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Abstract. Grapevine water status exhibits substantial vari-
ability even within a single vineyard. Understanding
how edaphic, topographic, and climatic conditions impact
grapevine water status heterogeneity at the field scale, in non-
irrigated vineyards, is essential for winemakers as it signif-
icantly influences wine quality. This study aimed to quan-
tify the spatial distribution of grapevine leaf water potential
(9leaf) within vineyards and to assess the influence of soil
property heterogeneity, topography, and climatic conditions
on intra-field variability in two non-irrigated vineyards dur-
ing two viticultural seasons. By combining multilinear veg-
etation indices from very-high-spatial-resolution multispec-
tral, thermal, and lidar imageries collected with uncrewed
aerial systems (UASs), we efficiently and robustly captured
the spatial distribution of 9leaf across both vineyards on dif-
ferent dates. Our results demonstrated that in non-irrigated
vineyards, the spatial distribution of 9leaf was mainly gov-
erned by the within-vineyard soil hydraulic conductivity het-
erogeneity (R2 up to 0.81) and was particularly marked when
the evaporative demand and the soil water deficit increased,
since the range of 9leaf was greater, up to 0.73 MPa, in these
conditions. However, topographic attributes (elevation and
slope) were less related to grapevine 9leaf variability. These
findings show that the soil property within-field spatial dis-
tribution and climatic conditions are the primary factors gov-
erning 9leaf heterogeneity observed in non-irrigated vine-
yards, and their effects are concomitant.

1 Introduction

Accurately quantifying grapevine water status is crucial for
winemakers as it significantly impacts wine quality (Dry and
Loveys, 1999; van Leeuwen et al., 2009). Detailed spatial in-
formation on grapevine water status can be particularly use-
ful for providing guidelines on viticultural management to
optimize grape production. This is especially important in the
context of climate change, which poses crucial challenges for
freshwater use in viticulture (Gambetta et al., 2020). Many
authors have demonstrated that grapevine water status ex-
hibits substantial variability even within a single field, partic-
ularly when significant water restriction is found (Acevedo-
Opazo et al., 2010; Brillante et al., 2017a; Tisseyre et al.,
2005). Measuring leaf and/or stem water potential is an ef-
fective method to assess grapevine water status (Choné et al.,
2001) but accurate measurements of leaf and stem water po-
tentials are usually achieved on single plants using a Scholan-
der pressure bomb (Scholander et al., 1965) or with psy-
chrometers. Several authors have reported a high magnitude
of variation in leaf water potential over the viticultural season
(e.g., 1.6 MPa in Ojeda et al., 2005) and at the within-field
level (e.g., 1.2 MPa in Ojeda et al., 2005; 0.7 MPa in Bril-
lante et al., 2017a). Yet, these methods are time-consuming
and labor-intensive and are therefore not effective at instanta-
neously capturing the within-field heterogeneity of grapevine
water status (Romero et al., 2018), particularly under het-
erogeneous soil and microclimatic conditions generally ob-
served in a vineyard.
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Remote sensing technological advances give good oppor-
tunities for time- and cost-efficient detection of the spa-
tial and temporal variability of plant water status (Acevedo-
Opazo et al., 2008). Particularly, uncrewed aerial systems
(UASs) are useful tools to assist precision viticulture thanks
to high-spatial-resolution imagery, allowing differentiation
of row and inter-row information. UASs can transport differ-
ent sensors to measure and estimate plant traits, e.g., canopy
area, biomass, leaf pigment concentration, or grapevine wa-
ter status, through vegetation indices (VIs) (Baluja et al.,
2012; Poblete et al., 2017; Romero et al., 2018; Serrano
et al., 2010; Zarco-Tejada et al., 2013). Most of the sen-
sors used in precision viticulture are multispectral sensors,
allowing the calculation of VIs based on the visible (red,
green, blue), red-edge, and near-infrared (NIR) reflectance
of plants (Ferro and Catania, 2023). Several studies found
low to moderate correlations between multispectral VIs and
grapevine leaf water potential, with maximum R2 ranging
between 0.4 and 0.5 (Baluja et al., 2012; Espinoza et al.,
2017; Romero et al., 2018; Tang et al., 2022). VIs based on
NIR and red-edge bands are better correlated with grapevine
water potential as they are greatly affected by leaf structure
and chlorophyll content, both being considered indicators of
grapevine water status (Penuelas et al., 1997; Rapaport et al.,
2015). Recently, machine learning models (i.e., random for-
est) have been applied to combine multispectral information
from grapevines and predict grapevine water potential. These
models performed better (R2 around 0.85) than using single
multispectral VIs (Poblete et al., 2017; Romero et al., 2018);
however, there was a significant loss of predictive power be-
tween calibration and validation (R2 decreased and RMSE
increased significantly) (Tang et al., 2022). Nevertheless, the
combination of several VIs to predict grapevine water sta-
tus is more efficient since each VI can bring complementary
information (Xue and Su, 2017).

In dry conditions, grapevines close stomata, limiting tran-
spiration but preventing them from reaching excessively neg-
ative water potentials that could lead to xylem cavitation and
death (Gambetta et al., 2020). Once stomata are closed and
transpiration is restrained, leaf temperature increases (Costa
et al., 2010). Canopy temperature can therefore potentially
be used to develop an index giving information on stom-
atal conductance and leaf water potential (Jones et al., 2002).
Thermal VIs such as the crop water stress index (Idso et al.,
1981) have shown moderate (but better than multispectral
VIs) correlations with grapevine water potential, with R2 of
0.55 (Romero et al., 2018). Some studies even showed a sig-
nificant correlation, with R2 around 0.80, between leaf wa-
ter potential and the crop water stress index in Mediterranean
vineyards (Bellvert et al., 2014; Möller et al., 2007). Thermal
sensors are not as used as multispectral sensors in precision
viticulture (Ferro and Catania, 2023). These sensors are gen-
erally more expensive and subjected to less straightforward
calibration (Berni et al., 2009). Thermal data processing is
less simple than multispectral data but complementary infor-

mation obtained by multispectral and thermal sensors could
improve the ability to remotely monitor grapevine leaf water
potential (Tang et al., 2022).

The use of laser scanning sensors (light detection and
ranging – lidar) for estimating biophysical parameters of
vineyard canopy is still relatively uncommon compared to
other available sensors (Ferro and Catania, 2023). Point
clouds obtained from lidar sensors are suitable for detect-
ing structural features of grapevine such as canopy height,
canopy width, or even leaf area index (Bates et al., 2021;
Comba et al., 2018). These structural features reflect the re-
sult of cumulative water potential of grapevine and could
therefore contain information on grapevine water status
(Baluja et al., 2012). As a result, the combination of mul-
tispectral, thermal, and lidar (structural) data obtained from
different sensors on board uncrewed aerial vehicles could po-
tentially be used to improve the mapping of grapevine leaf
water potential within a vineyard.

In addition to the value of remotely monitoring grapevine
leaf water potential in an accurate way through UASs, it is
also interesting to study which factors spatially determine
leaf water potential at the vineyard scale. Several studies
have tried to assess the influence of irrigation management
on grapevine water status with UAS platforms (De Bei et
al., 2011; Bellvert et al., 2012, 2015; Espinoza et al., 2017;
Möller et al., 2007). However, most of these studies were
conducted on vineyards with homogeneous edaphic condi-
tions but different irrigation treatments. It remains unclear
how robust these water status mapping approaches are when
applied across vineyards with varying edaphic and meteoro-
logical conditions (Helman et al., 2018). Few studies have
evaluated how spatialized information on grapevine water
status gives us information about how environmental hetero-
geneity within a vineyard affects the distribution of grapevine
water potential (Brillante et al., 2017a). It is known that the
soil and the climate mainly affect grapevine water potential,
and their effects are concomitant (Van Leeuwen et al., 2004).
The soil, through its texture and its ability to retain and con-
duct water, determines the water supply to the root system.
Soil depth, texture, structure, and percentage of coarse ele-
ments also affect the growth of the root system and therefore
the available water for the plant (Van Leeuwen et al., 2018).
Grapevine water status is also affected by the vapor pres-
sure deficit (VPD, corresponding to the atmospheric evap-
orative demand), which depends on temperature and air hu-
midity (Soar et al., 2006). Grapevines should therefore find
an equilibrium between water supply in the soil and water
demand in the atmosphere by regulating their water potential
and stomatal conductance to maintain gas exchanges for pho-
tosynthesis, while preventing excessive negative water po-
tential leading to xylem cavitation (Gambetta et al., 2020).
Topographic attributes, such as slope and elevation, can also
impact grapevine performance (Bramley et al., 2011; Karn et
al., 2024). On the one hand, this influence is indirect since
topography controls the redistribution of soil particles within
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the vineyard and therefore creates soil texture spatial hetero-
geneity (Fraga et al., 2014). On the other hand, topography
can directly influence grapevine water status through its im-
pact on water drainage and runoff, sunlight exposure, and
temperature variations within the vineyard (Brillante et al.,
2017a; Karn et al., 2024). These effects foster microenviron-
ments within a vineyard that could affect grapevine water sta-
tus (Rabia et al., 2022).

In this study, we aimed to quantify the spatial distribution
of grapevine leaf water potential within a vineyard and to as-
sess the impact of edaphic, topographic, and climatic condi-
tions on intra-field heterogeneity. We evaluated the capabili-
ties of UASs equipped with multispectral, thermal, and lidar
sensors to monitor grapevine leaf water potential on two non-
irrigated vineyards during two viticultural seasons.

