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Abstract. The Amazon rainforest, historically fire-resistant,
is experiencing an alarming increase in wildfires due to cli-
mate extremes and human activity. The 2023–2024 drought,
surpassing previous records, combined with forest frag-
mentation, has dramatically heightened fire vulnerability.
Analysing the Tropical Moist Forest (TMF) and Global
Wildfire Information System (GWIS) datasets, we found a
152 % surge in forest disturbances from deforestation and
degradation in 2024, reaching a 2-decade peak of 6.64 Mha
(million hectares). Forest degradation, particularly large-
scale degradation linked to fires, increased by over 400 %,
largely exceeding deforestation. Brazil and Bolivia experi-
enced the most severe impacts, with Bolivia seeing 9 % of
its intact forest burned in 2024. Fire-driven forest degrada-
tion in the Pan-Amazon released 791± 86 Mt CO2 (million
tonnes of carbon dioxide equivalent, ±1 standard deviation)
in 2024, a 7-fold increase compared to the previous 2 years,
surpassing emissions from deforestation. The escalating fire
occurrence, driven by climate change and unsustainable land
use, threatens to push the Amazon towards a catastrophic tip-
ping point. Urgent, coordinated efforts are crucial to mitigate
these drivers and to prevent irreversible ecosystem damage.

1 Introduction

The Amazon’s humid forests, once resistant to fire due to
their high humidity and regular rainfalls, are undergoing
an alarming and rapid transformation. The unprecedented
2023–2024 drought, which shattered the 2010 and 2015–

2016 records with its dramatic precipitation deficit and pro-
longed, intense heatwaves (Kornhuber et al., 2024, Marengo
et al., 2024), has severely stressed the region’s delicate eco-
logical balance. This has resulted in diminished surface wa-
ter resources, reduced soil moisture, and stressed vegetation,
creating conditions that significantly elevate the likelihood
and severity of forest fires (Barlow et al., 2020). This already
precarious situation is further compounded by the forest’s de-
graded state, a consequence of extensive deforestation and
habitat fragmentation, selective logging, and past fire events,
leaving it increasingly susceptible to future, potentially catas-
trophic wildfires (Bourgoin et al., 2024). This degraded state
also sets in motion a series of detrimental feedback loops:
the increased tree mortality due to edge effects acts as readily
available fuel for fires, while fragmentation facilitates greater
access for hunting and resource extraction, both of which
contribute directly to tree mortality and heightened fire in-
cidence (Matricardi et al., 2012; Condé et al., 2019).

Natural fires, such as those caused by lightning, are ex-
tremely rare in the Amazon. Most fire ignitions in the Ama-
zon result from human activity. Among them, “escape fires”
are fires that accidentally spread into neighbouring forests
from recently cleared deforested land or burned pastures,
causing forest degradation (Cano-Crespo et al., 2015), or that
are deliberately set to pave the way for potential future illegal
deforestation (Andela et al., 2022). The consequences of for-
est fires are multifaceted, directly harming plant and animal
life, affecting the integrity of once-intact forests, and caus-
ing further damage to already degraded areas (Lapola et al.,
2023). Recent degradation from fire shows a 60 % decrease
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in aboveground biomass density compared to adjacent intact
forests, releasing substantial greenhouse gases and accelerat-
ing global warming (Bourgoin et al., 2024). Forest fires also
have severe implications for indigenous peoples, who face
the threat of losing intact forest within their territories and
experience severe respiratory health impacts from smoke ex-
posure, often more so than other residents of the Amazon
(Rorato et al., 2022).

