et al. (2012) discusses an averaging-related bias
linked to ocean surface flux calculations and show that the
use of monthly mean fields can introduce a bias into the mean
flux estimates (also discussed by Esbensen and Reynolds,
1981; Simmonds and Dix, 1989; Gulev, 1994, 1997; Josey
et al., 1995; Zhang, 1995; Esbensen and McPhaden, 1996;
Simmonds and Keay, 2002). Given that Eq. (2) shows a non-
linear dependence of CO2 flux on wind speed (U2), even
small-scale wind variability can have a significant impact on
flux calculations. To account for the reduced wind variabil-
ity in the monthly mean fields and ensure consistency with
the original flux calculation, a scaling factor of 1.2 is applied
to the wind speed when computing Fcalc. The scaled wind

is only used for this calculation and not in any of the other
analyses. It is also expected that the CO2 flux variability is
dependent on SST and SSS variability; however, the effect of
SST and SSS on the solubility constant (K0) is too small to
be considered important in these calculations, and the SST
and SSS components of Eqs. (1)–(3) is therefore not scaled.
The absolute level of the Fcalc compared to the model flux
is well captured including the trend. For this ensemble, the
correlation between the estimated flux and the model output
in SPE exceeds 0.9 (R2) with a regression factor close to
unity (1.1). We find comparable/significant skill in reproduc-
ing fluxes for the shorter timescale (not shown).

Figure 2 shows the average (weighted mean) CO2 flux
time series F for each region with interannual variability re-
moved. The anthropogenic trend is evident in all regions in-
cluding the accelerated trend after 1950. Differences between
regions are evident with NSE showing the largest CO2 uptake
per unit area. Strong decade-scale variations do modulate re-
gionally the accelerated trend after 1950 emphasizing the im-
portance of ocean variability. Removing the anthropogenic
trend and isolating interannual and decadal variability re-
veals (i) relatively comparable levels of variability across re-
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Table 2. Variability (standard deviation (SD)) of ensemble mean CO2 fluxes for F (model output), Fcalc (calculated flux) in interannual (int)
and decadal (dec) timescales.

F Fcalc Area of region
[10−11 kg m−2 s−1] [10−11 kg m−2 s−1] [1012 m2]

SD Int Dec Int Dec

NA 3.22 2.16 2.92 2.39 11.27
NS 5.35 5.87 5.05 5.56 0.96
NSE 8.23 6.99 7.08 5.93 0.27
SPW 8.22 5.49 7.52 5.28 2.86
SPE 6.85 5.84 5.96 4.97 1.04

gions and (ii) a stronger variability on short timescales (Ta-
ble 2). Ensemble mean results indicate that NSE, which is
also the smallest area, is subject to strongest variability on
both timescales, followed by the SPW (Table 2).

3 Results

3.1 Regional CO2 flux variability

To visualize the patterns of CO2 flux variability across
timescales and regions, we create composite maps of the CO2
flux and the parameters we expect to be important drivers
of the variability. These parameters include parameters al-
ready presented above (SST, SSS, SIC, 1pCO2, and wind);
however, for the next part of the analysis we add MLD
and sea surface height (SSH). These parameters represent
larger-scale dynamics such as ocean circulation (SSH, gyre
strength) and vertical mixing (MLD), which are candidates to
be indirect processes controlling the CO2 flux variability in
EC-Earth3-CC. After detrending the data as described above,
we define high and low CO2 flux years in the different study
regions based on the mean standard deviation (SD) for all the
10 members (±) one SD from the regional mean. The years
are defined and selected for each member for all the param-
eters, where after the difference of the ensemble mean high
minus low flux years is shown in composite maps (Figs. 3–7).

The NA region covers all the other regions. The CO2 com-
posite maps show a widespread homogeneous pattern of CO2
uptake, intensified across the subpolar region (Fig. 3) and
with regional differences. This includes the Irminger and Ice-
land Basins, where fluxes are moderated and locally reversed.
On decadal timescales, positive values (increased CO2 up-
take) are confined to areas near the sea ice edge indicating
that this exerts significant control over NA average CO2 flux
variability at longer timescales (Fig. 3b). On an interannual
timescale, the widespread CO2 uptake mirrors a widespread
pattern of stronger winds and colder SST, indicating that
these parameters are potential drivers of the CO2 flux vari-
ability on shorter timescales. This is not the case for decadal
variability where only positive wind speed project on regions
of enhanced CO2 flux, temperature generally warm and act

to reduce solubility. A positive 1pCO2 pattern compares spa-
tially with the positive CO2 flux anomaly and negative SST
anomaly (Fig. 3a). On the decadal timescale, a negative SSH
anomaly, indicating a strengthening of the SPG, compares
spatially with the positive CO2 flux anomaly in the SPG re-
gion, which suggest that the strength of the SPG also could
be a potential dynamical driver of the CO2 flux variability,
modifying key parameters like SST and SIC. The CO2 flux
variability pattern in the NA appears relatively homogenous,
while its comparisons with other parameters are less dis-
tinct, except for SST on short timescales and SIC on long
timescales. This suggests that multiple dynamics may be in-
fluencing CO2 flux variability. To better understand these in-
fluences, we analyse smaller, well-defined regions to identify
the key drivers of CO2 flux variability.