2 Methodology

2.1 Site descriptions

This study was conducted on two non-irrigated Belgian vine-
yards, grassed in the inter-rows, namely the Château de
Bousval vineyard and the Domaine W vineyard (Fig. 1a).
At the Château de Bousval vineyard (Genappe, Belgium;
50°36′45.0′′ N, 4°31′19.6′′ E), we focused on an east-facing
plot of Chardonnay grafted on 3309C rootstock, planted in
2014 with vertical shoot positioning, 1.6 m inter-row, and
0.8 m inter-cep. The field rises between 110 and 125 m
above sea level (Fig. 1b), and the average slope is 6 %. At
the Domaine W vineyard (Tubize, Belgium; 50°41′19.4′′ N,
4°09′36.9′′ E), two Chardonnay plain fields grafted on 101-
14Mgt rootstock were selected for this study, rising between
52 and 54 m above sea level (Fig. 1g), with rows oriented
north–south. The grapevines were planted in 2016 with ver-
tical shoot positioning, 2.2 m inter-row, and 1 m inter-cep.
These vineyards were selected due to their similar pedogene-
sis but contrasting layering. In the Château de Bousval vine-
yard, the soil is made of a loamy top layer overlying a sandy
subsoil, but the depth of the interface between these two lay-
ers changes within the plot, reaching more than 3 m at the
lowermost side (east side) of the field, due to an accumula-
tion of loamy colluviums. At the upper part (west side) of
the field, the loamy layer is around 0.4 m depth. We know,
on the whole field, the depth of the interface between the
loam and the sand (Fig. 1c). Moreover, in this vineyard, we
also know that grapevine roots reach a depth of at least 2.5 m
on the whole field (Delval et al., 2024a). In the Domaine W
vineyard, the soil heterogeneity is less marked in terms of
soil texture. The northwestern part of the field is defined by
a silty loam soil on the first horizons of the profile and silty
clay loam soil thereafter. The southeastern part is defined by
a silty loam soil on the whole profile (Fig. 1h). These dif-
ferences in terms of soil texture have only been observed in
a single location in each subplot. Therefore, unlike Bousval,

the depth of the interface between silty loam soil and silty
clay loam soil is not accurately known on the whole field. A
stream runs adjacent to the southeast parcel, raising the water
table in this area within the reach of the roots. Root depth on
this vineyard is at least 2 m everywhere in the field (Delval et
al., 2024b).

2.2 Meteorological conditions

Both vineyards are equipped with weather stations provid-
ing hourly meteorological data. The meteorological condi-
tions during each flight are provided in Table 1. The atmo-
spheric conditions and the evaporative demand are character-
ized with the vapor pressure deficit (VPD). The daily water
deficit, which refers to the standardized precipitation evapo-
transpiration index (SPEI – Vicente-Serrano et al., 2010), is
calculated as follows:

SPEI=
∑
i

(
Pi − ET0i

)
, (1)

with i = 1 corresponding to 1 April of the respective year
(budburst of grapevines), Pi the daily precipitation, and ET0i
the daily reference evapotranspiration. The more negative the
SPEI, the greater the water deficit. ET0 is calculated from the
Food and Agriculture Organization (FAO) Penman–Monteith
method (Allen et al., 1998).

Despite relatively similar air temperatures and VPDs dur-
ing the 2022 and 2023 flights, 2022 was a drier year than
2023. The SPEI for any date in 2022 is significantly more
negative than that for any date in 2023 in both vineyards (Ta-
ble 1), indicating drier conditions in 2022 than in 2023.

2.3 Data acquisition and processing

Uncrewed aircraft system (UAS) data acquisition took place
during the vine growth period in 2022 and 2023. Three flight
campaigns were carried out in 2022 and three in 2023, for a
total of six flight campaigns. Data were acquired before the
veraison (27 July 2022 and 20 July 2023), at the start of the
veraison (10 August 2022 and 10 August 2023), and just be-
fore harvest (31 August 2022 and 6 September 2023). Flights
started around 12:00 (UTC+2) at Bousval and around 13:30
(UTC +2) at Domaine W. Three sensors were used in this
study, a Micasense RedEdge-M multispectral sensor (Mi-
casense Inc., Seattle, WA, USA), an FLIR Vue Pro R ther-
mal camera (FLIR Systems, Wilsonville, OR, USA), and
a YellowScan Surveyor lidar (YellowScan, Saint-Clément-
De-Rivière, France), mounted on a DJI Matrice 600 (SZ
DJI Technology Co Ltd., Shenzen, China). The Micasense
RedEdge-M is a five-narrowband multispectral camera, cap-
turing blue (465–485 nm), green (550–570 nm), red (663–
673 nm), red-edge (712–722 nm), and NIR (820–860 nm)
wavelengths of the electromagnetic spectrum. Just before
and after each flight, the Micasense RedEdge-M sensor was
calibrated thanks to a reflectance panel to ensure accurate and
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Figure 1. (a) Location of the vineyards in Belgium. (b–f) Topographic attributes, edaphic properties, and location of measurements in the
Château de Bousval vineyard: (b) elevation, (c) kriged map of the depth of the interface between the loamy soil and the sandy subsoil (the
black points are locations of soil samples used to determine the depth of the interface in situ and used for kriging), (d) water-holding capacity
(WHC) on 2.5 m depth (Eq. 6), (e) averaged soil hydraulic conductivity (K̃soil) at 2.5 m depth (Eq. 7), and (f) locations of the leaf water
potential (9leaf_meas) and volumetric water content (θv) profile measurements. (g–i) Topographic attributes, edaphic properties, and location
of measurements in the Domaine W vineyard: (g) elevation, (h) soil type (the black points are locations of soil samples to determine soil type
in situ), and (i) locations of the leaf water potential (9leaf_meas) and volumetric water content (θv) profile measurements. In (g), (h), and (i),
the blue line is a stream adjacent to the southeastern plot.

Table 1. Meteorological conditions during each flight campaign.

Bousval Domaine W

Date Air temperature (°C) VPD (kPa) SPEI (mm) Air temperature (°C) VPD (kPa) SPEI (mm)

27/07/22 18.9 1.02 −273.9
10/08/22 28.3 1.95 −334.6 28.9 1.89 −276.2
31/08/22 22.5 1.15 −411.3 23 1.32 −340.2
20/07/23 20.9 1.02 −193.0 21 1.2 −193.8
10/08/23 23.1 1.53 −197.4
06/09/23 27.9 2.17 −223.6 29.9 2.08 -236.9

consistent reflectance measurements, enabling reliable com-
parisons of data captured under varying light conditions and
at different times. Images were acquired to ensure approxi-
mately 90 % forward and lateral overlap. To process the mul-
tispectral imagery, orthomosaics were first created for each
band of the sensor using Pix4D (Pix4D, Lausanne, Switzer-
land). Ground control points (GCPs) were used for georefer-
encing.

The FLIR Vue Pro R is a radiometric thermal sensor
that captured longwave infrared radiation in the 7.5–13.5 µm
range. This sensor needs radiometric calibration parameters
such as emissivity of the canopy, air temperature, and humid-
ity to capture accurately the surface temperature. Thermal
imagery was also processed using Pix4D. The same GCPs as

for multispectral imagery were used, enabling georeferenc-
ing consistent with multispectral data.

The lidar system, operating with a wavelength of 903 nm,
is composed of a Velodyne lidar puck, onboard computer, in-
ertial measuring units (IMU), and Global Navigation Satel-
lite System (GNSS) receiver. Ranging data are provided by
the lidar puck. The IMU measured the variations in attitude
and orientation, and the GNSS provided positioning. To pro-
cess the lidar data, YellowScan’s CloudStation software was
used to align the flight strips for georeferencing and to apply
corrections through GNSS offset (lever arms), sensor angle
(boresight), and GNSS post-processing with precise position
techniques (Bates et al., 2021).
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Multispectral and thermal sensors were mounted on the
same DJI Matrice 600 and data were collected at the ex-
act same time. The lidar data were collected directly after
the multispectral and thermal data. Multispectral and thermal
flights were conducted at an altitude of 100 m above ground
level and at a flight speed of 6 m s−1, yielding flight dura-
tions of approximately 7 min and resulting in a native pixel
resolution of 7 cm for multispectral and thermal data. For the
lidar flight, the UAS maintained an altitude of 50 m above
the ground, with a ground speed of 5 m s−1, giving a spatial
resolution of 16 cm for lidar data. Due to technical issues,
there are no thermal data at Bousval on 27 July and 31 Au-
gust 2022, no multispectral data at Domaine W on 10 Au-
gust 2022, and no multispectral, thermal, and lidar data at
Domaine W on 27 July 2022 and 10 August 2023 (Table 2).

At the same time as collecting UAS data, we measured
grapevine leaf water potential (9leaf_meas) on various 2×2 m2

zones homogeneously distributed across the fields using a
Scholander pressure bomb (670 Pressure Chamber, PMS In-
strument Company). The 9leaf_meas was measured on 14 2×
2 m2 zones at Bousval (Fig. 1f) and on 12 2× 2 m2 zones at
Domaine W (Fig. 1i). For each sampled grapevine,9leaf_meas
values were recorded for three to five mature leaves, covered
by an aluminum zip bag 45 min before the measurement. In
addition, the soil water content profile to a depth of 105 cm
(every 15 cm) was also measured in eight measurement zones
in each vineyard (Fig. 1f and i) before each flight with a
TRIME-FM3 time domain reflectometry combined with an
access T3 tube (IMKO GmbH, Ettlingen, Germany).

2.4 Pure grapevine pixel extraction

The fine spatial resolution of the UAS data makes it possi-
ble to distinguish rows and inter-rows. We used the k-means
algorithm to generate a binary mask that distinguishes pure
grapevine canopy pixels from inter-row soil and grass pixels.
The k-means algorithm determined the optimal thresholding
value to maximize the between-class variance and minimize
the within-class variance (MacQueen, 1967). The k-means
algorithm has already shown good ability to extract pure vine
pixels based on multispectral vegetation indices (Cinat et al.,
2019). This segmentation enables the computation of vege-
tation indices on grapevines only and facilitates the deriva-
tion of a 9leaf prediction model specifically focused on the
grapevine itself. The workflow of the segmentation method
used in this study is illustrated in Fig. 2. The algorithm was
performed using RStudio (RStudio Team, 2022). The method
consists of six steps and was performed for each date, gener-
ating a mask per date.

