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Abstract. In marine ecosystems, net primary production
(NPP) is important, not merely as a critical indicator of
ecosystem health, but also as an essential component in the
global carbon cycling process. Despite its significance, the
accurate estimation of NPP is plagued by uncertainty stem-
ming from multiple sources, including measurement chal-
lenges in the field, errors in satellite-based inversion meth-
ods, and inherent variability in ecosystem dynamics. This
study focuses on the aquatic environs of Weizhou Island,
located off the coast of Guangxi, China, and introduces an
advanced probability prediction model aimed at improving
NPP estimation accuracy while partially addressing its asso-
ciated uncertainties within the current modeling framework.
The dataset comprises eight distinct sets of monitoring data
spanning January 2007 to February 2018. NPP values were
derived using three widely recognized estimation methods —
the Vertically Generalized Production Model (VGPM); the
Carbon, Absorption, and Fluorescence Euphotic-resolving
(CAFE) model; and the Carbon-based Productivity Model
(CbPM) — serving as model outputs for further analysis.
The study evaluates two probability prediction approaches:
a Bayesian probability prediction model based on empirical
distribution and a deep-learning-based probability prediction
model. These methods are employed to meticulously quan-
tify the uncertainty in NPP. The results highlight the effec-

tiveness of probability prediction models in capturing the dy-
namic trends and uncertainties in marine NPP. Notably, the
neural-network-based model demonstrates superior accuracy
and reliability compared to the Bayesian approach. Further-
more, the models are applied to prognosticate NPP variations
in specific marine regions, efficaciously elucidating interan-
nual trends. This research advances the methodological pre-
cision in partially quantifying NPP uncertainty related to pa-
rameter and input data variability while highlighting the need
for future structural uncertainty assessments through multi-
model comparisons.

1 Introduction

Net primary production (NPP) of phytoplankton, an essen-
tial indicator of biological productivity, exerts a substantial
influence on global carbon flux and the dynamics of marine
ecosystems (Yang et al., 2021; Silsbe et al., 2016). The preci-
sion in estimating NPP is important for environmental qual-
ity assessments (Falkowski et al., 1998; Tan and Shi, 2005),
effective fishery resource management, and comprehending
the impacts of global climate change (Lee et al., 2015; Ding
and Chen, 2016). While acknowledging the contributions of
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conventional ship-based approaches to marine productivity
research, it is important to recognize their limitations in cap-
turing the full spectrum of temporal variability and fine-scale
spatial heterogeneity. These methods often involve episodic
sampling and may not provide the continuous data streams
necessary for understanding rapid ecological changes. This
underscores the necessity for more sophisticated and com-
prehensive methods (Yang et al., 2021; Li et al., 2020).

The advent of ocean observation satellites and ocean color
remote sensing technology has catalyzed a paradigm shift
in the estimation of large-scale marine primary productivity
(Yang et al., 2021; Westberry et al., 2008). These pioneering
technological advancements furnish novel insights into phy-
toplankton photosynthetic production and its essential role
in the carbon cycle, thereby broadening the observational
spectrum and establishing a robust foundation for predict-
ing marine NPP. Initial remote sensing endeavors to estimate
NPP, employing satellite-based chlorophyll a (Chl a) (Platt
et al., 1991; Platt and Sathyendranath, 1988; Sathyendranath
et al., 1995), stemmed from the established correlation be-
tween chlorophyll and photosynthesis (Ryther, 1956; Ryther
and Yentsch, 1957). However, these efforts were predomi-
nantly confined to local or regional applications. A subse-
quent investigation by Campbell et al. (2002) delved into
the accuracy of various satellite primary productivity algo-
rithms, unveiling that estimates from the most effective algo-
rithm often diverged from those derived using the '*C isotope
labeling method. Their study also unearthed systematic bi-
ases in several algorithms, which could be alleviated through
re-parameterization. Sathyendranath et al. (2020) emphasize
the critical role of accurately assigning parameters in primary
production models as a key strategy for reducing model un-
certainties and enhancing the reliability of satellite-based pri-
mary production estimates, particularly in the context of cli-
mate research.

Currently, the estimation of NPP primarily relies on
three mainstream models: the Vertically Generalized Produc-
tion Model (VGPM); the Carbon-based Productivity Model
(CbPM); and the Carbon, Absorption, and Fluorescence
Euphotic-resolving (CAFE) model. These models were suc-
cessively proposed by Behrenfeld and Falkowski (1997),
Westberry et al. (2008), and Silsbe et al. (2016), respec-
tively, and have become benchmark methods in this research
field. Spanning various decades, these models address di-
verse facets of ocean primary production and are readily
accessible via satellite remote sensing data platforms. As a
result, they have been extensively applied and discussed in
numerous studies (Westberry et al., 2008; Pan et al., 2012;
Dave and Lozier, 2013; Li et al., 2020; Yang, 2021; Cael,
2021). Particularly, VGPM formulates a light-dependent,
depth-integrated model that classifies environmental factors
influencing the vertical distribution and optimal assimilation
efficiency of primary production, leveraging '“C productiv-
ity measurement data (Behrenfeld et al., 1997). Conversely,
CbPM is a depth-resolved spectral NPP model designed for
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phytoplankton growth rates (Westberry et al., 2008). Its foun-
dational concept was originally articulated by Behrenfeld
et al. (2005). Distinguishing itself from Chl-based models,
CbPM enables the differentiation of physiological changes
in biomass and Chl, thus offering a more nuanced depic-
tion of phytoplankton production. Notably, its strength lies
in addressing issues related to light and nutrient adaptation,
thereby enhancing its capability in estimating fixed carbon
output at the ocean surface. Similarly, the CAFE model, in-
troduced in 2016, presents an adaptive framework that melds
satellite ocean color analysis with essential physiological and
ecological attributes of phytoplankton (Silsbe et al., 2016). It
incorporates intrinsic optical properties into the model and
calculates NPP by assessing the product of energy absorp-
tion and the efficiency of converting absorbed energy into
carbon biomass, alongside computing growth rates. Nonethe-
less, these models commonly generate a single value of NPP,
overlooking the range estimation and the inherent uncertain-
ties in NPP estimation, stemming either from the model itself
(BIPM et al., 2008) or from the model input (Milutinovi¢
and Bertino, 2011). This oversight is critical, as suggested
by Saba et al. (2011), since uncertainties in input variables,
like Chl a, significantly impinge upon model performance
and accuracy. In a recent assessment, Westberry et al. (2023)
examined the daily depth-integrated NPP rates over 2003—
2018 for VGPM, CbPM, and CAFE, revealing that the mean
NPP fields of CbPM and CAFE, along with their associated
frequency distributions, are distinctly divergent from those of
VGPM.

Transitioning from the constraints of traditional models,
probabilistic forecasting, in contrast to deterministic fore-
casting (Juban et al., 2007), generates a cumulative dis-
tribution function or probability density function for the
predicted object. This methodology offers a more holistic
understanding of likely outcomes (Gneiting and Katzfuss,
2014; Schepen et al., 2018; Zhao et al., 2015). Significantly,
this approach has been successfully implemented in fields
such as hydrology (Schepen et al., 2018; Zhao et al., 2015;
Schwanenberg et al., 2015) and power system management
(Al-Gabalawy et al., 2021). For instance, Schwanenberg et
al. (2015) conducted analyses using both deterministic and
probabilistic forecasts. They concluded that deterministic
forecasts tend to overlook forecast uncertainty in short-term
decisions, whereas probabilistic forecasting offers numerous
advantages: (i) it enables a longer forecast horizon, facili-
tating earlier and more accurate predictions of major events;
(ii) it supports decision-making by incorporating forecast un-
certainty into the analysis, leading to more robust and adap-
tive outcomes; and (iii) it enhances the flexibility of sys-
tem operation through the integration of uncertainty-based
methodologies.

