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Table S1: Overview of ESMs considered in this study 

ESM Ref 

Curvilinear 

Ocean 

Grid 

Land carbon N cycle P cycle Fires 
Dynamic 

vegetation 

ECS 

(°C) 

IPSL-

CM6A-LR 
(Boucher et al., 2020) Yes 

ORCHIDEE, 

br.2.0 
No No No No 4.70 

CNRM-

ESM2-1 
(Séférian et al., 2019) Yes ISBA-CTRIP Implicit No 

Yes 

(natural) 
No 4.79 

CanESM5 (Swart et al., 2019) Yes CLASS-CTEM Implicit No No 
dynamic 

wetlands 
5.64 

UKESM1-

0-LL 
(Sellar et al., 2019) No JULES-ES-1.0 Yes No No Yes 5.36 

MIROC-

ES2L 
(Hajima et al., 2020) No VISIT-e Yes No No No 2.66 

ACCESS-

ESM1-5 
(Ziehn et al., 2020) No CABLE Yes Yes No No 3.88 

MPI-

ESM1-2-

LR 

(Mauritsen et al., 

2019) Yes JSBACH3.2 Yes No No Yes 3.03 

NorESM2-

LM 
(Seland et al., 2020) No CLM5 Yes No Yes No 2.49 

CMCC-

ESM2 
(Lovato et al., 2022) Yes CLM-4.5 Yes No 

Yes 

(natural) 
No 3.58 

CESM2 
(Danabasoglu et al., 

2020) No CLM5 Yes No Yes 
dynamic 

wetlands 
4.68 

MRI-

ESM2-0 
(Yukimoto et al., 

2019) No HAL No No No No 3.14 
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Earth System Models evaluation 25 

The ESM ability to simulate ENSO is first assessed in terms of the Nino3.4 index seasonality (phase-locking, Figure S1). 

Figure S1 clearly shows that all the models, with the exception of CanESM5 and ACCESS-ESM1-5, exhibit a stronger 

interannual variability than observations, represented by the HadISST dataset (Rayner et al., 2003), during all the calendar 

months (black line). Those two models, on the opposite, are characterized by a lower seasonality of the ENSO signal, with 

higher and lower than observed variability during boreal summer and boreal winter months, respectively. Beyond the bias in 30 

the annual standard deviation, the normalized index indicates that ESMs typically yield a much higher minimum from March 

to August and lower maximum from September to January compared to observations (Figure S1b), thus displaying a 

negative bias in the amplitude of ENSO seasonal variations. 

We also considered the ability of the ESMs to simulate the climatology of the Amazon basin as well as its land carbon and 

surface energy fluxes by assessing their seasonality. A dry precipitation bias is persistent during the whole year and for all 35 

the ESMs (Ortega et al., 2021; Monteverde et al., 2022, Figure S2, panel a), with the only partial exception of ACCESS-

ESM1-5 and MRI-ESM2-0. Despite this, however, not all the models display a consistent dry bias for soil moisture, but 

rather roughly half of them overestimate the volumetric soil content of water, most likely a direct consequence of the 

parameterization of soil water depth in the different land models used (Qiao et al., 2022, Figure S2, panel c). Temperatures 

are also overestimated in the Amazon basin, both concerning their seasonal amplitude cycle, which is accentuated in ESM, 40 

as well as considering monthly mean values, which are sensibly higher during the whole calendar year, compared to ERA5 

reanalysis (Figure S2, panel b). Considering the energy fluxes, shortwave incoming radiation is probably the most consistent 

bias observable in the region considered (Figure S3, panel d), and its presence has strongly persisted since the 5th generation 

of CMIP models (Wild et al., 2015). Despite a correct seasonality, the values of incoming radiation are almost two times the 

