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Abstract. The interannual variability in the global carbon
sink is heavily influenced by semiarid regions. Southern
hemispheric Africa has large semiarid and arid regions. How-
ever, there is only a sparse coverage of in situ CO2 mea-
surements in the Southern Hemisphere. This leads to un-
certainties in measurement-based carbon flux estimates for
these regions. Furthermore, dynamic global vegetation mod-
els (DGVMs) show large inconsistencies in semiarid re-
gions. Satellite CO2 measurements offer a spatially exten-
sive and independent source of information about the south-
ern African carbon cycle.

We examine Greenhouse Gases Observing Satellite
(GOSAT) CO2 concentration measurements from 2009 to
2018 in southern Africa. We infer CO2 land–atmosphere
fluxes which are consistent with the GOSAT measurements
using the TM5-4DVar atmospheric inversion system. We find
systematic differences between atmospheric inversions per-
formed on satellite observations versus inversions that as-
similate only in situ measurements. This suggests limited
measurement information content in the latter. We use the
GOSAT-based fluxes and solar-induced fluorescence (SIF; a
proxy for photosynthesis) as atmospheric constraints to se-
lect DGVMs of the TRENDYv9 ensemble which show com-
patible fluxes. The selected DGVMs allow for the study of
the vegetation processes driving the southern African carbon
cycle. By doing so, our satellite-based process analyses pin-
point photosynthetic uptake in the southern grasslands to be
the main driver of the interannual variability in the southern

African carbon fluxes, agreeing with former studies based
on vegetation models alone. We find that the seasonal cycle,
however, is substantially influenced by enhanced soil respira-
tion due to soil rewetting at the beginning of the rainy season.
The latter result emphasizes the importance of correctly rep-
resenting the response of semiarid ecosystems to soil rewet-
ting in DGVMs.

1 Introduction

The terrestrial carbon sink currently takes up nearly one-third
of anthropogenic greenhouse gases and thereby mitigates cli-
mate change (Friedlingstein et al., 2023). The amount of
CO2 taken up by global ecosystems varies substantially from
year to year. This interannual variability (IAV) reflects the re-
sponse of ecosystem carbon uptake to varying climate condi-
tions, such as temperature or precipitation fluctuations (Zeng
et al., 2005; Zhang et al., 2018; Piao et al., 2020). Current
vegetation models struggle to accurately reproduce the IAV
of the terrestrial carbon sink, and an imbalance exists be-
tween the modeled and measured total global sink estimates
(Friedlingstein et al., 2023). The imbalance is even stronger
when examining carbon fluxes on smaller spatial scales (Bas-
tos et al., 2020) and implies that there is still an insufficient
understanding of the terrestrial processes driving land carbon
exchange. A better understanding is needed to improve cli-
mate models and climate change predictions (Steiner, 2020).
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Semiarid regions contribute substantially to the IAV in the
global terrestrial carbon sink. In these regions, precipitation
and temperature fluctuations heavily impact the IAV in car-
bon fluxes (Poulter et al., 2014; Ahlström et al., 2015). Africa
has large areas of semiarid and arid ecosystems (Williams
et al., 2007) and contributes substantially to the global IAV
(Williams et al., 2007; Valentini et al., 2014; Pan et al.,
2020). However, in situ CO2 measurements in Africa are
very sparse, leading to large uncertainties in carbon flux es-
timates from atmospheric inversions and machine learning
approaches (Valentini et al., 2014; Ernst et al., 2024). Dy-
namic global vegetation models (DGVMs) also show large
inconsistencies amongst each other and tend to underesti-
mate the interannual CO2 flux variability in semiarid regions
(MacBean et al., 2021).

Satellite CO2 concentration measurements, for example,
from the Greenhouse Gases Observing Satellite (GOSAT)
measuring CO2 concentrations since 2009 or the Orbit-
ing Carbon Observatory-2 (OCO-2) launched in 2014, have
much denser coverage compared with in situ measurements.
Previous studies have found systematic differences between
satellite-based CO2 concentrations and fluxes in southern
Africa and those based on in situ measurements (Mengistu
and Mengistu Tsidu, 2020; Byrne et al., 2023). Byrne et
al. (2023) attribute these differences mainly to the sparse cov-
erage of in situ CO2 measurements. The studies emphasize
the potential of satellite-based atmospheric inversions to pro-
vide additional information and, therefore, more robust esti-
mates of the carbon fluxes in southern Africa, which then en-
able research on processes driving the CO2 exchange. Metz
et al. (2023) demonstrate the potential of combining satellite-
based CO2 flux estimates with DGVMs in Australia to deci-
pher soil respiration processes driving the Australian terres-
trial CO2 exchange at the continental scale.

Here, we investigate the decadal dataset of GOSAT CO2
concentrations over southern Africa from 2009 to 2018. We
run a global inversion with GOSAT and in situ measurements
to infer GOSAT-satellite-based CO2 exchange between the
land and atmosphere and compare the results to those based
on in situ measurements alone, to FLUXCOM products, and
to the TRENDYv9 ensemble of DGVMs. By selecting a sub-
set of DGVMs that match the satellite-based carbon fluxes,
we analyze the underlying processes driving the IAV and sea-
sonal variability in the southern African carbon cycle.

2 Data and methods

2.1 Study region

Our study region spans southern Africa south of 10° S in-
cluding Madagascar (see Fig. 1). This region agrees with
the region selection in Mengistu and Mengistu Tsidu (2020)
and considers the different climatic conditions found on the
African continent. North of the study region, Africa is influ-

enced by the low-pressure system of the Intertropical Con-
vergence Zone, leading to a tropical wet regime. In southern
Africa, high-pressure cells lead to dry conditions and cause
the existence of the Kalahari Desert (Mengistu and Mengistu
Tsidu, 2020). Even though total annual precipitation is de-
creasing southwards, the whole region experiences distinct
wet and dry seasons and is influenced strongly by the IAV
in precipitation (Fan et al., 2015; Valentini et al., 2014). The
study region is mainly covered by (woody) savannas, grass-
land, and shrubland (see Fig. 1).

The vegetation is mostly water limited in its growth
(Williams et al., 2008) and exposed to large seasonal fires.
The fire season starts in May in the western part of south-
ern Africa and spreads eastwards to reach southern hemi-
spheric Africa in September (Edwards et al., 2006). Fires
on the whole African continent are the largest contributor
to global fire carbon emissions, accounting for more than
half of these emissions (van Marle et al., 2017; Shi et al.,
2015; Valentini et al., 2014). They reduce the African car-
bon sink significantly (Lasslop et al., 2020). We subdivide
the study region into a northern, savanna-dominated region
and a southern grassland and shrubland region separated at
17° S, excluding Madagascar.

2.2 Total column CO2 measurements

For our analyses, we use column-averaged dry-air mole frac-
tions of CO2 (XCO2; referred to as CO2 concentrations in
the following) measured by the Greenhouse Gases Observ-
ing Satellite (GOSAT) over land in our study region. GOSAT
was launched in 2009 and has a sub-satellite field of view of
10.5 km radius with a sparse sampling grid. We use GOSAT
CO2 concentration data generated by applying version 2.4.0
of the RemoTeC radiative transfer and retrieval algorithm
(Butz, 2022), as used in Metz et al. (2023). The retrieval ver-
sion covers the period from April 2009 to June 2019 and is
based on the preceding RemoTeCv2.3.8, as used in Detmers
et al. (2015). The major updates between versions 2.3.8 and
2.4.0 are stricter quality filtering in the latter and updated an-
cillary input data, especially for the prior gas concentrations
used. Moreover, GOSAT CO2 concentration data generated
by version 9 of the NASA Atmospheric CO2 Observations
from Space (ACOS) algorithm (Lite), available for the pe-
riod from April 2009 to June 2020, are used (Taylor et al.,
2022). In the following, the datasets are called GOSAT/Re-
moTeC and GOSAT/ACOS (see Table A1 for more infor-
mation about the datasets and the nomenclature used in this
study). GOSAT/ACOS single measurements have a precision
of 1.5 ppm and a mean bias of 0.2 ppm in validation against
TCCON (Taylor et al., 2022). GOSAT/RemoTeC was found
to have a similar precision of 1.9 ppm (Buchwitz et al., 2017)
and, by construction, a mean bias of 0 ppm in comparison to
TCCON after bias correction. GOSAT/RemoTeC was found
to have regional and seasonal systematic errors of 0.6 and
0.5 ppm, respectively (Buchwitz et al., 2017).
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Figure 1. Study region southern Africa. The land cover in the study region is given based on MODIS (MCD12C1) data (Friedl and Sulla-
Menashe, 2022). Additionally, the main region used for the analyses is depicted using a red box. In the inset map on the right-hand side, the
land cover is aggregated into larger land cover classes and on a 1°× 1° spatial resolution, which is used for most of the analyzed data. The
main region, thereby, comprises 547 grid cells. The dashed boxes show the subdivision into a northern and a southern region. Madagascar is
part of the main region, but it is excluded in the subdivision. The pie charts depict the share of the different land cover classes in the main
study region (M), the northern subregion (N), and the southern subregion (S). The locations of the Gobabeb COCCON measurement site
(Frey et al., 2021; Dubravica et al., 2021) and the flux tower in Kruger National Park (Archibald et al., 2009) are given as a red circle and red
diamond, respectively.

