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Abstract. The introduction of new processes in biogeochem-
ical models brings new model parameters that must be set.
Optimization of the model parameters is crucial to ensure
that model performance is based on process representation
(i.e., functional forms) rather than poor choices of input pa-
rameter values. However, for most biogeochemical models,
standard optimization techniques are not viable due to com-
putational cost. Typically, (tens of) thousands of simulations
are required to accurately estimate optimal parameter values
of complex non-linear models. To overcome this persistent
challenge, we apply surrogate machine learning methods to
optimize the model parameters of a new version of the World
Ocean Model of Biogeochemistry and Trophic dynamics
(WOMBAT), which we call WOMBAT-lite. WOMBAT-lite
has undergone numerous updates described herein with many
new model parameters to prescribe. A computationally inex-
pensive surrogate machine learning model based on Gaussian
process regression was trained on a set of 512 simulations
with WOMBAT-lite and was used to produce synthetic re-
sults emulating tens of thousands of simulations. These sim-
ulations explored model fidelity to 8 observation-based tar-
get datasets by varying 26 uncertain parameters across their
a priori ranges. The surrogate model, trained on these 512
simulations, facilitated a global sensitivity analysis to iden-
tify the most important parameters and facilitated Bayesian
parameter optimization. Our approach returned constrained
posterior distributions of 13 important parameters that, when

sampled and input to WOMBAT-lite, ensured excellent fi-
delity to the target datasets. This process improved the rep-
resentation of chlorophyll a concentrations, air—sea carbon
dioxide fluxes and patterns of phytoplankton nutrient limi-
tation. We present an optimal parameter set for use by the
modeling community. Overall, we show that surrogate-based
calibration can deliver optimal parameter values for the bio-
geochemical components of Earth system models and can
improve the simulation of key processes in the global carbon
cycle.

1 Introduction

Ocean biogeochemical models are crucial tools for unrav-
eling the complex interactions between the physical trans-
port of properties, the chemical reactions of compounds,
and the biological conversions between inorganic and or-
ganic matter (e.g., Fennel et al., 2022). They are key for un-
derstanding and quantifying the impact of climate change
on ocean ecosystems and biogeochemical cycles. This in-
cludes both the natural pulses of climate variation, such as
the El Nifio—Southern Oscillation, and the pervasive long-
term climate change, such as that induced by accumulat-
ing greenhouse gas emissions. For instance, ocean biogeo-
chemical models are used to estimate the ocean’s uptake of
carbon dioxide (CO) (Doney et al., 2003; Friedlingstein et
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al., 2023; Joos et al., 2013; Orr et al., 2001; Terhaar et al.,
2024), to understand the controls on interior oxygen con-
centrations (Buchanan and Tagliabue, 2021; Oschlies et al.,
2018), to quantify changing volumes of oxygen minimum
zones (Busecke et al., 2022), for projecting change in ocean
primary productivity (Kwiatkowski et al., 2020; Tagliabue et
al., 2021), to evaluate shifts in marine ecosystem community
composition (Cael et al., 2021a; Follows et al., 2007) and
fishery production (Lotze et al., 2019; Stock et al., 2017),
and most recently to evaluate the efficacy of marine CO,
removal strategies (Fennel et al., 2023; Kwiatkowski et al.,
2023; Siegel et al., 2021).

At their core, ocean biogeochemical models include an
ecosystem component. This component, in its simplest form,
represents the growth of phytoplankton via uptake of nu-
trients and photosynthesis, their mortality via zooplankton
grazing and respiration, and the routing of dead biomass from
both phytoplankton and zooplankton to detritus. The detri-
tus sinks through the water column and is acted on by het-
erotrophic remineralization to return the organic matter to the
inorganic nutrients from which phytoplankton biomass was
initially constructed. This ecosystem component, at its sim-
plest, is known as a nutrient—phytoplankton—zooplankton—
detritus (NPZD) model (e.g., Fennel et al., 2022). Other com-
ponents may accompany it, such as those that encode the
chemical reactions of the carbon system (Orr et al., 2017),
exchanges with external reservoirs (i.e., rivers, sediments,
and atmosphere), trace metals (Tagliabue et al., 2023), iso-
topes (Buchanan et al., 2021) or biogenic aerosols (Gantt et
al., 2012). Some models consider different types of nutrients,
phytoplankton, zooplankton and detritus, with some includ-
ing dozens of types defined by distinct traits and/or sizes
(Follett et al., 2022; Follows and Dutkiewicz, 2011; Serra-
Pompei et al., 2022). Whether simple or complex, a defining
feature of ocean biogeochemical models is their ecosystem
component, which controls how elements cycle between in-
organic and organic phases.

Despite their critical applications, the construction of bio-
geochemical models suffers from numerous sources of un-
certainty. Model simulations of air—sea fluxes of CO,, for
instance, suffer from considerable seasonal biases, partic-
ularly in the Southern Ocean (Hauck et al., 2020) due, in
part, to biases in the phasing and magnitude of biological ac-
tivity (Mongwe et al., 2018). These biases stem from poor
mechanistic understanding of the processes being modeled,
the complex interplay of those processes and a lack of ob-
servational constraint (Denman, 2003; Fennel et al., 2022;
Matear, 1995; Rohr et al., 2023; Ward et al., 2010). How-
ever, even with greater understanding and observations, there
exist many tuneable and potentially interdependent parame-
ters that control many target outcomes (air—sea CO, fluxes,
nutrient fields, chlorophyll concentrations, etc.) that must be
reproduced simultaneously. One optimization approach has
been to reduce the number of processes being represented,
both physical and biogeochemical, such that a smaller num-
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ber of parameters requires optimization (DeVries and We-
ber, 2017; Holzer and Primeau, 2013). While this approach
has skill for reproducing the ocean’s large-scale fields in an
equilibrium state, it arguably has less skill in emulating the
many interdependent upper-ocean processes that operate on
higher frequencies. More complex models with more pro-
cesses have more potential to represent reality, but realiz-
ing this potential occurs only by making good parameter
choices. Optimizing a model with more processes would ide-
ally involve (1) a global sensitivity analysis that identified
the most important parameters, followed by (2) a Bayesian
optimization procedure to constrain the optimal values of the
most important parameters from within their uniform a priori
ranges. Being Bayesian, the optimal parameter values would
be taken from posterior distributions, recognizing that many
“optimal” parameter combinations are possible. Even so, the
sheer number of parameters, their non-linear interactions and
an objective function composed of many targets (i.e., try-
ing to reproduce many features at once) make this approach
impossible without large and typically unfeasible computa-
tional costs.

Machine learning techniques now offer a means to over-
come this key challenge (Reddy et al., 2024b, a). Synthetic
output may be generated by a surrogate machine learning
model trained on a smaller set of real model output. The
surrogate machine learning model is computationally cheap
and can generate tens to hundreds of thousands of samples
required for a detailed exploration of the parameter space.
Such a high number of samples is critical to identify both
the first-order and interactive effects of different parameters
(Reddy et al., 2024b; Saltelli et al., 2019), as well as a means
to undergo Bayesian optimization (Reddy et al., 2024a). The
surrogate-based calibration has been successful with physi-
cal and terrestrial biosphere components of climate system
models (Li et al., 2018; Reddy et al., 2024a; Williamson et
al., 2017; Xu et al., 2022, 2018), but its application to marine
biogeochemical components is in its infancy.

In this study, we optimize a relatively simple ocean-
biogeochemical model designed to represent open-ocean
biomes using surrogate machine learning techniques: version
“lite” of the World Ocean Model of Biogeochemistry and
Trophic dynamics (WOMBAT-lite) (Fig. 1). This surrogate
approach is crucial. Although WOMBAT-lite has few tracers
and is computationally efficient, making it viable for high-
resolution configurations (Kiss et al., 2020; Matear et al.,
2015; Menviel and Spence, 2024; Oke et al., 2013) and large
ensembles (Mackallah et al., 2022; Rashid, 2022; Ziehn et
al., 2020), it is nonetheless a global, three-dimensional, bio-
geochemical model with complex non-linear process inter-
actions. This makes it computationally demanding enough to
prevent parameter calibration via traditional techniques. Sec-
ond, surrogate-based optimization has been successfully ap-
plied to physical and terrestrial components of climate mod-
els (Li et al., 2018; Reddy et al., 2024a; Xu et al., 2022,
2018) and so offers real potential for, but has not been widely
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applied to, biogeochemical models. Finally, biogeochemical
models are constantly undergoing major updates and new
process development. The need for efficient and accurate op-
timization is therefore constant. As an example, we made
major updates during this study (detailed in Appendix A)
and focused on improving air—sea CO; fluxes in the Southern
Ocean, which, shows persistent biases in ocean biogeochem-
ical models (Hauck et al., 2020, 2023a; Mongwe et al., 2018).
This optimized version of WOMBAT-lite is intended for use
within the Australian Community Climate and Earth System
Simulator (ACCESS) umbrella of ocean-only model config-
urations (e.g., Kiss et al., 2020), while slight changes would
be needed for the full Earth system configurations to accom-
modate the differences in the physical state of the ocean (e.g.,
Law et al., 2017).

2 Methods
2.1 Optimization summary

We have updated an ocean-biogeochemical model called
WOMBAT-lite (Fig. 2). These updates (detailed below) ne-
cessitated a thorough sensitivity analysis and optimization
to a chosen set of observations. We performed Sobol sen-
sitivity analysis (Sobol’, 2001), which gave an understand-
ing of which parameters were most important to the model
outcomes, followed by Bayesian optimization to fine-tune
parameter values and improve model accuracy. However,
both Sobol sensitivity analysis and Bayesian optimization
require many thousands of samples to be reliable. To over-
come this challenge, we employed a machine learning model
based on Gaussian process regression to act as a surrogate of
WOMBAT-lite. This computationally inexpensive surrogate
was trained on hundreds of real simulations with WOMBAT-
lite, predicted global univariate statistics of model error, and
was able to produce large samples of synthetic results that
enabled sensitivity analysis and optimization (Fig. 1).

2.2 Model development summary

Although “lite”, the version of WOMBAT developed for this
study is more complex than the previous WOMBAT. Updates
include an implicit representation of the packaging effect of
cell size, which explicitly controls light attenuation through
the water column; explicit photoacclimation of phytoplank-
ton; a dynamic co-limitation of iron and light, whereby phy-
toplankton require increases in their iron quotas as they pho-
toacclimate (i.e., increase their chlorophyll quotas) under
low-light conditions; spatial variations in nutrient affinities
of phytoplankton for nitrogen and iron; expanded iron cy-
cling, with additional sinks due to scavenging onto detri-
tal particles, colloidal coagulation and nanoparticle precip-
itation; riverine sources offset by permanent burial in sed-
iments; a spatially varying sinking rate of detritus that in-
creases with an implicit estimate of mean community cell
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size and also with depth; simplistic sedimentary denitrifi-
cation and nitrogen fixation routines; and dampened tem-
perature dependence of zooplankton grazing. WOMBAT-lite
(Fig. 2) considers 13 tracers: two nutrients, being nitrate
(NO3) and dissolved iron (dFe); the carbon system (dissolved
inorganic carbon (DIC), alkalinity (Alk), calcium carbonate
(CaCO03)); oxygen (O3); the biomass pools of one phyto-
plankton (By), one zooplankton (B;) and one sinking detrital
(Bg) functional type, prognostic chlorophyll (thl); and bio-
genic iron in phytoplankton (Bllfe), zooplankton (BZF €) and
sinking detritus (BJ®). In WOMBAT-lite, photosynthetically
active radiation (PAR) is split into three wavelength bands
associated with blue, green and red light, and each of these
bands attenuates differently through the water column. The
explicit chlorophyll content of phytoplankton allows for pho-
toacclimation and the formation of deep chlorophyll max-
ima. The attenuation of blue, green and red light is affected
by chlorophyll concentrations, and we implicitly account for
the “packaging effect” by assuming a positive relationship
between chlorophyll concentration and community mean cell
size, where larger cells have less effect on light absorption.
Phytoplankton limitation by nutrients is affected by an im-
plicit positive relationship between cell size and cell den-
sity, where larger cells have less affinity for nutrients. Lim-
itation by iron is modeled via variable quotas, allowing for
luxury uptake under dFe-rich conditions and the export of
Fe-rich detritus. Phytoplankton increase their iron require-
ments as their intracellular quota of chlorophyll increases,
generating a co-limitation of light and iron on growth. Cy-
cling of dFe now explicitly considers free, ligand-bound and
colloidal iron and is lost via nanoparticle formation, scaveng-
ing and colloidal coagulation. Zooplankton grazing is via a
type III disk formulation that substantially dampens the tem-
perature effect on grazing activity, aligning with rapid con-
sumption rates in polar and tropical waters alike. The sinking
of detritus is spatiotemporally variable and is dependent on
phytoplankton biomass, emulating community shifts in mean
cell size and bloom conditions, and depth, emulating a power
law rather than an exponential decay associated with accel-
eration due to packaging with increasing pressure. A fraction
of the detritus (and CaCO3) reaching the sediment is now
permanently buried. In addition, WOMBAT-lite considers in-
puts of NO3, DIC and Alk from rivers, simplistic sedimen-
tary denitrification and nitrogen fixation routines, as well as
the flux of dFe from hydrothermal vents. All biogeochemical
cycles in WOMBAT-lite are therefore open, and their inven-
tories can change. The basic unit of biomass is carbon with
a fixed C:N: 0Oy of 122:16: —172. A full description of
WOMBAT-lite is in Appendix A.
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Figure 1. Flow chart representation of the methodology. (1) Any updates to the numerical model, in this case a biogeochemical model,
are finalized. Because the model has been altered, it requires optimization. (2) The target observations are chosen against which the model
performance will be assessed and, eventually, optimized. (3) Sobol sequencing of the full parameter space selects 512 unique parameter
sets from a priori ranges of the uncertain parameters. In this case, we chose 24 uncertain parameters. (4) The 512 unique parameter sets
are used to run the numerical model forward to obtain 512 “simulated” solutions for each of the target observations. (5) Using a metric of
model performance, in this case the normalized root mean square error (NRMSE), we train a surrogate machine learning model based on
Gaussian process regression (GPR) to synthetically reproduce the model performance (NRMSE) given a parameter set as input. (6) With the
GPR model we create thousands of synthetic model simulations to conduct a global Sobol sensitivity analysis. This tells us what the most
important parameters are for model performance against our observational targets. (7) We resample the parameter space using only the most
important parameters and (8) run a new set of simulations with these unique parameter sets. (9) The GPR model is then trained to reproduce
the global cost function (denoted “error” above), which accounts for the performance of the model across all observational targets, given a
unique parameter set as input. (10) Thousands of synthetic cost function results, estimated by the GPR model, are used to perform Bayesian
optimization that solves for the optimal posterior distributions of the important parameters from within the a priori ranges.
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Figure 2. Schematic representation of WOMBAT-lite. Tracers and biomass pools are represented by circles of different colors. Black tracers
represent the carbon system; blue are inorganic nutrients. Inner circles of C, Chl and Fe within each biomass pool represent the units of
carbon, chlorophyll and iron that are explicitly tracked. Major components are grouped within the dashed outlines. Although dissolved
inorganic carbon (DIC), alkalinity (Alk) and oxygen (Oy) are connected to primary production, they are only affected by it and do not limit
primary production of phytoplankton. In contrast, both nitrate (NO3) and dissolved iron (dFe) are biogeochemical tracers whose availability
both controls and is affected by phytoplankton growth. Dust and hydrothermal iron input dFe, while rivers input DIC, Alk, NO3 and dFe.
Atmospheric concentrations of carbon dioxide (CO,) and O, are not explicitly tracked by the ocean model (dashed circles).