The estimated values of NPP derived from the above three
classical models exhibit significant discrepancies, reflect-
ing substantial uncertainties in these methods. These inac-
curacies can impede a comprehensive understanding of the
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role of oceans in the global climate system, particularly in
their capacity to act as carbon sinks and regulators of atmo-
spheric CO» levels. Consequently, quantifying and address-
ing these uncertainties are important for improving the re-
liability of NPP estimates and ensuring their applicability
in climate research and marine ecosystem management. Al-
though Bayesian models and probabilistic neural networks
are established methods, their application to the remote sens-
ing of marine net primary productivity (NPP) represents a
novel approach. This study leverages these advanced prob-
abilistic techniques to address the unique challenges in es-
timating NPP from satellite data, providing a more accu-
rate and reliable quantification of uncertainties. We intro-
duce probabilistic prediction models to meticulously quan-
tify the uncertainty in NPP estimation, thereby enhancing our
comprehension of NPP’s significance in marine ecosystems.
The research objectives of this paper are articulated as fol-
lows: (1) to thoroughly quantify the uncertainty in NPP es-
timation through the integration of probabilistic forecasting,
(2) to evaluate and contrast the efficacy of neural-network-
based probabilistic forecasting with empirical-distribution-
based Bayesian probabilistic forecasting in capturing NPP
uncertainty, and (3) to implement probabilistic forecasting
of the uncertainty in the NPP in the study area during 2007-
2018 and to explore its temporal characteristics. Our study
offers innovative perspectives and methodologies for ad-
dressing the uncertainty associated with NPP. The organiza-
tion of this paper is as follows: Sect. 2 outlines the study
area and data sources, Sect. 3 elaborates on the methodology
and presents metrics for evaluating forecasting performance,
Sect. 4 discusses the results, and Sect. 5 presents the conclu-
sions.

2 Data and methods
2.1 Study area and data sources

The research locale for this study is situated in the aquatic en-
virons of Weizhou Island, nestled within the Gulf of Tonkin,
Guangxi Province, southern China (Fig. 1). The island ex-
tends in a NE-SW direction and has an elliptical shape. It
is approximately 6 km long from north to south, 5km wide
from east to west, and has an area of approximately 25 km?,
making it the largest and youngest volcanic island in China
(Li and Wang, 2004). Weizhou Island is an inhabited vol-
canic island. The annual average water surface temperature
is about 24 °C and ranges from 19 to 30 °C. The annual aver-
age seawater salinity is 32 %o, seawater pH ranges from 8.0
to 8.23, and seawater transparency ranges from 3 to 10 m (Yu
et al., 2019). In addition, Weizhou Island is the northernmost
island in the Gulf of Tonkin, where coral reefs have devel-
oped. These coral reefs are mainly found in shallow waters
along the southwest, northwest, and northeast coasts, with
widths ranging from 0.86 to 2.56 km (He and Huang, 2019).
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The unique climatic conditions and island landscape make
it a popular tourist destination. The waters of Weizhou Is-
land are the habitat of many rare marine organisms, and the
protection and research of its marine ecosystem are of great
significance to maintaining marine biodiversity.

The dataset of this study encompasses eight distinct sets
of monitoring data spanning January 2007 to February 2018,
amassing a total of 4077 d. These data were procured from
the Weizhou Marine Environmental Monitoring Station
(21.0017°N, 109.0117°E) and encompass a spectrum of
variables: sea surface temperature (SST), salinity (Sal),
tide height (TH), air pressure (AP), relative humidity
(RH), sea visibility (SV), wind speed (WS), and 1/10th
significant wave height (H/10). Additionally, photosynthet-
ically active radiation (PAR) was retrieved from NASA’s
Ocean Color portal (https://oceancolor.gsfc.nasa.gov/,
last access: 19 May 2023), sea surface precipitation
(SSP) was sourced from NASA Earth observation data
(https://www.earthdata.nasa.gov/, last access: 10 May
2023), and sunshine hours (SHs) were sourced from the
China Meteorological Administration (https://data.cma.cn/,
last access: 10 May 2023). These data were aggregated
to constitute a comprehensive dataset encompassing 11
variables, serving as the input features for the models.
Phytoplankton, the primary source of NPP, is directly
influenced by variables such as SST, Par, and SHs, which are
critical to its photosynthetic processes. Additionally, other
variables have significant indirect effects on phytoplank-
ton growth. Sal, for example, influences the community
structure of phytoplankton (Braarud, 1951). Variables such
as TH, H/10, and WS indirectly affect phytoplankton
dynamics by modulating water column mixing and the
vertical distribution of nutrients. AP, RH, and SV also
indirectly impact phytoplankton photosynthetic activity by
altering environmental conditions. For the analysis of three
NPP algorithms — namely VGPM, CbPM, and CAFE -
we utilized their output datasets, which were obtained at
an 8d temporal resolution from the Ocean Productivity
website  (http://orca.science.oregonstate.edu/1080.by.2160.
monthly.hdf.vgpm.m.chl.m.sst.php, last access: 17 April
2023; http://orca.science.oregonstate.edu/1080.by.2160.
monthly.hdf.cbpm2.m.php, last access: 27 April 2023;
http://orca.science.oregonstate.edu/1080.by.2160.monthly.
hdf.cafe.m.php, last access: 27 April 2023). These datasets
represent the modeled NPP estimates produced by each
algorithm over a cumulative duration of 514 d. The specific
datasets utilized for this study are itemized in Table 1.

Due to factors such as equipment malfunctions and ad-
verse weather conditions, some data for the 11 variables were
incomplete, which may affect the accuracy of the model, es-
pecially when capturing extreme events. To gain a deeper
understanding of the data structure and address these gaps,
we conducted an analysis of the missing data and identi-
fied five variables with missing entries (Table 2): SV, H/10,
SSP, PAR, and SHs. These missing data points are primar-
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Figure 1. The research area is located in the waters of Weizhou Island in Beibu Gulf, southern China. The red dots in the figure indicate the
location of the Weizhou Marine Environmental Monitoring Station (21.0017° N, 109.0117° E). Eight distinct sets of monitoring data were

collected from this monitoring station.

Table 1. Summary of variables and data sources.

Variable name  Variable description

Data source

Weizhou marine environment
monitoring station

Ocean Color
Earthdata
China Meteorological Administration

Ocean Productivity

SST Sea surface temperature (°)

Sal Salinity (%o)

TH Height of tide (m)

AP Air pressure (hPa)

RH Relative humidity (%)

SV Sea visibility (km)

WS Wind speed (ms™ 1)

H/10 1/10th significant wave height (m)

PAR Photosynthetically active radiation (W m~2)
SSP Sea surface precipitation (mm)

SHs Sunshine hours (h d_l)

VGPM NPP from VGPM (mg Cm~2d~1)

CbPM NPP from CbPM (mg Cm—2d~1)

CAFE NPP from the CAFE model (mg Cm~—2d~1)

ily due to random occurrences such as satellite equipment
malfunctions and severe weather conditions, which disrupt
data acquisition. Since these events are sporadic and not tied
to any specific frequency, only the total number of missing
values has been recorded. Subsequently, we visualized these
five variables in a chronological sequence, with the findings
depicted in Fig. 2. Distinct from day length, which is com-
putable based on location and date, SHs indeed refer to the
daily measured duration of sunlight reaching the Earth’s sur-
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face. The variability and instances of zero values observed
in Fig. 2 (bottom panel) and mentioned in Table 2 reflect
real-world fluctuations due to weather conditions — on over-
cast or rainy days, actual sunshine hours recorded can in-
deed drop to zero. These data are collected on a daily basis,
hence the seemingly sporadic pattern rather than a smooth
temporal variation expected for constant day length calcu-
lations. The analysis revealed a marked periodicity in these
variables, prompting us to employ time series interpolation
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as our method of choice for data imputation. The efficacy of
this approach is evidenced in Table 3, which presents the sta-
tistical indicators of the data both pre- and post-interpolation.
Notably, while the post-interpolation data retain a close re-
semblance to the original data in terms of statistical indica-
tors, it is important to acknowledge that interpolated data are
not independent observations. The validity of the interpola-
tion method, therefore, depends on the specific application
and context. In this study, interpolation was used to address
missing variables, and we ensured that the statistical proper-
ties of the original data were preserved to the greatest extent
possible. This approach allows us to maintain the integrity
of our analyses while recognizing the inherent limitations of
using interpolated data.