For evaluation purposes, land glint and land nadir (LGLN)
XCO2 data (version 11.1r) measured by the Orbiting Car-
bon Observatory-2 (OCO-2) satellite are used (OCO-2/OCO-
3 Science Team et al., 2022; Jacobs et al., 2024). OCO-2
was launched in 2014 and has a sub-satellite field of view
of 1.3 km× 2.3 km. Furthermore, Collaborative Carbon Col-
umn Observing Network (COCCON) XCO2 data from the
Gobabeb station (Namibia; Frey et al., 2021; Dubravica et
al., 2021) are taken for comparison. COCCON stations mea-
sure XCO2 using a sun-viewing ground-based Fourier trans-
form infrared spectrometer (Frey et al., 2019). We use the
full dataset of COCCON measurements (i.e., we do not ap-
ply further filtering or co-sampling to GOSAT), as there are
too few coinciding GOSAT measurements.

To examine the seasonal variability in CO2 concentrations
in the study region, the global background trend is subtracted
from the total CO2 measurements to obtain detrended CO2
concentrations. For this, we assume a yearly linear increase
in the global atmospheric CO2 and use the annual mean
CO2 growth rate (GR) published by the National Oceanic
and Atmospheric Administration (NOAA). The growth rates
are based on globally averaged CO2 concentration measure-
ments of marine surface sites (NOAA, 2024); their calcula-
tion is further described in the main text and in Fig. A3 in
Taylor et al. (2023) and in Pandey et al. (2024). The follow-
ing equation describes the used background trend:

BGy,m = BG0+
∑y−1

i=2009
(GRi)+

m

12
GRy . (1)

Thereby, the increase in the CO2 concentrations in the previ-
ous years from 2009 onwards is described by the second part
in the equation. The increase within the previous months in
the respective year is given by the third part. Both are added
to an overall offset BG0 in 2009. This offset is estimated so

that the mean of the detrended CO2 concentrations over the
whole time period is zero.

2.3 Fluxes

2.3.1 Top-down fluxes

Carbon fluxes can be obtained by assimilating measured
CO2 atmospheric concentrations in an atmospheric inver-
sion. Atmospheric inversions typically build on Bayesian
optimization (i.e., they optimize forward-transported CO2
emissions such that these agree best with the observations
within measurement and model uncertainties, while concur-
rently not deviating from the prior within given prior un-
certainties). For our study, we use three atmospheric inver-
sions based on in situ CO2 measurements: the TM5 four-
dimensional variational inversion system (TM5-4DVar; Basu
et al., 2013), NOAA’s modeling and assimilation system Car-
bonTracker (CT2022; Peters et al., 2007; Jacobson et al.,
2023), and the Copernicus Atmosphere Monitoring Service
(CAMS; Chevallier et al., 2005, 2010, 2019). The models es-
timate global CO2 fluxes based on a set of in situ CO2 mea-
surements from global monitoring networks (Masarie et al.,
2014). The models use different prior datasets. For exam-
ple, for the biogenic CO2 fluxes, TM5-4DVar and Carbon-
Tracker build on different implementations of the Carnegie–
Ames–Stanford approach (Randerson et al., 1996), as fur-
ther described in Metz et al. (2023), Weir et al. (2021), and
Jacobson et al. (2023), while CAMS uses biogenic fluxes
of the ORCHIDEE model (Chevallier et al., 2019). Further-
more, the inversion systems use different transport mod-
els and inversion techniques. While TM5-4DVar and Car-
bonTracker use the TM5 transport model, CAMS uses the
LMDZ global atmospheric transport model. TM5-4DVar and
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CAMS make use of a 4DVar data assimilation, while Car-
bonTracker uses an ensemble Kalman filter. All three mod-
els use ECMWF ERA5 data as meteorological drivers. The
output resolution is monthly at 3°× 2° for TM5-4DVar and
CarbonTracker2022 and monthly at 3.7°× 1.81° for CAMS
(see Table A1 for more details). The ensemble of the three
models is referred to as “in-situ-only” inversions in the fol-
lowing, while TM5-4DVar based on in situ measurements is
called “TM5-4DVar/IS”.

In addition to in situ measurements, satellite CO2 con-
centration measurements can be assimilated by atmospheric
inversions. To this end, we use the TM5-4DVar model and
assimilate GOSAT CO2 concentration measurements over
land and ocean as well as the in situ measurements. We
use the individual total CO2 concentration measurements;
i.e., we do not apply any detrending or spatiotemporal av-
eraging. Detrending and spatiotemporal averaging is only
applied for visualization purposes to show the variability
in the monthly CO2 concentrations (Sect. 3.1). Depend-
ing on the specific GOSAT dataset used, we refer to these
fluxes in the following as “TM5-4DVar/RemoTeC+ IS”,
“TM5-4DVar/ACOS+ IS”, or (when using the mean of both)
“TM5-4DVar/GOSAT+ IS”. More details about the TM5-
4DVar settings can be found in Metz et al. (2023). For com-
parison, we also draw on data of the OCO-2 Model Intercom-
parison Project (MIP; Byrne et al., 2023) for the years from
2015 to 2018. Within the MIP, atmospheric inversions esti-
mate carbon fluxes by assimilating OCO-2 satellite XCO2
observations and in situ data. All MIP inversion models use
the same fossil fuel emission dataset but differ with respect
to the chosen datasets for all other prior fluxes (Byrne et
al., 2023). We specifically make use of the LNLGIS (as-
similation of OCO-2 LNLG observations and in situ mea-
surements) and the IS (assimilation of in situ measurements
only) experiment in the following, referred to as “MIP/OCO-
2+ IS” and “MIP/IS”, respectively. Like Byrne et al. (2023),
we exclude the LoFI MIP model, as it uses a nontradi-
tional inversion scheme differing from the MIP protocol.
MIP/OCO+ IS and MIP/IS provide fluxes with a monthly,
1°× 1° resolution.

All inversions optimize for biogenic and oceanic fluxes
but impose anthropogenic fossil fuel emissions and fire emis-
sions. The sum of (imposed) fire and biogenic fluxes yields
our net biome productivity (NBP) estimates. In this study,
positive fluxes denote a release of CO2 from land into the at-
mosphere. All fluxes are regridded to monthly, 1°× 1° fluxes
before performing the region selection.

By transporting the posterior fluxes after the optimiza-
tion, atmospheric inversions can model posterior concentra-
tion fields, which can be interpolated to the time and location
of the satellite measurements for comparison. This so-called
co-sampling is used to eliminate sampling errors when com-
paring modeled concentrations to satellite measurements. We
use the modeled and co-sampled posterior concentrations of

the in-situ-only inversions introduced at the beginning of this
section.

2.3.2 Bottom-up fluxes

We compare the top-down CO2 fluxes to bottom-up flux
datasets from DGVMs as collected by version 9 of the
“Trends and drivers of the regional-scale terrestrial sources
and sinks of carbon dioxide” (TRENDY; Le Quéré et al.,
2013; Sitch et al., 2020) intercomparison project. The project
was established to support the annual global carbon bud-
get estimation conducted by the Global Carbon Project
(e.g., Friedlingstein et al., 2020). These TRENDY models
give vegetation CO2 fluxes simulated using a harmonized
set of meteorological input data and CO2 concentrations (Le
Quéré et al., 2013; Friedlingstein et al., 2020). We use the
NBP, gross primary productivity (GPP), autotrophic respira-
tion (RA), and heterotrophic respiration (RH) of 18 DGVMs
(see Table A1 in the Appendix). We thereby use the follow-
ing definition:

NBP= NEE+fire+fluc= TER− GPP + fire + fluc

= RH − NPP + fire + fluc, (2)

with the total ecosystem respiration (TER), calculated as
the sum of RA and RH; the fire emissions (fire); the land
use change fluxes (fluc); and the net primary productivity
(NPP), calculated as the GPP minus the RA. Most of the
TRENDY models provide NBP fluxes directly. In the case of
the CABLE-POP and DLEM models, NBP is calculated as
RH minus NPP, as both models do not provide fire and land
use change fluxes. The spatial resolutions of the model out-
put differ (see Table A1). Therefore, we aggregate fluxes on
a monthly, 1°× 1° grid before applying the region selection.

Additionally, we use version 1 (setup RS_V006) of the
FLUXCOM net ecosystem exchange (NEE) product, as de-
scribed in Jung et al. (2020). FLUXCOM uses machine
learning models and meteorological data to upscale eddy-
covariance tower CO2 flux measurements to the global scale
(Tramontana et al., 2016; Jung et al., 2020). To obtain an
NBP estimate, we combine the NEE fluxes with fire CO2
emissions provided by the Global Fire Emissions Database
(GFED; van der Werf et al., 2017). FLUXCOM and GFED
are provided as 0.08°× 0.08°, 8 d fluxes and 0.25°× 0.25°,
daily fluxes, respectively, and are aggregated on a monthly,
1°× 1° grid before applying the region selection.