FLUXCOM ones (Jung et al., 2019), used as a validation reference: this bias is a consequence of low cloudiness within the 45 

tropical basin, and most likely it is the direct factor that generates the dry precipitation bias. ESMs also struggle to reproduce 

the seasonal cycle of GPP, TER and consequently NEP (Figure S3, panel , b and c), as well as the yearly mean values of the 

carbon fluxes (Figure S4). First, the general behaviour of the ESMs is a shift in the lower photosynthetic productivity peak 

towards the end of the year (Figure S3 panel b). Regarding NEP, all the models depict a clear and strong underestimation of 

boreal spring, autumn and winter values, compared to the FLUXOM carbon fluxes dataset (Jung et al., 2020), as clear in 50 

Figure S3c. The NEP bias is related to a combination of TER overestimation and an underestimation of GPP, or both (MRI-

ESM2-0, MPI-ESM1-2-LR and UKESM1-0-LL, Figure S3). Specifically, the high GPP and TER displayed by those three 

models compared to FLUXCOM and the other ESMs indicates a particularly high vegetation (and thus Land Module) 

sensitivity to climatological forcings. 

 55 
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Figure S1: Model biases with respect to the HadISST dataset in ENSO seasonal variability, for the period 1979/2013. a) seasonality as 60 
expressed by the Nino3.4 index standard deviation, b) seasonality expressed by the normalized Nino3.4 standard deviation. 

 

 

Figure S2: Model biases with respect to the ERA5 dataset in the climatological seasonal variability, for the period 1979/2013. Shown are 

the monthly zonal means within the Amazon basin for a) precipitation, b) temperature and c) soil moisture. 65 
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Figure S3: Model biases with respect to the FLUXCOM dataset in the seasonal variability, for the period 1979/2013. Shown are the 

monthly zonal means within the Amazon basin for a) NEP, b) GPP and c) TER and d) shortwave incoming radiation. 

 70 
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Figure S4: Model biases with respect to the FLUXCOM dataset in the distribution of carbon fluxes values, for the period 1979/2013. 

Shown are the yearly zonal values within the Amazon basin for a) NEP, b) GPP and c) total ecosystem respiration (TER, the sum of 

autotrophic and heterotrophic respirations for ESMs). 

 75 

Figure S5: Simulated anomalies of (a) cumulative NBP, (b) GPP, (c) Ra and (d) Rh in the Amazon basin for the historical and ssp585 

experiments. Trends are computed with respect to the 1850 mean and are visualized as a 10-years moving average for clarity. For the 

models with more than one realization, both the model-ensemble mean (line) and the spread (±1 standard deviation, shading) are shown. 
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Figure S6: Cumulative NBP anomalies from  a) 1pctCO2-bgc and b) 1pctCO2-rad simulations. Trends are computed with respect to the 80 
start of the simulation and are showed as 10-years moving averages for clarity. 

 

 

Figure S7: Estimates of the carbon-concentration feedback ( ) for the ESMs considered. The Amazon basin, obtained from the SO 

HYBAM service (https://hybam.obs-mip.fr/), is also represented. 85 
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 Figure S8: Standardized values of  and  averaged over the Amazon basin, representing their contribution to cumulative NBP in the 

1pctCO2-bgc and 1pctCO2-rad simulations respectively. 

 

Figure S9: Inverse relationship between ESMs representation of temperature ( ) and soil moisture ( ) impacts in 1pctCO2-rad 115 
and ssp585-rad simulations. 
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Figure S10: Predictive skills of the ridge regression model by adopting the 5-fold cross-validation procedure, for every ESM and for both 

the historical and the ssp585 scenario. In panel a) is reported R2, in panel b) the RMSE. 120 

 

Figure S11: Share of interannual NBP explained variance (%), by means of temperature (yellow), soil-moisture (blue) and shortwave 

incoming radiation (purple) for every ESM for a) historical period and b) ssp585 scenario. 
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Figure S12: Changes in the coefficients of the 5-fold CV ridge regression model in the ssp585 scenario with respect to the historical 125 
period, for all the ESMs. Shown are the Amazon basin mean values of the regression coefficients.  