VGPM, CbPM, and CAFE rely on similar input variables,
derived from satellite observations and environmental mea-
surements. VGPM uses inputs such as SST, chlorophyll (Chl)
concentration, and PAR to estimate NPP, leveraging opti-
mal assimilation efficiency in its parameterization (Behren-
feld et al., 1997). CbPM focuses on phytoplankton car-
bon biomass, incorporating backscattering coefficients along
with Chl. CAFE integrates additional inputs, including atmo-
spheric pressure (AP), solar heat, and wind speed (WS), to
parameterize light and nutrient availability critical for phyto-
plankton growth.

To evaluate the long-term trends in net primary production
(NPP), we applied a low-pass filter to the three NPP prod-
ucts (VGPM, CbPM, and CAFE) (Fig. 3). This filtering pro-
cess removes high-frequency variations, such as noise and
short-term fluctuations, while retaining the underlying long-
term patterns. It became evident that each exhibits a distinct
seasonal periodicity, with the fluctuation ranges remaining
stable over time, yet their magnitude and timing varied sig-
nificantly among the three NPPs. Specifically, VGPM has
the smallest values, followed by CAFE, while CbPM has
the largest values. This periodicity indicates that changes in
NPP are not random but follow predictable laws and reflects
the well-established seasonal patterns in marine primary pro-
duction, associated with seasonal variations in environmental
factors such as light availability, temperature, and nutrients.
Such periodic trends are expected in regions around 21° N,
including the waters near Weizhou Island, due to the inter-
play of monsoonal influences and seasonal shifts in oceano-
graphic conditions. While all three NPPs capture these peri-
odic patterns, their representation of the magnitude and tim-
ing of peaks differs. The distinct ways in which VGPM,
CbPM, and CAFE capture these patterns provide valuable
insights into their respective model designs and parameteri-
zations.

To elucidate the correlation between these NPP prod-
ucts and our dataset, we generated Pearson correlation plots
(Fig. 4). The results revealed that the variables with the high-
est correlations differed among the three NPP values. No-
tably, VGPM showed the strongest correlation with SST, re-
flecting its dependence on sea surface temperature in its pa-
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rameterization. Both CAFE and CbPM showed strong corre-
lation with AP, albeit in opposing directions — CAFE dis-
played a positive correlation, while CbPM NPP exhibited
a negative one. Changes in AP affect atmospheric stability,
cloudiness, and precipitation, indirectly altering light con-
ditions in the ocean and subsequently affecting phytoplank-
ton photosynthesis. Lower AP often corresponds to unsta-
ble atmospheric conditions and increased cloud cover, which
may inhibit photosynthesis activity by reducing light pen-
etration. Additionally, phytoplankton dynamics modeled in
CbPM may respond differently to such changes compared to
CAFE, potentially due to the distinct assumptions and pa-
rameterization used in each model. In summary, among the
three models, VGPM possesses the most significant correla-
tion with the variables, followed by CAFE and lastly CbPM.

2.2 Methods
2.2.1 Bayesian probability prediction

Bayesian models can adeptly quantify the uncertainty in the
distribution of predicted outcomes. The Bayesian approach
is particularly advantageous in scenarios with limited train-
ing data or when potential invisibility in training data cannot
be discounted in practical applications (Perfors et al., 2011;
Kaplan, 2021; Zou and Wen, 2024). The Bayesian formula is
represented as

P (D) - P (0)
P@OID) = ——F 7 ey
(D)
where 6 denotes the model parameters, and D represents the
training dataset, and P (6| D) denotes the posterior probabil-
ity, P(D|0) the likelihood probability, P (6) the prior proba-
bility, and P (D) the marginal probability for normalization.

When a training dataset D is available, the probability
distribution P(6|D) of 6 is computable using the afore-
mentioned Bayesian formula (Diirr et al., 2020). To deduce
P(0|D), it is imperative to ascertain the likelihood probabil-
ity P(D|@) of the observed data under the model parame-
ter 8. P(D]0) can also be interpreted as the probability of
obtaining the training dataset D given parameter 6. Addi-
tionally, knowledge of the prior probability P(0) and the
evidence P (D) is essential. Given that the training dataset
D is fixed, P(D) remains constant. Consequently, the pos-
terior distribution is proportional to the likelihood proba-
bility multiplied by the prior distribution, i.e., P(6|D) x
P(D|0) - P(6), in accordance with Bayes’ law.

In this study, the Bayesian approach is employed to calcu-
late the posterior distributions of the parameters considering
the prior information and the input data. Subsequent predic-
tions are made using the posterior distributions, yielding a
probability distribution for each predicted value. Ultimately,
the model’s ability to estimate the uncertainty in the NPP is
illustrated by plotting the prediction ranges for different tar-
gets and comparing them to actual observations.

Biogeosciences, 22, 5463-5482, 2025
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Figure 2. Time series plots of SV, H/10, PAR, SSP, and SHs with missing variables, showing the cyclical variation in these five variables.

Table 2. Summary of missing variables.

Variable SV (km) H/10 (m)

PAR (Wm™2) SSP(mm) SHs(hd™!)

Missing quantity (days) 31 51

828 378 18

2.2.2 Neural network probabilistic prediction model
based on TFP

TensorFlow Probability (TFP) represents a sophisticated li-
brary of statistical algorithms, devised atop the TensorFlow
Python API. Its primary objective is to streamline the integra-
tion of probabilistic models with deep learning frameworks.

Biogeosciences, 22, 5463-5482, 2025

TFP offers a comprehensive suite of tools, enabling the con-
struction of probabilistic models adept at estimating uncer-
tainty. Aiming to thoroughly assess the predictive efficacy
of the three NPP products, we employed a neural network
model grounded in the TFP framework, capitalizing on its
versatility and potent expressive capabilities for probabilistic
prediction in marine ecosystems.
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Table 3. Statistics of data pre- and post-interpolation.