2.3 Model experiments and evaluation
2.3.1 Observational target fields for assessment

We use eight observational products/databases to assess the
performance of WOMBAT-lite (Fig. 3) including the grid-
ded, global products of surface NO3 (Garcia et al., 2024a)
and dFe (Huang et al., 2022). While nutrient distributions
are useful, they have limited power by themselves for as-
sessing biogeochemical models, since similar distributions
of nutrients can be achieved for different rates of phyto-
plankton growth and recycling (Fennel et al., 2022). Re-
motely sensed chlorophyll is an important constraint that can
be considered a proxy for the total stock of phytoplankton
biomass and features heavily in biogeochemical model eval-
uation (Fennel et al., 2022). We use the Copernicus three-
dimensional chlorophyll a product that combines remotely
sensed, hydrographic and BGC-Argo measurements of fluo-
rescence to generate a depth-resolved climatology of chloro-
phyll (Sauzede et al., 2015). The extension of chlorophyll
to depth allows for an assessment of patterns in the verti-
cal, including spatiotemporal variations in the position of
the deep chlorophyll maximum, which we assess in addi-
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tion to surface chlorophyll concentrations. Other important
observations include a gridded and global product of air-sea
CO; fluxes for the year 1985 (Chau et al., 2022), the earliest
year available, and vertically integrated net primary produc-
tion (Westberry et al., 2008). We opt for CO; fluxes rather
than pCO; to also account for any error in the wind-speed-
dependent gas exchange formulation, which we do not up-
date or optimize at this stage. Because the carbon-based pro-
ductivity model (CbPM; Westberry et al., 2008) is based on
backscatter and explicitly accounts for growth rates separate
from biomass, its patterns are more orthogonal to chlorophyll
than the Vertically Generalized Production Model (VGPM;
Behrenfeld and Falkowski, 1997) and so offers greater po-
tential as an independent constraint on model performance
(Westberry et al., 2023). Net primary production (NPP) built
from the CbPM products should therefore provide more inde-
pendent constraints on model assessment than an NPP prod-
uct built from chlorophyll concentrations. In addition to these
gridded products, we also use a database of the primary limit-
ing nutrient for phytoplankton growth (Browning and Moore,
2023) and sediment trap records of the sinking flux of detri-
tal particles through the ocean interior (Mouw et al., 2016).
For the primary limiting nutrient dataset, we only consider

Biogeosciences, 22, 5349-5385, 2025
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Observations and observation-based products for model assessment

Surface NO; (uM)
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Figure 3. Observation-based target fields used for assessment (sensitivity analysis and optimization) of WOMBAT-lite. Annual means are
shown here for illustration purposes, but monthly resolution was used for all products except the Primary Limiting Nutrient dataset (Browning
and Moore, 2023). Boxes in maps of surface nitrate (NO3) and the air-sea flux of carbon dioxide (CO5) encapsulate the specific regions of
focus when assessing model performance and optimization, being between 20° S and 20° N for surface NO3 and south of 20° S for air—sea

CO; fluxes. CO, fluxes out of the ocean are positive.

nitrogen and iron as limiting (excluding phosphorus) and as-
cribe nitrogen limitation, iron-nitrogen co-limitation and iron
limitation as equal to 1.0, 1.5 and 2.0, respectively. This is
compared directly to the degree of limitation by the model,
which varies continuously from strong nitrogen limitation to
strong iron limitation (1.0 to 2.0). Although the model does
not include co-limitation as a process, simulated values be-

Biogeosciences, 22, 5349-5385, 2025

tween 1.0 and 2.0 can represent seasonal variations between
nitrogen and iron limitation over an annual timescale.

While we recognize that these datasets are themselves sub-
ject to uncertainty, their combination allows for a powerful
model assessment. Furthermore, our assessment focuses on
the reproduction of large-scale, seasonal patterns. It is also
worth noting that having too many target fields compounds
the difficulty associated with parameter optimization, while

https://doi.org/10.5194/bg-22-5349-2025
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having too few risks poor performance in unconsidered tar-
gets. Target fields must therefore be chosen carefully. All
gridded datasets as well as the particle flux database are re-
solved on a global 1° by 1° grid and on a monthly tempo-
ral resolution, while the primary limiting nutrient for phy-
toplankton, due to data paucity, is represented annually (un-
changing in time).

2.3.2 Sensitivity experiments for evaluation and
surrogate model training

Our first goal was to understand which parameters in
WOMBAT-lite were most important for model performance.
We undertook 512 simulations that each sampled randomly
from predefined ranges of 24 key parameters related to the
ecosystem component of the model (Table 1, Fig. 1) using a
quasi-Monte Carlo Sobol sequence (see Sect. 2.4). A total of
512 experiments were selected because this was enough for
training the surrogate machine learning model to an accept-
able standard (Fig. S1 in the Supplement). Each experiment
carried a unique biogeochemical parameter set that altered
the biogeochemical behavior, but all experiments had identi-
cal physical conditions and initial conditions. Physical fields
were initialized from a previous spin-up with the same ocean
model (Kiss et al., 2020) forced by JRAS55-do (Tsujino et
al., 2018). We used a repeat “normal” year forcing of the
JRAS55-do to avoid inter-annual variability and extremes in
climate modes (Stewart et al., 2020). Atmospheric CO, was
maintained at 315.2 ppm (i.e., levels at calendar year 1958).
NOs3, dFe, O;, DIC and Alk fields were initialized from glob-
ally gridded datasets for the month of December (Garcia
et al., 2024a, b; Huang et al., 2022; Lauvset et al., 2016).
Concentrations of phytoplankton, zooplankton, detritus and
CaCOs3 were initialized at globally homogenous values of
0.1 mmol Cm~3. Fe : C ratios of phytoplankton, zooplank-
ton and detritus were initialized at 7 yumolmol~!. Chloro-
phyll was initialized at 0.004 mg mg~! of phytoplankton car-
bon biomass.

We chose to run the experiments for only 10 years, mak-
ing a total of 5120 model years, and at a nominal horizontal
resolution of 1°. This short timescale was sufficient to as-
sess the skill of the biogeochemical model, at least regarding
its ecosystem component. Marine phytoplankton contribute
half of all primary production in the Earth system (Field,
1998) but represent less than 1 % of photosynthetic biomass
(Friedlingstein et al., 2023; Le Quéré et al., 2005), meaning
that they turn over quickly. Changes to key parameters within
the ecosystem component therefore result in a rapid realiza-
tion of different patterns in biological states (e.g., chlorophyll
and net primary production, among others). Our analyses and
optimization thus focus on the ecosystem component and
the upper ocean using 10-year model runs. We do acknowl-
edge that longer-term, low-frequency modes of variation ex-
ist in biogeochemical models, and to partially address this we
completed 100-year simulations with 20 optimal parameter
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sets. We note that longer integrations risk the compounding
of physical and biogeochemical model errors as the physical
state drifts further from the observations, even when applying
a repeat climatological atmospheric forcing. Our optimiza-
tion therefore does not counteract the potential for long-term
drift but does provide some guardrails against rapid devia-
tions from the initial state with respect to dissolved nutri-
ent and carbon fields. Optimization of the biogeochemistry
under these conditions can cause over-tuning of the biogeo-
chemical parameter set that compensates for physical errors
(e.g., Singh et al., 2025). However, by assessing the cost
function after 100 years and selecting the best performing
of the optimal experiments we likely select for a parameter
set with minimal long-term drift.

2.3.3 Measures of performance

Output from the final year of the experiments (year 10)
was compared directly to the target datasets (Fig. 3). Uni-
variate measures of performance were calculated, including
the correlation coefficient (Pearson’s), root mean square er-
ror, global mean bias and the normalized standard deviation
(Stow et al., 2009). These were calculated across all grid
cells and time points. For surface NO3 concentrations, we
only calculated these statistics between 20°S and 20°N to
focus on achieving a realistic transition of higher concen-
trations to lower concentrations from the equatorial to sub-
tropical biome. We stress that fidelity in extra-tropical re-
gions was captured independently via the limiting nutrient
dataset. Also, surface NO3 in the equatorial region is highly
responsive to changes in the ecosystem component due to
warmer temperatures that accelerate metabolism. After only
10 years our simulations diverged most in this region. Addi-
tionally, surface NO3 concentrations were logjg transformed
prior to calculating the measures of performance due to a
skewed distribution towards very low values. This substan-
tially improved the ability of our optimization approach to
select parameters that reproduced the high-NOs tongue in
the equatorial region (see below). For air—sea fluxes of CO;,
we assessed model performance exclusively in the Southern
Ocean south of 20° S. This region was also highly sensitive
to the parameterizations of the model, showing positive or
negative fluxes depending on our parameter set and aligning
with findings that biological activity in this region is of high
importance for model skill (Mongwe et al., 2018).

2.4 Details of the sensitivity analysis and model
optimization

2.4.1 Global sensitivity analysis
Sensitivity analysis (SA) methods are broadly categorized
into local and global approaches. Local SA examines how

small perturbations in parameters around certain reference
points affect outputs, making it computationally feasible and
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Table 1. Key ecosystem parameters for WOMBAT-lite and their predefined ranges for ocean-only experiments. Parameter values for other
configurations, including for the Earth system model (ACCESS-ESM1.6), are available at https://github.com/ACCESS-NRI (last access: 1