As Amazon fire threats grow, rapid and accurate detec-
tion is paramount. Distinguishing forest degradation fires
from agricultural fires is key in assessing impacts on people,
ecosystems, and climate and in developing effective mitiga-
tion measures. To address this need, we analysed the Tropical
Moist Forest (TMF) dataset, updated through 2024 (Vancut-
sem et al., 2021). This dataset, leveraging the Landsat archive
from 1990 onwards, identifies forest disturbances, classify-
ing them as either deforestation or degradation (Vancutsem et
al., 2021; see the Appendix for more details). It further clas-
sifies degradation into small-scale (a proxy for windthrow
and selective logging) and large-scale events (a proxy for
forest fire and drought). To enhance our understanding of
fire-driven degradation, we integrated the Global Wildfire
Information System (GWIS) burnt-area data, which rely on
Moderate-Resolution Imaging Spectroradiometer (MODIS)
and Visible Infrared Imaging Radiometer Suite (VIIRS) ther-
mal anomalies from 2012 to 2024 (San-Miguel et al., 2023).
We estimated carbon dioxide (CO2) emissions from fire-
driven degradation and deforestation, along with their associ-
ated uncertainties, following the IPCC (2006) guidelines and
incorporating the ESA CCI 2021 Above Ground Biomass
dataset (Santoro and Cartus, 2024).

2 Results

Our results show that the area of the Pan-Amazon region
affected by forest disturbances dramatically increased by
152 % from 2023 to 2024, reaching a 2-decade peak of
6.64 Mha (million hectares) (Fig. 1a). Despite a 20 % de-
crease in deforestation in 2024 compared to the 2019–2023
average, forest degradation surged by over 400 %, gener-
ally becoming increasingly prominent and surpassing de-
forestation by 1.3, 1.7, and 4.2 times in the 2010, 2016,
and 2024 extreme climatic events. Large-scale degradation
totalled 3.31 Mha in 2024, representing a 1077 % increase
compared to the annual average for the 2019–2023 period.
This coincided with a 1461 % increase in burned forest area,
totalling 3.56 Mha, 80 % of which overlaps with TMF large-
scale degradation (more details on the integration of TMF-
GWIS datasets can be found in Appendix A3).

Brazil suffered the largest absolute large-scale degrada-
tion in 2024 (1.66 Mha, or 50 % of Pan-Amazon large-scale
degradation). Bolivia experienced the highest relative per-
centage, with 9 % of its remaining intact forest burned, com-
pared to 0.6 % in Brazil (Fig. 1b and Fig. A1 in the Ap-

pendix). To a lesser extent, the 2024 increase in forest fires
was also observed in countries historically less affected, such
as the Guiana Shield countries and Venezuela, where large-
scale degradation was, respectively, 6 and 19 times higher
than the previous 5-year average (see the Appendix for more
details; see also Fig. A2).

Burned forests resulting from fire-driven degrada-
tion in the Pan-Amazon region released an estimated
791± 86 Mt CO2 (million tonnes of carbon dioxide equiv-
alent, ±1 standard deviation) in 2024 – approximately
7 times higher than the annual average of the previous
2 years (117± 13 Mt CO2; see Fig. 2). Brazil was the
largest contributor, accounting for 61 % of these emis-
sions, followed by Bolivia with 32 %. In contrast, emis-
sions from deforestation declined from 1044± 65 Mt CO2
in 2022 to 625± 38 Mt CO2 in 2024. Altogether, emis-
sions from deforestation and fire-driven degradation totalled
1416± 108 Mt CO2 in 2024, with burned forests emerging
as the dominant source. Comparatively, the latest publica-
tion of the Global Carbon Budget (Friedlingstein et al., 2025)
also refers to a massive increase in emissions from deforesta-
tion and degradation fires in South America in 2024, from
445 Mt CO2 in 2023 to 1227 Mt CO2 in 2024, mostly driven
by the unusual dry conditions linked to El Niño.

3 Discussion and conclusions

Our analysis presents findings with certain inherent limita-
tions that should be considered during interpretation. The
TMF dataset employed may have a tendency to underrepre-
sent the extent of small-scale forest degradation (< 0.09 ha),
particularly that resulting from edge effects, selective log-
ging, and low-intensity fire events. These types of non-
permanent disturbances can have considerable ecological
consequences that may not be fully captured in the data
(Bourgoin et al., 2024). Furthermore, differentiating between
disturbances caused by degradation processes and those re-
sulting from deforestation posed a challenge, specifically in
the context of the 2024 data, as indicated by Vancutsem et
al. (2021) due to lack of historical depth in detecting for-
est recovery following degradation. This overlap in obser-
vational characteristics could introduce some level of uncer-
tainty into the precise categorization of forest change. While
these limitations suggest a potential for underestimation of
the overall impact, our estimates regarding the general scale
of the area affected by fires are considered to be reasonably
consistent and remain conservative. The broad magnitude of
the impacted area is unlikely to be drastically altered by these
factors, suggesting that fire remains a significant driver of
landscape change within the study area.