2.4 Other datasets

To investigate the climatic conditions influencing the carbon
fluxes, we use temperature, upper-layer soil moisture, and
precipitation datasets of the European Centre for Medium-
Range Weather Forecasts (ECMWF) ERA5-Land data prod-
uct (Muñoz Sabater, 2019) with a monthly resolution on a
0.25°× 0.25° spatial grid. ERA5 datasets are aggregated on
a 1°× 1° grid before performing the region selection. Fur-
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thermore, we use solar-induced fluorescence (SIF) measure-
ments by the GOME-2 satellite from 2009 to January 2018
(Joiner et al., 2023). SIF is considered to be proportional to
GPP on a monthly timescale and at a biome resolution (Sun
et al., 2018; Joiner et al., 2018; Pierrat et al., 2022; Zhang et
al., 2016a, b). It can, therefore, be used as a proxy for CO2
uptake by photosynthesis (Li et al., 2018).

3 Results

3.1 Monthly CO2 concentrations by atmospheric
inversions

To access the seasonal and interannual dynamics in south-
ern Africa, we detrend the monthly mean CO2 concentra-
tions following Eq. (1) (see Sect. 2.2). The remaining CO2
enhancements for the study region are shown in Fig. 2.
The GOSAT-measured CO2 enhancements reveal a clear
seasonal cycle with a minimum concentrations in the first
half of the year and maximum concentrations in the sec-
ond half of the year. This general seasonal timing is con-
firmed by the posterior concentrations of the in-situ-only in-
versions. However, yearly reoccurring differences between
GOSAT and the in-situ-only based CO2 enhancements from
September to November are clearly visible. Thus, the spread
between GOSAT/ACOS and GOSAT/RemoTeC (see also
Fig. A1) is much smaller than their difference from and the
spread among the in-situ-only inversions. The difference pat-
tern between GOSAT and in-situ-only-based CO2 concentra-
tions has already been described by Mengistu and Mengistu
Tsidu (2020) and has been shown by Taylor et al. (2022).
Furthermore, especially in the second half of the year, differ-
ent in-situ-only inversions are not consistent, as indicated by
the large shading in Fig. 2a (see also the individual models
in Fig. A2). Reasons for these discrepancies will be further
analyzed in Sect. 3.3.

For comparison, we additionally use the OCO-2 satellite,
which was launched in 2014, and 1 year of COCCON CO2
column measurements in Namibia. Both datasets show a sim-
ilar seasonal cycle to that seen by GOSAT; i.e., they show
concentration maxima later in the year than the in-situ-only
inversions (see Figs. A3 and A4). No other total column
measurement sites – e.g., of the COCCON network or To-
tal Carbon Column Observing Network (TCCON, Wunch et
al., 2011) – with coinciding consecutive measurements for
more than 1 year exist in the Southern Hemisphere for conti-
nental Africa, limiting the validation possibilities of satellite
total column measurements in this region.

3.2 Southern African top-down and bottom-up CO2
fluxes

Assimilating the GOSAT CO2 concentration measurements
in TM5-4DVar, we obtain GOSAT-based top-down fluxes at
a monthly resolution for the study region (see Sect. 2.3.1).

As for the concentrations, a clear seasonal cycle is visi-
ble (Fig. 3). From January to May, CO2 is taken up by the
land surface, with a maximum uptake around March. From
June to December, CO2 is released into the atmosphere and
reaches a maximum flux in September to November. The
number of GOSAT measurements (see Figs. A5 and A6) is
variable throughout the year, with the smallest number oc-
curring during the rainy season around December and Jan-
uary. This leads to larger uncertainties in the monthly mean
satellite CO2 concentrations and satellite-based fluxes dur-
ing the transition from maximum to minimum concentrations
and fluxes.

A similar timing of the seasonal cycle is also cap-
tured by the in-situ-only inversion fluxes (CAMS, CT2022,
and TM5-4DVar/IS). However, the in-situ-only inver-
sions’ seasonal amplitude is smaller than for TM5-
4DVar/GOSAT+ IS. To analyze the differences found be-
tween TM5-4DVar/GOSAT+ IS and the in-situ-only atmo-
spheric inversions, we evaluate the information content pro-
vided by the measurements about the southern African car-
bon fluxes. To this end, we compare the TM5-4DVar fluxes
(TM5-4DVar/IS and TM5-4DVar/GOSAT+ IS) to the prior
fluxes of the inversion model. From Fig. 4, it becomes clear
that the in-situ-only fluxes (TM5-4DVar/IS) mainly follow
the dynamics of the prior fluxes, whereas the GOSAT-based
fluxes deviate significantly from the prior. This is expected,
as the sparse coverage of in situ measurements in Africa (and
the Southern Hemisphere in general) provides only little in-
formation about the African carbon fluxes. In contrast, satel-
lites provide nearly global coverage of CO2 measurements.
Using these measurements in TM5-4DVar, new information
about the southern African carbon fluxes can be obtained and
may lead to a deviation of TM5-4DVar/GOSAT+ IS from
the prior. This finding also explains the differences among
the three in-situ-only inversions (see shaded range of the in-
situ-only inversions in Fig. 3). The inversions assume differ-
ent prior fluxes, which they follow closely, as the information
from the in situ data does not substantially inform the inver-
sion.

When assimilating OCO-2 satellite measurements in-
stead of GOSAT measurements, the MIP/OCO-2+ IS en-
semble mean also shows a larger amplitude of the south-
ern African carbon fluxes compared with in-situ-only inver-
sions and MIP/IS (Fig. 5). However, the spread among the
MIP/OCO-2+ IS models is large, especially during the max-
imum emissions from September to November. Some mod-
els show lower emissions similar to the in-situ-only inver-
sions, whereas others agree with TM5-4DVar/GOSAT+ IS.
By analyzing the performance of the individual models in
these 3 months, we find that three MIP/OCO-2+ IS models
reproduce the OCO-2 measurements the best (see Fig. A7),
indicating that the OCO-2 measurements were given a con-
siderable weight in the inversion and, thus, that the optimized
fluxes were informed by measurements (see Appendix A). At
the same time, these three inversion models (Baker, CAMS,

https://doi.org/10.5194/bg-22-555-2025 Biogeosciences, 22, 555–584, 2025



560 E.-M. Metz et al.: Seasonal and interannual variability in southern African CO2 fluxes

Figure 2. Monthly southern African detrended CO2 concentrations. GOSAT-measured and detrended CO2 concentrations are depicted in
red. Modeled posterior CO2 concentrations of three in-situ-only inversions are co-sampled (cs) on GOSAT and depicted as the mean (in
blue). Panel (a) shows the monthly mean CO2 concentrations. The shading indicates the range among the individual ensemble members
(GOSAT/ACOS+ IS and GOSAT/RemoTeC+ IS in red; CT2022, CAMS, and TM5-4DVar/IS in blue). Panel (b) shows the mean seasonal
cycle for 2009–2018, with the standard deviation over the years given as shading.

Figure 3. Top-down and bottom-up southern African net CO2 fluxes. Panel (a) shows the mean monthly net CO2 fluxes for the southern
African region, while panel (b) shows the mean seasonal cycle of the fluxes over the 2009 to 2018 period. The TM5-4DVar/GOSAT+ IS
fluxes are given in red, whereas in-situ-only inversion fluxes are shown in blue. The mean over all TRENDY models is given in gray. GFED
fire emissions are shown in orange, whereas they are displayed in combination with FLUXCOM NEE in yellow. The shading indicates
the range over the GOSAT-based fluxes (TM5-4DVar/ACOS+ IS and TM5-4DVar/RemoTeC+ IS) and the in-situ-only inversion fluxes
(CT2022, CAMS, and TM5-4DVar/IS) and the standard deviation over the TRENDY ensemble in panel (a). In panel (b), shading indicates
the standard deviation over the years. Positive fluxes indicate emissions into the atmosphere. Negative fluxes correspond to an uptake of CO2
into the land surface.

and TM5-4DVar/OCO-2+ IS) show the largest CO2 emis-
sions and agree best with TM5-4DVar/GOSAT+ IS (see
Figs. 5 and A7–A9). Still, their estimated emissions are
slightly lower than those of TM5-4DVar/GOSAT+ IS. When
directly comparing the two TM5-4DVar inversions TM5-
4DVar/GOSAT+ IS and TM5-4DVar/OCO-2+ IS (Fig. 5),
the latter has smaller emission values. This is most likely a
result of the slightly smaller seasonal amplitude of the CO2
concentrations measured by OCO-2 compared with GOSAT
(see Fig. A3).