5469

SV (km) | H/10(m) | PAR(Wm™2) | SSP(mm) | SHs(hd™))
Pre Post ‘ Pre Post ‘ Pre Post ‘ Pre Post ‘ Pre Post
Count 4046 4077 | 4026 4077 3249 4077 3699 4077 | 4059 4077
Mean 15.22 15.23 0.57 057 | 3492 3597 4.94 4.85 519 5.18
SD 10.33  10.30 0.41 0.41 1564 15.20 16.13 15.61 3.93 3.93
Min 0.00 0.00 | 0.00 0.00 1.20 1.20 0.00 0.00 | 0.00 0.00
25 % 7.00 7.00 | 030 030 | 22.19 24.14 0.00 0.00 | 0.80 0.80
50 % 12.00 12.00 0.50 0.50 | 36.03 36.87 0.00 0.00 5.60 5.60
75 % 25.00 25.00 | 0.70 0.70 | 47.58 48.49 1.30 1.50 8.90 8.80
Max 50.00 50.00 | 400 4.00 | 61.13 61.13 | 280.40 280.40 12.6 12.6
Original VGPM_NPP
900 Filtered VGPM_NPP
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Figure 3. Time series of VGPM, CbPM, and CAFE from January 2007 to February 2018, where the green line represents VGPM, the blue
line represents CbPM, and the orange line represents CAFE. The dashed lines are the original data, and the solid ones are the low-pass-filtered
data, which show the seasonal variations more clearly. Abbreviations and data sources can be found in Table 1.

The architecture of this neural network model incorpo-
rates multiple hidden layers, each implementing a nonlinear
transformation via an activation function. Such a configura-
tion enables the model to automatically extract higher-order
features and intricate patterns from the data. Our selection
of TFP as the implementation medium allows us to model
the neural network’s output by integrating probability distri-
butions, thus addressing the model’s uncertainty regarding
predictions and yielding more exhaustive insights. Specifi-
cally, our neural network model utilizes a distribution layer in
the output stage, producing a probabilistic distribution con-
cerning the target variable, as opposed to a mere determin-
istic point prediction. This probabilistic output facilitates the
quantification of the model’s confidence level for each pre-
diction, extending beyond mere point estimates.
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The integration of Bayesian models and probabilistic neu-
ral networks in our approach addresses key challenges in the
remote sensing of NPP. These challenges include handling
the variability and uncertainty inherent in satellite-derived
data and environmental factors, thus improving the robust-
ness of NPP estimates. In this study, the input variables for
the models are the 11 environmental variables mentioned in
Sect. 2.1, and the outputs are VGPM, CbPM, and CAFE.
These input variables partially overlap with those used in
VGPM, CbPM, and CAFE. The selection of input data was
not limited to variables directly related to phytoplankton pho-
tosynthesis, such as SST, PAR, and SHs. Instead, it also in-
cluded a wide range of environmental variables that could
influence phytoplankton growth, such as TH, WS, and AP,
which are physical dynamics and meteorological character-
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Figure 4. Pearson correlation between the 11 input variables and the 3 NPPs (VGPM, CAFE, and CbPM). These input variables serve as
inputs to the probabilistic models, while VGPM, CAFE, and CbPM are used as model outputs. The deeper shade of red indicates a stronger

positive correlation, whereas the deeper shade of blue indicates a stronger negative correlation.

istics. Since phytoplankton are the primary source of NPP,
environmental factors affecting phytoplankton growth also

Table 4. Parameters of the neural network model.

indirectly impact NPP. These emphasize the variability in Hyperparameters

how different NPP models capture environmental interac- Layer 1 64
tions. Importantly, the Pearson correlation analysis (Fig. 4) Layer 2 32
highlights the most relevant variables for prediction, enabling Layer sizes Layer 3 16
the NN and Bayesian models to focus on key inputs and filter Layer 4 16
out less influential variables. Layer 5 2

The dataset spans 4077 d, but due to the 8 d time interval Distribution layer ~ Gaussian distribution
of the downloaded NPP products, only 514 complete datasets Epochs 800
are available for model training and performance evaluation. Learning rate 0.0001
Given the limited amount of data, 80 % of the 514 sets are Bat?h se 16
.. . . Optimizer Adam
used for model training and parameter tuning, while the re- Loss Negative log likelihood

maining 20 % are used for performance evaluation. In the
neural network probabilistic prediction model, there are six
layers, with two output nodes used to estimate the mean and
standard deviation. The Gaussian distribution is employed in
the distribution layer, and the loss function is the negative
log-likelihood loss function. The detailed parameters of the
neural network are presented in Table 4.

2.3 Model evaluation

Prior to model evaluation, we normalized the NPP satel-
lite data. This step is critical to improving model perfor-
mance because it removes the potential effects of different
data scales, allowing the model to consider each data point
more fairly. Normalization ensures that the distribution range
of NPP data has the same weight during model training, thus
improving the model’s ability to capture the inherent patterns
and features of the data. In addition, normalization helps re-
duce the noise and bias introduced by data scale differences,
further enhancing the stability and predictive accuracy of the
model.

Biogeosciences, 22, 5463-5482, 2025

Before training the model, we divided the dataset reason-
ably. Specifically, we divided the dataset into 80 % training
set and 20 % testing set. This division aims to ensure that the
model can fully learn the features and patterns of the data
during the training process while retaining enough indepen-
dent data to test the predictive ability of the model. This way
of dividing the dataset helps us to evaluate the performance
of the model more accurately and avoid problems such as
overfitting.

In this study, our models provide probabilistic predictions,
generating a probability distribution for each time point
rather than a single point estimate. To facilitate visualization
and interpretation, the curves presented in some figures rep-
resent the mean values derived from these predictive distri-
butions. These mean curves summarize the central tendency
of the model outputs while inherently accounting for the un-
certainty associated with the predictions.
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2.3.1 CDF

The cumulative distribution function (CDF), also known as
the distribution function, is the integral of the probability
density function (PDF). It provides a complete description of
the probability distribution of a real-valued random variable
X. The CDF is defined as the probability P that a random
variable X is less than or equal to a given value x, expressed
as

F(x)=P(X <x). 2)

To evaluate the predictive performance of the model, we
computed the empirical CDF of the input data and compared
it with the average predictive CDF generated by the model.
This comparison provides a graphical representation of the
model’s predictive accuracy. A higher degree of overlap be-
tween the empirical and predictive CDF curves indicates a
greater similarity between the two distributions, thereby re-
flecting superior model predictions.

2.3.2 Continuous ranked probability score (CRPS)

In probabilistic forecasting, the focus extends beyond mere
point estimates to encompass the shape and dispersion of the
probability distribution. Hence, traditional scoring functions
prove to be inadequate, as aggregating the predicted distribu-
tions into their mean or median neglects critical information
about the dispersion and shape. Continuous ranked probabil-
ity score (CRPS), by embracing the entire probability distri-
bution, emerges as an invaluable tool in assessing model un-
certainty. CRPS is a sophisticated statistical metric employed
to evaluate the efficacy of forecasting models. Initially intro-
duced in the 1970s (Matheson and Winkler, 1976), CRPS is
widely utilized in areas such as weather forecasting (Zamo
and Naveau, 2018). It quantifies the divergence between the
predicted probability distribution and the actual observations
(Hersbach, 2000). Ideally suited for scenarios where the tar-
get variable is continuous and the model predicts its distri-
bution (Pic et al., 2023), CRPS equates to the mean absolute
error (MAE) in deterministic forecasting (Zhao et al., 2015).
CRPS is calculated as follows:

1. For each sample (individual data points in the dataset,
each representing a specific combination of environ-
mental conditions and corresponding NPP estimates),
calculate the discrepancy between the cumulative dis-
tribution function (CDF) of the predicted and observed
values.

2. Aggregate the variances for all samples and divide them
by the number of samples to obtain the average vari-
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ance.

+00

CRPSindividual (F, y) = / [(F(x)— H(x —ydx (3)

—00
1
CRPS = ;ZZI: , CRPSindividual (Fi yi) 4)

Here F(x) denotes the CDF of the predicted value; x
the predicted value; y the observed value; and H(x —
y) the Heaviside function, which is 0 when x<y and 1
otherwise. n indicates the total number of samples, and
CRPSindividual (Fi, yi) represents the CRPS value for the
ith sample.