Focusing on the NS region, we see a widespread and
homogeneous pattern of CO2 uptake on an interannual
timescale (Fig. 4), on short timescales confined to the NS,
emphasizing the role of regional dynamical systems and
need for a regional analysis. The NS shows the strongest
flux anomalies across all the regions, in particular on long
timescales. On decadal timescales, the CO2 uptake is con-
fined to an area of varying SIC in the NS with dynamical
consistent patterns also in the SPG region, indicating that
SIC is the main driver of the CO2 flux variability in this
region on longer timescale (Fig. 4a). Positive SST anoma-
lies reaching 5 °C on a decadal scale would counteract the
effects of sea ice variability. On the shorter timescale, the
CO2 uptake is enhanced across most of the NS region; how-
ever, on a decadal scale a small part of the region shows CO2
outgassing (Fig. 4b), which is probably linked to the strong
warming of the composite and reduced 1pCO2. Again, the
positive CO2 flux anomaly is perfectly confined to areas
within an area of decrease in SIC, indicating that SIC is the
main driver of CO2 flux variability on the shorter timescale
as well. The decrease in SIC is greater in the NS composite
maps compared to the NA maps. On both timescales stronger
winds compare spatially with the increased CO2 uptake, sim-
ilar to the NA region. However, the wind anomaly is stronger
on the longer timescales compared to the shorter timescales.
Following a decrease in SIC we see a deepening of the MLD
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Figure 2. Decadal variability in the simulated CO2 flux (F , solid line) and calculated flux (Fcalc, dotted line) for ensemble member r4i1p1f1.
Here the weighted mean is shown to compare the fluxes and variability across regions. Fcalc only showed for NS, NSE, SPE.

due to increased convection, increasing the mixing and al-
lowing for an increase in air–sea CO2 flux. However, the
small scale and spatial pattern associated with enhanced mix-
ing is not obviously reflected in the patterns of CO2 uptake.
Also, from the spatial comparison of patterns, it is clear that
1pCO2 changes alone cannot explain the CO2 flux variabil-
ity.

The NSE region represents the sea-ice-free part of the NS
(less than 15 % SIC) and is in the path of the NA current
crossing the Greenland Scotland Ridge. The composite maps
of high minus low CO2 flux years show an increased CO2 up-
take (Fig. 5) confined to the NSE region highlighting that our
regionalization is relevant and allows us to isolate a dynami-
cal regime. The region is confined by the 15 % SIC line, and
shows a widespread positive CO2 flux anomaly. Figure 5a
illustrates that the interannual variability shows an increase
in wind which compares spatially with a deepening of the
MLD and an increase in the air–sea CO2 flux. These patterns
are more pronounced for the NSE than for the NS region. A
decrease in SSH indicates a strengthening of the NS gyre cir-
culation, the eastern part, mirroring an increase in MLD and
CO2 flux indicating a dynamic driver of the CO2 flux vari-
ability. Figure 5b shows a confined pattern of CO2 uptake,
which compares spatially with a confined pattern of stronger
wind, increased MLD as a result of a strengthening of the
NS gyre (NSG; shallowing of the SSH), and increased SSS.
Compared to the NA region, the NSE gives a clearer indica-
tion of the driving forces behind the CO2 flux variability.

In the western part of the subpolar region, the CO2 flux
spatial pattern is strikingly similar to the pattern we can con-
struct for the entire NA on both timescales (Figs. 3 and 6).
This can in part be expected from the vast area of the region
hereby dominating the area-averaged fluxes and composites.
Key differences with the NA region include the Irminger
Sea where also SSH patterns indicate a dynamical separa-
tion on interannual scales. On the interannual timescale the
region shows CO2 uptake within the full region (Fig. 6a),
whereas the decadal CO2 flux shows both positive and neg-

ative anomalies within the region (Fig. 6b). In general all
the parameters show similar patterns to the NA on both
timescales. However, on the interannual timescale we see a
more clear and confined signal from SST and SSS compared
to the NA. A negative SST anomaly compares spatially with
increased CO2 uptake in the full region, whereas a positive
SSS anomaly in most of the region shows a relationship with
the CO2 flux variability, emphasizing how the SSS can work
as an indirect driver or indicator. On the decadal timescale
we see a clear and confined signal in the indicated drivers of
the CO2 flux compared to the NA region. Here, we see that
the CO2 uptake is confined within the region of decreasing
SIC, indicating that SIC forces a main control on the CO2
flux variability in the region. Furthermore, we see a greater
strengthening of the SPG as indicated by the decrease in SSH
on both timescales; however, the strongest signal is seen on
the longer timescale, where we also see a shift towards the
east as expected in a strong SPG phase. The strengthening
of the SPG results in a deepening of the MLD and introduces
more saline Atlantic water into the system from further south,
which explains why we see a positive SSS anomaly and in-
creased CO2 uptake. As in the NA region, we see opposite
anomalies for the SST on the two timescales. A negative SST
anomaly mirrors a positive CO2 flux anomaly on the short
timescale, whereas on the longer timescale, we see a positive
SST anomaly and a positive CO2 flux anomaly.

Finally, we look at the eastern part of the subpolar region
(Fig. 7). The composite maps show patterns of increased CO2
uptake, which is regionally well confined to the eastern SPG
and not apparently analogous to the composite patterns de-
rived for SPW. This also includes the NA region. On the in-
terannual timescale SSH reflects what may best be character-
ized as a relative blocking of the path of the NA current (a
closed gyre system building up sea surface height). On the
decadal timescale this blocking cell is located farther south,
outside the SPE region, but in both cases results in cooling
of the wider subpolar region as well as freshening. Despite
these basin-wide linkages, the CO2 flux changes are region-
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Figure 3. Anomalies of the high–low years of the dynamic parameters compared to the CO2 flux anomaly in the NA. (a) showing interannual
timescale and (b) showing decadal timescale. Full and dashed lines on top of the SSH anomaly shows the barotropic mass streamfunction
anomaly and dashed line on top of SIC anomaly shows the 15 % SIC climatology (mean of 10 ensemble members on both timescales).

ally exaggerated in the SPE. Not surprisingly, the dynamical
changes – a blocking of the path of the NA current – are
also characteristic of the composite maps for the NSE region
(Fig. 5). Despite this apparent similarity, the CO2 flux pat-
terns in both cases do not extend across the Greenland Scot-
land Ridge. This may be explained by phase differences in
the effects.

