Biogeosciences, 22, 5625–5634, 2025 https://doi.org/10.5194/bg-22-5625-2025 © Author(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

Reviews and syntheses: Contribution of sulfate to aerobic methane oxidation in upland soils – a mini-review

Rui Su¹, Kexin Li^{2,3}, Nannan Wang², Fenghui Yuan², Ying Zhao¹, Yunjiang Zuo², Ying Sun², Liyuan He⁴, Lixin Yang⁵, Xiaofeng Xu⁴, and Lihua Zhang^{1,2,6}

Chinese Academy of Sciences, Changchun, Jilin, 130102, China

Correspondence: Xiaofeng Xu (xxu@sdsu.edu) and Lihua Zhang (zhanglihua@muc.edu.cn)

Received: 28 October 2024 - Discussion started: 29 November 2024

Revised: 1 July 2025 - Accepted: 14 July 2025 - Published: 16 October 2025

Abstract. Methane (CH₄) is a potent greenhouse gas, and its global warming potential is 28 times higher than carbon dioxide (CO₂). Various environmental factors influence aerobic CH₄ oxidation in soil. The sulfate (SO_4^{2-}) ion is the main component of atmospheric deposition and has been increasing in recent years. It promotes CH₄ production and anaerobic CH₄ oxidation; however, the impact of SO_4^{2-} on aerobic CH₄ oxidation in soils has not yet been comprehensively summarized. We synthesize current research on the effects of SO_4^{2-} on aerobic CH₄ oxidation, examining both its macroscopic manifestations and microscale pathways. Through a literature review, we found that SO_4^{2-} enhances aerobic CH₄ oxidation by 0 %-42 %; moreover, it has been found that various physicochemical properties and processes in the soil are influenced by the addition of SO_4^{2-} , which in turn affects aerobic CH₄ oxidation. This review enhances our understanding of the role of SO_4^{2-} in promoting aerobic CH₄ oxidation. It lays the foundation for future research with two primary goals: (1) validating these findings by quantifying CH₄ flux and aerobic oxidation rates and (2) elucidating the underlying microbial processes through experimental research. Concurrently, the review provides directions for further investigation into the impact of SO_4^{2-} on aerobic CH_4 oxidation.

1 Introduction

Methane (CH₄) is an important greenhouse gas, and its atmospheric concentration has increased since preindustrial times (Place, 2024; Praeg et al., 2016). Its global warming potential is 28 times higher than carbon dioxide (CO₂), owing to its superior heat absorption efficiency (IPCC, 2013). Methanotrophs (aerobic methanotrophs) consume CH₄ under certain conditions (Le Mer and Roger, 2001), reducing the atmospheric CH₄ concentration (Singh et al., 2010). Consequently, methanotrophs are crucial microbes that play an indispensable role in regulating and mitigating the CH₄-related greenhouse effect on Earth. Soil aerobic CH₄ oxidation is the sole known biological sink for atmospheric CH₄ (Ho et al., 2019; Murguia-Flores et al., 2018), contributing to 5 %– 7 % of the global annual atmospheric CH₄ uptake (Saunois et al., 2020). Upland soils are the primary biological CH₄ sink (Bodelier, 2011; Guo et al., 2023), owing to methanotrophmediated CH₄ consumption (Song et al., 2024). This represents the second-largest atmospheric CH₄ consumption sink, surpassed only by hydroxyl radical depletion (Deng et al., 2019). Aerobic CH₄ oxidation in soils is influenced by many factors, such as the soil water content, soil texture, soil type, temperature, soil pH, soil inorganic nitrogen content, and metal availability, and many of these factors have been extensively reviewed (Shukla et al., 2013; Mishra et al., 2018).

¹College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China

²Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology,

³University of Chinese Academy of Sciences, Beijing, 100049, China

⁴Biology Department, San Diego State University, San Diego, CA 92182, USA

⁵China Center for Commercial Science, Technology and Quality, Beijing, 100801, China

⁶Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China

However, the effect of SO_4^{2-} , a significant ionic component of acid deposition, on aerobic CH_4 oxidation has not yet been reviewed.

Acid rain, involving the deposition of SO_4^{2-} and other acidic compounds, remains a globally significant environmental issue (Chen et al., 2020; Qi et al., 2022). The three largest affected regions are Europe, North America, and China (Li et al., 2021). SO_4^{2-} is the major ion in acid rain (Wright and Henriksen, 1978) and has profound impacts on substances and biochemical processes in soils. As a crucial component of terrestrial ecosystems, soils serve as the ultimate receptor of acid deposition. SO_4^{2-} deposition induces soil acidification (Huang et al., 2019), alters soil plant diversity (Li et al., 2022), affects microbial properties (Wang et al., 2018), and limits grass yield potential (Klessa et al., 1989), as well as reducing the activities of soil enzymes such as cellulase, invertase, and polyphenol oxidase (Tie et al., 2020). SO_4^{2-} can inhibit CH₄ production (methanogenesis) and promote anaerobic CH₄ oxidation, playing a crucial role in anaerobic CH₄ biogeochemical processes. SO_4^{2-} suppresses methanogenesis, primarily due to its thermodynamic and kinetic preference as an electron acceptor (Granberg et al., 2001; Schimel, 2004), leading to decreased CH₄ emissions (Gauci et al., 2004). SO_4^{2-} has also been shown to facilitate anaerobic CH₄ oxidation by anaerobic methanotrophic archaea in diverse ecosystems, such as oceans (Boetius et al., 2000), wetlands (La et al., 2022), and paddy fields (Fan et al., 2021), acting as a crucial electron acceptor. Despite these well-documented effects on anaerobic CH₄ biogeochemical processes, the influence of SO_4^{2-} on aerobic CH₄ oxidation, particularly in upland soils, remains underexplored. Given the increasing global deposition of SO_4^{2-} due to industrial activities, understanding its impact on aerobic CH₄ oxidation is essential for predicting future CH₄ dynamics and developing effective climate mitigation strategies.

In this review, we have analyzed the literature on the effects of SO₄²⁻ on aerobic CH₄ oxidation. Our analysis not only reveals evidence suggesting that SO_4^{2-} promotes aerobic CH₄ oxidation but also identifies supporting evidence from related studies. In this work, we reviewed references about the influence of SO_4^{2-} on soil properties, substances, or biochemical processes, aiming to elucidate any microscale pathways on aerobic CH₄ oxidation through variations in soil substances or processes. Our analysis reveals that SO_4^{2-} may affect aerobic CH₄ oxidation. Based on the available literature, three out of five studies that investigated the influence of SO_4^{2-} on aerobic CH₄ oxidation were able to demonstrate a positive effect on aerobic CH₄ oxidation thus, we infer that SO₄²⁻ favors aerobic CH₄ oxidation. This review summarizes the microscale pathways by which SO_4^{2-} influences aerobic CH₄ oxidation and highlights the importance of future research in this area. By providing a comprehensive synthesis of existing knowledge, this work serves as a valuable reference for future experimental studies. Furthermore, the findings of this review will contribute to a deeper understanding of global CH_4 cycling, particularly in the context of increasing SO_4^{2-} deposition. Moving forward, we aim to experimentally validate the impact of aerobic CH_4 oxidation following SO_4^{2-} addition and elucidate the underlying microbial mechanisms involved.