September 2025).
Component Parameter A priori range  Default (optimal range) ~ Description Units Reference
Phytoplankton oy 0.25-1.25 1.0 (0.89-1.16)  Scaler control on a-! Anderson et al. (2021a)
phytoplankton maximum
growth rates
B 1.040-1.080 1.050 (1.041-1.063)  Base for - Anderson et al. (2021a)
temperature-dependent
autotrophy
p1° 1.5-3.0 2.25 Initial slope of the (Wm~2)~! (mg Chl mg cH-! Maclntyre et al. (2002)
photosynthesis—irradiance
curve
b pfwesh 0.01-1.0 0.6 (0.48-0.94)  Biomass threshold of mmol C m~3 -
phytoplankton for implicit
allometric scaling
KéVO 0.01-3.0 2.0 (1.04-2.30)  Half-saturation coefficient mmol Nm™3 Litchman (2007)
for nitrogen uptake
Kg Feo 0.01-3.0 2.5(2.07-2.97) Half-saturation coefficient umol Fe m—3 Shaked et al. (2020)
for dissolved iron uptake
Fe
Qg ¢ 20-100 50 (39-64) Maximum Fe : C quota of umol Fe (mol C)’1 Twining et al. (2021)
the cell
Fe
Q; ¢ 4-15 10 Optimal Fe : C quota of the ~ umol Fe (mol o)! Twining et al. (2021)
cell
,Chl
Qp ¢ 0.001-0.01 0.004  Minimum Chl : C quota of mg Chl (mg C)’1 Geider (1987)
the cell
Chl
o* T 0.02-0.06 0.036 (0.020-0.038)  Optimal Chl : C quota of mg Chl (mg C)_l Geider (1987)
the cell
)/19 0.01-0.10 0.01 (0.010-0.016)  Linear mortality rate of a1 Baker and Geider (2021)
phytoplankton
o 0.01-0.10 0.05 Quadratic mortality rate of ~ (mmolCm~3)~!d~! Suttle (1994)
phytoplankton
Zooplankton gh 2.0-4.0 3.0  Scaler control on a1 Rohr et al. (2022)
maximum zooplankton
grazing rate
& 0.05-1.5 0.05 (0.05-0.15)  Zooplankton prey capture (mmol Cm—3)=24~! Rohr et al. (2022)
rate coefficient
C¢§ 1.0 1.0 Preference of zooplankton - N/A
for phytoplankton
¢>§i 0.01-0.50 0.25  Preference of zooplankton ~ — N/A
for detritus
1 0.6 0.6  Zooplankton assimilation - Anderson et al. (2021b)
efficiency
)/ZO 0.01-0.10 0.05 Linear mortality of a1 Anderson et al. (2021b)
zooplankton (respiration)
K%/ 0.01-0.5 0.25  Half-saturation coefficient mmol Cm 3 N/A
of zooplankton mortality
r? 0.1-1.0 0.9 (0.61-0.99)  Quadratic mortality rate of ~ (mmolm~3)~1d~! N/A
zooplankton (predation)
Bn 1.060-1.080 1.065 (1.060-1.075)  Base for - Chen et al. (2012)
temperature-dependent
heterotrophy
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Table 1. Continued.
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Component ~ Parameter A priori range  Default (optimal range)  Description Units Reference
Detritus a)g 5-20 18 (12.7-19.9)  Scaler to sinking speed of md~! De La Rocha and Passow (2007)
detritus
o™ 20-50 35  Maximum sinking speed of md~! De La Rocha and Passow (2007)
detritus
yg 0.025-0.1 0.09 (0.064-0.099)  Linear rate of (implicit) d-! del Giorgio and Cole (1998)
bacterial remineralization
R cacoy 0.01-0.15 0.050  CaCOg to organic detrital mol Cmol C~1 Lehmann and Bach (2025)
detritus ratio
w(()IaCO; 3-10 6.0  Scaler to sinking speed of md! Pantorno et al. (2013)
’ CaCO3
yg 2C0; 0.0005-0.01 0.01  Scaler control on (implicit) d-! Kwon et al. (2024)
CaCO3 dissolution rate
Iron cycling ~ “Lig 0.7 0.7  Concentration of umol m—3 Johnson et al. (1997)
Fe-binding organic ligand
CKEop 0.01 0.01  Precipitation of Fe’ as a-! Tagliabue et al. (2023)
nanoparticles (in excess of
solubility)
ckke, 0.00005 0.00005  Scavenging of Fe/ onto (mmolCm~3)~1d~!  Tagliabue et al. (2023)
biogenic particles
ckFe 0.0001 0.0001  Coagulation of dissolved (mmolCm~3)~1d~1  Tagliabue et al. (2023)

coag

Fe into colloidal Fe

2 Parameter variations not included in initial sensitivity experiments for sensitivity analysis (steps 3—6 in Fig. 1). Only in optimization (steps 7-10 in Fig. 1).
b Parameter range was set equal to 0.01 to 0.1 in the initial sensitivity experiments for sensitivity analysis (steps 3—6 in Fig. 1).

€ Parameter space not explored.

widely used (Rakovec et al., 2014). However, for models
where parameters interact or have non-linear impacts on
the outputs, local SA can introduce substantial bias, un-
derestimating parameter importance (Saltelli et al., 2019).
The model parameters in this study are anticipated to ex-
hibit complex, non-linear interactions influencing the outputs
(Denman, 2003; Fennel et al., 2022; Matear, 1995; Ward et
al., 2010), thus justifying the use of global SA to capture
these dynamics accurately. One of the most effective global
SA methods, Sobol sensitivity analysis, is widely adopted
due to its precision in addressing interaction effects, discon-
tinuities and non-linear influences of parameters on model
outputs (Baki et al., 2022; Reddy et al., 2024b). Based on the
Hoeffding—Sobol decomposition, Sobol SA leverages anal-
ysis of variance (ANOVA) to decompose output variance
into contributions from individual parameters, interactions
between parameter pairs and so on across increasing levels
of dimensionality (Saltelli et al., 2010; Sobol’, 2001). Sobol
sensitivity indices, representing the importance of parame-
ter interactions in the context of total output variance, are
then computed by evaluating ratios of these variances. Per-
forming Sobol SA on the WOMBAT-lite outputs requires
extensive parameter sampling, a computationally expensive
task. To efficiently manage this, we use a surrogate Gaussian
process regression (GPR) model (Williams and Rasmussen,
1995, 2006), which is trained on a limited number of runs
(sensitivity experiments; Sect. 2.3.2; visualized in Fig. 1).
The GPR model, designed for accuracy, provides predictions

https://doi.org/10.5194/bg-22-5349-2025

over a large sample space, allowing SA to be performed with-
out extensive and computationally unfeasible simulations.
The analysis focuses on the target fields detailed in Fig. 3
and Sect. 2.3.1. To generate the 512 sensitivity experiments
required to train the surrogate machine learning model, a
quasi-Monte Carlo Sobol sequence is applied to generate
512 parameter samples using the Uncertainty Quantification
Python Laboratory package (UQ-PyL; Wang et al., 2020).
Simulations are then run with these parameter samples, and
the relative root mean square error (fRMSE) values are cal-
culated by comparing the model outputs with observational
data in space and time. The rRMSE is then normalized
(NRMSE) via min—max scaling. A sample size of 512 is
selected based on the sample size sensitivity experiments
(Fig. S1). Next, GPR models are trained for each observa-
tional target using these parameter samples as inputs and
the NRMSE as the output. NRMSE was chosen as a met-
ric of performance because of our diversity of target fields,
each with different units, which required normalization to en-
sure that each contributed equally to an assessment of global
performance. K-fold cross-validation is used to evaluate the
GPR model’s accuracy, and we chose 8 folds (K = 8) to
cleanly divide the 512 experiments and provide a balance be-
tween sufficient training (448) and testing data (64) (Reddy
et al., 2024a). The data are split into K folds, and the model
is trained on K — 1 folds, with the left-out fold serving as
the test set. This is repeated across all folds, and predictions
are aggregated. The GPR model accuracy is assessed through
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the goodness-of-fit (R?) metric by comparing GPR predic-
tions of NRMSE with WOMBAT-lite NRMSE data, which
indicates high accuracy (Fig. S2). Using this validated GPR
model, NRMSEs for 53 248 new parameter samples (gener-
ated via Sobol sequence) are predicted for each target field
(all eight), consistent with methods from previous studies
(Baki et al., 2022; Reddy et al., 2024b). Finally, Sobol sen-
sitivity indices are calculated based on these predictions for
all eight target fields, offering insight into the relative influ-
ence of each parameter on the ability of WOMBAT-lite to
reproduce the targets.

2.4.2 Parameter optimization

Following sensitivity analysis, which identified the most im-
portant parameters for model performance (NRMSE) of the
eight target fields, we performed parameter optimization
(Fig. 1). This study uses Gaussian process regression-based
Bayesian optimization (G-BO) (Reddy et al., 2024a) to iden-
tify the optimal parameter distributions so that WOMBAT-
lite can best reproduce the eight target fields simultaneously.
The process begins by generating another 512 parameter
samples via the same quasi-Monte Carlo (QMC) Sobol se-
quence design implemented through the UQ-PyL package
(Wang et al., 2020). This set of 512 sensitivity experiments is
different from those generated during the sensitivity analysis
because we now use a reduced set of only the most impor-
tant parameters, which also provides a denser sampling of
the parameter space essential for the G-BO process (Reddy
et al., 2024a). These 512 sample parameter sets are used as
input to WOMBAT-lite, and the model is run forward for 10
years (see above). A sample size of 512 is selected based on
the sample size sensitivity experiments (Fig. S3). Then, the
GPR surrogate model, trained on these 512 samples, predicts
a normalized cost function for each target field,

J= (1 - "x,y,t) -NRSME, , ;, 1)

where J is the cost function for a given target field,
NRSMEy ,, is the normalized root mean square error
(scaled by the max—min, such that the worst experiment has
an NRMSE of one, and the best is zero), and 7y, is Pear-
son’s correlation coefficient evaluated across all longitude
(subscript x), latitude (subscript y) and time (subscript )
points (time in this case being monthly in resolution). Unlike
the sensitivity analysis that measured model performance
purely via the NRMSE, this cost function also penalizes poor
correlations. Rather than optimize for the parameters that
best reproduce each target field in isolation, we chose to op-
timize to a global cost function

8 8
Y um= Y ((1_r)ﬁ’f}),,,)NRMSE,(C’f;,,), )

(n)=1 (n)=1

where superscript n is the nth target field. Therefore, we se-
lect parameter sets that optimize overall model performance
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by summing the prediction errors from all eight surrogate
GPR models. Using a composite kernel — constant, Matérn
and white noise kernels with hyperparameters guided by
previous work (Reddy et al., 2024a) — the GPR model ac-
curately predicts the normalized cost function values, con-
firmed by R? scores > 0.8 from K-fold cross-validation
(K =38) (Fig. S4). The trained GPR model is then used to
estimate the normalized cost function value for optimization
purposes. Although expected, we note that the predicted cost
functions using the GPR models are not completely orthog-
onal, with some being well correlated (Fig. S5), indicating
that the optimization of parameters towards one target field
will affect other target fields.

Bayesian optimization enables iterative learning of opti-
mal model parameters using observational data. Here, we ap-
ply uniform priors under the assumption that there is equal
probability of the optimal values falling anywhere between
what are known lower and upper bounds (Table 1). The pri-
ors are normalized from O to 1 via max—min scaling, and
the normalized cost function value predicted by the GPR
model serves as the likelihood function (Reddy et al., 2024a).
Since computing marginal likelihood directly is often com-
plex, Markov chain Monte Carlo (MCMC) sampling is em-
ployed, which estimates the posterior distribution without ex-
plicit calculation of this constant (Issan et al., 2023). Normal-
ization of priors between 0 and 1 ensures more efficient ex-
ploration of the high-dimensional parameter space (i.e., bet-
ter “mixing”) and therefore more reliable convergence, while
normalization of the cost functions ensures equal weighting
of each target field to the solution. Among MCMC meth-
ods, affine invariant ensemble sampling, implemented us-
ing the “emcee” Python package (Foreman-Mackey et al.,
2013), is selected for its efficient convergence properties.
This method uses an ensemble of chains to simplify sampling
from anisotropic distributions. Fifty walkers and a stretch
move of two are applied, with the first 10 000 steps used as
a burn-in phase to ensure convergence, followed by 90 000
additional steps to achieve stable posterior distribution esti-
mates (Foreman-Mackey et al., 2013; Goodman and Weare,
2010). This substantial burn-in phase converts our uniform
priors into distributions that look more like the posterior
(Foreman-Mackey et al., 2013). In total, 90000 steps for
each of the 50 walkers means a total of 4500000 random
walks, and with a mean autocorrelation time of 690 steps,
we achieve 6500 independent samples of the posterior. This
number of samples, made possible by the efficiency of the
surrogate GPR model, is more than sufficient for conver-
gence. Convergence was also evident by a mean acceptance
fraction of 0.22 (Foreman-Mackey et al., 2013), a Gelman—
Rubin statistic of between 1.005 and 1.009 for each parame-
ter, and visual assessment of the chains (Fig. S6).
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3 Results
3.1 Performance

The 512 sensitivity experiments, each with a unique param-
eter set (Table 1), produced 512 unique realizations of bio-
geochemical and ecosystem dynamics. We compared year 10
of the experiments at all grid cells and at monthly tempo-
ral resolution with the target datasets (i.e., the observations).
The skill of these simulations ranged widely (Fig. 4, Ta-
ble 2). Global surface chlorophyll showed the greatest vari-
ation, ranging in correlations from —0.45 to 0.8, followed
by the primary limiting nutrient of phytoplankton growth
(—0.29 to 0.82) and the depth of the chlorophyll maximum
(—0.25 to 0.69). Most experiments underestimated the vari-
ability in surface chlorophyll, and many produced surface
chlorophyll concentrations that were low compared with the
observation-based product. Unlike surface chlorophyll, there
was too much variation in the depth of the chlorophyll max-
imum, and many experiments had chlorophyll maxima that
were positioned too deep (i.e., positive bias).

For the air-sea flux of CO; in the Southern Ocean (20—
90°S) and the depth-integrated rate of net primary produc-
tion, our simulations showed a narrow range of correla-
tions between O and 0.5. The narrower range potentially
reflects the identical physical state across our experiments,
which strongly influences air—sea gas exchange and nutri-
ent delivery to the surface. For net primary production,
the weaker correlations might reflect significant errors in
the observation-based products themselves (Westberry et al.,
2023) that limit the potential for agreement. Like chloro-
phyll, net primary production showed a negative bias in many
experiments and a chronic inability to capture the observed
magnitude of variations. The same general underestimation
of values and variability was the case for the sinking flux
of detritus. No experiment was able to reproduce the ob-
served spatiotemporal variations in sinking detrital flux, al-
though this is perhaps expected given that this dataset cap-
tures higher-frequency variations in particle flux that are lost
in a coarse-resolution model.

For surface dFe, the experiments produced correlations
ranging from —0.13 to 0.52, and thus the best-performing
experiments compared well with other biogeochemical mod-
els (Huang et al., 2022). Finally, the primary limiting nutri-
ent of phytoplankton growth (i.e., nitrogen or iron) showed
biases and correlations ranging from negative to positive, in-
dicating that some were too nitrogen-limited, some were too
iron-limited, and some performed well.