The spatial pattern of positive CO2 flux anomaly reflects
a shallowing of the MLD on the interannual timescale. This
cannot directly be linked to increased uptake, as described in

Sects. 1 and 3.1, as a shallowing of the MLD is related to
a less ventilated water column, and thereby a decrease in the
CO2 uptake. This link is discussed further in the next section.
Also on the interannual timescale, a positive wind anomaly,
and a negative SST and SSS anomaly also align spatially with
positive CO2 flux anomalies. On the decadal timescale, the
signals from the MLD and wind are less clear; however, a
negative SST and SSS anomaly compares spatially with the
increased CO2 uptake in the region.
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Figure 4. Anomalies of the high–low years of the dynamic parameters compared to the CO2 flux anomaly in the NS. (a) showing interannual
timescale and (b) showing decadal timescale. Full and dashed lines on top of the SSH anomaly shows the barotropic mass streamfunction
anomaly and dashed line on top of SIC anomaly shows the 15 % SIC climatology (mean of 10 ensemble members on both timescales).

3.2 Ocean indexes

Following the qualitative discussion of the relationship be-
tween the CO2 flux variability and the dynamical parameters
on different timescales, we define integrated quantities and
make use of ocean indicators such as the SPG index to un-
derstand the statistical significance of the identified relation-
ships between the CO2 flux and ocean variability (Table 3).

The SPG index (SPGi) is here defined simply as the min-
imum SSH of the NA region. This differs from other defi-

nitions (Hátún et al., 2005; Berx and Payne, 2017) but cap-
tures the main variability of the Earth system model anal-
ysed. The index is inverted, meaning that a positive (nega-
tive) anomaly indicates a strong cyclonic (weak) SPG. The
SPG index describes not only the state of the subpolar region
but observations also shown to characterize variability in wa-
ter mass properties at the gateways to the NS (Hátún et al.,
2005, 2017). As such, the SPGi may be linked to CO2 flux
variability directly by describing the extent of the character-
istic colder and fresher subpolar upper ocean water masses
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Figure 5. Anomalies of the high–low years of the dynamic parameters compared to the CO2 flux anomaly in the NSE. (a) showing interannual
timescale and (b) showing decadal timescale. Full and dashed lines on top of the SSH anomaly shows the barotropic mass streamfunction
anomaly and dashed line on top of SIC anomaly shows the 15 % SIC climatology (mean of 10 ensemble members on both timescales).

and indirectly through correlations with other drivers such as
variability in sea-ice margins, wind stress, and ocean mix-
ing locally and remotely (NS). From correlation coefficients
(zero lag) between the SPGi with the CO2 flux anomaly for
the different regions (NA, NS, NSE, SPW, SPE), listed in Ta-
ble 3, it is clear that the SPGi does not explain the CO2 flux
variability on the interannual timescale very well, though re-
assuringly the highest correlations are found for the SPW re-
gion. The SPGi correlates better on the decadal timescale,
with an ensemble mean of 0.31 and 0.44 in the NA and SPW,

respectively. Several ensemble members show a correlation
coefficient of 0.4 or higher in both regions, but a few ensem-
ble members show very low correlation, resulting in reduced
ensemble mean values. The SPE shows a large spread in indi-
vidual ensemble correlations with both positive and negative
correlations, resulting in an ensemble mean of −0.24 and
−0.17 (interannual and decadal, respectively). The low de-
gree of correlation on both timescales is expected in part due
to the findings from the composite map analysis of a more
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Figure 6. Anomalies of the high–low years of the dynamic parameters compared to the CO2 flux anomaly in the SPW. (a) showing interannual
timescale and (b) showing decadal timescale. Full and dashed lines on top of the SSH anomaly shows the barotropic mass streamfunction
anomaly and dashed line on top of SIC anomaly shows the 15 % SIC climatology (mean of 10 ensemble members on both timescales).

regional SSH (and streamfunction) “blocking pattern” of the
NA Current.

The NS gyre index (NSGi) is defined as the minimum SSH
in the NS region, similar to the SPGi. The index is inverted,
meaning that a positive value indicates a strong cyclonic gyre
circulation, whilst a negative value indicates a weakening of
the gyre circulation. The NSGi is modulated by changes in
wind stress curl and also is not independent of other possi-
ble indices defined on the basis of MLD and SIC. We have
no a priori expectation of a strong relation between the NSGi

and CO2 flux in other regions. The NSGi correlates well with
the CO2 flux variability in the NS on the decadal timescale
(0.54, Table 3), but also on the interannual timescale (0.30,
Table 3). A strong (weakened) NSGi results in an increased
(decrease in) CO2 uptake in the ocean. Hátún et al. (2021)
show that a strong NSG circulation results in an uplifted ther-
mocline, which results in more ventilation of deeper water.
The ventilation of deeper water could lead to an increased
air–sea CO2 flux, and work as a driver for the increased CO2
uptake in the NS. The composite maps show a strengthen-
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Figure 7. Anomalies of the high–low years of the dynamic parameters compared to the CO2 flux anomaly in the SPE. (a) showing interannual
timescale and (b) showing decadal timescale. Full and dashed lines on top of the SSH anomaly shows the barotropic mass streamfunction
anomaly and dashed line on top of SIC anomaly shows the 15 % SIC climatology (mean of 10 ensemble members on both timescales).

ing of the NSG (deepening of the SSH) on both timescales;
however, a greater strengthening on the decadal timescale in-
dicates that a strengthening of the NSG could result in an
increased atmosphere–ocean CO2 flux.