2 The microbial aerobic CH₄ oxidation processes

2.1 Aerobic CH₄ oxidation processes

Aerobic CH₄ oxidation is mediated by methanotrophs, a group of specialized microorganisms (Chistoserdova et al., 2005). In soils, aerobic CH₄ oxidation can be classified into two distinct forms based on the concentration of CH₄ (Walsh et al., 2009). The first form, known as high-affinity oxidation, occurs at CH₄ concentrations close to atmospheric levels (<2 ppm) and is carried out by high-affinity methanotrophs (Chowdhury and Dick, 2013). This process is commonly observed in upland soils, particularly in environments with high NH₄⁺ concentrations (Ho et al., 2019; Le Mer and Roger, 2001). The second form, referred to as low-affinity oxidation, occurs at CH₄ concentrations exceeding 40 ppm and is mediated by low-affinity methanotrophs (Chowdhury and Dick, 2013). This form is typically found in wetland environments, where CH₄ concentrations are significantly higher than atmospheric levels (Bechtold et al., 2025). Aerobic CH₄ oxidation converts CH₄ to CO₂ in four steps: (1) methane monooxygenase (MMO) oxidizes CH₄ to methanol (CH₃OH), ② methanol dehydrogenase (MDH) oxidizes CH₃OH to formaldehyde (HCHO), (3) formaldehyde dehydrogenase (FADH) oxidizes HCHO to formate (HCOOH), and (4) formate dehydrogenase (FDH) oxidizes HCOOH to CO₂ (Fig. 1, paths (1)–(4)) (Mancinelli, 1995).

2.2 Methanotrophs

Methanotrophs constitute a distinct subset of methylotrophs, primarily dependent on the one-carbon compound CH₄ as their sole source of carbon and energy (Hanson and Hanson, 1996). In the traditional classification system, proteobacterial methanotrophs were categorized into type I (Methylococcaceae and Crenotrichaceae), type II (Methylocystaceae and Beijerinckiaceae), and type X (Methylococcaceae) (Li et al., 2020) based on their cell membrane arrangement, chemotaxonomic properties, physiological characteristics, and phylogenetic locations. However, due to the discovery of noncanonical methanotrophs, the traditional classification system has become outdated. Consequently, methanotrophs are now classified into seven categories based on phylogenetic analysis: types I-A (Methylomonadaceae), I-B (Methylococcaceae), I-C (Methylothermaceae), I-D (Crenotrichaceae), II-A (Methylocystaceae), II-B (Beijerinckiaceae), III (Methylacidiphilaceae), and NC10 (Fenibo et al., 2023). Methylomonadaceae, Methylococcaceae, Methylothermaceae, and

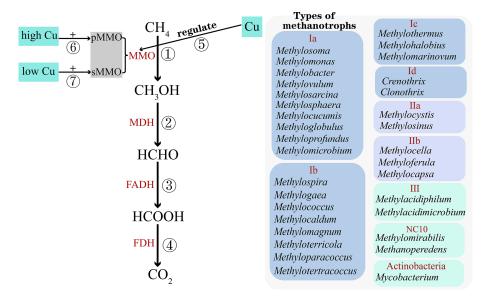


Figure 1. Diagram of the aerobic methane oxidation process and the classification of methanotrophs: ① CH_4 is oxidized to methanol (CH_3OH) by methane monooxygenase (MMO); ② CH_3OH is oxidized to formaldehyde (HCHO) by methanol dehydrogenase (MDH); ③ HCHO is oxidized to formate (HCOOH) by formaldehyde dehydrogenase (HCHO); ④ HCOOH is oxidized to HCHO0 by formate dehydrogenase (HCHO1); ⑤ HCHO2 Cu controls two HCHO3 Cu concentration regulates HCHO4 concentration regulates HCHO5 cu concentration in soil; and ⑦ low HCHO6 cu concentration regulates HCHO6 cu concentration regulates HCHO7 cu concentration regulates HCHO8 cu concentration regulates HCHO9 cu concentration r

Crenotrichaceae belong to the class Gammaproteobacteria, while Methylocystaceae and Beijerinckiaceae are classified under Alphaproteobacteria. Methylacidiphilaceae belongs to the phylum Verrucomicrobia. The composition of different types of methanotrophs is shown in Fig. 1 (Fenibo et al., 2023). Notably, only four genera - Methylocella, Methylacidimicrobium, Methylacidiphilum, and Methylomirabilis - are capable of carbon fixation via the Calvin-Benson-Bassham (CBB) cycle (Fenibo et al., 2023; Op den Camp et al., 2009). Among actinobacterial methanotrophs, Candidatus Mycobacterium methanotrophicum is classified with the Mycobacterium genus (van Spanning et al., 2022). Methanotrophs utilize two forms of methane monooxygenase (MMO): soluble cytoplasmic monooxygenase (sMMO) and particulate membrane-bound monooxygenase (pMMO). Except for Methylocella silvestris and Methyloferula stellata, all methanotrophs possess pMMO. sMMO has only been detected in a few specific genera, namely Methylomonas sp., Methylomicrobium sp., Methylosinus sp., and Methylococcus capsulatus (DiSpirito et al., 2016). Copper (Cu) concentration differentially regulates MMO expression (Fig. 1 ③): high Cu concentrations induces pMMO (Fig. 1 6), whereas low Cu concentrations triggers sMMO (Fig. 1 (7)) (Hakemian and Rosenzweig, 2007).

3 Soil CH₄ oxidation in response to SO_4^{2-} addition

Sulfates, including SO_4^{2-} and sulfuric acid (H₂SO₄), enhance aerobic CH₄ oxidation within a range of 0 %–42 % (Table 1);

therefore, we hypothesize that SO_4^{2-} may stimulate aerobic CH₄ oxidation. For example, in a temperate mixed deciduous woodland, the cumulative uptake of aerobic CH₄ oxidation was 25 % higher in the experimental group with H₂SO₄ addition compared to the control group during the final quarter of the study period (Bradford et al., 2001b). Similar results were reported by Sitaula et al. (1995). In another study, King and Schnell (1998) found that adding SO_4^{2-} (Na₂SO₄) increased aerobic CH₄ oxidation by 3 % at a CH₄ concentration of 250 ppm compared to the control group, although this result was not statistically significant. The lack of significance may be attributed to the insufficient concentration gradient of Na₂SO₄ in the experimental setup, which limited the ability to fully assess the effects of SO_4^{2-} on aerobic CH₄ oxidation. Therefore, we propose that the observed enhancement of aerobic CH₄ oxidation following H₂SO₄ addition is primarily due to the increase in SO_4^{2-} concentration. The promotional effect of SO_4^{2-} on aerobic CH₄ oxida-