1. The initial step was to use the canopy height, derived
from the lidar data, to get a first raw distinction be-
tween rows and inter-rows. We derived the height of the
canopy (canopy height model, CHM) thanks to the dif-
ference between the digital surface model (DSM) and
the digital terrain model (DTM): CHM=DSM−DTM.

We considered grapevine rows to be represented by ev-
ery pixel greater than 1 m. This step allowed for the re-
moval of a large part of pixels representing inter-rows.

2. Due to a coarser spatial resolution of lidar data, we used
multispectral data to get a finer separation and be sure
that we extracted only pure grapevine pixels. We iden-
tified the most relevant spectral bands capable of distin-
guishing between vineyard rows and inter-row vegeta-
tion to choose a proper vegetation index for the mask
creation. The modified soil adjusted vegetation index
(MSAVI), suggested by Qi et al. (1994), was selected
due to its incorporation of the red and NIR bands known
for their sensitivity to vegetation density, as well as its
ability to minimize soil brightness influences in sparse
crops (Binte Mostafiz et al., 2021). We applied the mask
obtained in step 1 to the MSAVI raster.

3. We subdivided the new MSAVI raster into smaller areas
(rectangles of 10 m ×1.5 m). By reducing the area in
which the k-means algorithm was applied, the non-vine
pixels in that area exhibited greater similarity, allowing
the algorithm to better discriminate between grapevine
and grass pixels.

4. The k-means algorithm was then applied in each rect-
angle. The number of clusters was set to three to dis-
tinguish among the three classes identifiable within the
rectangles: pure grapevine pixels, mixed pixels, and
pure grass pixels.

5. Following the algorithm execution, only the class with
the highest mean value of MSAVI was retained, aim-
ing to automatically extract grapevine class. This class
was expected to have the highest MSAVI value since it
represents the class with the highest biomass density.

6. Finally, the outputs of the algorithm were combined
to create a unified shapefile, representing a binary
mask that isolates pure grapevine canopy pixels across
the field. This mask was subsequently utilized to fil-
ter out non-vine or mixed pixels (spatial resolution of
7 cm ×7 cm) from UAS data, and only the remaining
grapevine pixels were used for further analysis.

2.5 Generation and extraction of UAS-based variables

We calculated multiple widely used multispectral vegetation
indices (VIs), exploiting different band combinations. The
multispectral VIs used in this study were obtained from the
review of Giovos et al. (2021). A total of 43 multispectral
VIs were retained in this study, as they constitute those most
frequently used to monitor and estimate vine water stress and
delineate management zones in viticulture. We also exploited
the specific red, blue, green, NIR, and red-edge bands alone.
The complete list of all the indices and how they are calcu-
lated can be found in Table S1 in the Supplement.

https://doi.org/10.5194/bg-22-513-2025 Biogeosciences, 22, 513–534, 2025



518 L. Delval et al.: Field heterogeneity of soil texture

Table 2. Availability of the UAS data during the six flight campaigns in the two vineyards.

Bousval Domaine W

Date Multispectral Thermal Lidar Multispectral Thermal Lidar

27/07/22 Yes No Yes No No No
10/08/22 Yes Yes Yes No Yes Yes
31/08/22 Yes No Yes Yes Yes Yes
20/07/23 Yes Yes Yes Yes Yes Yes
10/08/23 Yes Yes Yes No No No
06/09/23 Yes Yes Yes Yes Yes Yes

Figure 2. Process of segmenting grapevine pixels from inter-row pixels to generate a pure grapevine mask. (1) First raw distinction between
rows (> 1 m) and inter-rows (< 1 m) using the canopy height derived from the lidar data. (2) Application of the raw grapevine mask obtained
in (1) to the modified soil adjusted vegetation index (MSAVI) raster. (3) Subdivision of the new MSAVI raster obtained in (2) into smaller
areas (rectangles of 10 m ×1.5 m). (4) Application of k-means algorithm in each rectangle. The number of clusters was set to three (pure
grapevine, mixed, pure grass). (5) Selection of pure grapevine pixels based on the clustering obtained with the k-means algorithm. (6) Creation
of a unique mask to extract pure grapevine pixels (spatial resolution of 7 cm ×7 cm) from each raster of vegetation indices.

In addition, we calculated thermal VIs, namely the canopy
surface temperature (CST, °C) and the difference between
CST and air temperature (dT = CST−Ta, °C). The crop wa-
ter stress index (CWSI) was also computed using the simpli-
fied formula suggested by Jones (2013):

CWSI=
CST− Twet

Tdry− Twet
. (2)

Two different CWSIs were derived.

a. CSWIa: Tdry and Twet were measured during the UAS
surveys by a meteorological station.

b. CWSIb: Tdry and Twet were derived from the pure
canopy pixels and were respectively considered to be
CSTmax and CSTmin.

Biogeosciences, 22, 513–534, 2025 https://doi.org/10.5194/bg-22-513-2025



L. Delval et al.: Field heterogeneity of soil texture 519

Structural features of the grapevines were derived from the li-
dar data. We derived the height of the canopy (CH) thanks to
the difference between the DSM and the DTM as explained
before. We also derived the leaf area index (LAI) with the
lidar method developed by Bates et al. (2021). From the li-
dar data, we also derived the elevation and the slopes of the
different vineyards, but these parameters were not used to
predict 9leaf since they do not vary over time. However, they
were used to interpret the spatial distribution of 9leaf.

After applying the binary mask to isolate pure vine pixels
on each index map described above, we extracted the aver-
ages of the index values within the 2× 2 m2 zones defined
before for the grapevine leaf water potential measurements
(Fig. 1f and i) in order to predict leaf water potential.

2.6 Leaf water potential prediction

As a preliminary step, we examined the univariable relation-
ships between in situ 9leaf_meas and the different VIs, based
on Pearson’s coefficient (Pearson’s ρ), to account for linear
relations, and based on Spearman’s coefficient (Spearman’s
ρ), to account for monotonic relations. Person’s ρ quanti-
fies the strength and direction of a linear relationship, while
Spearman’s ρ is valuable for detecting and quantifying asso-
ciations when nonlinear relationships are assumed. We there-
fore compared Pearson’s ρ and Spearman’s ρ to evaluate if
the relation between 9leaf_meas and a VI was linear or not.
These analyses enable us to assess the capability of simple
remotely sensed VIs to evaluate 9leaf. All in situ measure-
ment data points (n= 132; 6× 14 at Bousval and 4× 12 at
Domaine W) across all vineyards and days were used for a
comprehensive analysis.

We then used the stepwise regression method to develop
a multiple linear regression model to predict leaf water po-
tentials (9leaf_pred) based on a multiple linear combination
of the VIs presented previously (Eq. 3). We also predicted
an uncertainty, quantified by the confidence interval of 95 %
on 9leaf_pred (IC9leaf

0.95 ). Stepwise regression is a step-by-step
iterative construction of a linear regression model that in-
volves the selection of independent variables to be used in
a final model (Wilkinson, 1979). Stepwise regression can be
achieved either by trying out one independent variable at a
time and including it in the regression model if it is sta-
tistically significant (forward selection) or by including all
independent variables in the model and eliminating those
that are not statistically significant (backward elimination).
A combination of both methods is also possible and was
used in this study (bidirectional elimination). This method
used the Akaike information criterion to add or remove VIs
from the multiple linear regression model, minimizing the
number of predictor variables but keeping a high predictive
power (Akaike, 1974). Stepwise regression models were im-
plemented in RStudio (RStudio Team, 2022) using the stats

package.

9leaf_pred = β1×VI1+ β2×VI2+ ·· ·+ βn×VIn+α, (3)

with βi the regression weights (or beta coefficients) and α the
intercept. βi can be interpreted as the average effect on the
predicted variable (9leaf_pred) of a one unit increase in VIi ,
holding all other predictors fixed. We applied this method
to different combinations of VIs and single bands to predict
9leaf. We tested a total of seven data combinations: (1) multi-
spectral only (M), (2) thermal only (T), (3) lidar only (L), (4)
multispectral and thermal (M+T), (5) multispectral and lidar
(M+L), (6) thermal and lidar (T+L), and (7) multispectral,
thermal, and lidar (M+T+L).

For each date, we randomly selected 70 % of the data to
train the different models and 30 % to validate them. The data
used for calibration and validation were the same for each
model. We evaluated the performance of the models thanks
to the coefficient of determination (R2) and the root mean
squared error (RMSE). The model with the best performance
was then employed to predict the9leaf over the fields for each
flight.

We then verified the reliability of the model. To determine
that there is no redundancy and similar information in the
multiple linear regression model, we used the variance infla-
tion factor (VIF). The VIF assesses if a predictor variable is
collinear with the other predictor variables (multicollinear-
ity) in the multiple linear regression model, which could de-
grade the precision of an estimate and reduce the reliability
and the robustness of the model (Allen, 1997). VIF less than
5 indicates a low correlation between a predictor variable and
the other ones, VIF between 5 and 10 indicates a moderate
correlation, and VIF greater than 10 indicates a high corre-
lation (James et al., 2021). VIF was computed using the car
package in RStudio. We also used partial regression plots to
show the effect of a predictor variable on the prediction of
9leaf, after considering the effects of the other predictor vari-
ables. If the slope of the linear regression in a partial regres-
sion plot is significantly different from 0 (p value < 0.001),
then it justifies the presence of a predictor variable in the mul-
tiple linear model (Moya-Laraño and Corcobado, 2008). The
correlation (R2) of the linear model in a partial regression
plot allows quantifying the unique relationship between the
predicted variable (9leaf) and a predictor variable (VI) while
controlling the effects of the other variables. The higher the
R2, the greater the influence of the predictive factor (VI) on
the predicted variable (9leaf) (Zhou et al., 2008).