The AMO index is defined as the anomaly of the mean
SST in the NA region. For the regions within the NA, the in-
dex is defined as an SST index, which is the anomaly of the
mean SST within the region. We have chosen to use the SSTi
for the smaller regions, to investigate the direct relationship
of SST and CO2 flux variability within the regions. A positive

AMO/SSTi phase describes a warming of the NA. As higher
SST’s increase the pCO2 in the ocean due to lower solubility,
the AMO should be negatively correlated to the CO2 flux.
However, Breeden and McKinley (2016) show how a pos-
itive AMO phase results in a decrease in DIC in the SPG,
which decreases the solubility and increases the fCO2 (and
the pCO2). On the decadal timescale we see that the CO2 flux
variability in the NS and SPW region correlates positively
(0.36 and 0.29, Table 3) with the SSTi, which can be related
to the dynamics explained by Breeden and McKinley (2016).
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Also, an increase in temperature in the NS would result in a
decrease in SIC, allowing for an increase in CO2 flux. Bree-
den and McKinley (2016) state that SST and the solubility
of CO2 in the ocean still affects the pCO2 in the ocean (and
thereby the air–sea CO2 flux), but that the biogeochemical
dynamics, such as DIC is of a stronger amplitude. The NSE
and SPE regions shows an inverted correlation between the
CO2 flux variability and the SSTi on both timescales (NSE:
−0.12 and −0.41 SPE: −0.15 and −0.38, interannual and
decadal), indicating that the temperature effect on the CO2
solubility in the surface ocean dominates the CO2 flux vari-
ability in these regions (Table 3). In the NA the degree of
correlation varies a lot between the ensemble members from
a negative/weak correlation to a stronger correlation, which
makes it difficult to say anything in general about the full NA
region.

The sea ice index (SIi) is defined as the SIC anomaly in the
specified regions. An increase in SIC results in a decrease in
CO2 flux into the ocean in case no other factors are changing.
In the NS the SICi in general has a strong negative correla-
tion with the decadal CO2 flux anomaly, all of the members
showing a correlation coefficient above 0.50, resulting in an
ensemble mean of−0.64 (Table 3). The interannual variabil-
ity in the NS shows a lower correlation, with an ensemble
mean of −0.36 (Table 3). On both timescales, the SPW re-
gion shows a weaker negative correlation compared to the
NS (−0.04 and−0.36, interannual and decadal), as expected
due to a smaller degree of sea ice extent in the SPW. How-
ever, it is clear that the SIC is still dominating the CO2 flux
variability in this region. The NA region shows the weak-
est correlation between the SICi and the CO2 flux variability,
which might be explained by the fact that the sea-ice-covered
region of the NA is small (−0.02 and −0.26 interannual and
decadal). The SICi has not been applied to the NSE and SPE
regions, as they are more or less sea ice-free.

The NAO index is defined as the atmospheric surface pres-
sure level anomaly between Iceland (65° N, 20° E) and the
Azores (40° N, 25° E) in the winter months (djfm; Hurrell,
1995). The correlation between the NAO and CO2 flux is
in general strongest on the interannual timescale, showing
a correlation coefficient of approximately 0.3 for most re-
gions, except SPE that shows 0.12 and 0.35 interannual and
decadal, respectively. On the decadal timescale the ensemble
mean correlations are weaker; however, in particular in the
ice-free SPE and NSE and in the NA some ensemble mem-
bers show a correlation of 0.4–0.5 (Table 3). The NAO and
associated wind stress and wind stress curl affect the ocean
dynamics of the region including sea ice distribution which
may explain the positive correlations, whereas the direct ef-
fects of changes in wind stress on gas transfer would be ex-
pected to result in negative correlations for some regions.

The AMOC index (AMOCi) is defined as the anomaly of
the maximum of the model Atlantic Meridional Overturning
Circulation (streamfunction) at 45° N in the top 1000 m of
the water column. We choose 45° N to align with the bound-

ary of the subpolar and subtropical gyres and reduce poten-
tial time lag, that would follow from using an index defined
at lower latitudes. On the interannual timescale, the AMOCi
shows a strong negative correlation in the NA and SPW re-
gions (−0.40 and −0.47, Table 3), indicating that a weak-
ened AMOC resulting in less heat transport to the northern
NA will result in increased ocean CO2 uptake. In the other
regions, the ensemble members show a low correlation on
the short timescale. On the decadal timescale, somewhat sur-
prisingly, the AMOCi is not as closely and directly related to
surface CO2 exchange with both negative and positive cor-
relation coefficients in all the regions, resulting in a weak
average correlation (Table 3).

The wind index (Wi) is defined as the anomaly of the aver-
age near surface (10 m) wind speed in the different regions.
As expected based on Eq. (2), the Wi correlates positively
with the CO2 flux variability for all regions independent on
timescale. On both interannual and decadal timescale, the Wi
shows a high correlation with the CO2 flux in the NA (0.68
and 0.45), NS (0.73 and 0.70) and NSE (0.72 and 0.57, Ta-
ble 3). However, SPW only shows a high correlation on an
interannual timescale (0.80 and 0.26 decadal), whereas SPE
shows a weaker correlation on both timescales (0.24, 0.26).
In the composite maps all the regions show a strong posi-
tive wind anomaly, whereas the SPE region shows a weak
positive anomaly on the interannual timescale and a mix of
negative and positive anomalies on the decadal timescales,
which might explain the weak correlation seen in the region.