A smaller CRPS value signifies a closer alignment of the
model’s probability distribution with actual observations, in-
tegrating insights on both the shape and the location of the
distribution and demonstrating sensitivity to outliers. Unlike
other metrics, such as root mean square error (RMSE) or
mean absolute error (MAE), CRPS offers a more holistic
evaluation of a probability distribution’s predictive capac-
ity by considering the full distribution shape. For Bayesian
and neural network models, comparing CRPS values facili-
tates an understanding of their proficiency in fitting the entire
probability distribution.

2.3.3 RMSD

Root mean squared deviation (RMSD) is a widely recognized
evaluation metric in regression analyses, primarily employed
to quantify the discrepancy between a model’s predicted val-
ues and the actual observed values. Characterized by its intu-
itive nature and simplicity in computation, RMSD is particu-
larly beneficial in scenarios where emphasis is placed on the
magnitude of difference between predicted and actual values,
irrespective of the difference’s direction.

1 —n
RMSD = \/ =D i i =) 5)

Here n denotes the number of samples, y; represents the pre-
dicted value of the ith sample, and x; symbolizes the actual
value of the ith sample.

A lower RMSD value is indicative of superior model per-
formance, signaling a smaller variance between the model’s
predictions and the observed values. Nevertheless, it is im-
portant to note that RMSD exhibits sensitivity to outliers, as
it constitutes the mean of the squared differences. Incorporat-
ing RMSD alongside CRPS in our analysis enables a more
comprehensive evaluation of both the overall accuracy and
the uncertainty inherent in the predictions.

234 MAPD

Mean absolute percentage deviation (MAPD) is a frequently
utilized percentage error metric in regression problems. It ex-
presses the prediction error as a percentage, offering an in-
sightful perspective into the relative error between predicted
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results and true values in predictive model evaluations.

Xi — )i
Xi

x 100 % (6)

1 n
M= 15

Here n signifies the number of samples, y; the predicted
value of the ith sample, and x; the actual value of the ith
sample.

A lower MAPD value is desirable, indicating a reduced
relative error of the model. However, consider the following
cautionary note: MAPD may prove unreliable in instances
where the predicted value approaches zero, as a zero denom-
inator results in infinity. Therefore, careful consideration is
warranted when employing MAPD, particularly in scenarios
where relative accuracy is primary.

In the context of comparing Bayesian probabilistic pre-
diction models with neural network probabilistic prediction
models, the synergistic application of these three metrics —
CRPS, RMSD, and MAPD - affords a multifaceted assess-
ment of the models. This triad of metrics enhances our un-
derstanding of the importance of relative error alongside the
accuracy of point estimates and the fit of probability distri-
butions.

3 Results and discussion

3.1 Comparative analysis of prediction efficacy
between two models

We utilized VGPM, CbPM, and CAFE as prediction tar-
gets to scrutinize the predictive effectiveness of both the
neural-network-based probabilistic prediction model and the
empirical-distribution-based Bayesian probabilistic predic-
tion model. Figure 5 presents a comparison of CRPS, RMSD,
and MAPD values for both NN and Bayes models using
the three NPPs as prediction targets across training and test
datasets. Notably, CRPS provides a holistic evaluation of pre-
diction accuracy and reliability. All the metrics are calculated
using normalized data for better comparison. Lower values
are indicative of enhanced model performance. Figure Sa—
¢ and d—f depict the CRPS, RMSD, and MAPD of the NN
model and Bayes model, respectively, when using the three
NPP values as prediction targets. The color blue represents
the training set, while red represents the test set.

It can be observed from Fig. 5a and d that the CRPS val-
ues of both the NN model and the Bayes model are simi-
lar. When VGPM is used as a prediction target, the perfor-
mance of the models is closest between the training set and
test set, followed by CbPM. However, CAFE has the low-
est CRPS value among all three models, with its test set’s
value slightly larger than that of its training set. The lower
CRPS value for CAFE, compared to VGPM and CbPM, may
stem from the fact that its probability distribution aligns more
closely with the prediction of models in terms of both shape
and central tendency, since CRPS evaluates the full probabil-
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ity distribution, incorporating factors such as skewness and
kurtosis in addition to variance. In the case of CAFE, the
probabilistic structure of its predictions may exhibit better
congruence with the observed cumulative distribution func-
tion (CDF) (Sect. 3.2.1), particularly in regions with higher
data density. This enhanced alignment could compensate for
its slightly larger variance compared to CbPM, thereby re-
sulting in a lower CRPS value. Additionally, the design and
parameterization of the CAFE model may inherently empha-
size features that lead to improved probabilistic predictions,
which warrants further investigation.

In terms of RMSD metrics (Fig. 5b and e), when VGPM
is used as a prediction target, its index value is significantly
higher compared to the values obtained with the other mod-
els; however, its performance between the training set and
test set remains close. When CbPM is used as a prediction
target, the Bayes model outperforms the NN model but ex-
hibits a larger difference between the training set and test set
compared to the NN model.

Regarding the MAPD indices (Fig. 5¢ and f), it can be
seen that there is a significant difference between the NN and
Bayesian models when the three NPP values are used as the
prediction targets, where the MAPD values are significantly
lower when CAFE is used as the prediction target compared
to when CbPM and VGPM are used as the prediction targets.
In addition, for the NN model, the MAPD index value for
CAFE is lower than that of the Bayes model. However, there
exists a significant difference between its training set and test
set.

It is critical to note that our uncertainty quantification
framework focuses on propagating uncertainties from the
base models (VGPM, CbPM, CAFE) through the emulation
process rather than assessing the structural adequacy of these
models themselves. The neural network and Bayesian mod-
els developed in this study were trained using outputs from
VGPM, CbPM, and CAFE. While this approach allowed us
to evaluate the uncertainty in emulating these base models,
it also means that our models inherit their underlying biases
and errors. As such, the uncertainty estimates reported here
reflect the uncertainty in emulating these specific outputs and
do not represent the true uncertainty in NPP estimation. Fur-
thermore, as demonstrated in Fig. 3, the outputs of VGPM,
CbPM, and CAFE differ significantly, underscoring the need
for ground truth data to validate these models. Among these,
CAFE NPP is often considered more accurate based on prior
studies, but further validation with observational data is nec-
essary to confirm this assumption.

Therefore, among the three NPP datasets, CAFE was se-
lected as the primary prediction target for subsequent anal-
ysis. This decision was motivated by two factors: (1) previ-
ous studies have shown that for other NPP models analyzed
for the same dataset, the CAFE model explains the most
variance, has the lowest model bias, and also reproduces
the magnitude and seasonality of field-measured NPP bet-
ter than other satellite remote sensing models (Silsbe et al.,
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Figure 5. Comparison of NPP predictive effects from VGPM, CbPM, and CAFE. Panels (a)—(c) present the results from the neural-network-
based probabilistic prediction models; panels (d)—(f) present the results from Bayesian probabilistic prediction models based on empirical
distributions. The horizontal coordinates represent VGPM, CbPM, and CAFE as inputs in sequence, separated by the dashed gray lines,
where the blue dots represent data from the training set, and the red dots denote data from the test set, and the vertical coordinates are the
values of the three metrics, CRPS, RMSD, and MAPD. Since NPP values were normalized to the range of 0-1, the y axes of subplots (a),

(b), (d), and (e) are dimensionless. The units for MAPD are percentile.

2016), and (2) both probabilistic prediction models (NN and
Bayesian) have demonstrated the ability to emulate CAFE
output with high accuracy and reliability. While this does not
imply that CAFE perfectly represents true NPP, its suitability
for capturing patterns in the study area supports its use as the
prediction target in this work.

