Biogeosciences, 22, 5665-5681, 2025
https://doi.org/10.5194/bg-22-5665-2025

© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.

Geographic patterns of upward shifts in treeline vegetation across

western North America, 1984-2017

Joanna L. Corimanya', Daniel Jiménez-Garcia>3, Xingong Li*, and A. Townsend Peterson

1

lBiodiversity Institute, University of Kansas, Lawrence, Kansas, USA
2Laboratorio de Biodiversidad, Centro de Agroecologia y Ambiente, Instituto de Ciencias,

Benemérita Universidad Autonoma de Puebla, Puebla, Mexico

3Laboratorio Nacional CONAHCYT de Biologia del Cambio Climético, Mexico
“Department of Geography, University of Kansas, Lawrence, Kansas, USA

Correspondence: Joanna L. Corimanya (gresham.joanna @ gmail.com)

Received: 14 March 2025 — Discussion started: 20 March 2025

Revised: 3 July 2025 — Accepted: 14 July 2025 — Published: 20 October 2025

Abstract. Previous research has shown that (1) treelines are
shifting upward in elevation on high mountain peaks world-
wide, and (2) the rate of the upward shift appears to have
increased markedly in recent decades, at least in a few cases
that have been studied in detail. Because treeline elevational
shift is a process manifested over broad scales of space and
time, a particular challenge has been that of obtaining a broad
enough view of patterns of treeline shift to permit inferences
about geographic and environmental patterns. What is more,
intensive studies of treelines have been concentrated in north
temperate regions such that little information is available
about treeline shift patterns at lower latitudes. We attempted
to address this challenge by analyzing long time series of
vegetation indices derived from Landsat imagery obtained
and prepared via Google Earth Engine from the 1980s to the
present. We sampled vegetation indices at points spaced ev-
ery 100m along 100km transects radiating out in eight di-
rections from 115 high peaks across western North America
(Canada to Central America), which means that we are sam-
pling approximately every second or third pixel in the cor-
responding Landsat images. Considerable data preparation
was necessary, including ending transects < 2 km into closed
forest, identifying current treelines via reference to Google
Earth imagery, and consideration only of up to < 1 km above
the treeline. Patterns that emerged were — as is well known
— that treelines are generally higher at lower latitudes but —
previously unknown — that the magnitude of treeline shifts
is nonrandomly distributed with respect to latitude, longi-
tude, and their interaction. This analysis, via a broad-scale

view of treeline shifts over almost 40 years and a geographic
span of more than 40° of latitude, demonstrates that climate
change effects and consequent treeline shifts are most dra-
matic in tropical regions where few or no detailed treeline
studies have been or are being conducted.

1 Introduction

The upper elevational limits of forests in mountain systems
represent a fascinating and dramatic manifestation of dis-
tributional limitation at the species and community levels.
Treeline phenomena have seen extensive analysis and dis-
cussion in the ecological literature: they are an important
manifestation of the geographic ecology of ecosystems and
likely reflect important climate-related controls (Kullman,
1998). Numerous studies have been developed that aim to
understand factors driving the location and possible shifts in
treelines, with the general conclusion that treelines are de-
termined by complex suites of factors (Cudlin et al., 2017;
Korner, 1998; Holtmeier and Broll, 2005; Irl et al., 2016;
Grafius et al., 2012; Kienle et al., 2023). Whereas some re-
searchers have concluded that treeline position can be dis-
tilled down to simple rules regarding seasonal mean ground
temperatures (Korner and Paulsen, 2004), others have argued
that treeline drivers are considerably more multidimensional
and complex (Paulsen and Korner, 2014; Zhao et al., 2015).
In this study, we adopt Korner’s (2012) definition of eleva-
tional treeline, i.e., the uppermost elevation on a mountain
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slope at which upright woody plants (trees > 2m tall) can
maintain self-sustaining populations. Above that limit, in-
sufficient warmth (a growing season that is too short or too
cold) prohibits the regular recruitment and survival of true
tree forms, even if isolated, krummbholz-like individuals oc-
cur sporadically.