In 2024, forest fires became the leading cause of over-
all forest disturbance across the Pan-Amazon region. These
fires not only triggered significant immediate carbon losses
but also set in motion long-term ecological degradation.
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Figure 1. (a) Pan-Amazon Tropical Moist Forest (TMF) Disturbances (2001–2024), including deforestation (dark grey), small-scale degra-
dation (orange), and large-scale degradation (dark red) from the TMF. Burned forest area (red line) represents THE GWIS thermal anomalies
overlapping with TMF historical degradation and 2023–2024 TMF disturbances, where THE GWIS detected the fire in the same or previous
year. (b) Tropical Moist Forest Map: large-scale TMF 2024 forest degradation and recent country forest disturbances (legend and units as in
panel (a)). The inset shows Landsat-8 imagery (courtesy of the US Geological Survey USGS/NASA), with burn scars in purple and undis-
turbed forest in green (21 October 2024; RGB: bands 6, 5, 4). The Pan-Amazon region from Eva and Huber (2005) comprises the regions
“Amazonia stricto sensu” and “Guiana”. Figures A1–A3 provide further details regarding TMF-GWIS data integration and absolute and/or
relative forest disturbances at the country level.

This degradation is marked by shifts in forest composition
– driven by the limited evolutionary adaptations of Amazo-
nian species to fire – along with persistently high rates of
tree mortality. As a result, affected forests may act as a net
source of carbon emissions for up to 7 years or more after
the fire (Lapola et al., 2023). Climate change, unsustainable
land use, and increased forest vulnerability are fuelling a self-
reinforcing cycle of escalating fire occurrence and intensity

in the Amazon region. This destructive synergy undermines
regional forest conservation goals, driving significant forest
degradation, particularly during extreme weather events, and
potentially leading to permanent shifts in precipitation pat-
terns, including intensified dry seasons along the Amazon’s
southern, eastern, and northern borders (Hirota et al., 2021).

The 2024 data from Brazil, Bolivia, and Venezuela high-
light the Amazon’s rapidly decreasing resilience. The uneven
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Figure 2. Pan-Amazon emissions from deforestation and fire-driven
degradation in 2022–2024. Emissions from small-scale degrada-
tion processes (e.g. selective logging) or from disturbances in ar-
eas where the GWIS thermal anomalies do not overlap with TMF
forest degradation are not included in this analysis. Bars represent
the mean values, and vertical error bars indicate the standard devia-
tions, both derived from combining uncertainties using Monte Carlo
simulation.

distribution of degradation, coupled with the rising frequency
and intensity of forest fires, necessitates robust data-driven
mapping approaches and standardized reporting systems to
facilitate effective regional coordination and responses (Melo
et al., 2023). To address these challenges, it is crucial to pri-
oritize areas of intervention and to develop targeted strate-
gies for reducing deforestation and forest degradation (Lap-
ola et al., 2023). If left unchecked, current trends will push
the Amazon forest towards a catastrophic tipping point, ir-
reparably damaging the ecosystem and global climate stabil-
ity (Flores et al., 2024). Therefore, immediate action is es-
sential to mitigate the underlying drivers of forest fires and
to prevent the crossing of this critical threshold.

Appendix A

A1 Tropical Moist Forest dataset

The Tropical Moist Forest (TMF) dataset provides a com-
prehensive, wall-to-wall mapping of global tropical humid
forest cover dynamics from 1990 to 2024 at 30 m spatial res-
olution using the entire Landsat archive to detect both per-
manent and temporary forest disturbances. The performance
of disturbance detection in Latin America results in 7.1 %
omissions, 12.8 % commissions, and 91 % overall accuracy
(see Table S3 from Vancutsem et al., 2021).