We carried out unpaired Wilcoxon tests to statistically
compare if the medians of the 9leaf_pred are significantly dif-
ferent (p value < 0.05) or not (p value > 0.05) between
dates and vineyards. We performed the Wilcoxon test us-
ing the stats package (v4.1.1) of the R Statistical Software
(v4.0.4) (RStudio Team, 2022).
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2.7 Relations between leaf water potential and
environmental factors

To understand how environmental conditions influence the
spatial distribution of9leaf_pred, we analyzed the relations be-
tween the linear combination of VPD and SPEI (Table 1) and
the median 9leaf_pred (9leaf_pred_median) (Eq. 4) and between
the linear combination of VPD and SPEI and the distribution
of 9leaf_pred (9leaf_pred_max−9leaf_pred_min) (Eq. 5).

9leaf_pred_median = a×SPEI+ b×VPD+ c, (4)

(9leaf_pred_max−9leaf_pred_min)= a×SPEI

+ b×VPD+ c, (5)

with a and b the regression coefficients and c the intercept.
We applied analysis of covariance (ANCOVA) to assess if
these relations are vineyard-specific or not. Relations were
considered statistically different for p values less than 0.05.
For each date, we also quantified the correlation between
9leaf_pred and the elevation and between 9leaf_pred and the
slope. At Bousval, since we accurately know the depth of
the interface between the loamy soil and the sandy subsoil
(Fig. 1c), we also quantified the correlation between 9leaf
and the water-holding capacity (WHC) and between 9leaf
and an averaged soil hydraulic conductivity (K̃soil). We used
the coefficient of determination R2 as we assumed that these
relations are linear. For these relations, we assumed that
grapevines have a uniform root depth of 2.5 m throughout the
vineyard. We also assumed, in this study, that the soil unsat-
urated hydraulic properties of the loamy and sandy soils are
the same everywhere in the field. The soil hydraulic prop-
erties were measured by the Hyprop (METER Group Inc.,
Pullman, WA, USA) evaporation method (Bezerra-Coelho et
al., 2018). The soil water content at the permanent wilting
point (pF 4.2) was measured by a pressure plate (Ridley and
Burland, 1993). Hyprop-fit software was used to optimize the
unsaturated hydraulic parameters of van Genuchten (1980)
for each soil texture (Table 3). Everywhere in the Bousval
vineyard, we calculated the WHC [cm] (Fig. 1d) and Ksoil
[cm d−1] (Fig. 1e) for a depth of 2.5 m thanks to the follow-
ing equations.

WHC= [zLS× (θ (hFC)− θ (hPWP))]loam

+ [(250− zLS)× (θ (hFC)− θ (hPWP)) ]sand, (6)

with zLS [cm] the depth of the interface between the loamy
soil and the sandy subsoil, θ (h) the water content [cm3 cm−3]
at the suction h [cm] of the respective soil texture, hFC
the suction at the field capacity (in this study we assumed
that hFC =−300 cm), and hFC the suction at the perma-
nent wilting point (in this study we assumed that hPWP =

−15000 cm).

K̃soil =

[
zLS

250
×

∫ hPWP
hFC

K (h)dh

hFC−hPWP

]
loam

+

[
(250− zLS)

250
×

∫ hPWP
hFC

K (h)dh

hFC−hPWP

]
sand

, (7)

with K (h) the soil hydraulic conductivity [cm d−1] at the
suction h [cm].

3 Results

3.1 In situ measurements of leaf water potential and
relations with UAS-based VIs

9leaf was measured (9leaf_meas) at the same time as the col-
lection of UAS data, at different dates in 2022 and 2023,
with a Scholander pressure bomb (Fig. 3). We measured a
more negative median leaf water potential (9leaf_meas_median)
in 2022 than in 2023 in both vineyards, linked to warmer
and drier conditions (Table 1). Moreover, in each vineyard,
the soil was significantly drier in 2022 than in 2023 (Fig. S1
in the Supplement). For the same date, we also measured
a slightly lower 9leaf_meas_median at Bousval compared to
Domaine W (e.g., on 31 August 2022 9leaf_meas_median =

−0.74 MPa at Bousval and9leaf_meas_median =−0.71 MPa at
Domaine W), except on 20 July 2023 (Table 4). We ob-
served a greater 9leaf_meas heterogeneity (9leaf_meas_max−

9leaf_meas_min) at Bousval compared to Domaine W. This het-
erogeneity is even more marked in 2022, when conditions
were hot and dry. At Bousval, on each date, the minimum
9leaf_meas was measured at the upper part (west side) of the
parcel, where the loamy soil is shallower, while the maxi-
mum 9leaf_meas values were measured at the lowermost side
(east side) (Fig. 3a), where the loamy soil is deeper. At Do-
maine W, there is less 9leaf_meas heterogeneity, but we gen-
erally measured a lower 9leaf_meas in the northwestern plot
than in the southeastern plot (Fig. 3b).

By examining the univariable relationships between
9leaf_meas and the different VIs, including both vineyards
and all dates (Fig. S2), we found that the correlations (Pear-
son’s ρ) between 9leaf_meas and VIs are low to moderate,
ranging from ρ =−0.61 to ρ = 0.63 (Fig. 4). We found a
maximum ρ of 0.63 between 9leaf_meas and chlorophyll red
edge (CLRededge). The second-best ρ was found with the
normalized difference red-edge (NDRE) index (ρ = 0.62).
These two VIs are the only ones considered in this study
to contain both NIR and red-edge bands, which have been
shown to be strongly correlated with the chlorophyll content
of grapevines and therefore influenced by the water status
(Laroche-Pinel et al., 2021a; Tang et al., 2022). However,
in our case, these ρ values indicate a moderate correlation
of these VIs with 9leaf_meas. The third-best correlation was
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Table 3. Unimodal van Genuchten hydraulic parameters of the loamy soil and the sandy subsoil at the Château de Bousval vineyard.

θsat θres n α Ksat τ

cm3 cm−3 cm3 cm−3 – cm−1 cm d−1 –

Loam 0.419 0.117 1.483 0.00669 1.12 0.701
Sand 0.358 0.08 3.11 0.0182 72 1.039

Figure 3. Leaf water potential measured (9leaf_meas) with a Scholander pressure bomb in (a) 14 zones at the Château de Bousval vineyard
and (b) 12 zones at the Domaine W vineyard at the same time of UAS flights. Points circled in blue were used for the calibration of the
multiple linear regression models.

found with the thermal index CWSIb, with a Pearson’s ρ of
−0.61. All other VIs have a lower correlation with9leaf_meas,
with ρ ranging between 0.55 and −0.59. This suggests that
single VIs cannot accurately predict 9leaf in the investigated
vineyards, and more complex approaches, such as multiple
linear regression models, are needed to better estimate 9leaf.
For all indices, Pearson’s ρ (linear relation – Fig. 4) is larger
than Spearman’s ρ (nonlinear relation – Fig. S3). Linear rela-
tions between 9leaf_meas and VI therefore have a higher pre-
dictive power than nonlinear relations (Rebekić et al., 2015),
justifying the use of partial linear regression (and not non-
linear) to construct a multiple linear regression and predict
9leaf.

3.2 Predicting leaf water potential based on multiple
linear regression models

In response to the limited correlations obtained from sim-
ple linear regressions between 9leaf_meas and VIs, we ex-
plored multiple linear regression models to better predict
9leaf (Fig. S4). We used the stepwise regression method to
minimize the number of VIs in the multiple regression and to
keep the most significative to predict 9leaf. Figure 5a and b
respectively show the R2 and RMSE obtained by comparing
measured 9leaf (9leaf_meas) and predicted 9leaf (9leaf_pred)

for the datasets used for calibration (70 % of the data) and
validation (30 % of the data) and for the seven data com-
binations (see Methodology section). The models showed
a high consistency between the calibration and validation
datasets, with small differences in terms of R2 and RMSE.
This showed a great robustness of these models. For exam-
ple, the model using multispectral, thermal, and lidar data to
predict 9leaf_pred (Fig. 5c) has R2

= 0.80 and R2
= 0.78 for

the calibration and validation, respectively, and an RMSE of
0.07 MPa and= 0.08 MPa for the same respective datasets. It
is interesting to note thatR2 and RMSE respectively increase
and decrease by adding information from different sensors to
the model. For example, the predictive power of the model
containing multispectral and thermal data is greater than
the predictive power of the model constructed with multi-
spectral data only. The best multiple linear model was the
one containing information from all sensors, i.e., multispec-
tral, thermal, and lidar data. We therefore used this model
(model 1 in Table 5; Fig. 5c) to predict 9leaf_pred at Bous-
val on 10 August 2022, 20 July2023, 10 August 2023, and
6 September 2023 and at Domaine W on 31 August 2022,
20 July 2023, and 6 September 2023. Due to technical prob-
lems with not being able to obtain data from all sensors for
certain dates (Table 2), we predicted 9leaf_pred at Bousval
on 27 July and 31 August 2022 by using the multiple lin-
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Table 4. Median leaf water potential (9leaf_meas_median) as well as the maximum (9leaf_meas_max) and minimum (9leaf_meas_min) leaf water
potentials (all in MPa) measured in the two vineyards during each UAS flight.