Clearly, considerable complexity is involved in any at-
tempt to characterize treeline phenomena. However, den-
droecological approaches offer the useful possibility of ob-
taining establishment ages on an individual-tree basis across
broad stands of trees at or near treelines (Elliott, 2011).
When treelines change, a key challenge is that of considering
treeline shifts (i.e., elevational advance upward with warm-
ing climate) vs. densification (i.e., sparse forest or scattered
trees near the treeline filling in with more trees, regardless
of whether the treeline changes or not) (Shi et al., 2022).
Finally, a treeline is a highly scale-dependent phenomenon
such that all of its qualities vary in importance and effect at
different spatial extents and resolutions (Holtmeier and Broll,
2017).

From early in discussions about the possibility that global
climates would warm with increasing greenhouse gas con-
centrations (LaMarche et al., 1984; Grace et al., 2002), the
expectation has been that treelines would advance up moun-
tain slopes as climatic controls relax at extreme elevations.
Empirical evidence has been mixed, however, with some
studies documenting what appears to be very rapid treeline
advance (Peterson et al., 2022) and others finding no evi-
dence of overall tendency to change (Beloiu et al., 2022).
One broad analysis found that treeline advance was faster in
subarctic regions than in temperate regions (Lu et al., 2021),
and another found that treelines experiencing stronger winter
warming and with diffuse treeline forms were more likely to
advance (He et al., 2023).

Nonetheless, most of these previous broad-scale analyses
of patterns of treeline advance in the face of warming cli-
mates have been based on datasets with strong inherent bi-
ases and significant gaps. That is, in largest part, treeline
studies have been conducted in the north temperate zone: ex-
amples of such biased analyses are many (Shi et al., 2022;
Zhao et al., 2015; Korner, 1998; Lu et al., 2021). A few
analyses have achieved a somewhat better balance of rep-
resentation of treelines in the tropics and in the Southern
Hemisphere (He et al., 2023; Hansson et al., 2023; Kienle
et al., 2023). The concern, of course, is that such information
gaps and biases in what information is available may blind
researchers and their analyses to very real and important pat-
terns in the global occurrence of the phenomenon of treeline
advance.

Here, we address these important knowledge gaps about
treeline dynamics in the face of warming climates globally
over the past several decades. We assess the null hypothesis
that the magnitude of alpine treeline shifts is not related to
a series of geographic features, such as latitude, longitude,
and distance to coast. Specifically, to be able to assess tree-
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line shifts on a continent-wide basis, we use a long time se-
ries of remote sensing data to seek patterns in the magnitude
of alpine treeline shifts across 115 high peaks in western
North America, from Central America to southern Canada.
We use vegetation index trends along transects radiating out
from each peak in eight cardinal and sub-cardinal directions;
the vegetation index approach has the advantage of “see-
ing” vegetative mass generally, in effect integrating over both
treeline advance and densification of sparse, near-treeline
forests (Feuillet et al., 2020). Of course, these broad-scale
analyses are not a substitute for more detailed, field-based
analyses, nor should vegetation-index-based assessments re-
place more fine-grained inspections of the actual geometry
of treelines. The result is a novel dataset from which we have
derived several intriguing insights about geographic patterns
in the magnitude of treeline elevational shifts.

2 Methods
2.1 Mountain peak characterization

Our aim was to characterize temporal changes in vegetation
mass on a set of mountains that covered western North Amer-
ica. To that end, we chose to follow a comprehensive sum-
mary of high mountains worldwide (Maizlish, 2007), which
is based on an effort to identify all mountains worldwide
with at least a 1500 m prominence; the authors of that com-
pendium (called the Ultras Project) researched all summits
on Earth that meet this criterion, finding 1524 such peaks.
From that worldwide dataset, we extracted the 354 moun-
tain peaks located in North America (Panama to Canada).
We used the coordinates of each peak in the peak dataset
as a center point and plotted eight transects in each of the
cardinal and sub-cardinal directions extending out from that
center point; points were plotted and distances measured in
meters using the WGS84 Special Mercator for Web Ap-
plications (EPSG:3857) projection to ensure consistent dis-
tances among sampling stations. Transects were each ini-
tially 100 km long, with sampling stations every 100 m, so
each transect included 1000 sampling stations.