The promotional effect of SO₄⁻ on aerobic CH₄ oxidation is further supported by comparisons with other anions under similar cationic conditions. Benstead and King (2001) observed that HNO₃ exerted a stronger inhibitory effect on aerobic CH₄ oxidation under equivalent soil acidic conditions than H₂SO₄. This finding is consistent with the results of Bradford et al. (2001a), who experimentally confirmed the inhibitory effect of nitrate (NO₃⁻) on aerobic CH₄ oxidation (Dunfield and Knowles, 1995; Wang and Ineson, 2003). When H₂SO₄ and HNO₃ were added to the soil to achieve H⁺ concentrations of 10 and 1 μmol H⁺ per gram of fresh weight (gfw), respectively, both acids inhibited aerobic CH₄ oxidation to a similar extent. However, H₂SO₄ ex-

Sulfate concentration	CH ₄ concentration	Effect	Reference
$H_2SO_4 (50 \text{ kg S ha}^{-1})$	Ambient air	25 % increase	Bradford et al. (2001b)
H ₂ SO ₄ (5 mM) (NH ₄) ₂ SO ₄ (5 mM)	Ambient air Ambient air	No effect No effect	Bradford et al. (2001a)
$Na_2SO_4 (0.5 \mu g S g^{-1} soil)$	250 ppm	3 % increase	King and Schnell (1998)
H ₂ SO ₄ (pH 3)	Ambient air	42 % increase	Sitaula et al. (1995)
Na ₂ SO ₄ (2.8 μ mol S g ⁻¹ soil) K ₂ SO ₄ (2.8 μ mol S g ⁻¹ soil)	4 ppm 4 ppm	No effect No effect	Gulledge and Schimel (1998)
	H ₂ SO ₄ (50 kg S ha ⁻¹) H ₂ SO ₄ (5 mM) (NH ₄) ₂ SO ₄ (5 mM) Na ₂ SO ₄ (0.5 μg S g ⁻¹ soil) H ₂ SO ₄ (pH 3) Na ₂ SO ₄ (2.8 μmol S g ⁻¹ soil)	H_2SO_4 (50 kg S ha ⁻¹) Ambient air H_2SO_4 (5 mM) Ambient air $(NH_4)_2SO_4$ (5 mM) Ambient air Na_2SO_4 (0.5 μg S g ⁻¹ soil) 250 ppm H_2SO_4 (pH 3) Ambient air	H_2SO_4 (50 kg S ha ⁻¹) Ambient air 25 % increase H_2SO_4 (5 mM) Ambient air No effect (NH ₄) ₂ SO ₄ (5 mM) Ambient air No effect Na ₂ SO ₄ (0.5 μg S g ⁻¹ soil) 250 ppm 3 % increase H_2SO_4 (pH 3) Ambient air 42 % increase H_2SO_4 (2.8 μmol S g ⁻¹ soil) 4 ppm No effect

Table 1. Promotion effect of sulfates on methane oxidation in diverse upland soils.

hibited a lesser inhibitory effect than HNO₃. We hypothesize that SO_4^{2-} may promote aerobic CH₄ oxidation, as evidenced by the findings of Benstead and King (2001) and Bradford et al. (2001a).

However, not all studies support the hypothesis that SO_4^{2-} promotes aerobic CH₄ oxidation. For instance, Bradford et al. (2001a) observed no significant difference in aerobic CH₄ oxidation between low (564 μ M) and high (1408 μ M) concentrations of H₂SO₄ compared to the control group. This discrepancy may be due to differences in H₂SO₄ concentration across studies. Similarly, Hu et al. (2018) reported no significant effect of SO_4^{2-} on aerobic CH₄ oxidation. Based on the available evidence, SO_4^{2-} promotes aerobic CH₄ oxidation within a range of 0%–42%. Although the mechanisms by which SO_4^{2-} influences aerobic CH₄ oxidation are not yet fully understood, we have identified potential microscopic pathways through which SO_4^{2-} may affect this aerobic process by reviewing the relevant literature.

4 Microscale pathways by which SO₄²⁻ addition influences aerobic CH₄ oxidation

The impact of SO₄²⁻ on aerobic CH₄ oxidation – particularly its enhancement mechanisms – remains poorly understood. Our literature review identifies two promotive pathways: (i) SO₄²⁻ direct effects on methanotroph activity and community structure (Fig. 2, path d) (Bradford et al., 2001b; Sitaula et al., 1995), thereby modulating CH4 oxidation; and (ii) SO₄²⁻ indirect effects through alterations in soil physicochemical properties (Fan et al., 2017), substrate availability (Bjorneras et al., 2019; Palmer et al., 2013; Xu et al., 2017), and nutrient dynamics (Islam, 2012) (Fig. 2), which subsequently influence methanotrophic activity and ultimately affect CH₄ oxidation.

First, the addition of SO_4^{2-} alters soil physicochemical properties (Fig. 2, path a), i.e., particularly by reducing soil pH (Fig. 2 ①). Soil acidification increases due to enhanced base cation leaching associated with SO_4^{2-} addition (Hu et al., 2013), leading to a decrease in the pH of forest soils

(Fasth et al., 1991; Tie et al., 2020). The addition of H₂SO₄ has been shown to promote aerobic CH₄ oxidation by altering the activity or community structure of methanotrophs (Bradford et al., 2001b; Sitaula et al., 1995). However, in experiments involving H2SO4 addition, it remains unclear whether the observed enhancement in aerobic CH₄ oxidation is primarily due to the decreased pH (Fig. 2, path e) or the increase in SO₄²⁻ concentration (Fig. 2, path d). Generally, CH₄ consumption is greater under higher-pH conditions in forest soils (Brumme and Borken, 1999; Silver et al., 1999); therefore, the reduction in soil pH may lead to a decrease in aerobic CH₄ oxidation. However, in acidic soils, a decrease in pH has been shown to increase aerobic CH₄ oxidation (Sitaula et al., 1995). Consequently, when evaluating the impact of SO₄²⁻ addition on aerobic CH₄ oxidation, it is essential to consider the initial soil pH (Fig. 2, path e), as methanotrophs exhibit different pH preferences in acidic and alkaline environments (Shukla et al., 2013).

Second, SO_4^{2-} addition can alter the soil microbial substrate (Fig. 2, path b), particularly by decreasing the soil di-O-alkyl C content (Fig. 2 2) (Xu et al., 2017). In a subtropical forest, SO_4^{2-} addition has been shown to increase the activity of Gram-negative bacteria in soil by reducing the litter di-O-alkyl carbon (di-O-alkyl C) (Fig. 2(2) and path g) (Xu et al., 2017). Di-O-alkyl C is a component of soil organic carbon (SOC). SOC degradation is accelerated when the percentage of di-O-alkyl C is high (Huang et al., 2021); conversely, when the content of di-O-alkyl C is low, SOC degradation slows down, leading to a greater availability of substrates for microorganisms, including methanotrophs. Methanotrophs, which are Gram-negative bacteria (Schimel and Gulledge, 1998), may exhibit increased activity in response to SO_4^{2-} addition. This enhancement of methanotroph activity (Fig. 2, path h) can ultimately promote aerobic CH₄ oxidation (Fig. 2, path o).