In conclusion, we find that satellite-based inversions,
which are actually compatible with the satellite measure-
ments, show larger carbon fluxes in southern Africa than in-

situ-only inversions, which suffer from the limited informa-
tion provided by the sparse in situ measurements for southern
Africa. Our results support current studies (e.g., Basu et al.,
2013; Sellers et al., 2018; He et al., 2023) reporting that satel-
lite observations do inform atmospheric inversions well for
flux estimates at subcontinental scales. Satellite CO2 concen-
tration measurements, therefore, provide a unique informa-
tion source and are especially valuable in regions with sparse
in situ measurement coverage. The already long record pro-
vided by GOSAT will be more and more complemented over
time by the growing record of OCO-2 and future CO2 sensors
providing even more extensive measurements.
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Figure 4. Top-down southern African net CO2 fluxes from TM5-4DVar. In panel (a), mean monthly net CO2 fluxes for the south-
ern African region from the TM5-4DVar prior (dotted gray line), the in-situ-only inversion TM5-4DVar/IS (solid gray line), and the
TM5-4DVar/GOSAT+ IS inversion (solid red line) are given. Red shading indicates the range of the TM5-4DVar/ACOS+ IS and TM5-
4DVar/RemoTeC+ IS inversions. Panel (b) shows the mean seasonal cycle for 2009–2018, with the standard deviation over the years given
as shading.

Figure 5. Top-down southern African net CO2 fluxes from MIP. In panel (a), mean monthly net CO2 fluxes for the study region are given
by TM5-4DVar/GOSAT+ IS (solid red line), the MIP/OCO-2+ IS ensemble mean (solid gray line), the mean over three selected MIP
models (CAMS, TM5-4DVar, and Baker; solid black line), and TM5-4DVar/OCO-2+ IS as part of the MIP ensemble (dashed red line).
In-situ-only inversion fluxes are given as a solid blue line for the mean of CAMS, CT2022, and TM5-4DVar/IS, whereas they are given
as a dotted black line from the MIP/IS ensemble. The shading indicates the range over the GOSAT fluxes (TM5-4DVar/ACOS+ IS and
TM5-4DVar/RemoTeC+ IS), the MIP ensemble, and the three selected MIP models. Panel (b) gives the mean seasonal cycle from 2015 to
2018, with shading indicating the range over the MIP ensembles’ models and the standard deviation of the TM5-4DVar/GOSAT+ IS over
the years.

Next to the in-situ-only inversion fluxes, we compare the
TM5-4DVar/GOSAT+ IS fluxes to FLUXCOM CO2 fluxes.
As FLUXCOM only provides NEE fluxes, we add GFED
fire CO2 emissions to obtain an NBP estimate. In Fig. 3,
FLUXCOM+GFED only reaches positive monthly fluxes
from June to September due to fire emissions occurring dur-
ing that time. From October to May, it shows a net CO2 up-
take. While the timing of the maximum sink agrees well be-
tween FLUXCOM+GFED and the inversion fluxes, FLUX-
COM+GFED shows a smaller amplitude and an earlier
drop in emissions compared with TM5-4DVar/GOSAT+ IS

and in-situ-only inversion fluxes. The tendency of FLUX-
COM to report a stronger carbon sink for the Southern
Hemisphere compared with other datasets is described in
Jung et al. (2020). It is expected that the sparsity of eddy-
covariance towers in Africa or in similar ecosystems hampers
the machine-learning-based approach of FLUXCOM for es-
timating CO2 fluxes in the study area. Jung et al. (2020) de-
scribed larger uncertainties due to representation errors in
semiarid regions.

Finally, we compare the inversion results to the ensem-
ble of process-based vegetation models of the TRENDYv9
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Figure 6. Seasonal cycle of SIF and selected TRENDY models.
The normalized mean seasonal cycles of GOME-2 SIF (2009–
January 2018), GPP from the three selected DGVMs (ORCHIDEE,
ORCHIDEEv3, and CABLE-POP), and OCN GPP (2009–2018)
are shown using solid black symbols, colored dotted lines, and a
red dot-dash line, respectively. The spatial standard deviation over
monthly GOME-2 SIF aggregated to 1°× 1° is given as shading.

project. The mean of the DGVM ensemble in Fig. 3a shows
a smaller amplitude than the GOSAT fluxes and compares
with the in-situ-only inversion fluxes. However, as indicated
by the large standard deviation, the models deviate sub-
stantially from each other. Foster et al. (2024) and Metz et
al. (2023) observed a similar large spread among DGVMs for
the North American temperate region and Australia, respec-
tively. Both studies highlight the importance of performing
a sub-selection of DGVMs agreeing well with atmospheric
CO2 measurements.

3.3 GOSAT and SIF atmospheric constraints on
TRENDY models

Given the large spread of the TRENDY models, we se-
lect DGVMs according to their agreement with the GOSAT-
based CO2 fluxes and SIF. Thus, in a first step, we compare
the monthly mean DGVM and TM5-4DVar/GOSAT+ IS
NBP and NEE fluxes based on the root-mean-square error
(RMSE) of the monthly fluxes and the agreement in the
seasonality. In a second step, only for the well-matching
DGVMs, we additionally compare the GPP normalized mean
seasonal cycle to the GOME SIF normalized mean seasonal
cycle. Only models with a timing of the minimum and max-
imum GPP agreeing within ±1 month with the normalized
SIF seasonal cycle are selected (see Fig. 6). This ensures the
correct seasonal timing of the modeled GPP fluxes.

Based on these criteria, we select the ORCHIDEE (RMSE
NBP: 60.2 TgC per month; RMSE NEE: 68.2 TgC per
month), ORCHIDEEv3 (RMSE NBP 70.2 TgC per month;
RMSE NEE: 56.2 TgC per month) and CABLE-POP (RMSE

NBP: 78.2 TgC per month; RMSE NEE: 63.6 TgC per
month) models. All other models, except for the model OCN,
had already been excluded in the first step of the NBP and
NEE comparison. OCN performs well in the NBP and NEE
comparison but shows larger deviations in the SIF–GPP com-
parison (see Fig. 6). Therefore, it was excluded in the sec-
ond selection step and is not included in the TRENDY se-
lection. The exclusion of OCN underlines the importance of
the SIF/GPP selection and demonstrates that a correct timing
of the net CO2 exchange fluxes does not necessarily imply
the correctness of the modeled gross fluxes. In general, it is
noteworthy that only 3 out of 18 TRENDY models pass our
selection process. This again reveals the large uncertainties
associated with the TRENDY ensemble estimate for semi-
arid southern Africa.

The NBP mean over these three models is given in Fig. 7a
and b. The models reproduce the timing and strength of
the TM5-4DVar/GOSAT+ IS NBP fluxes. Only at the be-
ginning of the emission period around July to September
are the TRENDY selection fluxes lower. Furthermore, the
selection shows a significantly smaller sink in 2012 and a
smaller source in 2016. Note that ORCHIDEE is part of the
TRENDY selection and is also used by the in-situ-only in-
version CAMS as prior flux assumption. This explains why
CAMS best matches TM5-4DVar/GOSAT+ IS CO2 fluxes
and GOSAT CO2 concentrations (see Figs. A2 and A7, re-
spectively).

Fire emissions contribute substantially to the seasonality
in the southern African carbon fluxes. They largely explain
the beginning of the emission period from July to September
(see Fig. 3). Different fire emission data products differ sig-
nificantly and suggest large uncertainties in the magnitude of
the actual fire emissions in our study region (see Fig. A10).
GFED, which we use for our analyses, shows the largest fire
emissions but could even underestimate the actual emissions
as suggested by current literature for southern hemispheric
Africa (Ramo et al., 2021; van der Velde et al., 2024).

To exclude the influence of fire emission in the compar-
ison, we analyze the monthly NEE fluxes of the TRENDY
selection compared with the TM5-4DVar/GOSAT+ IS NBP
fluxes with GFED fire emissions subtracted. The subtraction
of the fire emissions leads to a better agreement between both
datasets, especially at the beginning of the emission period,
suggesting that fire fluxes in the DGVMs do not agree with
the GFED fire fluxes (see Fig. 7c and d). This goes along with
the large uncertainties in DGVM fire fluxes reported previ-
ously (Bastos et al., 2020).