The TMF system enables analytical separation of forest
degradation and deforestation on an annual basis by record-
ing disturbance event timing with a daily temporal resolution,
using duration and recurrence as proxies to separate distinct
impacts of land use change (i.e. deforestation) from struc-

tural and/or functional alterations (i.e. degradation) within
forested land (Bourgoin et al., 2024; Beuchle et al., 2021).

Degraded forests are forests that experienced up to three
short-duration disturbance events between 1990 and 2023.
These short-term events are characterized by a maximum
duration of 900 d during which tree foliage cover is absent
within a Landsat pixel and is followed by a forest recov-
ery signal (Vancutsem et al., 2021). To qualify as separate
events, disturbances must be separated by at least 2 years
without any detected disturbances. If more than three of such
events occur, the pixel is classified as deforestation, with the
year of deforestation being assigned to the start of the first
observed disturbance. For 2024, the classification between
degradation and deforestation is based on the ratio of valid
observations (i.e. pixels free of clouds, haze, and cloud shad-
ows) to observed disturbance events given the insufficient
historical depth to determine disturbance permanence. Key
drivers of forest degradation include selective logging, wild-
fires, and natural disturbances such as windthrow and pro-
longed drought (Vancutsem et al., 2021).

An automated 3× 3 pixel moving-window filter was ap-
plied to each new forest degradation event, classifying small,
isolated patches (. 0.8 ha) associated with log landings,
felling gaps, and logging roads (Lima et al., 2020) separately
from larger, contiguous patches indicative of fire scars and
drought (Morton et al., 2011).

Deforestation is defined as the conversion of an undis-
turbed or previously degraded forest into another land cover
type, indicated by either a single disturbance event lasting
more than 900 d or by more than three short-term disturbance
events. In both cases, the year of deforestation is assigned
to the first year of the relevant disturbance sequence and is
mostly driven by agricultural, infrastructure, and mining ex-
pansion.

A2 Global Wildfire Information System dataset

The Global Wildfire Information System (GWIS) is a joint
initiative of the Group on Earth Observations (GEO) and the
Copernicus Work Programs that integrates existing informa-
tion sources at regional and national levels in order to pro-
vide a comprehensive view and evaluation of fire regimes and
their impacts at a global level.

The GWIS system is an ecosystem of geographic informa-
tion system applications used to monitor wildfires globally
in near-real time. The core of the system is the Burned Area
Near Real Time dataset (GWIS BA NRT), which contains
geolocated wildfire events along with associated metadata
such as polygons, start and end dates, and various ancillary
attributes.

This dataset is derived from thermal anomalies detected
by two satellite-based sensors: MODIS (Justice et al., 2002)
(on board the TERRA and AQUA satellites) and VIIRS
(Schroeder et al., 2014) (on board the SUOMI/NPP and
NOAA20 and NOOA21 satellites).
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The thermal anomalies covering the entire globe are ob-
tained from the Fire Information for Resource Management
System (FIRMS) near-real-time dataset and are stored in a
PostGIS database with their geolocation, acquisition date,
and other ancillary data unrelated to this topic.

The thermal anomalies are grouped based on their spatial
and temporal proximity using the “Spatio-Temporal Density-
Based Spatial Clustering of Applications with Noise” al-
gorithm (ST-DBSCAN, Birant and Kut, 2007). The algo-
rithm groups data points into clusters based on their spatio-
temporal density, which is calculated using the following pa-
rameters: ε (i.e. the maximum spatial distance), εt (i.e. the
maximum temporal distance), and minPts (i.e. the minimum
number of elements required to start a cluster). Points that
do not meet clustering criteria are labelled as noise. For each
identified cluster, a circular buffer of 500 m radius is created
around each thermal anomaly. These buffers are then merged
to create a polygon that approximates the area of the event.
The earliest acquisition date among the anomalies defines the
start of the fire event, while the latest defines the end.