Third, SO_4^{2-} can alter the soil nutrition content (Fig. 2, path c), specifically increasing the soil Cu availability (Fig. 2 ③) (Islam, 2012), the phosphorus (P) content (Fig. 2 ④) by enhancing acid phosphatase activity (Lv et al.,

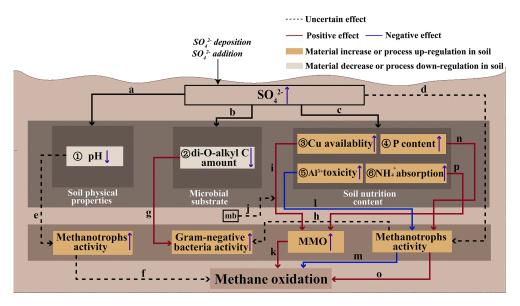


Figure 2. Conceptual diagram of the potential microscopic mechanisms by which sulfate influences aerobic methane oxidation in upland soil: ① SO_4^{2-} decreases soil pH (Fasth et al., 1991; Tie et al., 2020); ② SO_4^{2-} decreases the soil di-O-alkyl C amount (Xu et al., 2017); ③ SO_4^{2-} increases soil Cu availability (Islam, 2012); ④ SO_4^{2-} increases the soil P content by increasing soil acid phosphatase activity (Lv et al., 2014; Veraart et al., 2015); ⑤ SO_4^{2-} increases soil Al³⁺ toxicity (Hu et al., 2013; Sogn and Abrahamsen, 1998); ⑥ SO_4^{2-} increases NH_4^+ absorption (Bradford et al., 2001b; Gulledge and Schimel, 1998; King and Schnell, 1998); (a) changes in soil physical properties due to increased soil SO_4^{2-} content; (b) changes in soil microbial substrate due to increased soil SO_4^{2-} content; (c) SO_4^{2-} may promote CH_4 oxidation; (d) SO_4^{2-} affects the activity or community size of methanotrophs in soils (Bradford et al., 2001b; Sitaula et al., 1995); (e) decreased pH may inhibit or stimulate soil CH_4 oxidation (Sitaula et al., 1995); (f) methanotroph activity affects CH_4 oxidation; (g) decreased di-O-alkyl C amount increases soil Gram-negative bacteria activity (Xu et al., 2017); (h) the increased activity of Gram-negative bacteria may stem from the enhanced activity of methanotrophs; (i) elevated Cu availability stimulates soil aerobic CH_4 oxidation (Ho et al., 2013); (j) mb (methanobactin) is expected to accelerate Cu uptake (Knapp et al., 2007); (k) enhanced MMO activity facilitates aerobic CH_4 oxidation. (l) elevated Al³⁺ toxicity inhibits soil methanotroph activity (Nanba and King, 2000; Shukla et al., 2013); (m) decreased methanotroph activity stimulates soil CH_4 oxidation (Bradford et al., 2001b; Sitaula et al., 1995); and (p) the increased adsorption of NH_4^+ enhances the availability of MMO to soil methanotrophs.

2014; Veraart et al., 2015), the Al³⁺ (aluminum ion) toxicity (Fig. 2 5) (Hu et al., 2013; Sogn and Abrahamsen, 1998), and the NH₄⁺ absorption (Bradford et al., 2001b; Gulledge and Schimel, 1998; King and Schnell, 1998) (Fig. 26). Cu is a crucial component in aerobic CH₄ oxidation processes, with its critical role stemming from its high abundance in catalytically active pMMO complexes – where it directly participates in CH₄ oxidation and facilitates electron transfer from endogenous reductants to molecular oxygen (Balasubramanian and Rosenzweig, 2007; Semrau et al., 2010). This process drives the conversion of CH₄ to methanol (Dassama et al., 2016). It was anticipated that methanobactin secreted by methanotrophs during aerobic CH₄ oxidation would facilitate Cu uptake (Knapp et al., 2007); however, the specific mechanism by which methanobactin affects Cu uptake remains unclear (Fig. 2, path j). For methanotrophs capable of expressing both sMMO and pMMO, the expression of these enzymes is regulated by the availability of Cu, a phenomenon known as the classic "copper switch" (Stanley et al., 1983).

Under Cu-deficient conditions, these methanotrophs express sMMO. However, as the ratio of Cu to biomass increases, the expression of sMMO significantly decreases, while the expression of pMMO increases (Semrau et al., 2018). Notably, nearly all methanotrophs possess pMMO (Koo and Rosenzweig, 2021); therefore, increased Cu availability can enhance the expression of pMMO. Research indicates that Cu can serve as a promoter of aerobic CH₄ oxidation (Ho et al., 2013). Therefore, SO₄²⁻ addition may promote aerobic CH₄ oxidation by increasing the availability of soil Cu, thereby enhancing the expression of pMMO (Fig. 2, path i and k).

A positive correlation has been found between P and aerobic CH₄ oxidation in soils (Veraart et al., 2015; Zhang et al., 2020). P can potentially enhance the activity of soil methanotrophs (Fig. 2, path n) (Zhang et al., 2011), with an increase in soil P content achieved through the hydrolysis of organic compounds, including nucleic acids, phospholipids, and phosphate esters, by acid and alkaline phosphatases (Veraart et al., 2015). The addition of SO_4^{2-} accelerated acid

phosphatase activity, thereby increasing the soil P content (Lv et al., 2014). Therefore, we hypothesize that SO_4^{2-} may indirectly enhance aerobic CH₄ oxidation through the augmentation of soil P content, subsequently promoting the activity of methanotrophs in the soil (Fig. 2, path n and o). It is well established that Al³⁺ inhibits aerobic CH₄ oxidation (Tamai et al., 2007; Tamai et al., 2003). Additionally, soil acidification resulting from SO_4^{2-} addition has been shown to intensify the toxicity of Al^{3+} in forest soils (Fig. 2 \odot) (Hu et al., 2013; Sogn and Abrahamsen, 1998). The increase in Al³⁺ can inhibit the activity of methanotrophs (Nanba and King, 2000; Shukla et al., 2013) (Fig. 2, path 1), thereby inhibiting aerobic CH₄ oxidation (Fig. 2, path m). Therefore, SO_4^{2-} addition may directly affect methanotrophs by enhancing the toxicity of Al^{3+} in the soil, thereby inhibiting aerobic CH₄ oxidation (Fig. 2, path o). When NH₄Cl and (NH₄)₂SO₄ were added to the soil at the same molar concentration of NH₄⁺, the inhibitory effect of (NH₄)₂SO₄ on aerobic CH₄ oxidation was weaker than that of NH₄Cl (Adamsen and King, 1993; Bradford et al., 2001a; King and Schnell, 1998). NH_{Δ}^{+} has been found to inhibit aerobic CH₄ oxidation (Bronson and Mosier, 1994; Dunfield and Knowles, 1995), and the key mechanism is the competition between CH₄ and NH₄⁺ for the same MMO enzyme (Gulledge et al., 2004). Due to the similar molecular structures of CH₄ and NH₄⁺, MMO can oxidize both CH₄ (to CH₃OH) and NH₄⁺ (to NO₂⁻). The inhibitory effect of NH₄Cl is greater than that of (NH₄)₂SO₄, as SO_4^{2-} may enhance the adsorption of NH_4^+ onto cation exchange sites in the soil (Bradford et al., 2001b; Gulledge and Schimel, 1998; King and Schnell, 1998) (Fig. 2 6). This reduced availability of NH₄⁺ limits its ability to compete with methanotrophs for MMO enzymes, thereby increasing the availability of MMO (Fig. 2, path p), promoting aerobic CH₄ oxidation (Fig. 2, path k), and further intensifying the inhibitory effect of NH₄Cl compared to (NH₄)₂SO₄. In conclusion, SO_4^{2-} served as a facilitator of aerobic CH₄ oxidation, mitigating the inhibitory effects of NH_4^+ on this process.