Figure 7c additionally shows the annual NEE fluxes
(July–June) as bars. The absolute difference between TM5-
4DVar/GOSAT+ IS and TRENDY annual fluxes is large in
some years. These differences are caused by a stronger sink
at the beginning of 2012 and enhanced emissions at the end
of 2013 and 2016 in TM5-4DVar/GOSAT+ IS compared
with TRENDY. However, while both datasets do not agree on
the absolute value of annual fluxes in most of the years, they
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Figure 7. Annual and mean monthly NBP and NEE fluxes in southern Africa. The NBP fluxes from TM5-4DVar/GOSAT+ IS (red) and
selected TRENDY models (black) are given as mean monthly fluxes in panel (a) and as the mean seasonal cycle in panel (b). Similar to that,
panels (c) and (d) show the monthly NEE fluxes (GFED is subtracted from TM5-4DVar/GOSAT+ IS). Additionally, the annual (July–June)
NEE fluxes of the selected TRENDY models and TM5-4DVar/GOSAT+ IS–GFED fluxes are given. The shading indicates the standard
deviation over the TRENDY models and the range of TM5-4DVar/ACOS+ IS and TM5-4DVar/RemoTeC+ IS in panels (a) and (c) and the
standard deviation of the monthly fluxes over the years in panels (b) and (d).

show a similar IAV. Both datasets show a slightly stronger
CO2 uptake from 2010 to 2012. These years were strong
and moderate La Niña years with enhanced rainfall in 2010
and 2011 in the study region compared with the long-term
mean (see Fig. A11). Additionally, lower-than-average tem-
peratures led to enhanced soil moisture near the surface in
2010–2011. The soil moisture declined in 2012 to reach the
long-term average. In 2015 and 2016, the sink given by the
GOSAT and TRENDY selection NEE fluxes is small. These
2 years were a weak and a strong El Niño year, respectively,
with dry conditions and, in the case of 2016, exceptionally
high temperatures (see Fig. A11). These findings agree well
with the results of Pan et al. (2020), who highlighted the
fact that temperature and precipitation extremes heavily im-
pact African ecosystems and, therefore, play a key role in the
African carbon fluxes.

To conclude, the monthly NEE and NBP fluxes and, to a
lesser extent, the IAV in the selected TRENDY models agree
well with TM5-4DVar/GOSAT+ IS NEE and NBP, although
the latter was not a criterion in the selection process of the
TRENDY models. This suggests that the selected models in-
deed capture the carbon cycle dynamics, even on a decadal
timescale. For this reason, we use the model selection for
further investigations of the vegetation processes driving the
southern African carbon cycle.

3.4 Seasonal and interannual variability in TRENDY
gross fluxes

To investigate the vegetation dynamics shaping the seasonal
cycle of the southern African CO2 exchange, we use the se-
lected TRENDY models to further split up the net ecosys-
tem exchange fluxes into the gross fluxes NPP (GPP−RA)
and RH. The gross and net fluxes are given as the mean sea-
sonal cycle and annual anomalies in Fig. 8. In the mean sea-
sonal cycle for the whole study region (Fig. 8a), we can see a
clear difference in timing between RH and GPP−RA. Het-
erotrophic respiration increases early in September and Oc-
tober, while RA increases 1–2 months later along with GPP
(see Fig. A12). The dephasing between RH and GPP−RA
leads to a prolonged emission phase in the net CO2 ex-
change. It takes place in the whole region and occurs in the
savanna-dominated north (Fig. 8c) and in the grassland and
shrublands in the south (Fig. 8e). The dephasing takes place
in every year (see Fig. A13) and is present in all selected
TRENDY models. It causes a mean CO2 release of 494 TgC
during the emission phase, which is about 17 % and 18 %
of the annual total RH and GPP−RA, respectively. When
looking at the monthly precipitation over the study region
(see Fig. A14), one can identify a distinct drought phase oc-
curring in the whole study region. The subsequent start of the
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rainy season in September and October temporally coincides
with the early increase in RH. This finding resembles the re-
sults of Metz et al. (2023) in Australia: an increase in soil
respiration with the beginning of the rainy season prior to the
start of the growing season. Their study found soil respira-
tion pulses resulting from the rewetting of soils to cause the
continental-scale increase in soil respiration. Such soil respi-
ration pulses at local arid sites are discussed in the context of
the Birch effect (Birch, 1964; Jarvis et al., 2007), whereby
the rewetting of the soil enables microbial populations to
grow and to transform the carbon stored in the soils into
CO2 emissions. CO2 is then released in substantial amounts
within a short period of time. As in Metz et al. (2023), we
find short-duration emission pulses in the daily flux record of
a FLUXNET station in the study region. Exemplary annual
records of the FLUXNET station in the Kruger National Park
(Archibald et al., 2009) show CO2 emission caused by pre-
cipitation pulses (see Fig. A15). This is also reported in Fan
et al. (2015), who studied a 2-year measurement record of
carbon fluxes in Kruger National Park in more detail. Their
study found recurring respiration emission pulses due to pre-
cipitation events and attributed them to the Birch effect. The
TM5-4DVar/GOSAT+ IS fluxes indicate an even larger time
lag between the increase in soil respiration and NPP in some
years compared with TRENDY. A prolonged emission phase
of an additional 1–2 months (see Fig. 7c) takes place in years
with especially low soil moisture (2013, 2015, and 2016; see
Fig. A11). This later drop in emissions could either be caused
by a delayed start of the GPP rise in the growing season or
enhanced soil respiration due to the drier conditions causing
an enhanced accumulation of soil carbon during the years.
It is not possible to investigate this further, as none of the
TRENDY DGVMs captured the IAV in the timing of the
emission phase.

It is noteworthy that large parts of the unselected “other”
TRENDY models miss the dephasing between RH and
GPP−RA. Their NBP estimates, therefore, do not agree
with the emissions around October found by the satellite in-
version. Implementing soil respiration due to rewetting more
accurately in those models could improve their agreement
with the satellite-based fluxes. Metz et al. (2023) found that
the dephasing in the TRENDY models is most likely caused
by a different response time of soil respiration and vegeta-
tion growth to precipitation; e.g., water needs to percolate
into the deeper soil layers with plant roots to initiate plant
growth, whereas heterotrophic respiration is driven by upper-
soil-layer soil moisture or precipitation. The implementation
of such a time lag between heterotrophic respiration and GPP
seems to be a necessary but not a sufficient prerequisite to ac-
curately capture the seasonal carbon flux variability in semi-
arid southern Africa. Our results call for studies on how to
implement the response of ecosystems to soil rewetting more
accurately to improve the consistency and accuracy of the
TRENDY ensemble in semiarid regions.

Looking at the annual gross flux anomalies given by the
TRENDY selection (Fig. 8b), we see that the IAV in NBP and
NEE is mainly driven by GPP. Enhanced GPP from 2010 to
2012 leads to a constantly stronger uptake of CO2. In 2017,
a strongly enhanced GPP causes a large CO2 sink. Reduced
GPP in 2013, 2015, and 2016 results in positive NEE anoma-
lies associated with a reduced NEE sink. RH only plays a mi-
nor role and mostly slightly counteracts the GPP anomalies.
These findings agree with the studies of Ciais et al. (2009),
Weber et al. (2009), and Williams et al. (2008), who iden-
tified GPP variability as a major source of African fluxes’
IAV. It is, however, in contrast to semiarid Australia, where
Metz et al. (2023) found a large IAV in RH driven by precip-
itation anomalies during the dry season. The African study
region, however, has a distinct and regular dry season every
year (see Fig. A14), leading to a smaller influence of RH on
the IAV. Note that GOSAT suggests a much smaller annual
CO2 sink in 2017. However, the discrepancy is mainly caused
by a significant difference in the emissions in the second half
of the year, while both datasets agree well with respect to the
phase of carbon uptake (see Fig. 7c). Therefore, the TM5-
4DVar/GOSAT+ IS fluxes support the large GPP anomaly
given by the TRENDY models but suggest stronger respira-
tion or fire fluxes at the end of 2016.

Looking at the subregions (Fig. 8d and f), one can see
that the sinks in 2010, 2011, and 2017 are mainly driven
by the southern grassland region, where enhanced precipita-
tion occurred during these years (see Fig. A11). The com-
parably large release in 2016 seems to be driven by the
whole African region experiencing the highest annual tem-
peratures and driest conditions within the 10-year study
period. Therefore, the GPP IAV seems to be heavily im-
pacted by precipitation variability. According to GFED (see
Fig. A10), fire emissions play a minor role in impacting GPP
and driving NBP anomalies. The variability in fire emissions
is much lower than for NBP and GPP−RA. In the whole
study region, the IAV (calculated as standard deviation over
the years) in the GPP−RA and NBP fluxes is 97.7 and
94.1 TgC yr−1, respectively. The IAV in GFED fire emissions
is 27.3 TgC yr−1, which is a similarly low value to the IAV in
RH (27.1 TgC yr−1). Furthermore, the annual fire emissions
do not amplify the trend in the NBP anomalies. They were
at a normal level during the large positive NBP anomaly in
2016. Higher-than-average fire emissions counteract the sink
anomalies in 2011–2012, and only the slightly reduced fires
in 2017 amplify the sink anomaly.

4 Conclusions

The sparsity of in situ CO2 concentration and flux measure-
ments results in large uncertainties in carbon flux estimates in
the southern African region. We show that satellite measure-
ments provide additional information, leading to an improve-
ment in our knowledge about the southern African carbon
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Figure 8. Annual and mean monthly CO2 net and gross fluxes. The mean monthly fluxes (a, c, e) and annual (July–June) anomalies (b, d,
f) of NEE, NBP, GPP−RA, and RH of the selected TRENDY models are given in black, gray (dotted), green, and blue, respectively. The
fluxes are given for the whole study region (a, b), the savanna-dominated northern region (north of 17° S; c, d), and the southern region with
grassland and shrubland (e, f). The annual anomalies are calculated by subtracting the individual long-term mean of the annual fluxes. Thus,
a positive GPP anomaly denotes a reduced GPP and vice versa. The shading in panels (a), (c), and (e) indicates the standard deviation over
the three selected models (ORCHIDEE, ORCHIDEEv3, and CABLE-POP).

cycle. Our study demonstrates that satellite-measurement-
based atmospheric inversions and SIF can be used as at-
mospheric constraints for sub-selecting TRENDY DGVMs.
This is necessary, as TRENDY flux estimates show a large
spread in our study region.