3.2 Global sensitivity analysis
Global sensitivity analysis with our first set of 512 experi-
ments and supplemented by the surrogate machine learning

model revealed that the overall performance of WOMBAT-
lite was sensitive to 11 of the 24 parameters tested, based
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on an arbitrary threshold of a 5 % contribution to variation
(Fig. 5). These were the scaler on the maximum growth
(o) and linear mortality rates of phytoplankton (yg)), the
half-saturation coefficients for phytoplankton uptake of dFe
Fe
(KSFC) and NO3 (KE)\I), the maximum quota of iron (Q;,/C )

Chl
and optimal quota of chlorophyll (Q; €), the prey capture

rate coefficient of zooplankton (&) and their quadratic mor-
tality rate (I‘g), the sinking (a)g) and remineralization (y(?)
rate of detritus, and the temperature sensitivity of heterotro-
phy (Bn). The initial slope of the photosynthesis—irradiance
curve (PI%) was not included because it fell just below the
5 % threshold (shown rounded up in Fig. 5b) in its higher-
order effects. For each of the eight target fields, typically
only a few of these key parameters were influential. We step
through these parameters here.

All target fields were highly sensitive to the phytoplankton
maximum growth rates («,) and their linear mortality (yg)
(Fig. 5). Of these, only the depth of the chlorophyll max-
imum and surface dFe concentrations were sensitive to o,
and yI? via interactive effects with each other or other vari-
ables (i.e., higher-order interactive effects). All other target
fields were directly affected by these parameters, making o,
and )/19 master parameters with largely predictable effects for
controlling the performance and output of WOMBAT-lite.
For example, while the air—sea flux of CO, in the Southern
Ocean (south of 20° S) was sensitive to several parameters,
the model’s ability to reproduce the observations was primar-
ily controlled by the ability of phytoplankton to accumulate
biomass rapidly in the spring and summer. If yr? was too high,
then too much biomass was lost over the winter, causing a lag
in the spring bloom. If oy was too low, then the bloom would
be too weak. The link between CO; ingassing in the summer
and the phytoplankton bloom also meant that the prey cap-
ture rate coefficient of zooplankton (¢), the half-saturation
coefficient for dFe uptake by phytoplankton (K SFe) and the

sinking rate of detritus (a)g) were also important controls on
CO; fluxes in the Southern Ocean.

Surface NO3 concentrations in the tropics (20° S-20° N),
depth-integrated net primary production and the sinking flux
of detritus were all affected by similar parameters. After o,
and yp?, the parameters of influence were the sinking and

remineralization rates of detritus (a)g and y(? ). Elevated sink-
ing rates and decelerated remineralization both deepen the
nitracline by stripping more NO3 out of the upper ocean and
shrinking the large tongue of high-NOs water that spreads
west across the equatorial Pacific. Surface NO3 in the equa-
torial band was also marginally affected by the temperature
sensitivity of heterotrophy (8h), which amplifies remineral-
ization rates (set also by y(?) in warmer waters and so can
increase substantially how much detritus is returned to inor-
ganic nutrients.

Two key parameters controlling the model’s ability to re-
produce surface dFe (after o, and Vr?) and the primary lim-
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Figure 4. Performance of the 512 sensitivity experiments with WOMBAT-lite against the 8 key observational targets. Taylor diagrams
(Taylor, 2001) represent the agreement between a dataset and the target (red dot) by visualizing the dataset in terms of its correlation (radii),
normalized standard deviation (x and y axes) and the centered root mean square error (dashed gray contours). We also color each experiment

by its global mean bias. Positive bias in the Southern Ocean air—sea

flux of CO, signifies too much outgassing or not enough ingassing.

These statistics were computed on the global 1° by 1° grid at monthly resolution, except the Primary Limiting Nutrient dataset, which was

computed as an annual mean.

iting nutrient dataset were the half-saturation coefficient for
dFe uptake (K SFC) and the maximum Fe : C quota of phyto-

n%e N
plankton (@, €). Variations in these parameters had strong
interactive effects. Elevating iron quotas increased the ability
of phytoplankton to take excess dFe into their biomass, re-
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duced surface dFe concentrations and strengthened iron lim-
itation as more Fe-rich biomass was exported as sinking de-
tritus. However, if we also increased the half-saturation coef-
ficient of dFe uptake, this slowed phytoplankton luxury up-
take of dFe and made them less likely to achieve high intra-
cellular Fe : C quotas. As such, setting higher Fe : C quotas
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Table 2. Performance ranges of experiments for key observations. Minimum and maximum values of correlations, normalized standard
deviations and bias across all 512 sensitivity experiments. Surface NO3 was logjq transformed. NO3: nitrate; dFe: dissolved iron; CO5:

carbon dioxide; POC: particulate organic carbon.

Observation Correlation  Normalized standard deviation Bias
Surface NO3 (20° S-20° N) (uM) 0.20]0.66 0.091]1.30 —2.14]1.33
Surface dFe (nM) —0.13]0.52 1.15]2.51 —0.10]0.27
Surface chlorophyll (mg m~3) —0.4510.80 0.01]1.41 —0.27]10.21
Depth of the chlorophyll maximum (m) —0.2510.69 0.89|5.19 —49.4|271.4
Depth-integrated net primary production (mg C m~2 d—h 0.02]0.49 0.002.26 —456 1325
Air—sea flux of CO; (20-90° S) (mol C m—2 yr’l) 0.03]0.44 1.01]1.73 —1.40]0.26
Primary limiting nutrient (1 =N, 2 =Fe) —0.2910.82 0.00]1.01 —0.4610.51
Sinking flux of POC (mg C m~2d~1 0.08]0.59 0.0010.79 —27.616.2

had little effect on surface dFe concentrations when KSFC
was high. On the other hand, setting high Fe : C quotas can
have a substantial effect on dFe concentrations when KgFe is
low. For the primary limiting nutrient dataset, however, we
found that increasing both Fe : C quotas and KgFe elevated
dFe limitation regardless of what happened to the dFe con-
centrations.

Performance in surface chlorophyll was the most interde-
pendent metric, meaning that many parameters were influ-
ential. In addition to the master parameters of o, and yg,

surface chlorophyll was affected by the maximum Fe: C
Fe

quota (ng), the half-saturation of dFe uptake (KSFC), the

maximum quota of chlorophyll to carbon in phytoplankton
Chl

(Qg '©), the prey capture rate coefficient of zooplankton (&)
and marginally the quadratic mortality coefficient of zoo-
plankton (F(Z)). Thus, 7 of the 11 important parameters were
influential. The fact that many parameters were crucial for
determining the performance of surface chlorophyll reflects
that a delicate balance between phytoplankton growth and
mortality must be struck to reproduce overall biomass.
Finally, the depth of the chlorophyll maximum was over-
whelmingly influenced by o, and yp? , with weaker influences

from the half-saturation coefficient for nitrogen uptake (K 11)\1 ),
Fe Chl
cell quotas of iron and chlorophyll (Qg € and Q;,/ €), and pa-

rameters related to the sinking and remineralization of detri-
tus (B, a)g and y(?). All these parameters affected the depth
of the nitracline in direct and indirect ways, to which the
depth of the chlorophyll maximum was strongly linked. In-
creasing o, while simultaneously decreasing yg, for exam-
ple, would cause an accelerated deepening of the nitracline
since phytoplankton consume more nutrients but can also
survive for longer under light limitation at depth.

3.3 Parameter optimization

Our optimization procedure involved another 512 experi-
ments that varied 13 parameters: the 11 parameters identified
in the sensitivity analysis plus 2 additional parameters that
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were missed by our sensitivity analysis. The additional two
parameters included wider variations in the biomass thresh-
old of phytoplankton for allometric scaling (B[t,hr“h) from
0.01 to 1.0 (previously this had been varied from 0.01 to
0.1), as well as variations in the base scaler of temperature-
dependent autotrophy (8,), which was previously held con-
stant during the sensitivity experiments at a value of 1.066
(Q10 = 1.89), following Eppley (1972) but has nonetheless
been shown to vary between phytoplankton types (Anderson
et al., 2021a). We took the opportunity during the optimiza-
tion to vary these parameters. In our optimization step, we
explored a range of 1.040 to 1.080 (Q1¢ from 1.48 to 2.16)
in 8, motivated by the results of Anderson et al. (2021a). All
remaining, insensitive parameters were held at their default
values (Table 1). Thus, we explored variations in 13 parame-
ters (11 parameters from the sensitivity analysis and 2 addi-
tional parameters) and sought their optimal values for best
reproducing the 8 target fields (Fig. 3) by minimizing the
global cost function (Eq. 2). The 512 experiments were used
to train the surrogate GPR model to reproduce the global cost
function, and this training was then used to synthetically es-
timate the optimal parameter values.

We identified posterior distributions of each of the 13 pa-
rameters from which optimal values could be chosen (Fig. 6).
Optimal values for each of these parameters and their 95 %
confidence interval range are detailed in Table 1. For most
of the parameters, the probability distributions showed peaks
away from the edges of the predefined ranges, suggesting
that our a priori ranges were sufficiently wide to capture the
optimal values. For the scaler on maximum growth rates of
phytoplankton (), for instance, the model predicted opti-
mal values with 95 % confidence between 0.89 and 1.16d ™!,
a range that sits within our a priori range of 0.25 to 1.25d~!
(Table 1) and suggests that the rapid accumulation of biomass
during the growth season is crucial for model performance.
We also note that the model predicted optimal values that
often aligned well with ecological theory. Higher values of
KgFe over Kgf (half-saturation coefficients for uptake) re-
flect the lesser bioavailability of dFe relative to that of inor-
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Figure 5. Sensitivity of WOMBAT-lite performance to variations in the parameters listed in Table 1. Performance is measured by the root
mean square error (RMSE), which is normalized here by the full range (max—min scaling). First-order indices are a direct individual effect
of a parameter on the target field, while higher-order indices indicate that interaction effects with other parameters are important. First-order
indices sum to at most one for a given target field, while first-order + higher-order indices sum to at least one. If there are no interaction
effects, then higher-order effects are nil. Darker colors indicate a greater sensitivity of a target field to the parameter in question. In (a) we
show first-order sensitivities and in (b) the higher-order sensitivities, otherwise referred to as an interaction effect, where the effect on the
target is dependent on the variations in other parameters. Note that the parameter 8; was not included at this stage but only later during the

optimization process (steps 7-10 in Fig. 1).

ganic nitrogen due to its complexation with organics (Shaked
et al., 2020; Tagliabue et al., 2017). Fidelity to observa-
tions was also better when the temperature sensitivity of au-
totrophy (B8,) was much lower than the temperature sensi-
tivity of heterotrophy (), consistent with ecological theory
on metabolism (Brown et al., 2004) and experimental data
(Chen et al., 2012).

Optimal values for two parameters were predicted at
the lower edge of their range (Fig. 6). These were the
linear mortality rate of phytoplankton at 0°C (yl?) and
the prey capture rate coefficient of zooplankton (¢), for
which the optimal values were predicted at 0.01d~! and
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0.05 (mmol Cm—3)~2d~!, respectively (Table 1). Given that
y[(,) was strongly influential to the ability of WOMBAT-lite to
reproduce all eight of our target fields, it is likely that lower
values of this parameter than explored herein would produce
a better fit to the observations. Rates of mortality consider-
ably lower (< 0.001 d~1) than the lowest value in our a pri-
ori range (0.01 d~!) were observed in phytoplankton cultures
grown within their thermal niche (Baker and Geider, 2021).
However, mortalities also increase severely at higher temper-
atures (Baker and Geider, 2021), and our choice of higher
values in our a priori range was motivated by an attempt
to account for the small proportion of phytoplankton taxa
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Figure 6. Optimal probability density functions of 13 important parameters. Optimization involved minimizing the global (summed) cost
function (Eq. 2) of model performance across the eight target variables shown in Fig. 3. We show normalized distributions of each parameter
here and refer the reader to the ranges (a priori and optimal) shown in Table 1 for their actual values. Vertical dashed lines denote 95 %
confidence intervals. Parameters are organized according to whether they control phytoplankton, zooplankton or detritus.

placed above their thermal niche or affected by other sources
of environmental stress at any given time. The fact that our
optimization always chose the lowest values (near 0.01d~")
perhaps suggests that, at least with our simple model, the pro-
portion of the community that is stressed is lower than ini-
tially assumed. Similarly, optimal values of ¢, the zooplank-
ton prey capture rate coefficient, tended towards the lowest
of our predefined range. This parameter was a strong con-
trol on the model’s ability to reproduce the observed surface
chlorophyll and the summer uptake of CO, in the South-
ern Ocean (Fig. 5). Values less than 0.05 (mmol C m3)~2d-!
suggest grazing pressure more in line with a zooplankton
community with a large representation of mesozooplankton
(Rohr et al., 2022). This type of community is typical for
eutrophic and high-latitude regions but may not be represen-
tative of zooplankton grazers in the oligotrophic gyres (Rohr
et al., 2024). Importantly, the lower grazing pressure associ-
ated with this type of zooplankton community would allow
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phytoplankton growth during the spring to outpace zooplank-
ton grazing for longer, which we note again was important
for achieving summer CO; uptake in the Southern Ocean.
While we cannot say whether an expanded range would have
selected for even lower values, we note that a value near
0.05 (mmol Cm?)~2d~! sits at the global median of empiri-
cal estimates across a large range of zooplankton taxa (Rohr
et al., 2022).

3.4 Outcomes
3.4.1 Finding the optimal parameter set

After our optimization, we chose 20 randomly sampled pa-
rameter sets from the optimal posterior distributions shown
in Fig. 6 and ran WOMBAT-lite forward for 10 years from
initial conditions. These optimal versions of WOMBAT-lite
show good fidelity to the target fields, with all registering
good performances in terms of the global cost function that
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were as good as or better than the best of the 512 sensitiv-
ity experiments for the majority of the target fields (compare
yellow and gray bars in Figs. 7, S6). Continuing to run the
model forward for 100 years post-initialization showed some
degradation in the performance (red bars in Fig. 7). This is
expected, since our optimization procedure was trained on
model output only 10 years post-initialization due to compu-
tational constraints. Model outcomes drift further away from
the target fields with longer integrations. Lower-frequency
variability and trends are thus missed by the optimization
but are nonetheless present in the biogeochemical model, and
these play out as the model is integrated forward for longer.
After 100 years, we chose our best performing parameter
set, detailed in Table 1 (red star in Fig. 7). This experiment
showed good performance across all observational metrics in
its 100th year, and we hereafter show output from this exper-
iment.