To understand the dynamic process of upper ocean mixing
and its effect on the atmosphere–ocean CO2 flux variability
a MLD index (MLDi) is defined based on the anomaly of the
MLD max value of the different regions. The MLDi shows
a strong negative correlation in the SPE (0.53 interannual;
0.29 decadal, Table 3) on both timescales, and a strong posi-
tive anomaly in the NS (0.38 interannual, 0.57 decadal) indi-
cating a complex, indirect, and regionally different linkage.
Spatial patterns of MLD show some resemblance to 1pCO2
in the SPE with an inverse relation (Fig. 7), which can be
explained by shoaling of the mixed layer leading to less ven-
tilation of DIC rich deeper layers and thus increased 1pCO2.

Salinity directly, but weakly influence the gas transfer
(Eq. 1), but we choose to also define the SSS index (SSSi)
as preliminary analysis showed a clear correlation between
PP and SSS in the EC-Earth3-CC output data which can
be exploited to be able to use the analysis from this study
on different Earth system models that might not include a
biogeochemical component in possible future studies. Fur-
thermore, the SSS dynamics also translates to the strength
of the SPG, the melting of sea ice, and transports of differ-
ent water masses in the NA. We have defined the SSSi as
the SSS anomaly in the different regions. The SSSi shows
the strongest interannual correlation in the SPW (0.33), and
the strongest decadal correlation in the NS (0.52) and SPW
(0.39). In the composite map of the NS region, we see a
strong positive SSS anomaly correlating with a positive CO2
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flux anomaly (Fig. 4). The SSSi shows a strong negative cor-
relation with the CO2 flux in the SPE, which is also evident
in the composite maps (Fig. 7).

3.3 Regression analysis

A regression model has been set up for each of the regions
and both timescales, based on the findings from the compos-
ite maps and the index correlation analysis. The predictors
chosen for the regression models have been chosen to pro-
vide the best possible regression model, not only focusing on
the linear relationship between the predictors and the CO2
flux as shown in the index analysis (Table 3). Some predic-
tors might show a weak correlation coefficient, but contribute
to a higher degree of explanation in combination with other
predictors. For instance the NAO index is not considered for
the regression models, as it to some degree represents the
same dynamics as the Wi, and therefore does not contribute
to a higher degree of explanation for the regression models.
In the following, the descriptions of the regression models
are based on the mean R2 value of the 10 ensemble mem-
bers for each region (Table 4). The regression models for the
interannual variability shows slightly higher correlation/ex-
planation for the CO2 flux variability in the different regions
compared to the decadal variability. In general, the NA region
shows the lowest degree of correlation on both timescales,
emphasizing the need to divide the region into smaller re-
gions.

The interannual CO2 flux variability in the NA region can
be explained by variability in AMOC and wind speed, with
an R2 value of 0.48 (Table 4). The spatial patterns show a
strong, homogeneous positive wind anomaly that correlates
well with a positive CO2 flux anomaly in the NA (Fig. 3).
Furthermore, the index analysis shows that both the AMOCi
and Wi correlate well with the CO2 flux variability (0.40 and
0.68, respectively, Table 3). The wind speed is expected to
be driving the CO2 flux variability, but the AMOCi repre-
sents a more dynamic control on the variability. The decadal
timescale regression model includes predictors such as SPGi,
SSSi, and Wi. Here, the R2 value is 0.37 (Table 4). The com-
posite map does not show a strong spatial pattern between the
predictors and the CO2 flux variability, which might explain
the lower R2 value. The predictors chosen for the decadal re-
gression model align with the indexes with the greatest cor-
relation as seen in Table 3.

The NS region shows a good degree of correlation (0.62
and 0.58 for the interannual and decadal timescales respec-
tively, Table 4) based on MLDi, SICi, and Wi. The sea ice
concentration works as a main driver for the CO2 flux vari-
ability in the NS as discussed earlier and seen in Fig. 4. Fur-
thermore, a strong positive signal in the MLD anomaly cor-
relates with the CO2 flux anomaly, indicating that dynamical
processes, such as strengthening of the NSG (a deepening of
the SSH) and increased convection related to disappearing
sea ice also controls the CO2 flux variability in the NS. The

index correlation analysis also indicates the wind stress as
a controlling parameter in this region in both timescales (Ta-
ble 4). The fact that the regression model is based on the same
parameters for both timescales indicates that the processes
driving the CO2 flux variability are stable across timescales
for this region.

The NSE region shows a high degree of correlation as
well (0.68 and 0.53 interannual and decadal respectively, Ta-
ble 4). The interannual predictors being MLDi, SSTi, and Wi
and the decadal NSGi, AMOCi, and Wi. The interannual and
decadal variability is well explained by the spatial patterns in
the region (Fig. 5). However, the index analysis show a weak
linear correlation between the predictors SSTi and AMOCi
and the CO2 flux on the interannual and decadal timescale,
respectively (Table 3). The low correlation coefficient in the
index analysis does not, however, rule out, that the SST and
AMOC contribute to the variability combined with other pre-
dictors, as shown in the regression models for the region. The
NSE regression models show that dynamical processes such
as ocean mixing and circulation drive the CO2 flux variabil-
ity within the region in addition to physical parameters such
as SST and wind, which is expected from the gas transfer
equations (Eqs. 1–3).