Using the satellite-based selection of TRENDY DGVMs,
we find that the IAV in NBP and NEE in southern Africa
is driven by GPP variability. This supports findings by Ciais
et al. (2009), Weber et al. (2009), and Williams et al. (2008)
using individual vegetation models. The enhancements in an-
nual GPP mainly originate in the grasslands and shrublands
in the southern part of the study region and occur in years
with an enhanced amount of precipitation. The seasonal vari-
ability in the southern African carbon fluxes is impacted by
soil respiration dynamics, which are driven by the onset of

the rainy season. Respiration pulses have been reported un-
der the term of the Birch effect for arid Africa (Fan et al.,
2015) and have been shown to be relevant at the continental
scale in semiarid Australia (Metz et al., 2023). This enforces
the relevance of rain-induced CO2 emissions for the southern
African region and for semiarid regions in general. Our re-
sults emphasize the importance of correctly representing the
response of semiarid ecosystems to soil rewetting in DGVMs
(e.g., different response times of RH and GPP), as this was
found to be a prerequisite to accurately capture the seasonal
carbon cycle dynamics.
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Appendix A: The performance of the individual MIP
models.

In Fig. 5, the ensemble mean of MIP/OCO-2+ IS shows
lower emissions than TM5-4DVar/GOSAT+ IS in the sec-
ond half of the year. A selection of three models (Baker,
TM5-4DVar, and CAMS), however, shows larger fluxes and
agrees better with the GOSAT-based fluxes (see Sect. 3.2 and
Fig. 5). Next to the OCO-2-informed posterior fluxes used for
the analysis in the main text, the MIP/OCO-2+ IS dataset
provides the prior fluxes used by the individual MIP mod-
els. Furthermore, 5 % of the OCO-2 measurements are with-
held for validation purposes and modeled XCO2 values co-
sampled on the left-out measurements are provided for each
model except CSU. The OCO-2 co-samples and the prior
fluxes of the MIP models can be used to further evaluate the
differences between the three selected models and the other
MIP models.

In Fig. A7, the mismatch between XCO2 modeled by
the MIP and XCO2 measured by OCO-2 is given for the
months of the strongest emissions (September–November).
The XCO2 mismatch is the smallest for the three selected
models, Baker, TM5-4DVar, and CAMS, which concurrently
have the smallest mismatch to TM5-4DVar/GOSAT+ IS.
Hence, the models that reproduce the OCO-2 measurements
best also agree best with the GOSAT-based CO2 fluxes.

The differences between posterior and prior fluxes for the
MIP models are given in Fig. A8. TM5-4DVar and Baker
have the largest differences between the posterior and prior
fluxes. Therefore, it is likely that, even though the prior fluxes
of TM5-4DVar and Baker deviate strongly from the GOSAT-
based fluxes (see Fig. A9), considerable weight was given
to the OCO-2 measurements in the inversion. As a result,
the posterior fluxes are closer to the GOSAT-based fluxes
than to their prior fluxes (Fig. A8). As the CAMS prior al-
ready agrees reasonably well with TM5-4DVar/GOSAT+ IS
fluxes, no conclusion on the weights can be drawn here.

The other MIP models, which have lower emission fluxes,
show larger mismatches to the OCO-2 XCO2 measurements
for September to November (Fig. A7). Although, for most
of these models, assimilating OCO-2 increases the emission
fluxes and reduces the difference to the GOSAT-based fluxes
(see Figs. A8 and A9), the changes (i.e., the difference be-
tween posterior and prior fluxes) are small compared with
TM5-4DVar and Baker (see Fig. A8). The larger mismatch
to OCO-2 XCO2 and the smaller posterior–prior flux differ-
ences seem to indicate that a smaller weight was given to
the OCO-2 measurements compared with the selected MIP
models.

In general, the GOSAT flux mismatch and the OCO-2
XCO2 mismatch is larger in October and November than in
September. This is most likely caused by the prior fluxes in
September already being closer to the GOSAT-based fluxes
than in the other 2 months (see Fig. A9b).
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Table A1. Summary of the datasets. The main characteristics and references of the observation and model data are listed. Links to the datasets
are provided in the “Data availability” section.

Description Dataset Resolution References

GOSAT XCO2 GOSAT/RemoTeC v2.4.0 10.5 km footprint Butz et al. (2011); Butz (2022)
GOSAT/ACOS v9r(Lite) 10.5 km footprint Taylor et al. (2022); OCO-2 Science Team

et al. (2019)

Validation XCO2 OCO-2 v11r 1.3 km× 2.3 km
footprint

Jacobs et al. (2024); OCO-2/OCO-3
Science Team et al. (2022)

COCCON Gobabeb local Frey et al. (2021); Dubravica et al. (2021)

Model XCO2 TM5− 4DVar/IS 3°× 2°, monthly Basu et al. (2013)
based on in situ data CarbonTracker CT2022 3°× 2°, monthly Peters et al. (2007); Jacobson et al. (2023)

CAMS v21r1 3.7°× 1.81°, monthly Chevallier et al. (2005, 2010, 2019);
Copernicus Atmosphere Monitoring
Service (2020)

In-situ-only inversions TM5 − 4DVar/IS 3°× 2°, monthly Basu et al. (2013)
CarbonTracker CT2022 1°× 1°, monthly Peters et al. (2007); Jacobson et al. (2023)
CAMS v20r1 3.7°× 1.81°, monthly Chevallier et al. (2005, 2010, 2019);

Copernicus Atmosphere Monitoring
Service (2020)

TM5-
4DVar/GOSAT+ IS

TM5-4DVar/RemoTeC+ IS
and TM5-4DVar/ACOS+ IS

3°× 2°, monthly Basu et al. (2013)

TM5-4DVar/OCO-
2+ IS

TM5-4DVar of MIP/LNLGIS 1°× 1°, monthly Basu et al. (2013); Byrne et al. (2023);
Baker et al. (2022)

MIP/OCO-2+ IS
MIP/IS

MIP/LNLGIS experiment
MIP/IS experiment

1°× 1°, monthly Byrne et al. (2023); Baker et al. (2022)

SIF GOME-2 Daily_Averaged_SIF 40 km× 40 km/80 km Joiner et al. (2023)

FLUXCOM FLUXCOMv1 NEE, RS_V006 0.08°× 0.08°, 8 d Tramontana et al. (2016); Jung et al. (2020)

GFED GFED v4.1s 0.25°× 0.25°, monthly van der Werf et al. (2017, 2015)

TRENDYselection ORCHIDEE S3 0.5°× 0.5°∗ Krinner et al. (2005)
ORCHIDEEv3 S3 2°× 2°∗ Vuichard et al. (2019)
CABLE-POP S3 1°× 1°∗ Haverd et al. (2018)

TRENDYothers YIBs S3 1°× 1°∗ Yue and Unger (2015)
OCN S3 1°× 1°∗ Zaehle et al. (2010)
ORCHIDEE-CNP S3 2°× 2°∗ Goll et al. (2018)
JSBACH S3 1.86°× 1.88°∗ Reick et al. (2021)
CLASSIC S3 2.80°× 2.81°∗ Melton et al. (2020)
LPJ S3 0.5°× 0.5°∗ Poulter et al. (2011)
CLM5.0 S3 0.94°× 1.25°∗ Lawrence et al. (2019)
DLEM S3 0.5°× 0.5°∗ Tian et al. (2015)
IBIS S3 1°× 1°∗ Yuan et al. (2014)
ISAM S3 0.5°× 0.5°∗ Meiyappan et al. (2015)
ISBA-CTRIP S3 1°× 1°∗ Delire et al. (2020)
JULES-ES-1.0 S3 1.25°× 1.88°∗ Sellar et al. (2019)
LPX-Bern S3 0.5°× 0.5°∗ Lienert and Joos (2018)
SDGVM S3 1°× 1°∗ Walker et al. (2017)
VISIT S3 0.5°× 0.5°∗ Kato et al. (2013)

ERA5 meteorological
data

ERA5-Land data
total precipitation, upper-layer
soil moisture, temperature

1°× 1°, monthly Muñoz Sabater (2019)

MODIS MODIS (MCD12C1) data 0.05°× 0.05°, 2015 Friedl and Sulla-Menashe (2022)

∗ All TRENDY model data are provided at a monthly temporal resolution.
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Table A2. Monthly fluxes of TM5-4DVar/GOSAT+ IS in southern Africa. The monthly fluxes of TM5-4DVar/RemoTeC+ IS (“RT+ IS”),
TM5-4DVar/ACOS+ IS (ACOS+ IS), and the mean of both are given in teragrams of carbon per month for the whole study region.