5 Conclusions

This review synthesizes the double-scale mechanisms by which SO_4^{2-} influences aerobic CH_4 oxidation. Macroscopically, SO_4^{2-} enhances aerobic CH_4 oxidation rates by 0 %–42 %. Mechanistic studies demonstrate that this regulation occurs through SO_4^{2-} -driven alteration of environmental factors (e.g., pH, Cu/P availability, Al^{3+} toxicity, and NH_4^+ absorption), which subsequently modulate methanotroph physiology and MMO activity. Based on synthesized evidence, we hypothesize a net stimulatory effect of SO_4^{2-} on aerobic CH_4 oxidation. Validating this hypothesis requires deeper mechanistic insights; therefore, future research should prioritize quantifying aerobic CH_4 oxidation responses to SO_4^{2-} exposure while elucidating underlying microbial mecha-

nisms. This integrated approach is projected to advance CH_4 mitigation strategies amid rising global SO_4^{2-} deposition.

Data availability. All raw data can be provided by the corresponding authors upon request.

Author contributions. RS finished writing the manuscript; KL, NW, FY, YZ, YS, YZ, LY, and LH gave constructive comments and revised the structure and content of the article; XX and LZ reviewed and edited the manuscript.

Competing interests. The contact author has declared that none of the authors has any competing interests.

Disclaimer. Publisher's note: Copernicus Publications remains neutral with regard to jurisdictional claims made in the text, published maps, institutional affiliations, or any other geographical representation in this paper. While Copernicus Publications makes every effort to include appropriate place names, the final responsibility lies with the authors.

Acknowledgements. The authors would like to express their sincere gratitude to the anonymous reviewers for their valuable comments and suggestions, which provided critical guidance for the revision and improvement of the manuscript.

Financial support. This study was supported by the National Natural Science Foundation of China (grant nos. 32471777 and 32271681), the Joint Funds of China's National Natural Science Foundation (grant no. U2006215); the Academic Team Leadership Program (grant no. 2024XSYL01), Minzu University of China; the National Science Foundation (grant no. 2145130) and the SPRUCE and NGEE Arctic projects, supported by the Office of Biological and Environmental Research, Office of Science, US Department of Energy; the Major Program of the National Natural Science Foundation of China (grant no. 42494823); the National Key Research and Development Program of China (grant no. 2024YFF0808703); and the Young Scientists Innovation Funds of State Key Laboratory of Black Soils Conservation and Utilization (grant no. 2023HTDGZQN-03).

Review statement. This paper was edited by Frank Hagedorn and reviewed by two anonymous referees.

References

Adamsen, A. P. S. and King, G. M.: Methane consumption in temperate and subarctic forest soils rates, vertical zonation, and responses to water and nitrogen, Appl. Environ. Microbiol., 59, 485–490, https://doi.org/10.1128/aem.59.2.485-490.1993, 1993.

- Balasubramanian, R. and Rosenzweig, A. C.: Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase, Accounts Chem. Res., 40, 573–580, https://doi.org/10.1021/ar700004s, 2007.
- Bechtold, E. K., Ellenbogen, J. B., Villa, J. A., Ferreira, D. K. d. M., Oliverio, A. M., Kostka, J. E., Rich, V. I., Varner, R. K., Bansal, S., Ward, E. J., Bohrer, G., Borton, M. A., Wrighton, K. C., and Wilkins, M. J.: Metabolic interactions underpinning high methane fluxes across terrestrial freshwater wetlands, Nat. Commun., 16, https://doi.org/10.1038/s41467-025-56133-0, 2025.
- Benstead, J. and King, G. M.: The effect of soil acidification on atmospheric methane uptake by a Maine forest soil, FEMS Microbiol. Ecol., 34, 207–212, https://doi.org/10.1111/j.1574-6941.2001.tb00771.x, 2001.
- Bjorneras, C., Skerlep, M., Floudas, D., Persson, P., and Kritzberg, E. S.: High sulfate concentration enhances iron mobilization from organic soil to water, Biogeochemistry, 144, 245–259, https://doi.org/10.1007/s10533-019-00581-6, 2019.
- Bodelier, P. L. E.: Interactions between nitrogenous fertilizers and methane cycling in wetland and upland soils, Curr. Opin. Environ. Sustain., 3, 379–388, https://doi.org/10.1016/j.cosust.2011.06.002, 2011.
- Boetius, A., Ravenschlag, K., Schubert, C., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B., Witte, U., and Pfannkuche, O.: A marine microbial consortium apparently mediating anaerobic oxidation of methane, Nature, 407, 623–626, https://doi.org/10.1038/35036572, 2000.
- Bradford, M. A., Ineson, P., Wookey, P. A., and Lappin-Scott, H. M.: The effects of acid nitrogen and acid sulphur deposition on CH₄ oxidation in a forest soil: a laboratory study, Soil Biol. Biochem., 33, 1695–1702, https://doi.org/10.1016/s0038-0717(01)00091-8, 2001a.
- Bradford, M. A., Wookey, P. A., Ineson, P., and Lappin-Scott, H. M.: Controlling factors and effects of chronic nitrogen and sulphur deposition on methane oxidation in a temperate forest soil, Soil Biol. Biochem., 33, 93–102, https://doi.org/10.1016/S0038-0717(00)00118-8, 2001b.
- Bronson, K. F. and Mosier, A. R.: Suppression of methane oxidation in aerobic soil by nitrogen fertilizers, nitrification inhibitors, and urease inhibitors, Biol. Fert. Soils, 17, 263–268, https://doi.org/10.1007/bf00383979, 1994.
- Brumme, R. and Borken, W.: Site variation in methane oxidation as affected by atmospheric deposition and type of temperate forest ecosystem, Global Biogeochem. Cy., 13, 493–501, https://doi.org/10.1029/1998gb900017, 1999.
- Chen, X., Zhang, J. E., and Wei, H.: Physiological responses of earthworm under acid rain stress, Int. J. Env. Res. Public Health., 17, 7246, https://doi.org/10.3390/ijerph17197246, 2020.
- Chistoserdova, L., Vorholt, J. A., and Lidstrom, M. E.: A genomic view of methane oxidation by aerobic bacteria and anaerobic archaea, Genome Biol., 6, 1–6, https://doi.org/10.1186/gb-2005-6-2-208, 2005.
- Chowdhury, T. R. and Dick, R. P.: Ecology of aerobic methanotrophs in controlling methane fluxes from wetlands, Appl. Soil Ecol., 65, 8–22, https://doi.org/10.1016/j.apsoil.2012.12.014, 2013.
- Dassama, L. M., Kenney, G. E., Ro, S. Y., Zielazinski, E. L., and Rosenzweig, A. C.: Methanobactin transport