The western part of the subpolar region shows the next
best degree of correlation on the interannual timescale (0.68
interannual and 0.50 decadal, Table 4). The regression model
set-up is based on the interannual variability entails AMOCi,
SSTi, and Wi and shows an R2 value of 0.68. Based on
MLDi, SSTi, and Wi the regression model for the variabil-
ity on the decadal timescale shows an R2 value of 0.50. We
expected dynamic ocean processes such as SPG strength to
control the CO2 flux in the region; however, the regression
model shows that the AMOCi and MLDi are predictors rep-
resenting the dynamic ocean processes. The SST anomaly
shows a negative anomaly on the interannual timescale and a
positive anomaly on the decadal timescale, both correlating
with a positive CO2 flux anomaly (Fig. 6), which is also evi-
dent in the negative and positive correlation of the SSTi in the
index analysis on interannual and decadal timescales, respec-
tively (Table 3). This shows that the relationship between the
predictors might not be linear, and that they, in combination,
contribute to the CO2 flux variability even though they indi-
vidually do not contribute.

Finally, the CO2 flux variability in the SPE region is con-
trolled by SST and MLD on both timescales; however, the in-
terannual regression model also includes Wi, and the decadal
regression model includes SSSi, as indicated in Fig. 7. The
R2 values of the regression models show that the correlation
is better on the interannual timescale (0.55) than the decadal
timescale (0.40) (Table 4). Here, the regression model anal-
ysis shows that in addition to expected drivers such as SST
and SSS (as discussed earlier and based on Eqs. 1–3), dy-
namical processes such as ocean mixing also drive the CO2
flux variability. The MLD variability points to the SPE being
a dynamical region, possibly affected by the SPG circulation
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Table 3. Index analysis. Correlation coefficients are the mean of 10 ensemble members in interannual (int) and decadal (dec) timescales. In
cursive min and max values for individual members are shown to indicate spread (uncertainty) of the index analysis. In bold parameters used
for regression models in Sect. 3.3.

NA NS NSE SPW SPE

Corr. Coeff. Int Dec Int Dec Int Dec Int Dec Int Dec

SPGi mean 0.04 0.31 – – – – 0.21 0.44 −0.24 −0.17
min −0.16 0.08 −0.01 0.18 −0.42 −0.71
max 0.16 0.69 0.25 0.80 0.05 0.27

NSGi mean – – 0.30 0.54 0.25 0.49 – – – –
min 0.13 0.41 0.11 0.31
max 0.53 0.76 0.40 0.66

AMO/SSTi mean −0.27 0.19 0.09 0.36 −0.12 −0.41 −0.25 0.29 −0.15 −0.38
min −0.46 −0.13 −0.05 0.03 −0.39 −0.64 −0.42 −0.33 −0.31 −0.83
max −0.04 0.56 0.28 0.59 0.19 −0.24 −0.12 0.64 0.03 0.38

SICi mean −0.02 −0.26 −0.36 −0.64 – – −0.04 −0.36 – –
min −0.09 −0.49 −0.51 −0.84 −0.09 −0.68
max 0.08 0.07 −0.17 −0.54 0.13 −0.29

NAO mean 0.30 0.24 0.29 0.18 0.35 0.31 0.30 0.13 0.12 0.35
min 0.17 0.02 0.20 −0.09 0.24 0.14 0.19 −0.19 −0.09 0.11
max 0.46 0.47 0.37 0.30 0.44 0.45 0.46 0.30 0.32 0.57

AMOCi mean −0.40 0.20 0.11 0.26 0.17 −0.06 −0.47 0.16 −0.20 0.02
min −0.53 −0.08 −0.06 0.02 0.05 −0.33 −0.54 −0.21 −0.33 −0.42
max −0.32 0.49 0.28 0.47 0.34 0.14 −0.37 0.42 −0.12 0.45

Wi mean 0.68 0.45 0.73 0.70 0.72 0.57 0.80 0.26 0.24 0.26
min 0.57 0.26 0.66 0.57 0.59 0.40 0.71 0.17 0.04 0.01
max 0.78 0.56 0.80 0.83 0.78 0.66 0.89 0.80 0.41 0.43

MLDi mean 0.02 0.28 0.38 0.57 0.33 0.01 0.14 0.38 −0.53 −0.29
min −0.14 −0.03 0.18 0.36 0.15 −0.36 −0.07 −0.12 −0.67 −0.46
max 0.13 0.59 0.65 0.80 0.61 0.50 0.31 0.61 0.03 −0.14

SSSi mean 0.21 0.31 0.22 0.52 0.08 −0.24 0.33 0.39 −0.29 −0.37
min −0.19 −0.05 0.02 0.33 −0.17 −0.49 0.04 0.03 −0.37 −0.71
max 0.33 0.55 0.40 0.63 0.31 −0.12 0.45 0.54 0.03 0.04

in the western part of the subpolar region. Furthermore, SPE
is an ice-free region, allowing us to understand the dynam-
ics of the CO2 flux variability without the strong SIC driver.
The decadal regression model for the SPE is the only one
not including Wi. The wind speed anomaly is both negative
and positive within the region, which indicates that the wind
speed might not be a controlling factor in the SPE (Fig. 7).

4 Discussion

4.1 Biases in Earth system models

We calculated the CO2 flux using the dependent parameters
from the model as seen in Eqs. (1)–(3) to test to what de-
gree the model CO2 flux could be reproduced. Using monthly
mean fields of SST, SSS, 1pCO2, and wind speed we are
able to reproduce the CO2 flux variability; however, to re-

produce the total flux we need to use a scaled wind field
(wind×1.2). PISCES calculates the air–sea CO2 flux daily
(Döscher et al., 2022; Aumont et al., 2015), and by using
monthly mean fields (using available data) we risk a smooth-
ing of the actual daily variability that can explain the need
for a scaled wind field. Turner et al. (1996) discusses how
using monthly mean fields for wind and temperature can
affect the calculation of atmosphere–ocean fluxes (in their
study dimethyl sulfide fluxes in the NS; however, using Wan-
ninkhof (1992) gas transfer equations as in this study, Eqs. 1–
3). Reproducing the CO2 flux helps us understand the sensi-
tivity and dependencies on the physical parameters used to
calculate the flux. The wind speed field shows a big sensi-
tivity, which is also emphasized in the regression models, all
but one entailing the Wi.