Year Month RT+ IS ACOS+ IS Mean Year Month RT+ IS ACOS+ IS Mean

2009 4 −157.56 −195.50 −176.53 2014 3 −218.74 −194.84 −206.79
2009 5 −83.13 −102.61 −92.87 2014 4 −160.54 −153.89 −157.21
2009 6 6.71 6.29 6.50 2014 5 −84.72 −81.25 −82.99
2009 7 93.92 109.99 101.96 2014 6 30.42 42.46 36.44
2009 8 163.05 163.17 163.11 2014 7 82.04 99.66 90.85
2009 9 219.63 198.25 208.94 2014 8 95.93 122.13 109.03
2009 10 232.99 144.91 188.95 2014 9 215.17 154.74 184.96
2009 11 140.76 88.81 114.79 2014 10 229.27 176.57 202.92
2009 12 −32.79 −44.05 −38.42 2014 11 199.23 168.02 183.62
2010 1 −144.40 −113.34 −128.87 2014 12 36.93 −35.25 0.84
2010 2 −153.14 −157.85 −155.50 2015 1 −73.64 −86.37 −80.01
2010 3 −144.99 −172.86 −158.93 2015 2 −139.19 −135.31 −137.25
2010 4 −74.81 −121.29 −98.05 2015 3 −153.79 −149.43 −151.61
2010 5 −57.83 −84.45 −71.14 2015 4 −144.28 −131.81 −138.04
2010 6 24.59 16.57 20.58 2015 5 −62.78 −63.61 −63.19
2010 7 69.44 86.01 77.73 2015 6 2.16 22.31 12.24
2010 8 129.28 152.92 141.10 2015 7 49.88 85.39 67.64
2010 9 208.69 202.44 205.57 2015 8 117.11 107.91 112.51
2010 10 239.32 194.63 216.98 2015 9 189.95 139.90 164.93
2010 11 262.58 166.15 214.37 2015 10 225.03 150.79 187.91
2010 12 57.84 −24.29 16.78 2015 11 259.19 212.22 235.70
2011 1 −189.14 −146.26 −167.70 2015 12 112.16 78.85 95.50
2011 2 −229.46 −193.03 −211.24 2016 1 −72.92 −69.47 −71.20
2011 3 −156.96 −183.26 −170.11 2016 2 −148.67 −155.69 −152.18
2011 4 −111.27 −115.31 −113.29 2016 3 −176.60 −134.03 −155.32
2011 5 −70.44 −72.17 −71.31 2016 4 −159.32 −128.91 −144.11
2011 6 22.49 39.77 31.13 2016 5 −77.83 −56.86 −67.35
2011 7 88.88 101.56 95.22 2016 6 28.77 72.38 50.58
2011 8 170.18 183.09 176.63 2016 7 61.68 117.42 89.55
2011 9 214.57 202.08 208.32 2016 8 111.76 166.74 139.25
2011 10 215.25 137.67 176.46 2016 9 178.65 176.21 177.43
2011 11 108.61 83.75 96.18 2016 10 278.49 178.25 228.37
2011 12 −69.23 −42.93 −56.08 2016 11 344.93 213.55 279.24
2012 1 −198.76 −174.22 −186.49 2016 12 126.39 48.90 87.64
2012 2 −204.51 −185.68 −195.09 2017 1 −141.60 −144.98 −143.29
2012 3 −201.66 −209.21 −205.43 2017 2 −218.16 −157.23 −187.70
2012 4 −157.34 −149.79 −153.56 2017 3 −266.37 −195.15 −230.76
2012 5 −85.64 −61.66 −73.65 2017 4 −171.98 −145.48 −158.73
2012 6 26.99 55.95 41.47 2017 5 −87.55 −94.62 −91.09
2012 7 81.80 111.87 96.84 2017 6 −4.45 17.30 6.43
2012 8 105.47 131.05 118.26 2017 7 36.00 108.33 72.17
2012 9 182.86 156.69 169.77 2017 8 125.62 175.62 150.62
2012 10 216.78 172.23 194.51 2017 9 191.89 212.30 202.10
2012 11 130.49 155.95 143.22 2017 10 285.32 197.40 241.36
2012 12 −29.84 −24.57 −27.20 2017 11 233.14 175.95 204.54
2013 1 −195.13 −142.42 −168.78 2017 12 3.21 3.05 3.13
2013 2 −181.41 −141.65 −161.53 2018 1 −131.45 −111.65 −121.55
2013 3 −150.87 −134.34 −142.60 2018 2 −119.89 −127.09 −123.49
2013 4 −133.19 −113.00 −123.10 2018 3 −167.60 −135.00 −151.30
2013 5 −72.44 −40.57 −56.51 2018 4 −208.14 −153.04 −180.59
2013 6 34.37 52.38 43.38 2018 5 −137.36 −102.90 −120.13
2013 7 64.78 85.80 75.29 2018 6 −21.20 23.47 1.14
2013 8 96.91 130.53 113.72 2018 7 29.86 98.30 64.08
2013 9 176.64 185.33 180.99 2018 8 110.99 163.25 137.12
2013 10 219.32 178.29 198.80 2018 9 202.02 201.28 201.65
2013 11 249.06 191.11 220.08 2018 10 182.51 179.17 180.84
2013 12 202.08 64.14 133.11 2018 11 223.74 184.91 204.33
2014 1 −79.09 −119.87 −99.48 2018 12 226.30 148.33 187.31
2014 2 −187.16 −169.20 −178.18
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Figure A1. Monthly southern African detrended CO2 concentrations measured by GOSAT. GOSAT/ACOS is given in black, while
GOSAT/RemoTeC is given in red. Dashed lines show the mean CO2 concentrations over the whole dataset. The mean CO2 concentra-
tions of the soundings included in both datasets, ACOS and RemoTeC, are given as solid lines. “cs” stands for co-sampled and indicates
that only soundings also included in the other dataset are considered. The deviations due to different sampling are on a sub-part-per-million
scale and do not explain the differences between ACOS and RemoTeC. Modeled posterior CO2 concentrations of the in-situ-only inversions
are co-sampled (cs) on GOSAT and depicted as the mean (in blue) for comparison. The shading indicates the range among the individual
in-situ-only inversions. Panel (b) shows the mean seasonal cycle for 2009–2018, with the standard deviation over the years given as shading.

Figure A2. Monthly southern African detrended CO2 concentrations given by inversions and satellites. Like Fig. 1 but with detrended XCO2
of individual in-situ-only inversions co-sampled (cs) on the GOSAT measurements in dark blue (CT2022 – dashed; CAMS – dot-dash; and
TM5-4DVar/IS – dotted). Panel (a) gives the monthly mean CO2 concentrations, whereas panel (b) shows the mean seasonal cycle for 2009–
2018. The shading indicates the range among GOSAT/ACOS and GOSAT/RemoTeC and the range among the three in-situ-only inversions
in panel (a). In panel (b), the shading indicates the standard deviation over the year.
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Figure A3. Monthly southern African detrended CO2 concentrations given by inversions and satellites. Like Fig. 1 but with detrended XCO2
measurements of OCO-2 (in black) for the time period from 2015 to 2018. Panel (a) gives the monthly mean CO2 concentrations, whereas
panel (b) shows the mean seasonal cycle for 2015–2018. The shading indicates the range among GOSAT/ACOS and GOSAT/RemoTeC and
the range among the three in-situ-only inversions in panel (a). In panel (b), the shading indicates the standard deviation over the years.

Figure A4. Monthly southern African detrended CO2 concentrations given by inversions, satellites, and COCCON measurements. Like
Fig. 1 but only for January 2017–February 2018 and with detrended XCO2 measurements from the Gobabeb COCCON station (in black).
The full dataset of COCCON measurements is used, without performing a co-sampling on GOSAT measurements or further filtering.
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Figure A5. Number and distribution of satellite CO2 concentration measurements above southern Africa. (a, d, g) Total number of
GOSAT/ACOS, (b, e, h) GOSAT/RemoTeC, and (c, f, i) OCO-2 data per 3°× 2° grid cell for (a–c) the months of carbon uptake (January–
June), (d–f) the emission season (July–December), and (g–i) the month with the strongest emissions. GOSAT/ACOS and GOSAT/RemoTeC
measurements from 2009 to 2018 and OCO-2 measurements from September 2014 to 2018 are included. The maximum of the color scale is
the same for all time periods but different for OCO-2 compared with GOSAT/ACOS and GOSAT/RemoTeC. Compared with GOSAT/ACOS,
GOSAT/RemoTeC has a reduced number of measurements, as the RemoTeC algorithm applies stricter filtering of the GOSAT soundings.

