Supplement of Biogeosciences, 22, 5573–5589, 2025 https://doi.org/10.5194/bg-22-5573-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Human activities caused hypoxia expansion in a large eutrophic estuary: non-negligible role of riverine suspended sediments

Yue Nan et al.

Correspondence to: Jiatang Hu (hujtang@mail.sysu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Text S1. Model descriptions and settings of physical and suspended sediment

30 modules

29

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

1.1 Physical model

The physical model is a 1D-3D coupled model that integrates the Pearl River network (1D) and the PRE (3D) into an overall modelling system. This model was firstly developed by Hu and Li (2009) to study the nutrient flux budgets for the river network and the estuary (Fig. 1a), and was further utilized to investigate hypoxia dynamics (Huang et al., 2019; Wang et al., 2017; Wang et al., 2018; Zhang et al., 2022) and sediment-water nutrient exchanges (Liu et al., 2016) in the PRE. The 1D component for the Pearl River network adopts a Preissmann implicit scheme and an iterative approach to solves the Saint-Venant equations of water mass and momentum conservation. A salinity transport module was also incorporated. The river network was discretized into 299 reaches and 1726 computational cross sections, with five upstream boundaries (including the Gaoyao, Shijiao, Boluo, Laoyagang, and Shizui hydrological stations). The Gaoyao, Shijiao, and Boluo sites were forced by realtime river discharge data, while the Laoyagang and Shizui sites were forced by realtime water level data, which were provided from the Pearl River Water Resources Commission of the Ministry of Water Resources (https://www.pearlwater.gov.cn/sssq/). The riverine salinity at the upstream boundaries was set to zero. The initial conditions of water levels and salinity in the 1D model domain were set to zero. The 3D component, covering the PRE and its adjacent shelf regions, is based on the Estuaries and Coastal Ocean Model (ECOM, (Blumberg, 2002)). It adopts Smagorinsky type formula (Smagorinsky, 1963) to calculate the horizontal mixing and utilizes the level-2.5 turbulent closure scheme developed by Mellor and Yamada (1982) to parameterize vertical viscosity and diffusivity. It has 183×186 horizontal grid cells with adaptive horizontal resolution that gradually decreases from ~400 m in the estuary to ~3 km over the shelf. In addition, it has 16 terrain-following vertical layers with

refined resolution near the surface and bottom. Along the three open boundaries at the

east, west, and the south, the tide forcing in the form of water levels was obtained from Oregon State University Tidal Data Inversion Software (OTIS). Observed temperature and salinity profiles were spatial-uniformly applied at the three open boundaries (Hu and Li, 2009). The atmospheric conditions (e.g., wind speed, wind direction, and solar radiation) were interpolated onto the model grid, forced by the six-hourly reanalysis product of ERA-Interim (http://www.ecmwf.int/en/research/climate-reanalysis/era-interim). The initial temperature and salinity conditions were spatial-uniformly set to $20~{\rm ^{\circ}C}$ and $34.5~{\rm PSU}$, respectively. The conditions at the open boundary were set to fixed values: salinity at $35~{\rm PSU}$, phytoplankton at $0~{\rm \mu g/L}$, and nutrients at $1.0\times10^{-5}~{\rm mg/L}$.

The exchange of water mass between the 1D and the 3D model domains is coupled at the eight river outlets. Briefly, at each time step, the 3D model utilizes the simulated discharge obtained from the 1D model as the river boundary forcing and the 3D model sends simulated water levels to the 1D model as the downstream boundary forcing for the next time step. As a result, the dynamic hydrodynamic input can be realized from 1D to 3D, thus preserving the hydrodynamic variations due to different freshwater inputs. The detailed description of the methodology and setting of the coupled 1D-3D physical model can be found in Hu and Li (2009).

1.2 Suspended sediment module

The transport and fate of sediments in the PRE were simulated by a cohesive sediment module incorporated within the ECOM (Blumberg, 2002). This module shares the same model grid and computational framework as the hydrodynamics module. It simulates the sediment dynamics including sediment transport, deposition, and resuspension. The governing equation of suspended sediments in the water column is formulated as follows:

81
$$\frac{\partial c}{\partial t} = -\left(U\frac{\partial c}{\partial x} + V\frac{\partial c}{\partial y} + (W - W_s)\frac{\partial c}{\partial z}\right) + \frac{\partial}{\partial x}\left(A_H\frac{\partial c}{\partial x}\right) + \frac{\partial}{\partial y}\left(A_H\frac{\partial c}{\partial y}\right) + \frac{\partial}{\partial z}\left(K_H\frac{\partial c}{\partial z}\right) \quad (s1)$$

where C is the suspended sediment concentration (SSC, mg/L); U, V and W are the water velocity components in the x, y and z directions (m/s), respectively; W_s is the

sinking rate of the suspended sediments (m/s); A_H is the horizontal diffusion coefficient; K_H is the vertical diffusion coefficient.

Detailed governing equations including boundary conditions treatment, bottom shear stress parameterization, resuspension and deposition characterization can be found in Blumberg (2002). The riverine inputs of suspended sediments at the eight river outlets were prescribed based on observations. The open boundary and initial conditions of SSC were set to zeros.