- machinery, P. Natl. Acad. Sci. USA, 113, 13027–13032, https://doi.org/10.1073/pnas.1603578113, 2016.
- Deng, Y., Che, R., Wang, F., Conrad, R., Dumont, M., Yun, J., Wu, Y., Hu, A., Fang, J., Xu, Z., Cui, X., and Wang, Y.: Upland Soil Cluster Gamma dominates methanotrophic communities in upland grassland soils, Sci. Total Environ., 670, 826–836, https://doi.org/10.1016/j.scitotenv.2019.03.299, 2019.
- DiSpirito, A. A., Semrau, J. D., Murrell, J. C., Gallagher, W. H., Dennison, C., and Vuilleumier, S.: Methanobactin and the link between copper and bacterial methane oxidation, Microbiol. Mol. Biol. R., 80, 387–409, https://doi.org/10.1128/mmbr.00058-15, 2016.
- Dunfield, P. and Knowles, R.: Kinetics of inhibition of methane oxidation by nitrate, nitrite, and ammonium in a humisol, Appl. Environ. Microbiol., 61, 3129–3135, https://doi.org/10.1128/aem.61.8.3129-3135.1995, 1995.
- Fan, J. L., Xu, Y. H., Chen, Z. M., Xiao, J., Liu, D. Y., Luo, J. F., Bolan, N., and Ding, W. X.: Sulfur deposition suppressed nitrogen-induced soil N₂O emission from a subtropical forest-land in southeastern China, Agr. Forest Meteorol., 233, 163–170, https://doi.org/10.1016/j.agrformet.2016.11.017, 2017.
- Fan, L. C., Schneider, D., Dippold, M. A., Poehlein, A., Wu, W. C., Gui, H., Ge, T. D., Wu, J. S., Thiel, V., Kuzyakov, Y., and Dorodnikov, M.: Active metabolic pathways of anaerobic methane oxidation in paddy soils, Soil Biol. Biochem., 156, 108215, https://doi.org/10.1016/j.soilbio.2021.108215, 2021.
- Fasth, W. J., David, M. B., and Vance, G. F.: Sulfate retention and cation leaching of forest soils in response to acid additions, Can. J. Forest Res., 21, 32–41, https://doi.org/10.1139/x91-005, 1991.
- Fenibo, E. O., Selvarajan, R., Wang, H. Q., Wang, Y., and Abia, A. L. K.: Untapped talents: insight into the ecological significance of methanotrophs and its prospects, Sci. Total Environ., 903, 166145, https://doi.org/10.1016/j.scitotenv.2023.166145, 2023.
- Gauci, V., Matthews, E., Dise, N., Walter, B., Koch, D., Granberg, G., and Vile, M.: Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries, P. Natl. Acad. Sci. USA, 101, 12583–12587, https://doi.org/10.1073/pnas.0404412101, 2004.
- Granberg, G., Sund, I., Svensson, B. H., and Nilsson, M.: Effect of temperature, and nitrogen and sulfur deposition, on methane emission from a boreal mire, Ecology, 82, 1982–1998, 2001.
- Gulledge, J. and Schimel, J.: Low-concentration kinetics of atmospheric CH₄ oxidation in soil and mechanism of NH₄⁺ inhibition, Appl. Environ. Microbiol., 64, 4291–4298, 1998.
- Gulledge, J., Hrywna, Y., Cavanaugh, C., and Steudler, P. A.: Effects of long-term nitrogen fertilization on the uptake kinetics of atmospheric methane in temperate forest soils, FEMS Microbiol. Ecol., 49, 389–400, https://doi.org/10.1016/j.femsec.2004.04.013, 2004.
- Guo, J. H., Feng, H. L., Peng, C. H., Chen, H., Xu, X., Ma, X. H., Li, L., Kneeshaw, D., Ruan, H. H., Yang, H. Q., and Wang, W. F.: Global climate change increases terrestrial soil CH₄ emissions, Global Biogeochem. Cy., 37, e2021GB007255, https://doi.org/10.1029/2021gb007255, 2023.
- Hakemian, A. S. and Rosenzweig, A. C.: The biochemistry of methane oxidation, Annu. Rev. Biochem., 76, 223–241, https://doi.org/10.1146/annurev.biochem.76.061505.175355, 2007.

- Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol. Rev., 60, 439–471, https://doi.org/10.1128/mmbr.60.2.439-471.1996, 1996.
- Ho, A., Lüke, C., Reim, A., and Frenzel, P.: Selective stimulation in a natural community of methane oxidizing bacteria: effects of copper on *pmoA* transcription and activity, Soil Biol. Biochem., 65, 211–216, https://doi.org/10.1016/j.soilbio.2013.05.027, 2013.
- Ho, A., Lee, H. J., Reumer, M., Meima-Franke, M., Raaijmakers, C., Zweers, H., de Boer, W., Van der Putten, W. H., and Bodelier, P. L. E.: Unexpected role of canonical aerobic methanotrophs in upland agricultural soils, Soil Biol. Biochem., 131, 1–8, https://doi.org/10.1016/j.soilbio.2018.12.020, 2019.
- Hu, M. J., Wilson, B. J., Sun, Z. G., Huang, J. F., and Tong, C.: Effects of nitrogen and sulphate addition on methane oxidation in the marsh soil of a typical subtropical estuary (Min River) in China, Chem. Ecol., 34, 610–623, https://doi.org/10.1080/02757540.2018.1464153, 2018.
- Hu, Y. L., Jung, K., Zeng, D. H., and Chang, S. X.: Nitrogenand sulfur-deposition-altered soil microbial community functions and enzyme activities in a boreal mixedwood forest in western Canada, Can. J. Forest Res., 43, 777–784, https://doi.org/10.1139/cjfr-2013-0049, 2013.
- Huang, J., Zhou, K. J., Zhang, W., Liu, J. X., Ding, X., Cai, X. A., and Mo, J. M.: Sulfur deposition still contributes to forest soil acidification in the Pearl River Delta, South China, despite the control of sulfur dioxide emission since 2001, Environ. Sci. Pollut. Res., 26, 12928–12939, https://doi.org/10.1007/s11356-019-04831-w, 2019.
- Huang, R. L., Crowther, T. W., Sui, Y. Y., Sun, B., and Liang, Y. T.: High stability and metabolic capacity of bacterial community promote the rapid reduction of easily decomposing carbon in soil, Commun. Biol., 4, 1376, https://doi.org/10.1038/s42003-021-02907-3, 2021.
- IPCC: Climate change 2013: the physical science basis, in: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
- Islam, M.: The effect of different rates and forms of sulfur on seed yield and micronutrient uptake by chickpea, Plant Soil Environ., 58, 399–404, https://doi.org/10.17221/145/2012-pse, 2012.
- King, G. M. and Schnell, S.: Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils, Appl. Environ. Microbiol., 64, 253–257, 1998.
- Klessa, D. A., Frame, J., Golightly, R. D., and Harkess, R. D.: The effect of fertilizer sulfur on grass production for silage, Grass Forage Sci., 44, 277–281, https://doi.org/10.1111/j.1365-2494.1989.tb02165.x, 1989.
- Knapp, C. W., Fowle, D. A., Kulczycki, E., Roberts, J. A., and Graham, D. W.: Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources, P. Natl. Acad. Sci. USA, 104, 12040–12045, https://doi.org/10.1073/pnas.0702879104, 2007.