The dataset used in this study includes detections from the
AQUA, TERRA, and SUOMI/NPP satellites, covering the
period from 2012 onwards. Based on previous analyses, the
clustering parameters applied were ε = 1.1 km, εt = 72 h,
and minPts= 4. This means each fire cluster included at least
four thermal anomalies, and there were less than 1.1 km and
72 h between neighbouring anomalies. For this analysis, all
of the fire events falling in the Pan-Amazon region from Eva
and Huber (2005) have been selected from the GWIS dataset
for the years 2012 to 2024. This subset includes approxi-
mately 553 000 clusters per burnt-area event, with a cumu-
lative burned area of around 250 Mha.

A3 Integration of TMF-GWIS datasets

To isolate burned forest area from GWIS thermal anomaly
detections, we performed several spatial and temporal opera-
tions using the TMF dataset. A thermal anomaly detected by
the GWIS was considered to be burned forest only when the
following conditions were met:

– Spatial overlap with TMF forest degradation (2012–
2022). The anomaly had to intersect areas classified as
forest degradation in the TMF dataset during the 2012–
2022 period. This corresponds to short-duration distur-
bances, specifically one to three events, each lasting less
than 900 d (see Appendix A1 for details). GWIS detec-
tions within TMF-classified undisturbed forest were ex-
cluded from the analysis. This step aims to address po-
tential overestimations in GWIS fire detection due to its
clustering and buffering approach (see Appendix A2),
as well as potential under-detections in the TMF, partic-
ularly of small-scale events (< 0.09 ha) or those with-
out significant canopy change (e.g. understorey fires).
Conclusive analysis of these cases requires independent
validation, which is beyond this paper’s scope; thus,

our results remain conservative. GWIS detections oc-
curring on land classified by the TMF as deforested or
as other land cover (including areas deforested before
1990) were excluded. These areas are generally asso-
ciated with deforestation-related fires (e.g. burning de-
bris) or agricultural burning and fall outside the scope
of our analysis focused on forest degradation.

– Temporal consistency with TMF degradation timing.
The fire had to occur in either the same year as the TMF-
recorded degradation or the preceding year. This tempo-
ral buffer accounts for potential delays in TMF detec-
tion due to Landsat’s temporal resolution and important
cloud cover in some parts of the Amazon region.

– Overlap with TMF forest disturbance (2023–2024). For
the 2023–2024 period, anomalies were required to over-
lap with areas classified as forest disturbance in the
TMF. This adjustment acknowledges the current uncer-
tainty in the TMF’s ability to distinguish between degra-
dation and deforestation during this recent time frame.

The application of these filters resulted in the exclusion of
most GWIS thermal anomaly detections (Fig. A3a), with
only 13.7 % of the original dataset remaining. This remain-
ing subset corresponds to approximately 14 Mha of burned
forest resulting from fire-driven degradation in Amazonian
tropical moist forests. The trend of increasing burned forest
area from 2012 to 2024 across different Pan-Amazonian land
cover types is shown in Fig. A3b.

A4 Estimation of CO2 emissions and uncertainty
analysis

We estimated carbon dioxide (CO2) emissions resulting from
fire-driven degradation and deforestation in the Amazon
basin for the years 2022, 2023, and 2024 using a Monte Carlo
simulation framework. Emissions were calculated based on
spatially explicit data on change areas and aboveground
biomass (AGB) from the 2021 ESA CCI AGB map (San-
toro and Cartus, 2024), incorporating uncertainty in all rele-
vant variables, including classification errors in change areas.
Burned forest areas from fire-driven degradation were iden-
tified through the spatial intersection of TMF forest degrada-
tion and GWIS fire detections (as detailed in the “Integration
of TMF–GWIS datasets” section), enhancing confidence in
the detection of burned forests while yielding a conservative
estimate. Areas of deforestation were directly derived from
the TMF. For computational efficiency and to minimize the
influence of spatial autocorrelation in AGB errors, we ag-
gregated change areas (fire-driven degradation and deforesta-
tion), AGB, and its associated standard deviation within spa-
tial units of 0.5° grid cells.
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Figure A1. Large-scale degradation relative to intact forest area from the TMF (bars) at the country level within the Pan-Amazon region.
Red dots indicate the burned area of tropical moist forest from the TMF-GWIS integration related to the intact forest area from the TMF.