Bousval (n= 14 by date) Domaine W (n= 12 by date)

9leaf_meas_median 9leaf_meas_max 9leaf_meas_min 9leaf_meas_median 9leaf_meas_max 9leaf_meas_min

27/07/22 −0.73 −0.45 −1.00
10/08/22 −0.82 −0.48 −1.15 −0.80 −0.70 −0.95
31/08/22 −0.74 −0.49 −1 −0.71 −0.55 −0.83
20/07/23 −0.54 −0.42 −0.60 −0.63 −0.53 −0.70
10/08/23 −0.69 −0.50 −0.90
06/09/23 −0.72 −0.49 −0.95 −0.70 −0.55 −0.90

Figure 4. Pearson’s coefficient (Pearson’s ρ) quantifying the linear correlation between measured 9leaf (9leaf_meas) and each vegetation
index (VI) by taking all the measurements in both vineyards and at all dates.

ear model combining multispectral and lidar data (model 2
in Table 5; Fig. 5d); we used the multiple linear model com-
bining thermal and lidar (model 3 in Table 5; Fig. 5e) to pre-
dict 9leaf_pred at Domaine W on 10 August 2022. Models 2
and 3 in Table 5 are the most robust and have the best R2

and RMSE for the data available for the respective dates and
vineyards (Fig. 5a, b). In each model, the confidence inter-
val on 9leaf_pred increases with decreasing 9leaf_pred (more
negative 9leaf_pred). Model 1, combining multispectral, ther-
mal, and lidar data (Fig. 5c), has the lowest uncertainty in
the prediction of 9leaf_pred, with a 95 % confidence interval
(CI0.95) varying between 0.14 MPa (when 9leaf_pred is high)
and 0.28 MPa (when 9leaf_pred is low). This is not surpris-
ing since this model has the highest predictive power (R2).
Model 2 (Fig. 5d), combining multispectral and thermal data,
shows a lower uncertainty (0.18 MPa < CI0.95 < 0.36 MPa)
than model 3 (Fig. 5e), combining thermal and lidar data
(0.20< CI0.95 < 0.40).

In models 2 and 3 (Table 5), we retrieved the same VIs
(CLRedEdge, CWSIb), spectral bands (blue), and structural

features (canopy height, CH) used to predict 9leaf_pred in
model 1, showing consistency in the parameters used to esti-
mate grapevine 9leaf_pred. Multicollinearity between the pre-
dictors was controlled by calculating the variance inflation
factor (VIF). For each model, the VIFs were lower than 5
for each VI (Tables S2 to S4), suggesting low multicollinear-
ity between them and enforcing the reliability of each model
(James et al., 2021). This absence of multicollinearity be-
tween VIs shows that each predictor variable provides sig-
nificant additional information in the prediction of 9leaf_pred.
This is confirmed by the partial regression plots (Figs. S6
to S8), showing that each VI used in each model has a sig-
nificant influence on the prediction of 9leaf_pred (p value <
0.05). In model 1, accounting for multispectral, thermal, and
lidar data, the partial correlations (R2) showed that CLRed-
Edge and CWSIb have the most significant influence on the
prediction of 9leaf (R2

= 0.49 and R2
= 0.56, respectively),

while the blue band (R2
= 0.21) and the canopy height

(R2
= 0.13) have less impact (Fig. S5). For model 2, ac-

counting for multispectral and lidar data, CLRedEdge is also
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Table 5. Vegetation index (VI), spectral bands or structural features, and regression weights (βi ) and intercept (α) used in the different
multiple linear regression models (Eq. 3) to predict 9leaf (9leaf_pred). CI0.95 indicates the 95 % confidence interval on the βi and α of
each model; the p value shows the significance of the variable (βi or α) in the model assuming that all other variables exist in the model
(significance: p value < 0.001∗∗∗; p value < 0.01∗∗; p value < 0.05∗). Model 1 was constructed based on a combination of multispectral
(M), thermal (T), and lidar (L) data; model 2 was constructed based on a combination of multispectral (M) and lidar (L) data; and model 3
was constructed based on thermal (T) and lidar (L) data. The equations for calculating the VIs contained in each model are given in Table S1.

Vegetation index (VI), spectral bands, or structural feature Intercept α

CLRedEdge CWSIb Blue CH RedEdge ARI GNDVI CST

Model 1 βi 0.27 −0.49 8.40 0.28 0 0 0 0 −1.55

(M+T+L) CI0.95 [0.18; [−0.63; [4.46; [0.11; 0 0 0 0 [−1.87;
0.36] −0.34] 12.35] 0.44] −1.23]

p value < 0.001∗∗∗ < 0.001∗∗∗ < 0.001∗∗∗ 0.006∗∗ – – – – < 0.001∗∗∗

Model 2 βi 0.81 0 6.78 0.38 1.49 0.02 −3.32 0 −0.77

(M+L) CI0.95 [0.63; 0 [3.19; [0.22; [0.88; [0.01; [−4.47; 0 [−1.43;
0.98] 10.36] 0.54] 2.11] 0.03] −2.17] −0.12]

p value < 0.001∗∗∗ – 0.04* < 0.001∗∗∗ < 0.001∗∗∗ 0.015∗ < 0.001∗∗∗ – 0.04∗

Model 3 βi 0 −0.28 0 0.38 0 0 0 −0.011 −0.94

(T+L) CI0.95 0 [−0.51; 0 [0.22; 0 0 0 [−0.017; [−1.20;
−0.05] 0.54] −0.005] −0.68]

p value – 0.04∗ – < 0.001∗∗∗ – – – 0.002∗∗ < 0.001∗∗∗

the VI influencing the prediction of 9leaf_pred (R2
= 0.47)

the most, while the other VIs have less impact (R2 < 0.30)
(Fig. S6). CWSIb influenced 9leaf_pred (R2

= 0.37) the most
for model 3, accounting for thermal and lidar data (Fig. S7).
Regardless of the model, the VIs with the greatest influ-
ence on9leaf_pred are therefore the same (CLRedEdge and/or
CWSIb). There is therefore a high consistency in the VIs,
and in the explanatory power of each VI, for the prediction
of 9leaf_pred.

3.3 Leaf water potential mapping

9leaf_pred maps (Fig. 6a), predicted with multiple regression
model obtained with the stepwise regression method, showed
a relatively constant pattern over time in both vineyards. At
the Bousval vineyard, we observed more negative 9leaf_pred
in the western part of the plot. In the Domaine W vine-
yard, 9leaf_pred was lower in the northwestern plot than in
the southeastern plot. The spatial heterogeneity of 9leaf_pred
is much larger at Bousval than at Domaine W, particularly
during the drought conditions in 2022 (Fig. 7a). For exam-
ple, on 10 August 2022, which was the driest day (Table 1),
9leaf_pred was distributed between −0.52 and −1.25 MPa
at Bousval but between −0.70 and −0.97 MPa at Domaine
W. Although the ranges of 9leaf_pred are different, for the
same date, the median 9leaf_pred values (9leaf_pred_median)
are similar (p value < 0.05) in both vineyards, except for
on 20 July 2023 for which 9leaf_pred_median was slightly
greater at Bousval (9leaf_pred_median =−0.50 MPa at Bous-
val; 9leaf_pred_median =−0.54 MPa at Domaine W). Regard-

ing the temporal dynamics, at Bousval 9leaf_pred decreased
between 27 July 2022 (9leaf_pred_median =−0.74 MPa) and
10 August 2022 (9leaf_pred_median =−0.84 MPa), then re-
increased on 31 August 22 (9leaf_pred_median =−0.76 MPa).
We observed similar temporal dynamics at Domaine
W, with a re-increase in 9leaf_pred between 10 Au-
gust 2022 (9leaf_pred_median =−0.83 MPa) and 31 Au-
gust 2022 (9leaf_pred_median =−0.75 MPa). At Bousval,
9leaf_pred_median values are similar (p value < 0.05) on
27 July and 10 August 22. In 2023, 9leaf_pred decreased over
the season, with 9leaf_pred_median of −0.50 and −0.54 MPa
on 20 July 2023 at Bousval and Domaine W, respectively,
and−0.74 and−0.73 MPa on 6 September 2023 in the same
respective vineyards. In both vineyards we observed similar
9leaf_pred_median for the last date of 2022 and the last date of
2023 (Fig. 7a).

The uncertainty in 9leaf_pred (CI9leaf_pred
0.95 ), quantified by

the 95 % confidence interval on the prediction (Fig. 6b), fol-
lows the same spatial pattern as predicted9leaf_pred (Fig. 6a),
with greater uncertainty when 9leaf_pred is more negative.
The median value of the uncertainty (median CI9leaf_pred

0.95 )
also seems particularly affected by the model used (Table 5)
to estimate 9leaf_pred (Fig. 6c). 9leaf_pred at Domaine W on
10 August 2022 shows the greatest uncertainty, with a me-
dian value of 0.28 MPa. This is not surprising since the model
used to predict 9leaf_pred on this date (model 3 in Table 5)
only considers thermal and lidar data and is the one show-
ing the lowest predictive power (R2) and the greatest un-
certainty (Fig. 5e). For the same date at Bousval and for
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Figure 5. (a) R2 and (b) RMSE obtained by comparing measured 9leaf (9leaf_meas) and predicted 9leaf (9leaf_pred) from multiple linear
models for the different data combinations. (c, d, e) Relations between 9leaf_meas and 9leaf_pred for the three multiple linear models used in
this study. The relationships were fitted with 95 % confidence intervals (CI9leaf

0.95 – shaded area). The relation in (c) was used to predict 9leaf
at Bousval on 10 August 2022, 20 July 2023, 10 August 2023, and 6 September 2023 and at Domaine W on 31 August 2022, 20 July 2023,
and 6 September 2023 by using multispectral (M), thermal (T), and lidar (L) data. The relation in (d) was used to predict 9leaf at Bousval
on 27 July and 31 August 2022 by using multispectral (M) and lidar (L) data. The relation in (e) was used to predict 9leaf at Domaine W on
10 August 2022 by using thermal (T) and lidar (L) data.

the same 9leaf_pred_median (Fig. 7a), the uncertainty is sig-
nificantly lower (median CI9leaf_pred

0.95 = 0.22 MPa – Fig. 6c),
since we used the model involving multispectral, thermal,
and lidar data to estimate 9leaf_pred (model 1 in Table 5),
which is the one showing the highest predictive power (R2)
and the lowest uncertainty (Fig. 5c).9leaf_pred predicted with
the model involving multispectral and lidar data (model 2 in
Table 5) shows greater uncertainty, with a median value of
0.26 MPa at Bousval on 27 July and 31 August 2022. In both
vineyards, the lowest uncertainty was on 20 July 2023 (me-
dian CI9leaf_pred

0.95 = 0.17 MPa), for which we also predicted
the highest 9leaf.