Earth system models inevitably simplify the complex cli-
mate system, which will introduce biases to the modelled
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Table 4. Applied regressions for all regions across timescales. R2 values based on mean R2 for all 10 ensemble members in interannual (int)
and decadal (dec) timescales.

NA NS NSE SPW SPE

Predictors R2 Predictors R2 Predictors R2 Predictors R2 Predictors R2

Int AMOCi, Wi 0.48 MLDi, SICi, Wi 0.62 MLDi, SSTi, Wi 0.68 AMOCi, SSTi, Wi 0.68 SSTi, MLDi, Wi 0.55
Dec SPGi, SSSi, Wi 0.37 MLDi, SICi, Wi 0.58 NSGi, AMOCi, Wi 0.53 MLDi, SSTi, Wi 0.50 SSSi, MLDi, SSTi 0.40

processes. One example being the monthly mean wind field
that introduces a bias in the calculated CO2 flux. Another
bias addressed in this paper is the SIC bias in EC-Earth3-CC.
As stated by Döscher et al. (2022), Tian et al. (2021) and
shown in Fig. 1b EC-Earth3 (and thereby EC-Earth3-CC)
shows an overestimation of the SIC in the NS and the NA.
The index and regression model analysis of the NS shows
that SIC is a driver of the CO2 flux variability, as expected
based on Eq. (3). Therefore, the overestimation of sea ice ex-
tent and concentration in EC-Earth3 will undoubtedly affect
and possibly control the CO2 flux variability in the ocean in
the EC-Earth3-CC runs. However, even in regions of sea-ice
such as the SPW and the NA, SIC does not exclude signif-
icant effects of other processes, as SIC is not regarded as a
predictor for the CO2 flux variability in these regions (Ta-
bles 3, 4).

4.2 Predictors

Our analysis demonstrated that the CO2 flux variability and
its drivers cannot be assessed meaningfully considering the
larger northern NA region; but instead needs to be stratified
at a regional and sub-basin level. Our analysis shows a high
degree of explained variability of the CO2 flux within the
regions defined including dynamically separated ocean re-
gions (Table 4). Based on the regression models we have
established, it is clear that a linear correlation between the
CO2 flux and other predictors will not allow us to explain
and understand the full CO2 flux variability. It is clear that
internal dynamics between the different predictors also af-
fects the CO2 flux variability as shown in Sect. 3.3. Fur-
thermore, we also establish that not only the physical pa-
rameters SST, SSS, and wind speed work as drivers of the
CO2 flux in the regions. It is evident that wind speed poses
a great control on the CO2 flux variability as discussed ear-
lier, but we also see dynamic predictors such as ocean mix-
ing (MLDi), gyre circulation (NSGi/SPGi), and larger-scale
ocean circulation and transport (AMOC) as drivers. Holli-
day et al. (2020) and Hátún et al. (2005, 2017) discuss how
the larger-scale dynamics such as the gyre circulation (SPG
and NSG) and AMOC variability affect the SST, SSS, and
PP in the northern NA, aligning with our findings. Despite
being the smallest region in terms of area among these stud-
ies (Table 2), the NSE region exhibits the highest variabil-
ity and mean flux. This remains the case until 1960 (Fig. 2),

when the SPW and NSE flux time series converge. Our re-
gression analysis yields the highest R2 values in the NSE
and SPW regions (Table 4), underscoring the robustness of
our approach. Notably, the fact that our regression models
provide the strongest explanatory power in the regions with
the greatest variability and mean CO2 flux suggests a stable
and reliable representation of the system dynamics.

Throughout our analysis we have established that a deep-
ening of the MLD often coincides with a positive CO2 flux
anomaly, which in some cases can be explained by a deepen-
ing of the MLD resulting in an increase in DIC in the surface
layer, decreasing pCO2 in the surface layer and thus increas-
ing the atmosphere–ocean CO2 flux (Figs. 3–6). However,
we also see the deepening of the MLD as a response to a de-
crease in SIC, resulting in convection and an increase in the
atmosphere–ocean CO2 flux, which is especially evident in
the NS region (Fig. 4). The index analysis also shows a posi-
tive correlation between MLD and CO2 flux in all the regions
except for the SPE (Table 3). However, counter-intuitively to
what is earlier established in our composite map analysis,
we see a (strong) negative correlation between MLD and the
CO2 flux, both spatially and in the index analysis in the SPE
region as mentioned (Fig. 7, Table 3). The MLDi is one of the
predictors defining the regression models for both timescales
in the SPE, which means that the MLD variability explains
a big part of the CO2 flux variability, despite their counter-
intuitive negative correlation. The spatial patterns of the SPE
shows a negative mirroring between the CO2 flux and both
SSS and SST most evident on the longer timescale, but also
to some degree on the short timescale (Fig. 7). Furthermore,
the spatial patterns also show a possible blocking of the NA
current, indicated by a closed gyre system building up SSH.
The blocking of the NA current might allow for fresh, cold,
and nutrient-rich Arctic water to enter the system, resulting
in a positive CO2 flux anomaly due to a decrease in temper-
ature and nutrient supply increasing the PP and thus the CO2
uptake. Increased freshwater supply from the Arctic would
also result in increased stratification of the water column, in-
dicated by the shallowing of the MLD and thereby the neg-
ative correlation between the CO2 flux and MLD. We have
also found that in EC-Earth3-CC, PP, and SSS are more or
less replaceable, including spatial patterns and their correla-
tion. The NA is strongly influenced by the AMOC and SPG
circulation, both regulating the salinity distribution and nu-
trient transport. The change in SSS reflects changes in the
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balance of freshwater input (i.e. freshwater from the Arctic).
Both SSS and PP are sensitive to these large-scale circulation
dynamics, and they might co-vary, making them somewhat
interchangeable in Earth system models. These observations
indicate that CO2 flux variability in the northern NA cannot
be adequately explained by individual predictors in a linear
framework. Instead, a comprehensive understanding of the
underlying processes and the interactions among predictors
is essential to accurately capture atmosphere–ocean CO2 flux
variability.