- Koo, C. W. and Rosenzweig, A. C.: Biochemistry of aerobic biological methane oxidation, Chem. Soc. Rev., 50, 3424–3436, https://doi.org/10.1039/d0cs01291b, 2021.
- La, W., Han, X., Liu, C. Q., Ding, H., Liu, M., Sun, F., Li, S., and Lang, Y.: Sulfate concentrations affect sulfate reduction pathways and methane consumption in coastal wetlands, Water Res., 217, 118441, https://doi.org/10.1016/j.watres.2022.118441, 2022.
- Le Mer, J. and Roger, P.: Production, oxidation, emission and consumption of methane by soil: a review, Eur. J. Soil Biol., 37, 25–50, https://doi.org/10.1016/S1164-5563(01)01067-6, 2001.
- Li, C., Liu, X., Meng, M. J., Zhai, L., Zhang, B., Jia, Z. H., Gu, Z. Y., Liu, Q. Q., Zhang, Y. L., and Zhang, J. C.: The use of Biolog Eco microplates to compare the effects of sulfuric and nitric acid rain on the metabolic functions of soil microbial communities in a subtropical plantation within the Yangtze River Delta region, Catena, 198, 105039, https://doi.org/10.1016/j.catena.2020.105039, 2021.
- Li, C. H., Wang, B., Fang, Z., Yu, H. L., and Huang, J. Y.: Plant species diversity is driven by soil base cations under acid deposition in desert coal-mining region in northwestern China, Ecol. Indic., 145, 109682, https://doi.org/10.1016/j.ecolind.2022.109682, 2022.
- Li, Y., Liu, Y. W., Pan, H., Hernández, M., Guan, X. M., Wang, W., Zhang, Q. C., Luo, Y., Di, H. J., and Xu, J. M.: Impact of grazing on shaping abundance and composition of active methanotrophs and methane oxidation activity in a grassland soil, Biol. Fert. Soil., 56, 799–810, https://doi.org/10.1007/s00374-020-01461-0, 2020.
- Lv, Y., Wang, C. Y., Jia, Y. Y., Wang, W. W., Ma, X., Du, J. J., Pu, G. Z., and Tian, X. J.: Effects of sulfuric, nitric, and mixed acid rain on litter decomposition, soil microbial biomass, and enzyme activities in subtropical forests of China, Appl. Soil Ecol., 79, 1–9, https://doi.org/10.1016/j.apsoil.2013.12.002, 2014.
- Mancinelli, R.: The regulation of methane oxidation in soil, Annu. Rev. Microbiol., 49, 581–605, 1995.
- Mishra, V. K., Shukla, R., and Shukla, P. N.: Inhibition of Soil Methane Oxidation by Fertilizer Application: an Intriguing but Persistent Paradigm, Environ. Pollut. Protect., 3, 57–69, https://doi.org/10.22606/epp.2018.32001, 2018.
- Murguia-Flores, F., Arndt, S., Ganesan, A. L., Murray-Tortarolo, G., and Hornibrook, E. R. C.: Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil, Geosci. Model Dev., 11, 2009–2032, https://doi.org/10.5194/gmd-11-2009-2018, 2018.
- Nanba, K. and King, G.: Response of atmospheric methane consumption by maine forest soils to exogenous aluminum salts, Appl. Environ. Microbiol., 66, 3674–3679, https://doi.org/10.1128/AEM.66.9.3674-3679.2000, 2000.
- Op den Camp, H. J., Islam, T., Stott, M. B., Harhangi, H. R., Hynes, A., Schouten, S., Jetten, M. S., Birkeland, N. K., Pol, A., and Dunfield, P. F.: Environmental, genomic and taxonomic perspectives on methanotrophic *Verrucomicrobia*, Environ. Microbiol. Rep., 1, 293–306, https://doi.org/10.1111/j.1758-2229.2009.00022.x, 2009.
- Palmer, S. M., Clark, J. M., Chapman, P. J., van der Heijden, G. M. F., and Bottrell, S. H.: Effects of acid sulphate on DOC release in mineral soils: the influence of SO₄² retention and Al release,

- Eur. J. Soil Sci., 64, 537–544, https://doi.org/10.1111/ejss.12048, 2013
- Place, S. E.: Examining the role of ruminants in sustainable food systems, Grass Forage Sci., 79, 135–143, https://doi.org/10.1111/gfs.12673, 2024.
- Praeg, N., Wagner, A. O., and Illmer, P.: Plant species, temperature, and bedrock affect net methane flux out of grassland and forest soils, Plant Soil, 410, 193–206, https://doi.org/10.1007/s11104-016-2993-z, 2016.
- Qi, S. Q., Li, X. X., Luo, J., Han, R. F., Chen, Q. Q., Shen, D. S., and Shentu, J.: Soil heterogeneity influence on the distribution of heavy metals in soil during acid rain infiltration: experimental and numerical modeling, J. Environ. Manage., 322, 116144, https://doi.org/10.1016/j.jenvman.2022.116144, 2022.
- Saunois, M., Stavert, A. R., Poulter, B., Bousquet, P., Canadell, J. G., Jackson, R. B., Raymond, P. A., Dlugokencky, E. J., Houweling, S., Patra, P. K., Ciais, P., Arora, V. K., Bastviken, D., Bergamaschi, P., Blake, D. R., Brailsford, G., Bruhwiler, L., Carlson, K. M., Carrol, M., Castaldi, S., Chandra, N., Crevoisier, C., Crill, P. M., Covey, K., Curry, C. L., Etiope, G., Frankenberg, C., Gedney, N., Hegglin, M. I., Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A., Janssens-Maenhout, G., Jensen, K. M., Joos, F., Kleinen, T., Krummel, P. B., Langenfelds, R. L., Laruelle, G. G., Liu, L., Machida, T., Maksyutov, S., McDonald, K. C., McNorton, J., Miller, P. A., Melton, J. R., Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce, S., O'Doherty, S., Parker, R. J., Peng, C., Peng, S., Peters, G. P., Prigent, C., Prinn, R., Ramonet, M., Regnier, P., Riley, W. J., Rosentreter, J. A., Segers, A., Simpson, I. J., Shi, H., Smith, S. J., Steele, L. P., Thornton, B. F., Tian, H., Tohjima, Y., Tubiello, F. N., Tsuruta, A., Viovy, N., Voulgarakis, A., Weber, T. S., van Weele, M., van der Werf, G. R., Weiss, R. F., Worthy, D., Wunch, D., Yin, Y., Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and Zhuang, Q.: The Global Methane Budget 2000-2017, Earth Syst. Sci. Data, 12, 1561-1623, https://doi.org/10.5194/essd-12-1561-2020, 2020.
- Schimel, J.: Playing scales in the methane cycle: from microbial ecology to the globe, P. Natl. Acad. Sci. USA, 101, 12400–12401, https://doi.org/10.1073/pnas.0405075101, 2004.
- Schimel, J. and Gulledge, J.: Microbial community structure and global trace gases, Glob. Change Biol., 4, 745–758, https://doi.org/10.1046/j.1365-2486.1998.00195.x, 1998.
- Semrau, J. D., DiSpirito, A. A., and Yoon, S.: Methanotrophs and copper, FEMS Microbiol. Rev., 34, 496–531, https://doi.org/10.1111/j.1574-6976.2010.00212.x, 2010.
- Semrau, J. D., DiSpirito, A. A., Gu, W., and Yoon, S.: Metals and Methanotrophy, Appl. Environ. Microbiol., 84, https://doi.org/10.1128/aem.02289-17, 2018.
- Shukla, P. N., Pandey, K. D., and Mishra, V. K.: Environmental determinants of soil methane oxidation and methanotrophs, Crit. Rev. Env. Sci. Tec., 43, 1945–2011, https://doi.org/10.1080/10643389.2012.672053, 2013.
- Silver, W. L., Lugo, A. E., and Keller, M.: Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils, Biogeochemistry, 44, 301–328, https://doi.org/10.1007/bf00996995, 1999.
- Singh, B. K., Bardgett, R. D., Smith, P., and Reay, D. S.: Microorganisms and climate change: terrestrial feedbacks