There is a high correlation between 9leaf_pred_median
and the range of 9leaf_pred (9leaf_pred_max−9leaf_pred_min),
with R2

= 0.97 at Bousval and R2
= 0.94 at Domaine

W (Fig. 7b). The range of 9leaf_pred increased when
9leaf_pred_median decreased. These relations are vineyard-
specific (p value of ANCOVA test is lower than 0.05). The
slope of the linear relation between 9leaf_pred_median and the
distribution of 9leaf_pred is significantly greater at Bousval
(slope =−1.38) than at Domaine W (slope =−0.31).

3.4 Environmental factors influencing the spatial
distribution of leaf water potential

At Bousval, 9leaf_pred was the most correlated with the aver-
aged soil hydraulic conductivity at 2.5 m depth K̃soil (Fig. 8).

The correlation was better in 2022 than in 2023, with the best
correlation on 10 August 2022 (R2

= 0.81), the driest day
(Table 1). The water-holding capacity at 2.5 m depth (WHC)
is less correlated with 9leaf_pred; however, we also find the
best correlation on 10 August 2022 (R2

= 0.67). At Bousval,
the elevation was moderately correlated with 9leaf_pred, par-
ticularly in 2022 (e.g., R2

= 0.42 on 10 August 2022). This
is not surprising since the interface between the loamy and
sandy soil horizons is shallower in the upper part of the par-
cel (western part) and deeper in the lower part due to an accu-
mulation of loamy colluviums (Fig. 1c). However, the corre-
lation between 9leaf_pred and elevation is lower than the cor-
relation between 9leaf_pred and K̃soil and between 9leaf_pred
and WHC, showing that soil properties have a greater influ-
ence on the spatial distribution of 9leaf_pred than the eleva-
tion. The slope showed the lowest correlation with 9leaf_pred
(maximumR2

= 0.15 on 31 August 2022). It is interesting to
note that on 20 July 2023, the correlation between 9leaf_pred
and all topographic and soil properties is low (e.g.,R2

= 0.24
between 9leaf_pred and K̃soil). At Domaine W, the slope and
elevation showed a low correlation with9leaf_pred. The maxi-
mum R2 between 9leaf_pred and slope was 0.09 and was 0.24
between 9leaf_pred and elevation on 20 July 2023. These low
correlations are not surprising since this vineyard is almost
flat (Fig. 1g).

As shown in Fig. 7b, the slope of the linear relation be-
tween 9leaf_pred_median and the distribution of 9leaf_pred is
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Figure 6. (a) Maps of 9leaf predicted (9leaf_pred) with the multiple linear regression model in both vineyards. (b) Maps of uncertainty in

9leaf_pred, quantified by the 95 % confidence interval on the prediction (CI9leaf_pred
0.95 ).9leaf_pred at Bousval on 10 August 2022, 20 July 2023,

10 August 2023, and 6 September 2023 and at Domaine W on 31 August 2022, 20 July 2023, and 6 September 2023 was predicted with
the model involving multispectral, thermal, and lidar data (model 1 in Table 5). 9leaf_pred at Bousval on 27 July and 31 August 2022 was
predicted with the model involving multispectral and lidar data (model 2 in Table 5). 9leaf_pred at Domaine W on 10 August 2022 was

predicted with the model involving thermal and lidar data (model 3 in Table 5). (c) The relation between 9leaf_pred and CI9leaf_pred
0.95 . The

points correspond to the median, and the horizontal and vertical bars respectively show the quartiles around 9leaf_pred and CI9leaf_pred
0.95 . The

dashed black line is the linear regression; the slope of this regression is different from 0 (p value < 0.001).

Figure 7. (a) Box plots indicating the median and quartiles, as well
as the minimum and maximum of the spatial distribution of the pre-
dicted 9leaf (9leaf_pred). The letters above each box plot are the
results of the Wilcoxon tests; the same letter indicates a statisti-
cally similar (p value> 0.05) median. (b) Relation between the me-
dian9leaf_pred (9leaf_pred_median) and the distribution of9leaf_pred
(9leaf_pred_max−9leaf_pred_min). The horizontal bars are the me-

dian CI9leaf_pred
0.95 (median uncertainty) on 9leaf_pred_median.

significantly greater at Bousval than at Domaine W, show-
ing that environmental conditions at Bousval are much more
heterogeneous (i.e., heterogeneity of soil properties), which
is reflected in a larger range of the distribution of 9leaf, par-
ticularly when conditions are drier. In this study, we quan-
tified the water deficit thanks to the standardized precipi-
tation evapotranspiration index (SPEI – Eq. 1). More neg-
ative SPEI indicates a greater water deficit. We also used
VPD to characterize the atmospheric conditions and quan-
tify the evaporative demand. 9leaf_pred_median is highly corre-
lated (R2

= 0.82) with the linear combination of SPEI and
VPD (Fig. 9a). Interestingly, this relation is not vineyard-
specific (p value of ANCOVA test is greater than 0.05).
9leaf_pred_median is positively correlated with SPEI (regres-
sion coefficient a in Eq. 4 is 0.001) and negatively corre-
lated with VPD (regression coefficient b in Eq. 4 is −0.13).
This means that 9leaf_pred_median decreases when SPEI de-
creases and when VPD increases. In other words, the median
9leaf in a vineyard is more negative for greater water deficit
(SPEI) and evaporative demand (VPD). The distribution of
9leaf_pred (9leaf_pred_max−9leaf_pred_min) is also correlated
(R2
= 0.54) with the linear combination of SPEI and VPD

(Fig. 9b). This relation, unlike the one with 9leaf_pred_median,
is vineyard-specific (p value of ANCOVA test is lower than
0.05). The distribution of 9leaf_pred is negatively correlated
with SPEI (regression coefficient a in Eq. 5 is −0.001) and
positively correlated with VPD (regression coefficient b in
Eq. 5 is 0.08). This means that the range of the distribution of
9leaf_pred increases when SPEI decreases and VPD increases.
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Figure 8. Coefficient of determination (R2) of the linear relation between predicted 9leaf (9leaf_pred) and elevation, between 9leaf_pred
and slope, between 9leaf_pred and the water-holding capacity at 2.5 m (WHC – only at the Château de Bousval vineyard), and between the
averaged soil hydraulic conductivity values (K̃soil – only at the Château de Bousval vineyard).

In other words, in a vineyard, the spatial heterogeneity of
9leaf is more important for greater water deficit (SPEI) and
evaporative demand (VPD).

4 Discussion

In this study, we attempted to map grapevine leaf water
potential (9leaf) intra-field heterogeneity to assess the im-
pact of topographic, edaphic, and climatic conditions on the
spatial distribution of 9leaf. Our study demonstrated that a
multilinear combination of multispectral VIs, thermal VIs,
and structural features from lidar data, with UASs collecting
high-spatial-resolution imagery, is efficient (R2

= 0.80 and
RMSE= 0.07 MPa for the calibration;R2

= 0.78 and RMSE
= 0.08 MPa for the validation) at capturing the spatial distri-
bution of grapevine 9leaf across different vineyards during
two viticultural seasons. We showed that the heterogeneity
of edaphic conditions has the greatest influence on the spa-
tial heterogeneity of9leaf, particularly when the water deficit
and evaporative demand increase.

4.1 Discrimination between grapevine canopy and
inter-row pixels

The k-means algorithm, which is a standard and well-known
unsupervised method for classification, is regularly and ef-
ficiently applied to multispectral UAS data to discriminate
between the grapevine (or other row-crop cultivations) rows
and bare-soil inter-rows of a vineyard (Calvario et al., 2017;
Cinat et al., 2019; Gavrilović et al., 2024). In vineyards
with inter-row vegetation (i.e., grass), segmentation tasks be-
come more challenging. This complexity arises because the
spectral signature of such vegetation often closely resembles
that of grapevine canopy, making differentiation difficult and
leading to overestimation or underestimation of grapevine
pixels (Nolan et al., 2015). Relying solely on multispec-
tral data is insufficient for distinguishing between grapevine

and grass pixels when using the k-means algorithm (Poblete-
Echeverría et al., 2017). In this study, we discriminated be-
tween the grapevine canopy and inter-row soil and grass pix-
els using the k-means algorithm by first applying the algo-
rithm on the canopy height, derived from the lidar data, to
get a first raw distinction between rows (grapevine) and inter-
rows (grass and soil). We then applied it a second time to the
multispectral data to get a finer discrimination and to extract
only pure grapevine canopy pixels, with a spatial resolution
of 7 cm×7 cm, which is almost similar to other recent studies
(Berry et al., 2024; Laroche-Pinel et al., 2024). Integrating
additional data sources, such as structural (lidar), likely im-
proved classification accuracy with the k-means algorithm.
Other studies highlighted the best performance in the de-
tection of grapevine canopy when using complemented un-
supervised methods and/or data sources (Poblete-Echeverría
et al., 2017). Other methods to discriminate between rows
and inter-rows, such as artificial neural networks or random
forest, could deliver satisfactory results, but their accuracy
depends on proper training. This requires creating a manu-
ally labeled dataset to calibrate the models effectively. Addi-
tionally, both of these supervised methods involve numerous
parameters that must be carefully tuned to optimize perfor-
mance and demand more computational resources (Nolan et
al., 2015; Poblete-Echeverría et al., 2017).