3.2 Quantifying the uncertainty in CAFE

When quantifying uncertainty in CAFE, we need to focus on
the uncertainty factors that exist in the input variables in ad-
dition to the uncertainty that may arise during model train-
ing. These uncertainty factors include measurement errors
and temporal variability, among others. Measurement errors
usually originate from the accuracy limitations of the instru-
ments, the complexity of the observation environment, or the
instability of human operations. These errors not only affect
the accuracy of the input variables to varying degrees, but
also propagate through the model and thus affect the accu-
racy of the prediction results. The temporal variability, on the
other hand, reflects the dynamic changes in marine environ-
mental parameters, such as seasonal temperature changes and
cyclic fluctuations in tides, which also affect the NPP predic-
tion results. Consequently, quantifying these uncertainties is
particularly important for conducting CAFE predictions.
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3.2.1 Comparative analysis of confidence interval
widths

Figure 6 illustrates the comparison between the forecast
mean of the NN model and Bayes model and the CAFE value
when CAFE is utilized as the prediction target. In the figure,
the triangular icons represent 514 sets of the forecast aver-
age, while the gray and blue colors represent the 95 % and
75 % confidence intervals, respectively. Overall, both mod-
els exhibit relatively wide confidence intervals for their pre-
dicted results, possibly due to the large range of changes in
CAFE. The models may face greater challenges in capturing
this wide range of changes, resulting in increased uncertainty.

When CAFE is less than 450mg Cm~2d~!, both mod-
els tend to overestimate the actual NPP value. This phe-
nomenon becomes more pronounced when CAFE is less than
350 mg Cm~2d~!. In contrast, a certain linear relationship
between the true value and predicted mean value emerges
within a range of 450-600mg C m~2d~!. Most of the pre-
dicted mean values are distributed around the 1:1 line in
this range, indicating higher accuracy by these models. How-
ever, when CAFE exceeds 600 mg C m~2d~!, it is observed
that both models tend to underestimate actual NPP values.
This phenomenon may be attributed to an imbalance in sam-
ple data distribution within different intervals of CAFE. The
majority of data points are concentrated in a narrow range
(350-600mg Cm~2d~"), while data points in other inter-
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vals are scarce. This inadequacy makes it difficult for model
training to capture its distribution law accurately and leads to
increased prediction uncertainty within these ranges.

Compared with the two models, the predicted value of
the NN model is more concentrated around the 1:1 line,
while the predicted value of the Bayes model is relatively dis-
persed, and the confidence interval is wider. The smaller the
confidence interval width, the higher the accuracy of model
prediction. The results manifest that the NN probabilistic
prediction model is more accurate in predicting CAFE than
the Bayes probabilistic prediction model, and the uncertainty
in its prediction results is lower. The prediction mean ob-
tained by the NN probabilistic prediction model is closer to
the 1 : 1 line, which usually means that the deviation between
the predicted value of the model and the actual observed
value is small; that is, the prediction accuracy of the model is
higher. The differences in the performance of the two mod-
els may stem from their different strategies for dealing with
uncertainty and data fitting. Neural network models typically
capture the nonlinear relationships of data through a large
number of parameters and complex network structures, so
they may be able to fit the data distribution more accurately
in some cases. The Bayes model deals with uncertainty by in-
troducing prior knowledge and a posteriori inference, but its
performance may be limited under some complex data distri-
butions.

To further elucidate the models’ effectiveness in proba-
bilistic prediction of CAFE, Fig. 7 visualizes the time se-
ries model predictions with a 95 % confidence interval un-
certainty range. The figure shows that almost all CAFE val-
ues fall within the 95 % confidence interval of the mean of
the predicted values. It can be clearly seen that the predicted
distribution of the NN model is much smaller than that of the
Bayes model, which is consistent with the results shown in
Fig. 6. The NPP is clearly periodic in time, and both mod-
els are able to align their predictions on the test set with the
periodicity of the training set. In particular, the scatter in the
NN model is more centrally distributed around the red line,
while the scatter in the Bayes model is more discrete from
the red line, which further suggests that the NN model has a
more accurate estimate in predicting CAFE.

Overall, the trends in the predicted means of the two mod-
els are consistent with the trends in the majority of CAFE
values, which further validates the accuracy of the two meth-
ods in capturing the process of CAFE changes. This consis-
tency indicates that the models can not only accurately re-
flect the long-term trends in CAFE changes, but also capture
short-term fluctuations and outliers. This is of great signifi-
cance for ecosystem monitoring and prediction and helps us
to better understand the dynamics of the ecosystem and take
appropriate management and conservation measures. How-
ever, in terms of confidence interval width, the width of the
95 % confidence interval in the results of the Bayesian prob-
abilistic prediction model is larger than that of the neural
network probabilistic prediction model, indicating that the
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Bayesian probabilistic prediction model is not as sharp as
the neural network probabilistic prediction model, which is
more locally sensitive and able to respond to the changes in
data more quickly.

Although the neural network probabilistic prediction
model shows an advantage in terms of sharpness and lo-
cal sensitivity, this does not mean that it is superior to the
Bayesian model in all cases. In fact, Bayesian models are
more robust and explanatory by introducing prior knowl-
edge and posterior inferences to deal with uncertainty. There-
fore, when choosing a predictive model, trade-offs need to be
made based on specific application scenarios and data char-
acteristics.

3.2.2 Comparative analysis of CDF

Figure 8 demonstrates the CDF curves of the predicted mean
values after the normalization process and the CDF curves
of CAFE. The CDF plots of the normalized data can reflect
the statistical distribution of the datasets, especially when the
different datasets have different magnitudes or scales, and the
normalization can eliminate these differences, which makes
the comparisons and analyses between the different datasets
more accurate and intuitive. Figure 9 specifically quantifies
the difference between the two CDF curves in Fig. 8 at each
point, which is accomplished by calculating the difference
between the y values of the two CDF curves at the same x
value. Optimally, the divergence between these two CDFs
should be minimal, manifesting as extensive overlap between
the yellow and blue curves in Fig. 8 and the blue curve in
Fig. 9 approaching zero.

While the cumulative distribution function (CDF) curves
in Fig. 8 show apparent differences between the test and
training datasets for CAFE, these differences can primarily
be attributed to the smaller size of the test dataset relative
to the training dataset. Such size discrepancies can cause the
CDF curves to appear visually different, even when the un-
derlying data distributions are similar. Moreover, as shown in
Fig. 7, the patterns for simulating the training set and predict-
ing the test set are consistent for both the NN and Bayesian
models. This consistency indicates that the models general-
ize well to the test data, capturing their key characteristics
despite the visual differences in the CDF curves. Therefore,
the observed discrepancy in the CDF curves does not imply
poor representation of the test data by the training data. For
the NN probabilistic prediction model, when the CAFE val-
ues are lower, the two CDF curves on the training set and the
test set move gently and almost overlap, with the difference
close to 0, which indicates that the model can predict the ac-
tual data distribution well within the range of small values
of CAFE. As CAFE increases, the difference between the
predicted and true CDF curves grows larger, with the pre-
dicted mean CDF on the training set generally lying below
the CAFE CDF. The difference between the two ranges from
0-0.2. For the test set, the predicted mean CDF initially lies
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Figure 6. Uncertainty quantification of the (a) neural-network-based probabilistic prediction model and (b) empirical-distribution-based
Bayesian probabilistic prediction model. The horizontal axes represent the input CAFE value, while the vertical axes show the mean predicted
by the model. The triangular icons in the figure represent 514 sets of the forecast average, the vertical gray lines represent the 95 % confidence
intervals for the predictions, and the vertical blue lines represent the 75 % confidence intervals.
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Figure 7. Comparison of original and predicted mean values shown at an 8 d temporal resolution within a 95 % confidence interval. (a)
Probabilistic prediction results based on neural networks; (b) Bayesian probabilistic prediction results based on empirical distributions. The
dashed lines represent the mean values of the probabilistic predictions. The purple- and red-shaded areas illustrate the uncertainty ranges
for the training and the test sets, respectively. The blue dots signify observed data points. All predictions and observations are presented in
chronological sequence.