- and mitigation options, Nat. Rev. Microbiol., 8, 779–790, https://doi.org/10.1038/nrmicro2439, 2010.
- Sitaula, B. K., Bakken, L. R., and Abrahamsen, G.: CH₄ uptake by temperate forest soil: effect of N input and soil acidification, Soil Biol. Biochem., 27, 870–880, https://doi.org/10.1016/0038-0717(95)00017-9, 1995.
- Sogn, T. and Abrahamsen, G.: Effects of N and S deposition on leaching from an acid forest soil and growth of Scots pine (Pinus sylvestris L.) after 5 years of treatment, Forest Ecol. Manage., 103, 177–190, https://doi.org/10.1016/S0378-1127(97)00188-6, 1998.
- Song, H., Peng, C., Zhu, Q., Chen, Z., Blanchet, J.-P., Liu, Q., Li, T., Li, P., and Liu, Z.: Quantification and uncertainty of global upland soil methane sinks: Processes, controls, model limitations, and improvements, Earth-Sci. Rev., 252, https://doi.org/10.1016/j.earscirev.2024.104758, 2024.
- Stanley, S. H., Prior, S. D., Leak, D. J., and Dalton, H.: Copper stress underlies the fundamental change in intracellular location of methane mono-oxygenase in methane-oxidizing organisms – studies in batch and continuous cultures, Biotechnol. Lett., 5, 487–492, https://doi.org/10.1007/bf00132233, 1983.
- Tamai, N., Takenaka, C., Ishizuka, S., Water-soluble Al inhibits methane oxidation at atmospheric concentration levels in Japanese forest soil, Soil Biol. Biochem., 39, 1730–1736, https://doi.org/10.1016/j.soilbio.2007.01.029, 2007.
- Tamai, N., Takenaka, C., Ishizuka, S., and Tezuka, T.: Methane flux and regulatory variables in soils of three equal-aged Japanese cypress (Chamaecyparis obtusa) forests in central Japan, Soil Biol. Biochem., 35, 633–641, https://doi.org/10.1016/s0038-0717(03)00010-5, 2003.
- Tie, L. H., Fu, R., Penuelas, J., Sardans, J., Zhang, S. B., Zhou, S. X., Hu, J. X., and Huang, C. D.: The additions of nitrogen and sulfur synergistically decrease the release of carbon and nitrogen from litter in a subtropical forest, Forests, 11, 1280, https://doi.org/10.3390/f11121280, 2020.
- van Spanning, R. J. M., Guan, Q., Melkonian, C., Gallant, J., Polerecky, L., Flot, J. F., Brandt, B. W., Braster, M., Iturbe Espinoza, P., Aerts, J. W., Meima-Franke, M. M., Piersma, S. R., Bunduc, C. M., Ummels, R., Pain, A., Fleming, E. J., van der Wel, N. N., Gherman, V. D., Sarbu, S. M., Bodelier, P. L. E., and Bitter, W.: Methanotrophy by a Mycobacterium species that dominates a cave microbial ecosystem, Nat. Microbiol., 7, 2089–2100, https://doi.org/10.1038/s41564-022-01252-3, 2022.
- Veraart, A. J., Steenbergh, A. K., Ho, A., Kim, S. Y., and Bodelier, P. L. E.: Beyond nitrogen: the importance of phosphorus for CH4 oxidation in soils and sediments, Geoderma, 259–260, 337–346, https://doi.org/10.1016/j.geoderma.2015.03.025, 2015.
- Walsh, C., O'Regan, B., and Moles, R.: Incorporating methane into ecological footprint analysis: A case study of Ireland, Ecol. Econ., 68, 1952–1962, https://doi.org/10.1016/j.ecolecon.2008.07.008, 2009.
- Wang, Q., Kwak, J.-H., Choi, W.-J., and Chang, S. X.: Decomposition of trembling aspen leaf litter under long-term nitrogen and sulfur deposition: effects of litter chemistry and forest floor microbial properties, Forest Ecol. Manage., 412, 53–61, https://doi.org/10.1016/j.foreco.2018.01.042, 2018.
- Wang, Z. P. and Ineson, P.: Methane oxidation in a temperate coniferous forest soil: effects of inorganic N, Soil Biol. Biochem.,

- 35, 427–433, https://doi.org/10.1016/s0038-0717(02)00294-8, 2003.
- Wright, R. F. and Henriksen, A.: Chemistry of small Norwegian lakes, with special reference to acid precipitation, Limnol. Oceanogr., 23, 487–498, https://doi.org/10.4319/lo.1978.23.3.0487, 1978.
- Xu, Y. H., Fan, J. L., Ding, W. X., Gunina, A., Chen, Z. M., Bol, R., Luo, J. F., and Bolan, N.: Characterization of organic carbon in decomposing litter exposed to nitrogen and sulfur additions: links to microbial community composition and activity, Geoderma, 286, 116–124, https://doi.org/10.1016/j.geoderma.2016.10.032, 2017.
- Zhang, L. H., Yuan, F. H., Bai, J. H., Duan, H. T., Gu, X. Y., Hou, L. Y., Huang, Y., Yang, M. G., He, J. S., Zhang, Z. H., Yu, L. J., Song, C. C., Lipson, D. A., Zona, D., Oechel, W., Janssens, I. A., and Xu, X. F.: Phosphorus alleviation of nitrogen-suppressed methane sink in global grasslands, Ecol. Lett., 23, 821–830, https://doi.org/10.1111/ele.13480, 2020.

Zhang, T., Zhu, W., Mo, J., Liu, L., and Dong, S.: Increased phosphorus availability mitigates the inhibition of nitrogen deposition on CH₄ uptake in an old-growth tropical forest, southern China, Biogeosciences, 8, 2805–2813, https://doi.org/10.5194/bg-8-2805-2011, 2011.