4.2 Leaf water potential prediction with a combination
of multispectral, thermal, and lidar UAS data

We used the stepwise regression method to find the best mul-
tilinear regression to predict 9leaf with several UAS-based
multispectral VIs, thermal VIs, and structural features (lidar)
measured on grapevines (Wilkinson, 1979). The univariable
linear relation between measured 9leaf and VIs (Pearson’s
ρ > Spearman’s ρ – Fig. S3b) justifies the use of this statis-
tical method to better predict 9leaf. Other statistical meth-
ods could also be used to predict 9leaf, such as principal
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Figure 9. (a) Relation between median 9leaf_pred (9leaf_pred_median) and the linear combination of SPEI and VPD (Eq. 4 – a = 0.001;
b =−0.13; c =−0.26). (b) Relation between the distribution of 9leaf_pred (9leaf_pred_max−9leaf_pred_min) and the linear combination of
SPEI and VPD (Eq. 5 – a =−0.001; b = 0.08; c =−0.17). In each panel, the brown lines are the linear regressions on the brown circles,
the blue lines are the linear regressions on the blue triangles, the black lines are the linear regressions on all points, and the dashed gray lines
are the 1 : 1 lines.

component regression (PCR) or random forest. To support
our approach (stepwise regression), we also implemented the
PCR and random forest methods (Fig. S4). However, while
the random forest models gave the highest R2 and lowest
RMSE for the calibration dataset, there was a great loss
of predictive power when we validated the model (R2 de-
creased and RMSE increased). This showed some evidence
of model overfitting, affecting the robustness of the model
constructed with the random forest. Generally, the R2 and
RMSE were respectively higher and lower for the stepwise
regression model compared to the PCR model. The stepwise
regression method therefore showed more robustness than
the random forest method when we validated models and a
better predictive power compared to PCR (Fig. S8). Other
studies using random forest or artificial neural networks to
predict 9leaf with UAS-based multispectral VIs lost predic-
tive power when they validated their model, showing that the
model structure was overfitted (Poblete et al., 2017; Romero
et al., 2018; Tang et al., 2022). Our analysis highlighted the
importance of incorporating multispectral, thermal, and lidar
data to improve the prediction of 9leaf. The use of data from
different sensors also makes it possible to limit the uncer-
tainty in 9leaf (Fig. 5). Tang et al. (2022) already mentioned
that data combination from multiple sensors acquiring data in
different regions of the electromagnetic spectrum will allow
mapping 9leaf with more accuracy. In our model, the mul-
tispectral VI CLRedEdge (calculated based on the NIR and
red-edge bands), the reflectance in the blue band, the thermal
VI CWSIb, and the canopy height (CH) all significantly in-
fluence9leaf and are used in the multilinear regression to pre-
dict it (model 1 in Table 5). It is interesting to note that these
indices, bands, and features are also used in the models for
which only multispectral and lidar data (model 2 in Table 5)
or thermal and lidar data (model 3 in Table 5) are used to pre-
dict9leaf. Although they are not significantly correlated with
measured 9leaf when taken one by one (Fig. 4), information
contained in these indices is complementary and their com-
bination enables 9leaf to be predicted with high predictive

power (e.g., R2
= 0.80 and RMSE = 0.07 MPa for calibra-

tion and R2
= 0.78 and RMSE = 0.08 MPa for calibration,

for model 1). Discarding VIs which are not directly corre-
lated with 9leaf is not required, since multilinear modeling
techniques can identify the patterns in the data and assign in-
dividual weights to inputs, allowing multilinear models to fit
accordingly (Romero et al., 2018). NIR and red-edge spectral
regions, used to calculate CLRedEdge, have already been in-
vestigated to predict vegetation water potential (Giovos et al.,
2021; Pôças et al., 2015; Soubry et al., 2017; Zygielbaum et
al., 2009). Although these bands, and derived VIs, are com-
monly associated with plant structural traits (e.g., biomass,
vigor), the red-edge region is often used as a reference to de-
tect chlorophyll content in vegetation (Clevers and Gitelson,
2013; Gamon and Surfus, 1999; Rallo et al., 2014). Plant wa-
ter status is indicative of and closely related to chlorophyll
content, as changes in this pigment content induce changes
in leaf spectral properties in the red-edge region (Carter and
Knapp, 2001). NIR electromagnetic region has also been
shown to be affected by the leaf structure and leaf water con-
tent of grapevines (De Bei et al., 2011; Marañón et al., 2023;
Tardaguila et al., 2017). VIs calculated based on NIR and
red-edge bands, such as CLRedEdge, have good potential
to quantify grapevine water potential (Becker et al., 2020;
Giovos et al., 2021). Additionally, bands in the visible do-
main, such as the blue band, can provide valuable informa-
tion about plant water status, as pigment contents and compo-
sition govern reflectance in this domain (Gamon et al., 1992;
Moya et al., 2004) and are related to processes associated
with grapevine water status (Zarco-Tejada et al., 2013). Blue
wavelengths are strongly absorbed by carotenoids (carotenes
and xanthophylls). These pigments, and their proportion, also
serve as indicators of plant water status (Gitelson et al.,
2006). Moreover, the blue reflectance enables atmospheric
corrections and allows for a more linear relationship with
vegetation status (Gitelson et al., 2002). Thermal VIs also
provide information on grapevine water status. Strong rela-
tionships have been found between CWSI and the stomatal
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conductance of grapevines (Pagay and Kidman, 2019; Pou
et al., 2014), which is directly linked (nonlinearly) to 9leaf.
During drought, grapevines close stomata to prevent the plant
from reaching excessively negative water potentials leading
to xylem cavitation (Gambetta et al., 2020). Stomatal closure
can also induce lower grapevine growth by reducing photo-
synthesis (Dry and Loveys, 1998). This could explain why
canopy height (CH), retrieved with lidar point clouds, is also
used to predict 9leaf. García-Tejera et al. (2021) showed that
changes in plant canopy structure, including canopy height
and width, influence the water flow between the soil and the
atmosphere, thereby affecting 9leaf. Thermal remote sens-
ing metrics provide short-term information on grapevine wa-
ter status, such as 9leaf or stomatal conductance variations
(Acevedo-Opazo et al., 2010; Santesteban et al., 2017), while
multispectral VIs and structural features (lidar) reveal mid-
to long-term water status effects on grapevine structure and
traits like leaf pigment content (Baluja et al., 2012; Zarco-
Tejada et al., 2013). The three approaches (multispectral,
thermal, and lidar) therefore provide complementary infor-
mation and their multilinear combinations, through VIs and
structural features, allow the accurate and robust assessment
of intra-field variability of grapevine leaf water potential,
thanks to high-spatial-resolution sensors mounted on UASs.

Other sensors could also be tested and used to spatially
monitor grapevine 9leaf. Adding information from more
and narrower spectral bands, collected with hyperspectral
sensors, could improve the capability to remotely monitor
grapevine 9leaf (Pôças et al., 2015; Tang et al., 2022). Stud-
ies using hyperspectral sensors to measure plant water po-
tential generally get higher correlations than studies using
multispectral sensors (Pôças et al., 2015; Rodríguez-Pérez et
al., 2007; Zarco-Tejada et al., 2013). For example, the photo-
chemical reflectance index (PRI, calculated with spectral re-
flectance at 545 and 567 nm) is a good indicator (R2 between
0.5 and 0.6) of crop water status (Stagakis et al., 2012; Suárez
et al., 2008). Zarco-Tejada et al. (2013) even obtained a bet-
ter correlation (R2

= 0.82) in vineyards by combining PRI
with other hyperspectral VIs, such as the renormalized dif-
ference vegetation index (RDVI, based on reflectance at 700
and 761 nm) and the ratio R700/R670 (based on reflectance
at 670 and 700 nm), highlighting that the combination of
several VIs brings complementary information to better es-
timate the leaf water potential of grapevines. Shortwave in-
frared (SWIR) data (1000–2200 nm) also have good potential
to monitor grapevine water status, since this spectral range
contains the water absorption bands (Laroche-Pinel et al.,
2021b). VIs calculated with SWIR bands, such as the nor-
malized drought water index (NDWI) (Gao, 1996), showed
good correlations (R2

= 0.58) with grapevine 9leaf (Caruso
and Palai, 2023).