3.4.2 Performance improvements

A key challenge in model development is that the addition
of new processes can degrade performance if the new pro-
cesses are implemented poorly and/or if these processes have
complex interactive effects once introduced. Our sensitiv-
ity analysis and optimization procedure provided a means to
constrain both the effects and values of the WOMBAT-lite
parameter set so that any advances in functionality are ac-
companied by an improvement in performance. We take the
opportunity to compare the optimized WOMBAT-lite with
a prior version that did not undergo this same optimization
process but was nonetheless tuned manually (Appendix Al)
and run under the same conditions and without the func-
tional improvements described in Appendix A2. The opti-
mized WOMBAT-lite shows a better tropical distribution of
surface NO3 (Fig. 8a—c); lower concentrations of dFe at the
surface (Fig. 8d-f); and, consequently, the appearance of
iron-limited regimes for phytoplankton growth in the South-
ern Ocean, subarctic North Pacific and Atlantic, and east-
ern equatorial Pacific as well as the upwelling centers of the
Benguela, Arabian and Canary current systems (Fig. 8s—u).
Note that the surface dFe distribution shown in Fig. 8 is of the
annual average, which includes higher concentrations caused
by winter mixing (Tagliabue et al., 2014b), whereas much of
the observations will have been taken during the polar sum-
mer, when dFe concentrations are drawn down by biology.
WOMBAT-lite also shows a 50 % increase in globally inte-
grated net primary production (from 18.5 to 27.9PgCyr~!)
compared to the previous unoptimized version and less dif-
fuse peaks of primary production in the highly productive
upwelling zones, consistent with observations (Fig. 8m-o).
The increase in primary production combined with the spa-
tially variable sinking scheme, which includes a linear in-
crease in sinking speeds with depth, likely contributed to ele-
vating the flux of detritus into the deep ocean (Fig. 8v—x). We
note, however, that any improvements to sinking of detritus
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are marginal, and deep-ocean organic particle fluxes are still
underestimated, likely because WOMBAT-lite still underes-
timates globally integrated net primary production (Buiten-
huis et al., 2013) and stocks of sinking detritus (Fox et al.,
2024). In the annual averages presented in Fig. 8, there is lit-
tle obvious change in air—sea CO; fluxes, but this hides com-
pensating improvements in the seasonality, which we detail
in Sect. 3.4.4. Finally, WOMBAT-lite shows good agreement
with surface chlorophyll and the broad patterns in the depth
of the chlorophyll maximum (Fig. 8g—1), although the chloro-
phyll maxima are situated too deep in the subtropical gyres
and are too shallow in the Southern Ocean. We note that in
places where the chlorophyll maxima appear very shallow in
the subtropical gyres is where chlorophyll concentrations are
so low as to not form any appreciable maximum at depth,
essentially where the nitracline is so deep as to be placed in
darkness.

3.4.3 Phytoplankton bloom phenology

A major update to WOMBAT-lite has been the inclusion
of prognostic chlorophyll-to-carbon ratios within its phy-
toplankton functional type. This allows for direct compar-
ison with remotely sensed chlorophyll products, includ-
ing those that investigate the phenology of phytoplankton
blooms (Nicholson et al., 2025). WOMBAT-lite was not op-
timized for its representation of phytoplankton phenology
but nonetheless performs well with respect to the timing
of its annual blooms (Fig. 9a, b). The model captures the
sharp change in bloom initiation (using the cumulative sum
method) between the subtropical and subpolar regimes in
both hemispheres, with autumn—winter subtropical blooms
and spring—summer polar blooms. WOMBAT-lite also shows
a general increase in the duration of its blooms in the trop-
ics compared to the polar regions (Fig. 9c, d), as well as
increases in the mean and integrated chlorophyll concentra-
tions in the polar and upwelling regions compared to the sub-
tropical gyres (Fig. 9e-h).

That said, WOMBAT-lite shows some clear biases com-
pared with the Nicholson et al. (2025) dataset, which was
built from the Ocean Color — Climate Change Initiative re-
motely sensed chlorophyll product (Sathyendranath et al.,
2019). Blooms at the poles start too early, and their dura-
tion is too long. Overly long blooms in the Southern Ocean
contributed to an overestimate of mean and integrated con-
centrations of chlorophyll than that calculated by Nicholson
et al. (2025) (Fig. 9i). This bias may be associated with an
excess of dFe due to a ferricline that is placed too shallow
(Fig. 8e, f), a common model bias (Tagliabue et al., 2016)
that is also present in our simulations and which amplifies
iron supply and chlorophyll accumulation. Meanwhile, in
the subtropics and northern high latitudes, the phytoplankton
blooms in WOMBAT-lite appear to be too low in mean and
integrated chlorophyll (Fig. 91). This is possibly caused by
bloom durations that are too short in the subtropics (they are
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Figure 7. Overall performance of WOMBAT-lite in terms of the global cost function (summed across all target variables; Eq. 2). We show
all 512 sensitivity experiments (gray bars), the 20 optimal experiments that selected parameter values randomly from the optimal probability
density functions (Fig. 6) after 10 years (gold bars) and 100 years (red bars), and the performance of the optimal parameter set after 10 years

(gold star) and 100 years (red star).

> 300d in the remote-sensing product), although this is not
the case in the northern polar region. Equally, though, these
biases in bloom chlorophyll metrics may be due to our opti-
mization against a different chlorophyll product (Sauzede et
al., 2016), with which the model shows good agreement. Al-
ternatively, it is possible that representing the global marine
phytoplankton community with only one functional type lim-
its the model’s potential to realize the full variation. Captur-
ing the bloom phenology of phytoplankton is important be-
cause there is evidence of multi-decadal trends in their start,
end and duration in both the Southern and Arctic oceans (Ar-
dyna and Arrigo, 2020; Thomalla et al., 2023), and according
to the results herein, the timing and duration of the bloom are
influential to air—sea CO; fluxes.

3.4.4 Carbon fluxes

Previous assessments of ocean biogeochemical models show
that the Southern Ocean air—sea CO, fluxes are strongly
biased (Hauck et al., 2020, 2023a). We therefore sought
to improve this aspect within WOMBAT-lite. To properly
assess the performance of WOMBAT-lite for reproducing
global CO; fluxes, we performed a hindcast simulation with
the optimal version of WOMBAT-lite from 1958 to 2019
forced by the inter-annually changing JRAS55-do atmospheric
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fields and with the historical increase in atmospheric CO,.
This hindcast simulation was initialized with biogeochemi-
cal fields at the end of a 200-year spin-up simulation with the
same repeat “normal” year forcing of the JRAS55-do (Stewart
et al., 2020), with atmospheric CO; set at 315.2 ppm (equiv-
alent calendar year 1957) and where Alk and preindustrial
DIC budgets were at quasi-equilibrium. Budgets of major
tracers at year 200 are presented in Table 3. This hindcast
simulation did not strictly adhere to the recommendations of
the OMIP2 protocol (Orr et al., 2017) but was sufficient to
assess the seasonality of air—sea CO, fluxes in WOMBAT-
lite.

We directly compared the monthly CO, fluxes between
an observation product (Chau et al., 2022) and WOMBAT-
lite as well as the unoptimized model from January 1985
to December 2018. With optimal parameters, WOMBAT-lite
shows improvement in its seasonality and regional agree-
ment of CO; fluxes compared with an unoptimized version
of the model (Figs. 10, 11). While CO; fluxes are strongly
controlled by thermal processes in the subtropics and are
thus well approximated by optimized and unoptimized ver-
sions alike (Figs. 10a, 11), CO; fluxes at higher latitudes are,
however, more affected by biological drawdown and release
(Mongwe et al., 2018; Takahashi et al., 2002). In the tran-
sition from subtropical to subantarctic zones (35-50° S) the
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Law et al. (2017) that is intended for the ACCESS-1.5 Earth system model.
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Figure 9. Comparison of WOMBAT-lite (left) with phenological indicators of the annual phytoplankton bloom observed via chlorophyll a
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these results come from the optimized model after 100 years of forward simulation from initialization with repeat atmospheric forcing for
calendar year 1990-1991 conditions using the JRA-55do (Tsujino et al., 2018).

observations show overall oceanic uptake of CO,, but im-
portantly a greater uptake in the summer (Fig. 10b). Opti-
mized WOMBAT-lite manages to show some improvement
over the unoptimized model, with lower uptake in the winter
and a trend towards uptake in the spring/summer. Nonethe-
less, this improvement is marginal in this zone and suggests
that further improvement can be made in the future. The best
match between WOMBAT-lite and the data is achieved in
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the Antarctic Circumpolar Current zone (50-65°S), where
WOMBAT-lite shows good climatological correlations with
the observations, while the unoptimized model shows nega-
tive correlations (Figs. 10c, 11). The flip from poor to good
performance is caused by the net outgassing in the late win-
ter and a trend towards oceanic uptake in the spring/sum-
mer (Fig. 10c). Better seasonal correlations (0.87 — 0.96)
are also achieved in the Antarctic zone (65-80° S), although
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Figure 10. Climatological evolution of the integrated air—sea CO, flux over the latitudinal bands in the Southern Ocean averaged over
the years 1990 to 2010. (a) Observational products from the Copernicus Marine Environmental Monitoring Service (black) are compared
with fluxes from WOMBAT-lite (red) and an unoptimized, previous version of WOMBAT (blue) integrated between 20-35° S (subtropics).
Pearson’s correlations are shown for both models. Negative values are net ingassing of CO, into the ocean. Background shading denotes the
seasonal transition from summer to winter to summer. Panels (b), (¢) and (d) are the same as in (a) but integrated within 35-50° S for the
subtropical-subantarctic transition, 50-65° S for the Antarctic Circumpolar Current and 65-80° S for Antarctic zone, respectively.

with WOMBAT-lite potentially overestimating the summer
flux of CO; into these waters (Fig. 10d).

Improvement in air—sea CO; fluxes is noteworthy from a
zonally integrated perspective that incorporates the Northern
Hemisphere (Fig. 12). North of 40° N, the oceanic uptake of
CO> in the unoptimized version of the model exceeded the
observations, and this is somewhat reduced in WOMBAT-lite
due to a substantial reduction in winter ingassing (Fig. 12b),
while summer uptake is increased (Fig. 12c), resulting in a
better match to observed CO; fluxes in the Northern Hemi-
sphere (Fig. 12a) that is also visible in the temporal correla-
tions (Fig. 11). Meanwhile, there is little difference between
the optimized and unoptimized versions of the model in the
low latitudes, emphasizing how thermal changes dominate
air—sea CO; fluxes in this region (Takahashi et al., 2002).
Once again, in the Southern Ocean, we see clear improve-
ments from a zonally integrated perspective. Winter out-
gassing is now achieved in WOMBAT-lite, although the zone
of peak outgassing occurs too far north (Fig. 12c). Similarly,
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summer oceanic uptake is now achieved and is a closer match
to the observations, although again the zones of maximum
uptake are shifted too far north by roughly ~ 5° (Fig. 12b).
Overall, the changes in the biogeochemical functionality of
WOMBAT-lite show some improvements in reproducing ob-
served air—sea CO; fluxes, although we note some degree of
caution is required given the uncertainty in the observation-
ally based product itself (Gloege et al., 2021; Hauck et al.,
2023b).

4 Summary

We have updated the World Ocean Model of Biogeochem-
istry and Trophic dynamics (WOMBAT) in a new version
called WOMBAT-lite (see Sect. 2). These updates necessi-
tated optimization of the many new and existing model pa-
rameters. To do so, we used a surrogate machine learning
model trained on a limited sample of real model output that
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Table 3. Key rates in WOMBAT-lite after 200-year spin-up under repeat normal year forcing with optimized parameters.

Cycle Description Units WOMBAT-lite
Carbon Net primary production PgC yr_1 27.9
Organic export (100 m) PgC yr_1 6.2
CaCOj3 export (100 m) PgCyr! 0.60
Preindustrial air—sea flux PgC yr_1 —0.358
Sedimentary burial PgC yr_1 —0.20
CaCOj3 sedimentary burial PgC yr_1 —0.012
Riverine flux PgC yr_1 0.587
Alkalinity ~ Sedimentary burial Pmol Eq. yr_1 0.002
CaCOj3 sedimentary burial Pmol Eq. yr_1 —0.002
Riverine flux Pmol Eq. yr_1 0.018
Sedimentary denitrification Pmol Eq. yr—! 0.0028
Nitrogen fixation Pmol Eq. yr— 1 —0.0015
Nitrogen Sedimentary burial TgN yr_1 -30.8
Riverine flux TgN yr_1 35.8
Nitrogen fixation TgN yr_1 204
Sedimentary denitrification TgN yr_1 -39.6
Oxygen Preindustrial air—sea flux Pmol O, yr_1 —0.04
Volume of hypoxia (< 60 uM) 1015 m3 79.1
Iron Atmospheric deposition Gmol Fe yr_1 1.1
Hydrothermal flux Gmol Fe yr_1 9.9
Sedimentary burial Gmol Fe yr_1 0.60

optimized WOMBAT-lite

1.0

e
0

| o
=} o
w
Pearson's correlation of downward CO; fluxes

-1.0

Figure 11. Temporal correlations in monthly CO, fluxes with an
observation product (Chau et al., 2022). (a) Optimized WOMBAT-
lite and (b) unoptimized, previous WOMBAT over the years 1985
to 2019.
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provided many synthetic estimates of model performance
(i.e., global NRMSE and the global cost function) at low
computation cost. It is critical for accurate global sensitivity
analysis (Saltelli et al., 2019) and Bayesian parameter opti-
mization techniques (Reddy et al., 2024a) to have many sam-
ples. These surrogate-based sensitivity analyses and param-
eter optimization techniques are therefore gaining traction
in climate and environmental sciences where computational
overhead severely restricts the number of direct model simu-
lations that can be done (Li et al., 2018; Reddy et al., 2024a,
b; Williamson et al., 2017; Xu et al., 2022, 2018). Ocean
biogeochemical models are no different. Here we applied
the surrogate-based method to WOMBAT-lite, optimized the
model parameters and delivered improved performance in re-
producing eight target datasets.