Figure A2. Amazonian forest disturbances from the TMF (2001–2024) and burned forest area from the TMF-GWIS integration (2012–2024)
at the country level.

A4.1 Emissions from forest fires

Emissions from fire-affected areas (Efire) were calculated us-
ing Eq. (A1), which follows Eq. (2.27) of the 2006 IPCC
guidelines (IPCC, 2006) and factors from Tables 2.5 and 2.6
of the 2019 IPCC (IPCC, 2019):

Efire =

n∑
i=1

Afire
i ·Bi ·Cc ·Gef× 10−3, (A1)

where Afire
i is the adjusted burned forest area (ha) in spatial

unit i, Bi is the aboveground biomass (Mg ha−1) in spatial

unit i, Cc is the combustion completeness (adimensional),
Gef is the emission factor (g CO2 kg−1 dry biomass), n is
the number of spatial units, and 10−3 just converts g CO2
into Mg CO2. The emission factor Gef was sampled from
a normal distribution with a mean of 1580 g CO2 kg−1 dry
biomass and a standard deviation of 90 g CO2 kg−1 dry
biomass based on Andreae and Merlet (2001). Combustion
completeness (Cc) was modelled as a normal distribution
with a mean of 0.50 and standard deviation of 0.03, consis-
tently with values reported for tropical forest fires (van der
Werf et al., 2010).
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Figure A3. (a) Total thermal anomalies (2012–2024) from the GWIS, distributed across the TMF transition classes: undisturbed forest,
degraded forest, forest regrowth, deforested land (detected between 1990 and 2024), and other land cover (including areas deforested prior to
1990). (b) Annual GWIS thermal anomalies for 2012 and 2024, categorized by TMF annual land cover status, including undisturbed forest,
degraded forest, deforested land, forest regrowth, and other land cover types in each respective year.

A4.2 Emissions from deforestation

Emissions from deforestation (Edefor) were computed with
Eq. (A2):

Edefor =

n∑
i=1

Adefor
i ·Bi ·C ·

(
44
12

)
, (A2)

where Adefor
i is the adjusted deforested area (ha), C is the

carbon fraction of dry biomass (fixed at 0.47), and 44/12 is
the molecular weight ratio to convert carbon into CO2. Un-
like fire emissions, no combustion completeness or emission
factor is needed for deforestation as it is assumed that all
biomass is eventually emitted (IPCC, 2006).
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A4.3 Uncertainty in area estimates

To incorporate classification uncertainty in both burned- and
deforested-area estimates, we applied probabilistic adjust-
ments to the mapped areas using commission and omis-
sion error rates derived from the confusion matrix reported
in Vancutsem et al. (2021). These error rates were mod-
elled as Beta distributions to reflect their probabilistic na-
ture, enabling their integration into a Monte Carlo simu-
lation framework. This approach follows best practices for
area estimation under classification uncertainty (Olofsson et
al., 2014). Specifically, commission error was modelled as
Beta(αcm = 8.4,βcm = 91.6), and omission error was mod-
elled as Beta(αom = 18.1,βcm = 81.9). These distributions
were used to adjust the mapped areas of burned and defor-
ested land in each simulation iteration, allowing the uncer-
tainty in classification accuracy to propagate into the final
emission estimates. Adjusted areas (Aadj) were computed in
each iteration of the simulation using Eq. (A3):

Aadj
=

A · (1− ec)

1− (ec+ eo)
, (A3)

where ec and eo are sampled commission and omission er-
rors, respectively.

A4.4 Monte Carlo simulation

We performed 100 000 Monte Carlo iterations per year and
source. In each iteration, we simultaneously sampled (i) com-
mission and omission errors (affecting area adjustments) and
(ii) AGB values (modelled as normal distributions with the
mean and standard deviation derived from the data), com-
bustion completeness, and emission factors for fire emissions
only. Negative samples were truncated at zero. The result was
a distribution of total CO2 emissions for each source (fire, de-
forestation) and year, from which the average and standard
deviation were derived.
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