Table S1. Data source for long-term water quality parameters in the Pearl River

93 Estuary (PRE).

94

95

96

Data	Year	Source
Bottom DO	1985-2013	Hu et al., 2021 (DOI: 10.5194/bg-18-5247-2021)
Bottom DO	2014-2017	Su et al., 2017 (DOI: 10.5194/bg-14-4085-2017);
		Li et al., 2021 (DOI: 10.1029/2020JC016700)
Bottom DO	1990-2017	Environmental Protection Department of Hong Kong
		(https://cd.epic.epd.gov.hk/EPICRIVER/marine/)
Surface DIN	1990-2013	Hu et al., 2021 (DOI: 10.5194/bg-18-5247-2021)
Surface DIN	2017	Chen et al., 2020 (DOI: 10.1029/2019JG005596)
Surface Chl a	2015&2017	Li et al., 2021 (DOI: 10.1029/2020JC016700)
Riverine DIN, DIP, DO	1990-2017	Hu et al., 2021 (DOI: 10.5194/bg-18-5247-2021);
		Department of Ecology and Environment of
		Guangdong Province
		(https://gdee.gd.gov.cn/hjjce/jahy/index.html)
Riverine SSC	1990-2017	China River Sediment Bulletin
		(http://www.mwr.gov.cn/sj/tjgb/zghlnsgb/)

Note: DO (dissolved oxygen); dissolved inorganic nitrogen (DIN); dissolved inorganic phosphorus (DIP); suspended sediment concentration (SSC).

97 References

- 98 Blumberg, A.: A primer for ECOMSED, Hydroqual Inc, 188, 2002.
- 99 Chen, L., Zhang, X., He, B., Liu, J., Lu, Y., Liu, H., Dai, M., Gan, J., and Kao, S.-J.:
- 100 Dark Ammonium Transformations in the Pearl River Estuary During Summer, Journal
- 101 of Geophysical Research: Biogeosciences, 125, e2019JG005596,
- 102 https://doi.org/10.1029/2019JG005596, 2020.
- Hu, J. and Li, S.: Modeling the mass fluxes and transformations of nutrients in the Pearl
- 104 River Delta, China, Journal of Marine Systems, 78, 146-167,
- 105 https://doi.org/10.1016/j.jmarsys.2009.05.001, 2009.
- Hu, J., Zhang, Z., Wang, B., and Huang, J.: Long-term spatiotemporal variations and
- expansion of low-oxygen conditions in the Pearl River estuary: A study synthesizing
- observations during 1976–2017, 10.5194/bg-2020-480, 2021.
- Huang, J., Hu, J., Li, S., Wang, B., Xu, Y., Liang, B., and Liu, D.: Effects of Physical
- 110 Forcing on Summertime Hypoxia and Oxygen Dynamics in the Pearl River Estuary,
- 111 10.3390/w11102080, 2019.
- Lee, Z.-P., Du, K.-P., and Arnone, R.: A model for the diffuse attenuation coefficient of
- 113 downwelling irradiance, Journal of Geophysical Research: Oceans, 110,
- 114 https://doi.org/10.1029/2004JC002275, 2005.
- Li, D., Gan, J., Hui, C., Yu, L., Liu, Z., Lu, Z., Kao, S.-j., and Dai, M.: Spatiotemporal
- Development and Dissipation of Hypoxia Induced by Variable Wind-Driven Shelf
- 117 Circulation off the Pearl River Estuary: Observational and Modeling Studies, Journal
- of Geophysical Research: Oceans, 126, e2020JC016700,
- 119 https://doi.org/10.1029/2020JC016700, 2021.
- Liu, D., Hu, J., Li, S., and Huang, J.: Validation and application of a three-dimensional
- 121 coupled water quality and sediment model of the Pearl River Estuary, 36, 4025-4036,
- 122 10.13671/j.hjkxxb.2016.0145, 2016.
- 123 Mellor, G. L. and Yamada, T.: Development of a turbulence closure model for
- geophysical fluid problems, Reviews of Geophysics, 20, 851-875, 1982.
- 125 Smagorinsky, J.: General circulation experiments with the primitive equations: I. The
- basic experiment, Monthly weather review, 91, 99-164, 1963.
- Su, J., Dai, M., He, B., Wang, L., Gan, J., Guo, X., Zhao, H., and Yu, F.: Tracing the
- origin of the oxygen-consuming organic matter in the hypoxic zone in a large eutrophic
- estuary: the lower reach of the Pearl River Estuary, China, Biogeosciences, 14, 4085-
- 130 4099, 10.5194/bg-14-4085-2017, 2017.
- Wang, B., Hu, J., Li, S., and Liu, D.: A numerical analysis of biogeochemical controls
- with physical modulation on hypoxia during summer in the Pearl River estuary,
- 133 Biogeosciences, 14, 2979-2999, 10.5194/bg-14-2979-2017, 2017.
- Wang, B., Hu, J., Li, S., Yu, L., and Huang, J.: Impacts of anthropogenic inputs on
- hypoxia and oxygen dynamics in the Pearl River estuary, Biogeosciences, 15, 6105-
- 136 6125, 10.5194/bg-15-6105-2018, 2018.
- Zhang, Z., Wang, B., Li, S., Huang, J., and Hu, J.: On the Intra-annual Variation of

- 138 Dissolved Oxygen Dynamics and Hypoxia Development in the Pearl River Estuary,
- 139 Estuaries and Coasts, 45, 1305-1323, 10.1007/s12237-021-01022-0, 2022.