Other approaches do exist for optimization of biogeo-
chemical models, such as iterative ensemble methods (Singh
et al., 2025), which do not rely on surrogate methods but in-
stead use ensembles to iteratively adjust either the initial state
or the parameters towards their optimal values through regu-
lar data assimilation (Dowd et al., 2014). Similarly, the emer-
gence of machine learning emulators (Eyring et al., 2024)
that resolve the full spatiotemporal field of the target datasets
could be used to assess performance and optimize param-
eters. While these approaches can provide optimal param-
eter values that evolve in time and/or space, the surrogate
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Figure 12. Zonally integrated air-sea CO, fluxes. (a) Annual mean observations (black) averaged over the years 1990-2010 are compared
with fluxes from WOMBAT-lite (red) and a previous, unoptimized version of WOMBAT (blue). Panels (b) and (c) are the same as in (a) but
are averages over the months of January—March and July—September, respectively. Positive fluxes are out of the ocean.

approach employed herein represents a simple yet valid ap-
proach that provides globally optimized parameter values
that are fixed in time and space, but importantly without large
computation overhead. Once the surrogate is trained, it can
be deployed cheaply to explore the parameter space in differ-
ent ways, offering flexibility to select a new set of parameters
with perhaps an emphasis on one target field (e.g., air—sea
CO, flux) over another, if required. One disadvantage, how-
ever, is that the optimization can only be as good as the skill
of the surrogate, meaning that careful training is critical.
The improvements showcased herein included surface dis-
tributions of dFe and NOs; surface chlorophyll concentra-
tions; the representation of deep chlorophyll maximums;
phytoplankton phenology; and particularly the seasonality of
air-sea CO; fluxes in the high latitudes, where in some re-
gions the seasonality flipped from a negative correlation in
the unoptimized model to a positive correlation with our new,
optimized model. Surface chlorophyll was also well repro-
duced, as was the distribution of iron-limited regions of pri-
mary productivity. Additionally, global net primary produc-
tion was increased by 50 %, partially rectifying a low bias
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in the previous unoptimized model, although our simulated
rate of 28 Pg C yr~! remains low compared with data-based
estimates of ~ 50 Pg C yr~! (Buitenhuis et al., 2013).
Despite these improvements, biases do remain. Chief
among them is a difficulty in reproducing the seasonality of
air-sea CO;, exchange in the Southern Ocean, despite the
improvements achieved here. WOMBAT-lite does manage
to represent the austral winter outgassing of CO, from the
polar frontal region but fails to absorb enough CO, in the
summer, particularly in the subantarctic zone. Other models
struggle with representing the seasonality of CO, exchange
in the Southern Ocean, with some absorbing too much (e.g.,
Yool et al., 2021) and others, like WOMBAT-lite, too lit-
tle (see Hauck et al., 2020, 2023a). Physical biases in the
model are no doubt important here, such as those that have
insufficient winter mixing, as has been proposed (Hauck et
al., 2023a). Our sensitivity analysis and optimization proce-
dure, however, would also suggest that how we choose to
represent the biology contributes substantially to model skill
in air—sea CO, fluxes (also see Mongwe et al., 2018). Two
parameters of importance for Southern Ocean CO; fluxes

https://doi.org/10.5194/bg-22-5349-2025



P. J. Buchanan et al.: Optimization of the WOMBAT using surrogate machine learning methods 5371

were optimized at the lower edge of their a priori ranges:
the linear mortality coefficient for phytoplankton ()/19) and
the prey capture rate coefficient of zooplankton (¢). This sug-
gests that further improvement in Southern Ocean CO, fluxes
can be gained by exploring lower values for these parameters
than those explored here. Alternatively, spatial variations in
¢ that capture transitions from nano- to meso-zooplankton
from oligotrophic to eutrophic regimes (Rohr et al., 2024)
may serve to accelerate the phytoplankton bloom at the be-
ginning of the growth season. Furthermore, the succession
of different types of phytoplankton is important for the bio-
logical carbon pump (Tréguer et al., 2018). Therefore, repre-
senting these shifts in community with additional functional
types of plankton beyond that explored herein might be im-
portant for the phenology of the annual spring bloom and by
extension Southern Ocean CO; fluxes. According to a recent
analysis, this phenology is changing (Thomalla et al., 2023),
which may imply a changing strength and/or seasonality of
air—sea CO» fluxes in the region.

As a final word, we note that a surrogate-based optimiza-
tion of a complex numerical model can only be as good as
the initial sample set on which the surrogate is trained. A
clear example of this limitation is evident in Fig. 7. Even
with its optimal parameters, WOMBAT-lite suffered a loss in
performance when run over 100 years compared to when run
over only 10 years. Future iterations of surrogate-based op-
timization would therefore benefit from extending the length
of simulations done by the initial set of sensitivity exper-
iments. That said, significant savings in computation effi-
ciency would be needed before this is possible with com-
putationally demanding models, such as ocean biogeochemi-
cal models, in particular those involving more plankton func-
tional groups and thus many more uncertain parameters, but
could be feasible by running the biogeochemical model of-
fline from the ocean physics (e.g., Séférian et al., 2013).
This approach would also eliminate any confounding errors
caused by an evolution of the ocean’s physical state since the
physical state would not be allowed to evolve. Future ver-
sions of WOMBAT, including WOMBAT-lite, WOMBAT-
mid and WOMBAT-full, and their deployment into different
configurations (e.g., higher-resolution versions) would bene-
fit from this approach.

Appendix A
Al Key equations of the previous WOMBAT

The previous version of WOMBAT is a simple nutrient—
phytoplankton—-zooplankton—detritus model (Law et al.,
2017; Oke et al., 2013) simulating the biomass pools of
one phytoplankton, one zooplankton and one detrital func-
tional type; two nutrients of phosphate *16, which is of-
ten referred to conveniently as nitrate, (NO3, mmol m_3)
and dissolved iron (dFe; pmolm’3); the carbonate system
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(DIC, Alk and CaCO3; mmol C m’3); and dissolved oxygen
(mmol O> m~3). The basic currency of the ecosystem com-
ponent is 16 times phosphorus (i.e., nitrogen but without ex-
ternal sources and sinks). Biological stoichiometry is fixed at
aC:N:0Opratioof 106: 16 : —172, and the Fe : N of phyto-
plankton is 20 : 1 umol : mol. The minimum of nutrient avail-
ability or availability of photosynthetically active radiation
(PAR; W m~2) controls phytoplankton growth rates. Growth
of phytoplankton is calculated by first solving for a maxi-
mum growth rate (£™2*; d~!), dependent on temperature (7';
°C), and then applying the minimum of nutrient (L""trient)
and light (LPAR) limitation terms to scale down from the
maximum to a realized growth rate (u; d=h.
The budgets for the previous WOMBAT are as follows:

INO;3
ar =Yd+Yz+¥p— uBp, (A1)
ddFe Fe
o ()/d +vet+ v — qu) (F) —scavenging,  (A2)
00, Oy
o= (WBy —Ya— V2 — ¥p) <§> (A3)
B
—. =By =y —Tp—gB,, (A4)
B
S =8B =y =Ty, (AS)
B
= =TTt gB,(1=2) — . (A6)
B
R = (T o+ gBa(1- 1)
C
NN finorg_VCaCO_g» (A7)
N
9DIC

C
5 (va+v.+vp—uBp) <ﬁ>

- ((Fp+rz+g32(1—x))

C
: (N) finorg - VCaCO3>1 (A8)
dAlk
o1 =—(va+r.+vp—uBp)

—z((rp+rz+ng(1—A))

)5 A9
. (N) flnorg - VCaCO3) . (A9)

Regarding phytoplankton growth rates (u; d~!) the individ-
ual terms are

um =apl, (A10)
PI.PAR

LPARZ(I—e_ /max )’ (All)

Lnutrient — min NO3 , dFe , (A12)
NOs 4+ KN’ dFe + KFe
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max LPAR max Lnutriem)
9 9

u = min(u U (A13)

where o and B control the non-linear temperature-
dependency of phytoplankton metabolism (Eppley, 1972),
PI is the slope of the photosynthesis—irradiance curve
(mg N (mg Ch)~! Wm=2)~1d~1), and KN and KF¢ are the
half-saturation coefficients for nutrient limitation by NO3
and dFe (mmolm™3 and umolm™3, respectively). The real-
ized growth of phytoplankton (x; d~') is multiplied by their
biomass (Bp; mmol N m~3) to retrieve growth of phytoplank-
ton (mmol Nm—3d~1). PAR is solved for as 43 % of incom-
ing shortwave radiation and then attenuated at a constant rate
through the water column.

Phytoplankton mortality occurs via zooplankton grazing,
as well as linear (y) and quadratic (I') mortality terms. The
specific grazing rate for zooplankton (g; d~1) is described by
a type III disk equation (Gentleman and Neuheimer, 2008)

max 2
g"*eB
$= o p (Al4)
8 by
where g™ is the constant, temperature-independent, max-

imum (prey replete) specific grazing rate in units of d~!,
and ¢ describes how fast the prey capture rates increase with
the ambient phytoplankton (or prey) concentration in units
of (mmolNm~—3)~2d~! (Rohr et al., 2022). Phytoplankton
losses to grazing then occur according to the product of g
and zooplankton biomass (By; mmole_3). A fraction of
the grazed phytoplankton biomass is routed to zooplankton
according to gB,A, where X is the assimilation efficiency
(akin to gross growth efficiency). The fraction that is not as-
similated into zooplankton (1 — A) is routed to detritus (Bg;
mmol Nm~3). Linear mortality is temperature-dependent,
such that

Yo =y BB, (A15)
whereas quadratic mortality is density-dependent, but
temperature-independent, such that

I, =T7B;. (A16)

Both yp? and Fg are constant parameters in units of d~!

and m3 mmol~! d~!, respectively. Zooplankton are also af-
fected by linear (y,) and quadratic (I',) mortality terms of
the same form according to predefined values of yZO and Fg.
All quadratic mortality of phytoplankton and zooplankton
biomass is routed to detritus, while linear mortality losses are
routed to dissolved nutrients and inorganic carbon. Reminer-
alization of detritus follows the same form as linear mortality
(Eq. A15), with its own rate controlled by the y(? coefficient,
which is halved at depths below 180 m.

Both detritus and CaCOj3 sink at constant rates. CaCOj3
is produced at the same time as detritus (i.e., via unassimi-
lated phytoplankton and quadratic mortality losses of phyto-
plankton and zooplankton), but at a constant rate controlled
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by finorg, Which is equal to 6.2 % of the organic detritus be-
ing produced. In contrast to the detrital pool, the CaCO3 pool
(Bcaco,; mmol C m~3) is remineralized (dissolved) at a con-
stant rate (ycaco,) that is not temperature-dependent.

In addition to its biological cycling, dFe is affected by abi-
otic scavenging. This is represented implicitly via a relax-
ation term (K3F¢: d=!) to a background dFe concentration
set by an assumed concentration of ligand-bound iron (Ferig;
umol m~3), where

Scavenging = KS;CV -max (0, dFe — Ferig).

(A17)

dFe is also reduced to a maximum of 1 umolm™3 at the conti-
nental shelves, where the sediments are less than 200 m deep.

A2 Key equations of WOMBAT-lite

The budgets for the full set of ecosystem equations of
WOMBAT-lite are as follows:
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aDIC
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prey
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= =~ atvitr—nBy)
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Bprey
: finorg - VCaCO3> . (A30)

A2.1 Phytoplankton growth

Growth of phytoplankton (B;) is controlled by a combina-
tion of temperature, light and nutrient supply. Temperature,
T (°C), sets the maximum potential growth rate of phyto-
plankton, ;™ (d~1), following the Eppley curve (Eppley,
1972),

u = a1, (A31)
where both «, and B, (subscript a for autotrophy) are prede-
fined (Table 1).

A2.2 Phytoplankton growth: light limitation

Incoming shortwave radiation at the surface (W m~2) is mul-
tiplied by 0.43 to return the photosynthetically active radia-
tion (PAR), which is further split into three major wavelength
bands associated with blue, green and red light. Each band
has unique attenuation through the water column according
to the power law coefficients (x and e) provided by Morel
and Maritorena (2001) in their Table 2, which change de-
pending on the chlorophyll concentration and implicitly ac-
count for the packaging effect of larger cells, assuming that
more chlorophyll brings with it an increase in the mean com-
munity cell size. Attenuation of blue, green and red light is
increased as chlorophyll concentrations increase, but as cells
grow larger they absorb less light per unit chlorophyll. We
calculate the depth of the euphotic zone to be the depth at
which PAR is 1 % of its incident intensity, resulting in typi-
cal depths between 50 and 150 m.