4.3 Intra-field variability of grapevine leaf water
potential

We observed good stability in the 9leaf pattern for each date
in both vineyards (Fig. 6a). At the Domaine W vineyard,
the spatial heterogeneity of 9leaf is less marked than at the
Bousval vineyard. For example, on 10 August 2022 (driest
day), although median 9leaf was similar in both vineyards,
the range of the distribution of 9leaf was 0.73 MPa at Bous-
val but only 0.27 MPa at Domaine W. The magnitude of vari-
ation in 9leaf at the within-field level predicted at Bousval
is consistent with other studies. Brillante et al. (2017a) also
observed a difference of 0.70 MPa between maximum and
minimum 9leaf within a vineyard in California. They hy-
pothesized, without directly proving it, that this variability
was due to the short distance differences of soil properties
in the vineyard. Tang et al. (2022) observed a spatial vari-
ability up to 0.67 MPa, but this was due to differences in ir-
rigation treatment in a vineyard with gravelly loam soil. At
Bousval, the spatial distribution of 9leaf is highly correlated
(Fig.8 – R2 up to 0.81), with an averaged soil hydraulic con-
ductivity K̃soil. In this vineyard, 9leaf was significantly more
negative in the western part of the plot, where the interface
between the loamy soil and the sandy subsoil is more su-
perficial, compared to the eastern part where the loamy soil
is clearly deeper. Grapevine water potential is significantly
influenced by the soil texture. It is well-known that the soil
water potential around the roots affects 9leaf, since the dif-
ference between the two water potentials is the driving force
for transpiration (Tyree and Zimmermann, 2002). The soil
water potential in the vicinity of the roots decreases as the
plant takes up water, resulting in a significant loss of soil
hydraulic conductivity around the roots (Cai et al., 2022).
This reduction of hydraulic conductivity generates large gra-
dients in soil water potential in the vicinity of the roots, lead-
ing to a significant drop in 9leaf to support a slight increase
in transpiration (Carminati and Javaux, 2020). The soil tex-
ture determines soil hydraulic properties, thereby influencing
grapevine hydraulics (Lavoie-Lamoureux et al., 2017; Tra-
montini et al., 2013). Therefore, in a sandy soil, the decline
in soil hydraulic conductivity around the roots is sharper than
in a fine-textured soil, leading to a significantly greater re-
duction of water potential at the soil–root interface; this di-
rectly impacts 9leaf, which also decreases more rapidly (Cai
et al., 2022). In soil-water-limited conditions, such as in 2022
(Fig. S1), we can assume that soil hydraulic conductivity
drop is larger in the western part of the Bousval vineyard,
where most of the grapevine roots are found in the sandy sub-
soil (Delval et al., 2024b), leading to a greater drop in soil–
root interface water potential and consequently to a larger de-
cline in 9leaf. We can therefore affirm that in a non-irrigated
vineyard, the edaphic heterogeneity (i.e., in terms of soil hy-
draulic conductivity) governs the spatial heterogeneity (and
patterns) of grapevine 9leaf, particularly during drought. At
the Domaine W vineyard, we always predicted lower 9leaf
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in the northwest parcel than in the southeast plot. We ob-
served, but only in a single location in each subplot, that the
northwest parcel is made of a silty loam soil on the first hori-
zons and silty clay loam soil thereafter, while the southeast
parcel is composed of a silty loam soil on the whole profile
(Fig. 1h). Although the vertical distribution of soil texture is
not accurately known in the whole field, we could assume
that this spatial difference in soil properties has an influence
on the spatial heterogeneity of 9leaf, since other factors such
as the elevation (R2

= 0.24) and the slope (R2
= 0.09) have

low correlation with the spatial distribution of 9leaf (Fig. 8).
However, other studies comparing loamy and loamy clay
soils showed only a moderate effect on grapevine9leaf (Bril-
lante et al., 2017b), explaining the lower range of 9leaf ob-
served in this vineyard. Other factors could potentially influ-
ence the spatial distribution of 9leaf at Domaine W. For ex-
ample, in this vineyard, the level of the water table is higher
in the southeastern parcel due to the stream running parallel
to the plot (Fig. S1c). It has been observed that this water ta-
ble reaches the roots, and water consumed by the grapevines
is therefore certainly replaced by vertical soil water move-
ments (capillary rises) (Van Leeuwen et al., 2018). The pres-
ence of a water table within the reach of the roots prevents or
mitigates a decrease in 9leaf (Tramontini et al., 2013). Fur-
ther investigations should be done to better understand the
spatial heterogeneity of 9leaf in the Domaine W vineyard.

We showed that the linear combination of SPEI and VPD
was correlated with the median (9leaf_median – R2

= 0.82)
and the range (9leaf_max−9leaf_min – R2

= 0.54) of leaf
water potential (Fig. 9). In a vineyard, the 9leaf_median is
more negative when the water deficit and the evaporative
demand are greater (i.e., when SPEI is lower and VPD is
higher). Interestingly, we showed that this relation was in-
dependent of the vineyard (p value > 0.05). The range of
9leaf is more important for greater water deficit and evapora-
tive demand. This relation was vineyard-dependent (p value
< 0.05). While the edaphic heterogeneity can explain the
9leaf spatial heterogeneity observed within a vineyard, the
median and range of 9leaf are particularly affected by the
weather conditions (i.e., evaporative demand) and the inten-
sity of water deficit. When evaporative demand and water
deficit are greater, the spatial heterogeneity of 9leaf is partic-
ularly marked and follows K̃soil intra-field patterns. There-
fore, weather conditions also have a great influence on the
temporal variability of9leaf (Brillante et al., 2017a). The im-
pact of weather conditions on 9leaf can explain why we ob-
served a re-increase in 9leaf_median between 10 and 31 Au-
gust 2022 in both vineyards, since VPD on 10 August 2022
was significantly higher than VPD on 31 August 2022. Plants
exposed to a higher evaporative demand experience a greater
loss in water potential at the soil–root interface, resulting in
more negative 9leaf. Conversely, for grapevines exposed to
lower VPD, the drop in 9leaf is more limited since the wa-
ter potential at the soil–root interface is higher (Cai et al.,
2022; Carminati and Javaux, 2020). Spatial soil property dis-

tribution, weather conditions, and intensity of water deficit
mainly influence grapevine leaf water potential heterogene-
ity, as well as the median and range of 9leaf observed in a
vineyard, and their effects are concomitant (Van Leeuwen et
al., 2018).

It is interesting to note that on 20 July 2023, 9leaf is rel-
atively homogeneous within both vineyards and its distri-
bution (9leaf_max−9leaf_min) is therefore low (Fig. 7a). At
Bousval, 9leaf was still slightly lower in the western part of
the parcel, but the difference was significantly less marked
compared to the other dates (Fig. 6). The same observa-
tions can be made at Domaine W, with slightly more neg-
ative 9leaf in the northwestern plot but less marked variabil-
ity compared to other dates. On 20 July 2023, the soil was
the wettest ever measured for this study (Fig. S1), and the
water deficit (SPEI) and the evaporative demand were the
lowest among all dates (Table 1). In non-limiting soil con-
ditions, water flow is primarily governed by plant hydraulic
conductance instead of soil hydraulic conductivity, even in
sandy soils (Draye et al., 2010; Passioura, 1980). Therefore,
plant hydraulic conductance mainly affects leaf water po-
tential distribution in these conditions. Although it is well-
known that edaphic conditions influence grapevine hydraulic
conductance (Tramontini et al., 2013), notably through their
impact on xylem (Hochberg et al., 2015), root (Ollat et al.,
2015), and canopy (Pereyra et al., 2023) architecture, we
can assume that the within-field grapevine hydraulic con-
ductance is significantly less heterogenous than within-field
soil hydraulic conductivity. This is not surprising since in this
study, for a given vineyard, we only worked on one cultivar–
rootstock combination. Although some studies highlighted
the predominance of the soil effect on grapevine water po-
tential (Taylor et al., 2010; Tramontini et al., 2013), it would
be interesting to carry out research to understand how, within
the same vineyard with different cultivar–rootstock combina-
tions, this affects the range of within-field 9leaf.

Other studies showed that topographic attributes, such
as slope and elevation, could also impact grapevine perfor-
mance (Bramley et al., 2011; Karn et al., 2024). In this study,
we only observed a maximum R2

= 0.13 and R2
= 0.54, re-

spectively, between9leaf and slope and between9leaf and el-
evation. This is consistent with Brillante et al. (2017a), who
showed that slope and elevation differences are less signifi-
cantly related to grapevine water status heterogeneity in vine-
yards with moderate or no slope, which is the case in the
present study. It has been shown that topographic attributes
have a real influence on grapevines for vineyards with steep
slopes (Brillante et al., 2017b).

5 Conclusions

We aimed to accurately map the grapevine leaf water po-
tential (9leaf) within non-irrigated vineyards and assess the
impact of edaphic, topographic, and climatic conditions on
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the 9leaf intra-field heterogeneity. We combined UAS-based
multispectral, thermal, and lidar data to spatially predict
grapevine 9leaf. The data provided by different sensors ac-
quiring data in different regions of the electromagnetic spec-
trum brought complementary information on grapevine wa-
ter status and allowed the development of a robust and high-
predictive-power model (R2

= 0.80 and RMSE = 0.07 MPa
for the calibration; R2

= 0.78 and RMSE = 0.08 MPa for
the validation) to estimate grapevine 9leafin two vineyards
during two viticultural seasons. While thermal VIs (e.g.,
CWSI) provide short-term information, such as 9leaf vari-
ations, multispectral (e.g., CLRedEdge and blue reflectance
band) and lidar (from which we can derive grapevine struc-
tural features) data are associated with mid- to long-term wa-
ter status effect on grapevine structure (e.g., canopy height)
and traits like leaf pigment content. Our results provided ev-
idence that in non-irrigated vineyards, grapevine water sta-
tus is highly variable within a vineyard, up to 0.73 MPa. This
spatial distribution of9leaf is mainly governed by the within-
vineyard soil hydraulic conductivity heterogeneity and is par-
ticularly marked when the evaporative demand and the water
deficit are greater, since the range of 9leaf increases in these
conditions. Knowledge of the spatial variability of grapevine
water status, through grapevine 9leaf, could help winegrow-
ers to accurately optimize viticultural management during
the different phenological stages of the grapevine. Although
promising, our results are limited to one grapevine cultivar
(cv. Chardonnay) and two vineyards. To further improve the
robustness and reliability of the method used in this study,
additional UAS observations should be done to represent a
broader range of cultivars, rootstocks, management systems,
and environmental conditions to examine how other viticul-
tural factors may affect grapevine 9leaf spatial heterogene-
ity. Moreover, accurate spatialized information on grapevine
9leaf could be used in functional–structural grapevine mod-
els (Yang et al., 2023) to predict berry growth and quality
(i.e., sugar content) as well as its variation at the field scale.
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