arises from the differing perspectives of the two plots: the
CDF curve highlights cumulative differences across the dis-

slightly below the true CDF curve at lower values, becomes
steeper and overestimates at mid-range, and alternates again

at higher values. While these trends suggest some instability
in the model’s predictions for higher values, the absolute dif-
ference between the two CDFs remains within the 0.1 range,
indicating limited deviation. It is worth noting that the scatter
plot in Fig. 6 shows the test mean NPP predictions distributed
more evenly around the 1 : 1 line. This apparent discrepancy
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tribution, whereas the scatter plot reflects pointwise devia-
tions. Together, these visualizations suggest that while the
model captures the overall distribution trends well, some lo-
calized errors in predicting mid-range and higher values may
contribute to these patterns.
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Figure 9. Difference between the CAFE CDF and predicted mean CDF of model predictions. Panels (a) and (b) represent the performance
of the training set and test sets, respectively, in the neural-network-based probabilistic prediction model. Panels (¢) and (d) showcase the
performances of the training set and test sets, respectively, in the empirical-distribution-based Bayesian probabilistic prediction model. The
residuals are expressed in normalized units (0—1), enabling consistent assessment of model performance across different NPP ranges. The
blue curves in each panel indicate the differential magnitude of the CDFs. Instances where the blue curves align with the yellow lines denote
zero discrepancy between the input data CDF and the model’s predicted mean CDF.

For the Bayesian probabilistic prediction model, the pre-
dicted mean CDF curve is above the true value in the training
set. When CAFE increases to a certain extent, the two curves
alternate, and the absolute value of the difference between
the CDF does not exceed 0.2. In the test set, the two CDF
curves overlap first and then separate. The predicted mean
CDF rises more quickly and is on top of the true value CDF
curve, with the difference between the two curves not ex-
ceeding 0.1 when CAFE increases to a certain extent. When
the NPP increases to a certain degree, the two curves overlap
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again, and the absolute value of the difference between the
CDF does not exceed 0.3. Overall, the difference between
the CDF of the predicted mean values and the CDF of the
true values obtained by the two models is small, which in-
dicates that the overall deviation of the model predictions
is not large, and both models show good prediction perfor-
mance and can capture the statistical characteristics of the
data well. However, the CDF curves of the neural network
probabilistic prediction model are closer to the true values on
both the training and the test sets, possibly implying that the
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neural network model is more effective in dealing with com-
plex data and capturing nonlinear relationships. The flexibil-
ity of neural networks allows them to adapt to different data
distributions and patterns.

Table 5 presents RMSD, MAPD, and CRPS for both mod-
els using CAFE as the prediction target. Additionally, we an-
alyzed the proportion of raw input data encompassed within
the 95 % confidence interval, thereby providing a more nu-
anced evaluation of the model’s proficiency in capturing
CAFE uncertainty. According to Table 5, the neural-network-
based probabilistic prediction model exhibits superior perfor-
mance in terms of CRPS, RMSD, and MAPD. This denotes a
higher level of accuracy and reliability for the neural network
model in probabilistic predictions of CAFE, especially when
considering uncertainty. Conversely, the Bayesian proba-
bilistic prediction model demonstrates a stronger ability to
encompass a greater proportion of the raw input data within
the 95 % confidence interval. This suggests that while it may
exhibit higher overall uncertainty, it has a more pronounced
capability to capture the nuances of uncertainty.

This comparative analysis elucidates that both the
neural-network-based probabilistic prediction model and the
Bayesian probabilistic prediction model, grounded in em-
pirical distributions, are adept at capturing and quantify-
ing the uncertainty in CAFE. While the Bayesian model
demonstrates a heightened capability in encompassing a
broader scope of uncertainty, the neural network model dis-
tinguishes itself by its superior accuracy and reliability, par-
ticularly in precisely predicting the uncertainty in CAFE.
A notable observation is that when CAFE values exceed
350mg Cm~2d~!, the predictive performance of both mod-
els deteriorates. This manifests as an underestimation of
mean predictions, indicating an inability to fully and accu-
rately predict NPP across the entire range of size classes.
The underlying reason for this may stem from the consid-
erable variation in the input data and their skewed sam-
ple distribution. Most notably, a significant proportion of
the samples was primarily concentrated within the 200-
350mg Cm~2d~! range. In contrast, CAFE values exceed-
ing 350mg Cm~2d~! constitute only 28 % of the input
dataset. Consequently, the models exhibit insufficient learn-
ing of higher value ranges during the training phase, resulting
in a notable prediction bias for larger CAFE values.

3.3 Probabilistic prediction of NPP in Weizhou Island
(2007-2018)

Given the 8d temporal resolution of data acquired by re-
mote sensing satellites and the consequent data incomplete-
ness, this study employed the previously trained neural net-
work and the Bayesian probabilistic prediction models us-
ing CAFE as the training target to forecast the daily NPP
in the Weizhou Island sea area from 2007 to March 2018,
thereby supplementing the NPP dataset. This approach aligns
with the focus established in Sect. 3.1, which emphasizes
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the efficacy of probabilistic prediction models when CAFE
is used as the prediction target. The selection of CAFE out-
puts reflects the model’s relative strengths in representing
phytoplankton-based NPP dynamics in the study area, as
well as the high accuracy achieved by the NN and Bayesian
models in emulating its output. The results are illustrated in
Fig. 10, where the predicted mean values and 95 % confi-
dence intervals for both models are displayed. Figure 10c
reveals that the Bayesian model’s confidence interval is
broader, primarily due to its lower limit, yet no substantial
difference is noted between the predicted mean values of the
two models. Both models effectively mirror the trend in NPP.
The analysis of the annual change in NPP shows a clear pe-
riodicity, which means that the change in NPP is not random
but follows certain laws and patterns. Combined with Fig. 11,
the seasonal variation in NPP throughout the year emerges.
Specifically, NPP shows a decreasing trend from January to
July each year, with July generally being the lowest level
of the whole year. It then increases from July to November
and decreases slightly from November to December. Over-
all, NPP has larger values in winter and spring. These results
provide important insights into seasonal variations and inter-
annual trends in NPP in the Weizhou Island waters and also
provide valuable data to support the study of marine ecosys-
tem dynamics.

However, the significance of our work extends far beyond
mere data replication. The primary aim of our study is to
enhance the reliability of marine NPP estimates by using ad-
vanced probabilistic models. Our objective extends beyond
merely reproducing satellite NPP products. We aim to en-
hance the accuracy and uncertainty characterization of NPP
estimates within the current modeling framework, which fo-
cuses on quantifying uncertainties propagated from satellite
products, input variability, and predictive model parameters.
This framework helps us to better understand and quantify
the uncertainties inherent in marine NPP, whether they orig-
inate from satellite data or environmental factors. By us-
ing Bayesian models and probabilistic neural networks, we
not only replicate satellite NPP estimates but also capture
and quantify uncertainties at multiple levels. These mod-
els account for uncertainties in the satellite products, input
data variability, and the predictive model itself, thus provid-
ing a more comprehensive uncertainty quantification rele-
vant to marine NPP. However, it is important to acknowl-
edge that structural uncertainties inherent in the base models
(VGPM, CbPM, CAFE) remain unquantified in this study.
These could potentially introduce systematic biases unde-
tectable by our current probabilistic framework, necessitat-
ing future multi-model ensemble approaches to address this
limitation.
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Table 5. CRPS, RMSD, MAPD, and the proportion of input data within the 95 % confidence interval.