The maximum potential growth rate is multiplied by a light
limitation term, LPAR | to return light-limited primary produc-
tion, /LPAR. LFAR depends on the availability of PAR, the ra-

tio of the euphotic depth to mixed layer depth (Zifi'; ), the

linear mortality rate (y; d~!) and the chlorophyll quota of

the cell (Q%; mgmg~"). First, we solve for the initial slope
of the photosynthesis—irradiance curve, PI, which is altered

by Q% such that

—pl0¢
PI=PI’Q T, (A32)

https://doi.org/10.5194/bg-22-5349-2025

5373

where PI” can be altered to increase or decrease the response
of phytoplankton to light. Following PI, we calculate LPAR
via

PI.PAR
LPAR — (1 —e T ) LeP, (A33)
L — min <1, Ceup ) , (A34)
IMLD

where L' is scaled down when the mixed layer is
deeper than the euphotic zone, representing the disad-
vantageous mixing of cells into darkness due to deep
mixed layers. Light-limited phytoplankton growth, uPAR
(mmol Cm~3d~"), is then

PA

w R — MmaxLPAR.

(A35)
A2.3 Phytoplankton growth: nutrient limitation

The minimum of multiple nutrient limitation terms (L™ent)

is then multiplied against PR to return the realized growth
rate, i (d=1:

PAR Lnutrlent — Mmax LPAR Lnument.

w= (A36)

The limitation terms include growth limitation by nitrogen
(LN) and dFe (LF®), such that

J nutrient _ min(LNLFe). (A37)

The nutrient limitation terms are dependent on the availabil-
ity of the resource, R, and the half-saturation coefficient for
uptake of that resource by the phytoplankton (K ]f), which it-
self is dependent on the biomass of phytoplankton in terms of
carbon (Bp). Initial K]f values are predefined (K;e 0: Table 1)
but are made to vary with phytoplankton biomass. We re-
late the biomass concentration of phytoplankton to the mean
community cell size, which then affects the half-saturation
coefficients for resource uptake. Using compilations of ma-
rine phytoplankton and zooplankton communities, Wickman
et al. (2024) show that the nutrient affinity, aff, of a phyto-
plankton cell is related to its volume, V, via

aff = V=057, (A38)

Additionally, the authors demonstrate that the volume of the
average phytoplankton cell is related to the density (i.e., con-
centration, here B)) of phytoplankton via

V= Bg‘ﬁs (combining panels c and f of their Fig. 1), making
(A39)

aff = 350-37. (A40)

Finally, the affinity of phytoplankton for a given nutrient is
proportional to the inverse of the half-saturation coefficient,
K lf , such that we can relate K 15 to the biomass concentration
of phytoplankton via

R _ Ro p0.37
Ky =K"B,"". (A41)
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For nitrogen limitation we follow the simple Monod formu-
lation of
N
N — (A42)
N+KY

For iron we follow Aumont et al. (2015), who use the Droop
formulation to assign growth limitation according to the
quota model (Droop, 1983; Flynn, 2003). First, a minimum
cellular iron requirement in terms of an Fe : C ratio is solved
for, Q’%, dependent on chlorophyll content (Q% ), the pre-
scribed N : C ratio of 122 : 16 and nitrogen limitation terms
(Flynn and Hipkin, 1999).

JEe 0.0016 Chl s 14 N N
= 120 1211075 —— ~ .0.5-15L
Q < 5585 122 ) 7 Ss8sC

+<1.15>< 10’4iH-O.SLN>. (A43)

5585 C

Limitation of growth by iron (LF®) is then calculated as the

difference between the current quota (Q %) and the minimum
Fe

requirements of the cell (Q' <) divided by a predefined opti-

mal iron quota (Q*%) assigned according to estimates from
the literature (Hopkinson et al., 2013; Strzepek et al., 2012;
Sunda et al., 1991; Twining et al., 2021), such that

(0% - o)

L =min | 1, max [ 0, = (A44)
0*¢

A2.4 Phytoplankton growth: chlorophyll

Chlorophyll concentration in phytoplankton (BS"; mgm~3)

is explicitly considered as a tracer in WOMBAT-lite
(Eq. A23). It has a direct influence on phytoplank-
ton growth. The concentration of chlorophyll in the wa-
ter column increases light attenuation, affecting light
availability, and the chlorophyll quota of phytoplankton

cm pCHl N
gcC = Bp—p; mg Chl (mg C)™") influences the slope of the

photosynthesis—irradiance curve, PI (Eq. A32). Also, an el-
evated chlorophyll quota increases the iron demand of phy-
toplankton (Eq. A43). Phytoplankton attempting to reduce
light limitation through photoacclimation therefore have a
higher iron demand.

Growth of chlorophyll occurs similarly to growth of
biomass carbon but with its own light limitation term, Ly,
where

PI.PARML D

LPAR 1= 6_ ( max (I,Lnutricnt) ) J.eup

Chl = (A45)

Note the adjustments to LE‘QF (Eq. A45) relative to LPAR
(Eq. A33). These adjustments are responsible for photoac-
climation. They increase chlorophyll accumulation in phyto-
plankton at depth, where there is less light, waters are cooler,
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and there are more nutrients, but cause chlorophyll depletion
near the surface in warm oligotrophic waters.

We step through why this is the case. PARMLp is
the average availability of light within the mixed layer.
PARMLD is therefore less than PAR near the surface, but
greater than PAR towards the bottom of the mixed layer.
Beneath the mixed layer PARypp = PAR. That chloro-
phyll sees PARmpp makes light limitation of chloro-
phyll stronger than phytoplankton near the surface, where
PARMLD < PAR, but weaker than phytoplankton limitation
at depth, where PARyMLp > PAR. Additionally, the place-
ment of p™¥ (1 — L™ren) in the denominator decreases
LER more so than respiration (1 + y, in Eq. A33) decreases
nglR for phytoplankton in warm waters (where ;™ is high)
and in nutrient-deplete waters (where (1 — L™ient) js high).

Growth of chlorophyll is then calculated similarly to
growth of phytoplankton, where a maximum growth rate is
scaled down by limitations associated with light and nu-
trient availability. However, chlorophyll production is af-

fected by the minimum (Q’%) and optimal ( Q*%) quotas
(mg Chl (mg C)_ll). Minimum and optimal chlorophyll pro-
duction rates, uglfﬁ‘ and u%%tl (mg Chl m™3 d=1y, ensure that
phytoplankton chlorophyll growth always stays within spec-
ified bounds, where

Chl

and
opt Lcul
MChl = I'I’Bple C . (A47)
Chlorophyll growth rate is then calculated as
min ('uocrk)lll - H’gllllrll> LE%FLnUtriem
e ’ (A48)

PI-PARMLD

where we include the light response in the denominator to
further accelerate chlorophyll growth in low-light environ-
ments and depress it in high-light environments. This effec-
tively increases or decreases the maximum quota that is at-
tainable by a phytoplankton cell around its optimal quota that
is predefined (Q*% ; Table 1). Losses of chlorophyll occur in
the same way as losses of phytoplankton but are multiplied
by the chlorophyll quota (Eq. A23).

A2.5 Phytoplankton growth: iron uptake

Like chlorophyll, the iron content of phytoplankton (BX®;

mmol m~3) is explicitly tracked as a tracer in WOMBAT-lite
(Eq. A22). First, an uptake rate is found dependent on the

maximum quota of Fe within the phytoplankton type (Q” %)
and the maximum phytoplankton growth rate via
Mgleax — Mmapr Q//% . (A49)
Following Aumont et al. (2015), this rate is scaled by three
terms relating to (i) Michaelis—Menten type affinity for dFe,
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(ii) up-regulation of dFe uptake representing investment in
transporters when cell quotas are limiting to growth and
(iii) down-regulation of dFe uptake associated with enriched
cellular quotas:

dFe (A50)
dFe + KgFe’
4.5LFe (ASD)
0.5+ LFe’
Fe
Qf
//%
max | 0, 1— Q (A52)

Fe ’
abs (1.05 — L >
Q//ﬁ

such that dFe uptake by phytoplankton is simulated as
dFe 4.5LFe
max
= o — ) (- =
HFe = Hre (dFe+KgFe> < 0.5+LF6)

Q//ﬁ
Te . (AS3)
abs (1.05 —Qoc )
Q//ﬁ
The iron-to-carbon ratios of phytoplankton are passed to zoo-
plankton and detritus and are also tracked in these pools.

-max | 0, 1 —

A2.6 Zooplankton grazing

Grazing is represented as a Holling type III function of
prey biomass (Holling, 1959). This choice assumes that at
very low prey concentrations grazing is impaired by in-
creased searching (i.e., slower clearance rate; Gentleman
and Neuheimer, 2008); at moderate prey concentrations zoo-
plankton grazing accelerates exponentially to account for
their learning to feed on a growing prey source; at high prey
density zooplankton handling time becomes the limiting fac-
tor (Gentleman and Neuheimer, 2008; Rohr et al., 2022).
This formulation allows for greater stability in the ecosystem
and elongates the phytoplankton spring bloom. The Holling
type III formulation requires two basic parameters to esti-
mate grazing, g, in units of d~!. These are the maximum
grazing rate, g™ (d~!), and a prey capture rate coefficient,
e ((mmol Cm™3)"2d~1). The grazing formula is
gmax e Bgrey

gmax + EB[%rey .

Both WOMBAT-lite and legacy WOMBAT therefore use the
same grazing formulation. However, an important distinction
is that the maximum grazing rate, g™**, is now made depen-
dent on temperature (7'; °C) according to

g= (AS54)

g™ = g1, (A55)

where both g, and By (subscript h for heterotrophy) must
be predefined (Table 1). The application of g™ in both
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the numerator and denominator makes this grazing formula
unique (Rohr et al., 2023) and equivalent to a disk formu-
lation, rather than a Michaelis—Menten formulation (Rohr
et al., 2022). Practically, this amplifies grazing in warmer
climes, but to a lesser extent than other formulations that ap-
ply the temperature amplification (i.e., ,BIET)) only in the nu-
merator of Eq. (A54) (Rohr et al., 2023). This dampens the
effect that variations in temperature have on grazing activity,
amplifying the effect of ¢ and aligning with observations that
the ratio of grazing to phytoplankton growth varies little be-
tween tropical and polar climes (Calbet and Landry, 2004).
Theoretically, this assumes some evolutionary adaptation to
account for the physiological effects of temperature across
environmental niches, such that the efficiency of prey cap-
ture and handling becomes more important to grazers than
metabolic constraints due to temperature.

Both phytoplankton (Bp) and detritus (Bg) contribute to
the available prey biomass (Bprey), scaled by the preference
of zooplankton for these prey types (¢}, wg; Table 1), such
that

Bprey = ¢ Bp + ¢ Ba. (A56)
Finally, an assimilation efficiency, A, controls how efficiently
prey biomass is ingested by the grazer, with 25 % of the re-
mainder being lost to the environment as detritus (i.e., sloppy
feeding) and 75 % as inorganic nutrients (i.e., excretion). For
our experiments, A is set to 0.6 to align with measurements of
gross growth efficiency from the literature (Anderson et al.,
2021b), such that sloppy feeding is 10 %, and excretion is
30 % of what is grazed. Variations in gross growth efficiency
and excretion associated with food quality and quantity (An-
derson et al., 2021b) will be considered in a future version of
WOMBAT-lite.

A2.7 Non-grazing losses of biomass

Phytoplankton, zooplankton and organic detrital functional
types are affected by both linear (), and y,) and quadratic
(I'p and I';) mortality coefficients. These terms are of the
form

y=7"6"B, (A57)
and
r=r°g?, (A58)

where y° and ' are predefined (Table 1) and are different
for different biomass pools (i.e., )/I? * yZO * y(?), and ﬂ}(lT)
is a temperature-dependent amplifier for heterotrophic pro-
cesses (Table 1). The linear mortality term for phytoplank-
ton emulates thermally dependent losses of biomass that es-
calate as a greater proportion of the phytoplankton commu-
nity is pushed above their thermal niche (Baker and Geider,
2021). These losses are also associated with increased res-

piration and efflux, for instance of exopolymers (Bar-Zeev
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et al., 2013; Thornton, 2014), that route biomass to the in-
organic nutrient pool. The quadratic mortality term emulates
density-dependent losses of phytoplankton biomass that are
not accounted for by grazing, for instance due to viral lysis
(Brussaard et al., 2008; Suttle, 1994), and is not thermally
dependent but density-dependent. These quadratic losses are
routed to sinking detritus.

Linear mortality for zooplankton represents rates of respi-
ration (i.e., losses to inorganic nutrients) that are thermally
dependent due to metabolism scaling positively with temper-
ature (Ikeda, 1985; Ikeda et al., 2001), while the quadratic
mortality closure term represents density-dependent preda-
tion by higher trophic levels not included in the model. As
for phytoplankton, linear and quadratic loss terms are routed
to inorganic nutrients and sinking detritus, respectively. For
zooplankton, the linear losses associated with respiration
are reduced by a Michaelis—Menten function of zooplankton
biomass,

0 B,
‘}/Z_VZBZ(Bz‘i‘KZ)’
such that in environments with little zooplankton their losses
are reduced. This additional term ensures more stable pop-
ulation dynamics of zooplankton and, ecologically, mimics
the greater prevalence of gelatinous zooplankton (tunicates,
ctenophores, cnidarians, etc.) in oligotrophic regions with
lower metabolic demands.

Detritus undergoes remineralization at a rate that is lin-
early dependent on the concentration of detritus (Eq. A57).
There are no quadratic losses (Eq. A58; i.e., no explicit vari-
ations in bacterial biomass are considered), but remineraliza-
tion rates are halved beneath 200 m depth to account implic-
itly for more intense heterotrophic bacterial activity in the
upper ocean.