Figure S13: Intermodel uncertainty in interannual variability of NBP (y-axis) as explained by the 5-fold CV ridge regression coefficients 

with respect to: a) temperature, b) soil moisture and c) shortwave incoming radiation. 
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Figure S14: Partial derivatives explaining the contribution of temperature (a), soil moisture (b) and shortwave incoming radiation (c) to 

interannual GPP, averaged across the Amazon basin. The black vertical bars represent the spread in the predictors coefficients for models 

with more than one realization available, whereas the stars indicate the level of significance (p-value), averaged over the Amazon basin, 

associated to every coefficient. Statistical significance refers to the following convention: *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p 135 
<= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04. 

 

 

Figure S15: Partial derivatives explaining the contribution of temperature (a), soil moisture (b) and shortwave incoming radiation (c) to 

interannual Rh, averaged across the Amazon basin. The black vertical bars represent the spread in the predictors coefficients for models 140 
with more than one realization available, whereas the stars indicate the level of significance (p-value), averaged over the Amazon basin, 

associated to every coefficient. Statistical significance refers to the following convention: *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p 

<= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04. 
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Figure S16: Partial derivatives explaining the contribution of temperature (a), soil moisture (b) and shortwave incoming radiation (c) to 

interannual Ra, averaged across the Amazon basin. The black vertical bars represent the spread in the predictors coefficients for models 

with more than one realization available, whereas the stars indicate the level of significance (p-value), averaged over the Amazon basin, 150 
associated to every coefficient. Statistical significance refers to the following convention: *: 1.00e-02 < p <= 5.00e-02; **: 1.00e-03 < p 

<= 1.00e-02; ***: 1.00e-04 < p <= 1.00e-03; ****: p <= 1.00e-04. 

 

Figure S17: Power Spectrum Density (PSD) of the Nino3.4 signal in all the considered CMIP6 models under the historical (green) and 

ssp585 (yellow) scenarios. The historical HadISST Nino3.4 frequency (blue line) is added as reference. 155 
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Figure S18: ENSO amplitude change as represented by the Nino3.4 signal standard deviation from the historical period (green crosses) to 

the future ssp585 scenario (orange dots). The black cross represents the value of Nino3.4 signal amplitude calculated from the HadISST 

dataset. 160 
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Figure S19: ENSO influence on interannual variability of soil moisture (blue) and temperature (red), for the ESMs considered. Reported 

are the distribution of univariate coefficients values, masked within the Amazon basin, for both the historical and ssp585 simulations (x-

axis). 165 

 

 

 

 

 170 

 

 

  



15 

 

References 

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., and 175 

Bopp, L.: Presentation and evaluation of the IPSL‐CM6A‐LR climate model, Journal of Advances in Modeling Earth 

Systems, 12, e2019MS002010, 2020. 

Danabasoglu, G., Lamarque, J.-F., Bacmeister, J., Bailey, D. A., DuVivier, A. K., Edwards, J., Emmons, L. K., Fasullo, J., 

Garcia, R., and Gettelman, A.: The community earth system model version 2 (CESM2), Journal of Advances in Modeling 

Earth Systems, 12, e2019MS001916, 2020. 180 

Hajima, T., Watanabe, M., Yamamoto, A., Tatebe, H., Noguchi, M. A., Abe, M., Ohgaito, R., Ito, A., Yamazaki, D., and 

Okajima, H.: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and 

feedbacks, Geoscientific Model Development, 13, 2197–2244, 2020. 

Jung, M., Koirala, S., Weber, U., Ichii, K., Gans, F., Camps-Valls, G., Papale, D., Schwalm, C., Tramontana, G., and 

Reichstein, M.: The FLUXCOM ensemble of global land-atmosphere energy fluxes, Scientific data, 6, 1–14, 2019. 185 

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., 

Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., 

Nabel, J. E. M. S., Nelson, J. A., O’sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., 

Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: 

synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-190 

2020, 2020. 