Figure A6. Number of satellite measurements per month. The numbers of satellite measurements in the GOSAT/ACOS (dashed red line),
GOSAT/RemoTeC (solid dark-red line), and OCO-2 (dotted gray line) datasets are given. Note that the number of OCO-2 measurements is
shown divided by 100 to enable a comparison to the much less abundant GOSAT measurements.
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Figure A7. Mismatch between GOSAT-informed and OCO-2-informed fluxes versus the mismatch between OCO-2-informed simulated
XCO2 and OCO-2-measured XCO2. For the MIP/OCO-2+ IS inversions, 5 % of the OCO-2 measurements are withheld for validation
purposes and modeled XCO2 values co-sampled on the measurements are provided for each model except CSU. Panel (a) gives the RMSE
of the OCO-2 measurements and the modeled co-sampled XCO2 from September to November for each model. In panel (b), the mean
differences in the OCO-2 measurements and modeled co-samples for each month and model are given. In both panels, the OCO-2 XCO2
mismatch is plotted against the difference in the monthly TM5-4DVar/GOSAT+ IS and individual MIP/OCO-2+ IS CO2 fluxes for the
strongest emission period from September to November. The MIP models Baker, CAMS, and TM5-4DVar are highlighted in yellow, blue,
and red, respectively. The other individual MIP models are given in gray. The three highlighted models show the smallest OCO-2 XCO2
mismatch and the smallest difference from the monthly fluxes of TM5-4DVar/GOSAT+ IS (with the exception of Baker in September; b).

Figure A8. Mismatch between GOSAT-informed and OCO-2-informed fluxes versus the difference between OCO-2-informed fluxes and
model prior fluxes. The individual MIP models differ with respect to their assumed prior fluxes. In this figure, the differences in the monthly
posterior to the prior fluxes (x axis) and to the GOSAT-based fluxes (TM5-4DVar/GOSAT+ IS, y axis) are compared. Differences are calcu-
lated using the monthly flux over the whole study region and the time period from 2015 to 2018. Panel (a) shows the mean over September to
November, the time of the strongest CO2 emissions. In panel (b), the differences are given for each of the three individual months. The MIP
models Baker, CAMS, and TM5-4DVar are highlighted in yellow, blue, and red, respectively. The other individual MIP models are given in
gray. For most of the models, the assimilation of OCO-2 measurements increases the mean monthly fluxes from September to November
(difference from prior larger than zero). Only for CAMS, UT, and some models in September are the mean posterior fluxes smaller than the
prior fluxes.
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Figure A9. Mismatch between GOSAT-informed and OCO-2-informed fluxes versus the difference between GOSAT-informed fluxes and
OCO-2 MIP prior fluxes. The differences in the monthly GOSAT inversion fluxes (TM5-4DVar/GOSAT+ IS) compared with the MIP
posterior (y axis) and MIP prior fluxes (x axis) for the individual MIP models are given. Panel (a) gives the mean differences for the months
from September to November. Panel (b) shows the differences for the individual months. The MIP models Baker, CAMS, and TM5-4DVar
are highlighted in yellow, blue, and red, respectively. The other individual MIP models are given in gray. The 1 : 1 line is given as a dotted
gray line. For most of the MIP models, assimilating OCO-2 reduces the flux difference to the GOSAT-based fluxes (i.e., markers are below
the 1 : 1 line).

Figure A10. The CO2 fire emissions in southern Africa. The monthly CO2 fire emissions collected by three fire emission databases: GFED
(in orange), the Global Fire Assimilation System (GFAS; Kaiser et al., 2012; Copernicus Atmosphere Monitoring Service, 2022; in red), and
the Fire INventory from NCAR (FINN; Wiedinmyer et al., 2011, 2021; in purple). Furthermore, the annual (July–June) GFED fire emissions
are shown on the right-hand y axis. Please note that the right-hand y axis starts at 280 TgC yr−1 for better visualization of the fire emissions.
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Figure A11. Climate anomalies. The annual anomalies of ERA5 precipitation, temperature, and upper-layer soil moisture are displayed using
solid blue, solid red, and gray hatching, respectively. The annual anomalies are calculated by subtracting the individual long-term mean of
the annual values and are given for the whole study region in panel (a), for the northern subregion in panel (b), and for the southern subregion
in panel (c).

Figure A12. Mean monthly CO2 net and gross fluxes. Like Fig. 8a but also including the GPP and RA of the TRENDY selection.
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Figure A13. Monthly CO2 fluxes in the northern (a) and southern (b) subregions. The monthly NEE, NPP (GPP−RA), and RH fluxes from
the selected TRENDY models are given in black, green, and violet, respectively, for the northern southern African region in panel (a). The
TM5-4DVar/GOSAT+ IS–GFED NEE fluxes are additionally shown as a dotted red line. The same is given in panel (b) for the southern
subregion.
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Figure A14. Mean monthly precipitation and mean temperature over southern Africa. The mean monthly precipitation is given as blue bars,
whereas the mean temperature is shown using a solid red line.

Figure A15. Local data from the FLUXNET eddy-covariance flux tower in Kruger National Park. Daily mean net carbon fluxes (green),
precipitation (blue), and soil moisture (red) measured by the ZA-Kru FLUXNET station (Archibald et al., 2009; Scholes, 2013). Panel (a)
shows the year 2005, whereas panel (b) shows 2010.
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Code availability. The code used in this study is available from
https://doi.org/10.5281/zenodo.12528504 (Metz, 2024) or GitHub
(https://github.com/ATMO-IUP-UHEI/MetzEtAl2024, last access:
25 June 2024).

Data availability. GOSAT/RemoTeC2.4.0 XCO2 data can be ob-
tained from Zenodo: https://doi.org/10.5281/zenodo.5886662
(Butz, 2022). GOSAT/ACOS data are available from
https://oco2.gesdisc.eosdis.nasa.gov/data/GOSAT_TANSO_
Level2/ACOS_L2_Lite_FP.9r/ (OCO-2 Science Team, 2019,
https://doi.org/10.5067/VWSABTO7ZII4). OCO-2 data are
available from https://doi.org/10.5067/8E4VLCK16O6Q
(OCO-2/OCO-3 Science Team et al., 2022). CarbonTracker
CT2022 CO2 fluxes and concentrations can be downloaded
from https://gml.noaa.gov/aftp/products/carbontracker/co2/
CT2022/fluxes/monthly/ and https://gml.noaa.gov/aftp/products/
carbontracker/co2/CT2022/molefractions/co2_total_monthly/
(Jacobson et al., 2023, https://doi.org/10.25925/z1gj-3254),
respectively. CAMS concentrations and fluxes can be found
at https://ads.atmosphere.copernicus.eu/cdsapp#!/dataset/
cams-global-greenhouse-gas-inversion (Copernicus Atmo-
sphere Monitoring Service, 2020). GFAS emission records
are available from https://ads.atmosphere.copernicus.eu/
datasets/cams-global-fire-emissions-gfas (Copernicus Atmo-
sphere Monitoring Service, 2022). CAMS and GFAS data
were generated using Copernicus Atmosphere Monitoring
Service information 2021; neither the European Commis-
sion nor the European Centre for Medium-Range Weather
Forecasts (ECMWF) is responsible for any use that may be
made of the information they contain. The MIP data can be
downloaded from https://gml.noaa.gov/ccgg/OCO2_v10mip/
(Baker et al., 2022). GFED fire emissions are available
from https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (van
der Werf et al., 2015). FINN data were retrieved from
the American National Center for Atmospheric Research:
https://www.acom.ucar.edu/Data/fire/ (Wiedinmyer et al., 2021).
ERA5-Land data records contain modified Copernicus Atmosphere
Monitoring Service information 2021 available from the Climate
Data Store https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-land-monthly-means (Muñoz Sabater, 2019,
https://doi.org/10.24381/cds.68d2bb30). TRENDYv9 model output
is available upon request from https://mdosullivan.github.io/GCB/
(Sitch et al., 2020). FLUXCOM products are available
from http://fluxcom.org/CF-Download/ (Jung et al., 2020,
https://doi.org/10.5194/bg-17-1343-2020; Tramontana et al.,
2016, https://doi.org/10.5194/bg-13-4291-2016). Data from the
ZA-Kru FLUXNET station can be downloaded from FLUXNET:
https://fluxnet.org/data/fluxnet2015-dataset/ (Scholes, 2013,
https://doi.org/10.18140/FLX/1440188). The Gobabeb COCCON
station data are available from https://secondary-data-archive.
nilu.no/evdc/ftir/coccon/gobabeb/version2/ (Dubravica et al.,
2021, https://doi.org/10.48477/coccon.pf10.gobabeb.R02).
MODIS MCD12C1 data are available from https:
//search.earthdata.nasa.gov/search with the following DOI:
https://doi.org/10.5067/MODIS/MCD12C1.061 (Friedl and
Sulla-Menashe, 2022). “L2 Daily Solar-Induced Fluores-
cence (SIF) from MetOp-A GOME-2” V2 data are available
from https://search.earthdata.nasa.gov/ (Joiner et al., 2023,

https://doi.org/10.3334/ORNLDAAC/2292). Monthly TM5-4DVar
data are given in Table A2.
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