CRPS |

RMSD

‘ MAPD | Proportion

Train Test ‘ Train

Test ‘ Train

Test ‘ Train Test

NN 0.096 0.133 | 0.149 0.198 | 11.828 13.237 | 0.971 0.932
Bayes 0.151 0.20 | 0.201 0.253 | 13.909 14.145 | 0.976 0.951
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Figure 10. Time series plots of daily probabilistic NPP predictions in Weizhou Island (2007-March 2018). (a) Probability prediction results
of the neural network model; (b) Bayesian probability prediction results based on empirical distribution; and (¢) comparison of the two
models’ predictions, with the green lines representing the mean predictions from the neural network model and the gray lines depicting the

mean predictions from the Bayesian model.

4 Conclusions

This study primarily addresses the challenge of uncertainty
in satellite ocean color data estimates of ocean NPP. De-
parting from traditional point estimation regression models,
we embraced a probabilistic prediction approach where the
output is a probability distribution. The models utilized in
this study include a Bayesian probabilistic prediction model
based on empirical distributions and a deep-learning-based
probabilistic prediction model under the TFP framework. Fo-
cusing on the NPP uncertainty analysis in the Weizhou Island
sea area, we explored the effect of the probabilistic prediction
model when the NPPs obtained by the VGPM, CbPM, and
CAFE methods are used as the prediction targets. Unlike tra-
ditional models such as VGPM, CbPM, and CAFE, the NN
and Bayesian probabilistic models are designed to capture
complex nonlinear interactions between environmental vari-
ables and NPP while providing robust uncertainty quantifica-
tion. Furthermore, this study compares and analyzes the ca-
pabilities of Bayesian and neural network probabilistic mod-
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els in predicting CAFE uncertainty. The results reveal that
both models are competent in quantifying CAFE uncertainty.

When exploring the uncertainty in the NPP using the
Bayesian probabilistic prediction model and the neural net-
work probabilistic prediction model, the results show that the
two probabilistic prediction models are the most effective
when the prediction target is CAFE. The probability distri-
butions obtained by the two probabilistic prediction models
are similar to those of CAFE, with the difference in CDF
between the predicted mean and true values at each data
point not exceeding 0.2 for the neural network probabilis-
tic prediction model and 0.3 for the Bayesian probabilistic
prediction model. In contrast, the confidence intervals for
the outputs of the Bayesian probabilistic prediction model
are wider, and the proportion of the CAFE that falls in the
confidence intervals is higher, which shows that Bayes is
more capable of capturing uncertainty, but its accuracy is not
high. However, the neural network probabilistic prediction
model is more accurate and reliable. Its performance is bet-
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Figure 11. Time series plots of probabilistic NPP predictions in Weizhou Island (2007-2017). The light purple shading indicates the 95 %
confidence interval of the Bayesian model, while the dark purple shading represents the 95 % confidence interval of the neural network
model. The green lines show the mean prediction values from the neural network model, and the gray lines depict the mean prediction values

from the Bayesian model.

ter in many assessment indicators, but not all CAFE values
in the size range can be predicted accurately by the model.
When CAFE is less than 450 mg C m~2d~!, the model tends
to overestimate the actual NPP value. When CAFE is larger
than 600 mg C m~2d~!, it tends to underestimate the actual
NPP value. When the two probabilistic prediction models
are applied to the prediction of CAFE in the Weizhou Is-
land waters between January 2007 and February 2018, the
prediction results illustrate the interannual trend in CAFE,
and the magnitude of NPP is found to show obvious cyclic
changes. Our study demonstrates the novel application of ad-
vanced probabilistic models to the remote sensing of marine
NPP. Unlike climatological models that prescribe fixed un-
certainties, our probabilistic framework dynamically adjusts
prediction confidence in response to environmental distur-
bances. Its strengths lie in dynamic uncertainty quantifica-
tion and multi-source data fusion capabilities. By addressing
the uncertainties in satellite-derived estimates and improving
the reliability of NPP predictions, our work contributes to
advancing the field of marine remote sensing and provides a
foundation for future research.

An important limitation of this study is that the proba-
bilistic prediction models were trained on outputs from ex-
isting NPP models rather than directly on observational data.
This introduces the potential for inherited biases and errors
from the base models, limiting the generalizability of our
uncertainty estimates to true NPP values. Future research
should prioritize incorporating in situ NPP measurements to
refine model training and validation, enabling more accu-
rate and reliable uncertainty quantification. The differences
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between VGPM, CbPM, and CAFE outputs underscore the
challenges in determining the most reliable NPP training
data. While CAFE was chosen as the primary prediction
target, this choice was informed by prior studies that high-
lighted its strengths in parameterizing key oceanic processes
and by the strong predictive performance of the NN and
Bayesian models when using CAFE outputs. We acknowl-
edge that this approach inherits the limitations of the base
models and that further validation with in situ measurements
is necessary to ensure that CAFE outputs align closely with
true NPP values. While our approach demonstrates strong
potential for accurately quantifying NPP uncertainty in this
specific marine area, its application to larger regions may en-
counter scalability challenges. This limitation arises due to
the large number of input variables required for the neural
network and Bayesian probabilistic models, which necessi-
tates significant computational resources and extensive ob-
servational data coverage.

In the context of ongoing climate change, accurately cap-
turing and reducing the uncertainty in marine NPP emerge
as a key research focus in marine ecology. This endeavor is
crucial for a deeper understanding of energy and matter flow
in marine ecosystems, providing a solid scientific foundation
for the judicious management of the conservation of natural
resources. While our study has advanced the field by demon-
strating the feasibility of probabilistic prediction in quanti-
fying NPP uncertainty, we acknowledge the potential for fur-
ther enhancements and expansions. Looking ahead, future re-
search could embark on the following paths to augment our
work:
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4.1 Expanding the research scope

The current study primarily concentrated on specific marine
areas. Future initiatives could broaden this focus to encom-
pass diverse geographic regions and types of marine ecosys-
tems. However, such an expansion would require address-
ing the scalability limitations inherent to the current models,
such as their reliance on a high volume of input variables and
computational resources. Investigating strategies to simplify
model inputs or develop hierarchical approaches that adapt
to varying data availability and resolution across broader re-
gions would be critical for enhancing scalability. This ex-
pansion is vital to gain a more comprehensive understand-
ing of probabilistic prediction’s applicability and effective-
ness across varying environmental conditions.

4.2 Enhancing data collection and utilization

Access to a wider and more comprehensive set of observa-
tions can help refine model training and improve prediction
accuracy, and in addition, efforts to analyze the importance of
features on data variables and to eliminate redundant features
to reduce the input of extraneous variables will greatly facil-
itate the development and validation of robust probabilistic
prediction models.

4.3 Refining model structure

Our study utilized Bayesian probabilistic regression and
deep-learning-based probabilistic prediction models. Future
studies could explore the integration of other advanced model
structures or the optimization of the existing ones, aiming
to elevate the model’s performance and robustness. Through
these concerted efforts, we aspire to continually refine the
methodologies of probabilistic prediction in quantifying ma-
rine NPP uncertainty, thereby laying the groundwork for
more precise ecosystem management and environmental pro-
tection strategies.
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