4.3 Future projections

Based on the results of our regression model analysis we
expect that the regression models are also robust for as-
sessing the CO2 flux variability and tendencies in the NA
from scenario simulations without a CC (EC-Earth3). This
would be beneficial for estimating uncertainties related to
future CO2 uptake and in general to understand the CC ef-
fects of regional climate change patterns. We have purposely
defined the regression models by using non-biogeochemical
predictors only. Studies have looked into the predictability
of interannual-to-decadal variability: Li et al. (2016) show a
predictive skill of CO2 uptake in the western SPG of up to
4–7 years based on an Earth system model prediction sys-
tem. They conclude, that the predictive skill is attributed to
the combination of improved ocean physical states and cir-
culation variability, primarily in winter which corroborates
our approach. Ilyina et al. (2021) shows a predictive skill for
the global ocean carbon sink of up to 6 years for some Earth
system models. Further motivation for focussing on dynami-
cal indices comes from Fransner et al. (2020). They show that
the predictability of ocean carbon uptake correlates well with
the predictability of the MLD, suggesting that the predictable
signal comes from exchange of DIC with deep waters.

Looking into the near future, studies consistently establish
that the warming of the global climate system is also man-
ifested in warming of the ocean (Fox-Kemper et al., 2021;
Bopp et al., 2013; Fu et al., 2016; Laufkötter et al., 2016;
Liu et al., 2023; Kwiatkowski et al., 2020). Ocean tempera-
ture increase would from first principles result in a decreased
atmosphere–ocean CO2 flux through the effects on solubil-
ity; however, as demonstrated in this study the CO2 flux vari-
ability is more complex than simple linear relationships with
temperature. For example, an increased ocean temperature
will lead to a melting of the sea ice in the northern NA, re-
sulting in more open ocean surface that can take up CO2.
However, a warming ocean will also affect the ocean cir-
culation, both the large-scale circulation and the small-scale
ocean mixing. AMOC is predicted to slow down with global
warming (McKinley et al., 2023; Liu et al., 2023). Stagnat-
ing ocean circulation in the NA will, as seen in our analysis,
affect the CO2 flux variability, in particular the SPW region
of the NA, but also further north in the NSE region. Fur-
thermore, a warming ocean combined with melting ice and

stagnated ocean circulation could result in increased upper
ocean stratification, reduced MLD, and less exchange with
high DIC water masses in the deeper ocean. The predicted
global warming will possibly result in stronger winds in the
NA region (Lee et al., 2021; Ruosteenoja et al., 2019) which,
based on the gas exchange equation and our results, will con-
tribute to increasing the atmosphere–ocean CO2 flux. Our re-
sults identify SIC and wind speed as main drivers of the CO2
flux variability in a number of subregions of the northern NA,
which would indicate an increase in ocean CO2 uptake in the
near future but counteracted by the direct temperature effect.

To expand the regression analysis to investigate their ro-
bustness in scenario runs using other Earth system models it
is pivotal to have an in-depth understanding of the model set-
up and of the characteristics of indices in the specific model
including biases and variability. Examples that might com-
plicate the applicability of the regression models from this
study could be how the gas transfer is handled across sea ice,
how realistic the separate indices are compared to observa-
tions, and how the indices relate to each other. Our analy-
sis provides a framework for identifying the key predictors
and processes driving atmosphere–ocean CO2 flux variabil-
ity in the northern NA, but further work is necessary before
applying the framework across other Earth system models.
We demonstrate that physical ocean and atmospheric param-
eters alone account for a significant portion of this variability,
offering a valuable approach for assessing and understand-
ing future CO2 flux changes using readily available climate
model and ocean reanalysis data.

5 Conclusion

Our analysis highlights the critical role of physical and dy-
namical processes in shaping CO2 flux variability across
the northern NA. Using historical simulations from the EC-
Earth3-CC model, we show that key drivers, including SIC,
SST, SSS, wind stress, and ocean dynamics such as mix-
ing and circulation, exert regionally and temporally vary-
ing influences on the atmosphere–ocean CO2 fluxes. While
our regression models achieve high explanatory power, they
capture interannual variability more effectively than decadal
trends, underscoring the dominant role of short-term fluctu-
ations. Furthermore, our findings reveal that CO2 flux vari-
ability cannot be attributed to simple linear relationships with
individual predictors but instead emerges from complex in-
teractions among multiple processes. Notably, wind stress
exerts a particularly strong influence, aligning with expec-
tations from gas transfer formulations. These results empha-
size the spatially and temporally dependent nature of ocean
carbon uptake and highlight the need for a multifaceted ap-
proach when assessing future CO2 flux variability in a chang-
ing climate. In addition, we conclude that the regression
models we have defined in our analysis can serve as a frame-
work for predicting and understanding future atmosphere–
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ocean CO2 fluxes in the Earth system model realm. The
main conclusion is that the CO2 flux variability cannot be at-
tributed to simple linear relationships with individual predic-
tors, but instead emerges from complex interactions among
multiple processes.
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