Lovato, T., Peano, D., Butenschön, M., Materia, S., Iovino, D., Scoccimarro, E., Fogli, P. G., Cherchi, A., Bellucci, A., and 

Gualdi, S.: CMIP6 Simulations With the CMCC Earth System Model (CMCC‐ESM2), Journal of Advances in Modeling 

Earth Systems, 14, e2021MS002814, 2022. 

Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., Brokopf, R., Brovkin, V., Claussen, M., Crueger, T., and Esch, 195 

M.: Developments in the MPI‐M Earth System Model version 1.2 (MPI‐ESM1. 2) and its response to increasing CO2, 

Journal of Advances in Modeling Earth Systems, 11, 998–1038, 2019. 

Monteverde, C., De Sales, F., and Jones, C.: Evaluation of the CMIP6 Performance in Simulating Precipitation in the 

Amazon River Basin, Climate, 10, 122, https://doi.org/10.3390/cli10080122, 2022. 

Ortega, G., Arias, P. A., Villegas, J. C., Marquet, P. A., and Nobre, P.: Present-day and future climate over central and South 200 

America according to CMIP5/CMIP6 models, International Journal of Climatology, https://doi.org/10.1002/JOC.7221, 2021. 

Qiao, L., Zuo, Z., and Xiao, D.: Evaluation of Soil Moisture in CMIP6 Simulations, Journal of Climate, 35, 779–800, 

https://doi.org/10.1175/JCLI-D-20-0827.1, 2022. 

Rayner, N. A. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., and Kaplan, A.:  

Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, 205 

Journal of Geophysical Research: Atmospheres, 108, 2003. 

Séférian, R., Nabat, P., Michou, M., Saint‐Martin, D., Voldoire, A., Colin, J., Decharme, B., Delire, C., Berthet, S., and 

Chevallier, M.: Evaluation of CNRM earth system model, CNRM‐ESM2‐1: Role of earth system processes in present‐day 

and future climate, Journal of Advances in Modeling Earth Systems, 11, 4182–4227, 2019. 



16 

 

Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., 210 

and Kirkevåg, A.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, 

historical, and scenario simulations, Geoscientific Model Development, 13, 6165–6200, 2020. 

Sellar, A. A., Jones, C. G., Mulcahy, J. P., Tang, Y., Yool, A., Wiltshire, A., O’connor, F. M., Stringer, M., Hill, R., and 

Palmieri, J.: UKESM1: Description and evaluation of the UK Earth System Model, Journal of Advances in Modeling Earth 

Systems, 11, 4513–4558, 2019. 215 

Swart, N. C., Cole, J. N., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., and 

Hanna, S.: The Canadian earth system model version 5 (CanESM5. 0.3), Geoscientific Model Development, 12, 4823–4873, 

2019. 

Wild, M., Folini, D., Hakuba, M. Z., Schär, C., Seneviratne, S. I., Kato, S., Rutan, D., Ammann, C., Wood, E. F., and König-

Langlo, G.: The energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate 220 

models, Clim Dyn, 44, 3393–3429, https://doi.org/10.1007/s00382-014-2430-z, 2015. 

Yukimoto, S., Kawai, H., Koshiro, T., Oshima, N., Yoshida, K., Urakawa, S., Tsujino, H., Deushi, M., Tanaka, T., Hosaka, 

M., Yabu, S., Yoshimura, H., Shindo, E., Mizuta, R., Obata, A., Adachi, Y., and Ishii, M.: The Meteorological Research 

Institute Earth System Model Version 2.0, MRI-ESM2.0: Description and Basic Evaluation of the Physical Component, 

Journal of the Meteorological Society of Japan. Ser. II, 97, 931–965, https://doi.org/10.2151/jmsj.2019-051, 2019. 225 

Ziehn, T., Chamberlain, M. A., Law, R. M., Lenton, A., Bodman, R. W., Dix, M., Stevens, L., Wang, Y.-P., and Srbinovsky, 

J.: The Australian earth system model: ACCESS-ESM1. 5, Journal of Southern Hemisphere Earth Systems Science, 70, 

193–214, 2020. 

 

 230 