(AS59)

A2.8 Sinking detritus

One sinking detrital pool By is considered. One-quarter of
the prey that is not assimilated into zooplankton biomass
(i.e. sloppy feeding) and the product of quadratic mortality
of both phytoplankton (FPBS) and zooplankton (FZBZZ) is
routed to this detrital pool. Since we only account for one
detrital pool, we consider that base sinking rates of this de-
tritus (w°; md~!) are varied as a function of phytoplankton
concentration (in a similar fashion to half-saturation coeffi-
cients described earlier). This approach is taken to emulate
observations of varying sinking speeds (Riley et al., 2012)
and because such variations may be strongly dependent on
phytoplankton community composition (Bach et al., 2016).

In accordance with a more general Navier—Stokes drag
equation and using a compilation of particle sinking speeds,
Cael et al. (2021b) identified that the sinking velocity of par-
ticles (w; md~!) is proportional to their diameter raised to
the power of roughly 0.63, such that

wocd®. (A60)
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1
Knowing that d = (67‘/) * and given that the average volume

of phytoplankton cells can be approximated by V = Bg'ﬁs
(Wickman et al., 2024), we can relate w to the biomass con-
centration of phytoplankton multiplied by the scaler o'
w=a"(By)""". (A61)
This formula is identical to that presented by Cael et
al. (2021b) in their Eq. (3), with the exception that we have
related sinking rates to the biomass concentration of phyto-
plankton (B}) by assuming that V = 33'65 (Eq. A26) based
on marine phytoplankton data (Wickman et al., 2024).
However, phytoplankton concentrations are negligible be-
neath the euphotic zone. Using in situ B, would therefore
result in negligible sinking speeds throughout most of the
dark ocean. To address this, we use B, in the uppermost
grid cell (k = 1) within Eq. (A61) (Bf="). This assumes that
the sinking velocities of marine aggregates can be related to
phytoplankton community composition (Bach et al., 2016;
Iversen and Lampitt, 2020), which varies more horizontally
across the ocean than vertically. Moreover, because we do
not include dissolved/suspended organic matter as a tracer in
WOMBAT-lite, we must also account for the large fraction of
organics that are suspended and thus neutrally buoyant in the
gyres. As such, we vary Eq. (A61) to include a phytoplank-
ton biomass threshold (BMesh: mmol Cm~3) above which
sinking accelerates and beneath which any produced detritus
emulates dissolved (neutrally buoyant) organic matter:

0.21
w=a. max(o.o, B - Blghresh) . (A62)

Finally, we apply a linear increase to sinking speeds with
depth to ensure that the trend in the concentration of detritus
with depth exhibits a power law behavior, which is widely
observed (Berelson, 2001; Martin et al., 1987), thought to be
associated with a greater attenuation of more slowly sinking
particles, and shows better performance than a constant sink-
ing rate in models (Tjiputra et al., 2020). This is applied after
Eq. (A62) as

depth
® = w + max <0.0, °p o(a)max—w)>.

A63
5000 (A63)

A2.9 Sinking CaCO3

No changes have been made to CaCOj3; dynamics in
WOMBAT-lite except for permanent burial in the sediments
(see Sect. A2.11) and changes to the parameter values (Ta-
ble 1). CaCOj3 is produced alongside organic detritus but
scaled according to the CaCOj3-to-organic detritus ratio,
Rcacoy . It sinks at a predefined rate of 6md! (w(()IaCO3)

detritus

and dissolves at a temperature-independent rate of 0.01d~!

0
(YCaco,):
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A2.10 TIron cycling outside the ecosystem component

Treatment of dFe (pmolm_3) follows Aumont et al. (2015).
Equilibrium concentrations of ligand-bound dFe (Ferig;
umol m~3) and free iron (Fe’; umol m—3) are estimated using
the concentration of ligand (Lig; pmolm™3) and an equilib-
rium constant (K¢ eq> ; umolm~3) dependent on temperature in
degrees Kelvin (Tx = T + 273.15),

17. 2777

Ky =10 K . 1x107°, (A64)

Fe, =1+ K Lig — K5 dFe, (A65)
—Fe, + \/ (Fe,)? + 4K edFe

Fe' = ) (A66)

2KEe

Ligand-bound dFe is then the difference between total dFe in
seawater and free iron,

Fey iy = dFe — Fe'. (A67)

Following the equilibrium partitioning of dFe into Fe’ and
Fepig, we estimate losses of dFe due to precipitation, scav-
enging and coagulation. These processes work to increase
the quota of iron within the detritus as it sinks deeper, emu-
lating observations of increased iron content of particulates
with increasing depth (Bressac et al., 2019).

Precipitation of Fe’ onto nanoparticles (Fegfeecf) which
represents a permanent loss of dFe from the model domain
(hence the superscript dFe —), occurs when the concentra-
tion of Fe’ is in excess of the solubility of Fe(IIl) in solution,
Fe(Ill),;. This solubility i 1s calculated using experimentally
derived coefficients (cf (; ) dependent on temperature (7x;
°K), salinity (sal; psu) and pH:

19.924sal
%l = 1000 — 1.005sal (A68)
el _ 10—13.486—0.1856«/@,\-+0.3O73sa1x+5%%

1 , (A69)
B 1320
cie(m) —10>%" 0.8885+/sal +0.2139sal,+ 724 , (A70)
_ _ 199
C§e(m) _ 100411 0.3305+/sal — 73 ’ (A71)
Fe(HI) — 10~0-2965-0.7881 /_ _% (A72)
Tx
Fe(III) — 1*4466-0.8505 [ 1 _ 71980 (A73)
X TK
Fe(llD g = ¢; " (pH3 e W pHe 4 WpH
Fe(III)
+of Fe) | 5 ) (A74)
pH

Precipitation of nanoparticles is then estimated as that in ex-
cess of solubility, multiplied by a parameterized rate, K¢

nanop
(d=h, via

FedFe~ — max (0, Fe' — Fe(IH)sol) Kny

precip nanop*

(A75)
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Scavenging of Fe’ onto particles (Fegfff) is linearly depen-

dent on the concentration of particles in solution, which we
estimate roughly as the sum of detrital carbon and CaCO3:

particles = Bq + Bcaco, - (A76)

Scavenging then occurs at a parameterized rate controlled by
KEe, (mmolCm=3)~!1d~1) via

(A77)

scav scav

Fedfe= — Fe/ (3 x 1075 4 g dFe particles) .
Fedfe= represents the total scavenging rate of Fe/, which
is subtracted from the dFe pool. However, the proportion

. . . dFe—Bre
of scavenging due to detrital particles (Fegay ¢ ) is appor-
tioned to detrital iron (B(l;e) according to the proportion of By
in the total mass of particles.

Coagulation of colloidal iron, which represents a transfer
of dFe to detrital iron, is estimated as linearly dependent on
the concentration of detrital organic carbon. First, we assume
that half of all Fer;, is colloidal, where

FeLig

Fecoll = )

(A78)

The concentration of colloidal iron is multiplied by the coag-
ulation rate, Kf(fag ((mmol Cm—3)~1d~1), and the concen-
tration of detrital carbon to control the transfer of Fe.q to

the detrital iron pool (Bge):

dFe— BFe
d
Fecoag

= Fecan (0.001 + BaKEs,, ). (A79)
Colloidal aggregation rates are scaled down by a factor of
100 beneath the mixed layer to reflect a reduction in en-
counter rates associated with reduced mixing.

Finally, we elevate scavenging in waters close to the
coasts, specifically in waters shallower than 200 m, by setting
dFe to a maximum of 1.0 umolm™ in these environments.
Precipitation, scavenging and colloidal coagulation rate con-
stants are described in Table 1.

A2.11 Boundary fluxes

WOMBAT-lite has been updated to include boundary fluxes
from rivers, hydrothermal vents and burial in the sediments.
Riverine fluxes are annually repeating climatologies of DIC,
Alk and NOs3. For NOs3, the flux is based on GLOBAL-
NEWS2 (Mayorga et al., 2010) and combines their esti-
mates of inorganic and organic nitrogen loads at a total
of 35.8 TgNyr~!. For DIC the fluxes are based on Lud-
wig et al. (1996) and amount to a total of 0.587Pgyr—'.
Alk is added at 0.216 PgC equivalentyr—! to correct for a
long-term positive trend in global Alk. Hydrothermal fluxes
include constant release of dFe to the ocean at a rate of
9.9 Gmol Fe yr~! (Tagliabue et al., 2014a). The iron cycle in
legacy WOMBAT already includes a monthly climatology of
atmospheric flux of dFe from Mahowald et al. (2005) at a
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rate of 1.1 Gmol Feyr~!

this version.

We consider burial of detrital organic carbon, nitrogen,
iron and CaCOs. The fraction of incoming organic matter (C,
N and Fe) and inorganic matter (CaCQO3) that is permanently
buried in the sediments (fpury) and therefore removed from
the model domain is computed according to the metamodel
of Dunne et al. (2007), where

, and this has not been updated in

2
F,
foury = 0.01340.53 - &

. (A80)
(7 + Forg) g

Here, Forg is the flux of detrital organic carbon to the sedi-
ments in units of mmolCm~2d~!. The fraction of organic
and inorganic matter that is not buried is routed to a la-
bile sedimentary pool, which is acted upon by remineraliza-
tion/dissolution at each time step. Sedimentary pools of iron
and CaCOs are tracked explicitly, such that the remineral-
ization/dissolution of this material to the overlying water oc-
curs at ratios with detrital organic carbon and nitrogen that
differ spatially and temporally. The remineralization of sedi-
mentary detrital organic carbon, nitrogen, iron and CaCO3 is
computed according to temperature via Eq. (A51), with the
exception that the oy, terms scaling the rate of remineraliza-
tion are equal to 0.02 and 0.0035d~! for organics (C, N and
Fe) and inorganics (CaCO3), respectively.

A fraction of the sedimentary organic matter is remineral-
ized anaerobically, specifically via denitrification. We com-
pute this fraction ( fgenit) using the metamodel of Middelburg
et al. (1996), where

o = —2.2567 — 1.185log (Forg)
—0.221(10g (Forg))* — 0.3995l0g,, (NO3 )
-logyo (02) +2log,o (NO3 ) +0.04721log,( (O2)

—0.0996log, (z) +0.4256log (Forg) log;o(02), (A81)
log N07
o= lofdcnit . —3, ASZ
fdemt NO3_ 1 ( )
.. . 94 .4
denitrification = fgenit 7 ) (A83)

Here, NO3_ is the concentration of nitrate in mmol m_3, Oy is
the concentration of oxygen in mmolm™3, and z is the depth
in meters. Equation (A82) differs slightly from that of Mid-
delburg et al. (1996) in that we accelerate sedimentary den-
itrification when NO3 concentrations are high by scaling by
2 instead of 1.25 in the fifth term. Equation (A84) includes
the theoretical stoichiometry of the denitrification NO3 de-
mand of 94.4/122 (Paulmier et al., 2009). To ensure balance
in the nitrogen cycle, we track the total rate of denitrification
at each time step and add this evenly to surface waters. This
proxy for nitrogen fixation will be updated in future versions
to account for environmental conditions favorable for dia-
zotrophs, ensuring a more realistic distribution. When NOj3
is consumed or added to the ocean model via denitrification
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and nitrogen fixation, respectively, we add and remove Alk
in equal measure.

Appendix B

Interior tracer distributions

One hundred years of simulation is sufficient to understand
the impacts of WOMBAT-lite on the distributions of key trac-
ers at mesopelagic depths. Distributions of NOsz, dFe, O»,
DIC and Alk at 500 m depth are shown in Fig. S5. NO3, DIC
and Alk all show accumulation in the eastern Pacific that
is well in excess of the observations and coincident severe
O, depletion in this region. Despite this and other biases,
WOMBAT-lite shows some slight improvements in the distri-
bution of these tracers within the mesopelagic. O3 is slightly
more depleted in the subarctic North Pacific in WOMBAT-
lite, consistent with the observations. Alk distributions in
WOMBAT-lite show less bias compared with legacy WOM-
BAT, although the North Atlantic and Indian oceans still have
too much Alk compared with the observations. The biggest
change has been to the iron cycle, which now shows less uni-
form interior distributions. Concentrations of dFe are high-
est in the tropics and subarctic North Pacific, and this is
consistent with the broad patterns observed (Huang et al.,
2022). However, there is too much dFe in the mesopelagic
of WOMBAT-lite, meaning that the ferricline is placed too
shallow. This bias is most important in the Southern Ocean,
where concentrations of dFe should be low even at 500 m
but instead are too high in WOMBAT-lite. Despite overes-
timating dFe in the mesopelagic Southern Ocean, primary
production in the Southern Ocean is still dominantly limited
by iron during the spring and summer (Fig. 8t). This suggests
that future versions of WOMBAT-lite may benefit from ele-
vating the iron scavenging term on particles to help strip out
the excess dFe in the interior.

Code availability. Model code of WOMBAT-lite devel-
oped for the simulations done in this paper is available at
https://doi.org/10.5281/zenodo.17172803. Future versions will
be implemented using the GFDL ‘“generic tracer” frame-
work to enable its use in MOMS and MOMS6. The code is
available at https://doi.org/10.5281/zenodo.17180330. Code
for the sensitivity analysis and optimization routines is at
https://doi.org/10.5281/zenodo.17189728. Code for the analysis
in Sects. 3.1 and 3.4 and the figures therein is available at
https://doi.org/10.5281/zenodo.17172792.

Data availability. Model output will be made available upon re-
quest due to the size of the output (> 50 Gb).
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Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-22-5349-2025-supplement.
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