We excluded from analysis all mountains that were
forested to the peak or that showed signs of anthropogenic
modification at or around the peak upon visual inspection
of the region in Google Earth. We also excluded peaks for
which treelines were not clearly associated with the upper
slopes of the peak but rather were lower, extending just a
bit up the valley walls and thus likely representing latitu-
dinal treelines as opposed to altitudinal treelines; such low
treelines were particularly common in central and northern
Canada and Alaska such that all of the far northern peaks
were excluded. Given that, in eastern North America, only
one peak (Mt. Washington in New Hampshire) met our cri-
teria, to avoid including a genuine spatial outlier in our anal-
yses, we omitted that peak from analysis, thus focusing our
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analyses on the high peaks of western North America. At the
end of this process, from 354 peaks in the initial database, we
had 119 peaks remaining as a basis for our analyses (Fig. 1).

In © Google Earth Engine, we overlaid the transect
sampling points on imagery from Landsat for the period
1984-2017 and associated the values of the normalized dif-
ference vegetation index (NDVI) with each sampling point
in the transect dataset. For this analysis, we focused on early
(1984-1988) and late (2013-2017) time periods within the
time span of the Landsat dataset to create a before-and-after
contrast. We used NDVI data from the annual Land-
sat collection (Landsat/LT5_L1T_ANNUAIL_NDVTI,
Landsat/LE7_L1T_ANNUAL_NDVI, and
Landsat/LE8_L1T_ANNUAL_NDVI) in © Google
Earth Engine (GEE). We wused the pre-processed
LANDSAT_LT5_L1T_ANNUAL_NDVI collection, which
provides annual NDVI composites derived from Level-1
terrain-corrected Landsat 5 reflectance images (including
cloud masking and quality assurance; unfortunately, this
collection is now deprecated in GEE). To ensure full trans-
parency, our scripts for reproducing the NDVI computation
from the original Landsat reflectance data are publicly
available on GitHub (see below). Detailed information about
the original dataset can be found in the Earth Engine Data
Catalogue (USGS, 2017); calibration procedures and vali-
dation methods for this collection are described by Chander
et al. (2009). We generated a composite for each year from
the available Landsat images and extracted NDVI values
for each year via a mean reducer. We then inspected each
transect of each peak individually by overlaying the point
data on the Google Satellite fine-resolution data product,
using the GIS capabilities of QGIS (version 3.2). Similarly,
we extracted elevation at each sampling station within each
transect using the NASA Shuttle Radar Topography Mission
30 m resolution Digital Elevation Model in © Google Earth
Engine (Farr et al., 2007).

A key step was that of choosing the sampling station along
each transect that corresponded to the treeline, as follows.
Descending from each peak along each transect, via refer-
ence to the © Google Satellite data layer in QGIS, we identi-
fied the sampling station that most closely approximated the
upper elevational limit of forest. That is, we ignored single,
isolated trees but rather identified the elevation at which for-
est became continuous, albeit in some cases still sparse. For
this sampling station, we set the field TreesBegin in the data
table characterizing peaks to 1.

2.2 Data refinement

Values of NDVI and elevation were assigned to each sam-
pling station via GIS overlay (“extract value to point”) oper-
ations. All subsequent data preparation was done in R (ver-
sion 4.4.1) and QGIS (version 3.38.2). We cleaned the data
that had been exported from Google Earth Engine by remov-
ing any missing values. We averaged the yearly NDVI values
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over the two time periods (1984-1988 and 2013-2017) to
provide “before and after” comparisons that would be more
immune to measurement error or other sources of year-to-
year variation.

Our next goal was to calculate regression equations for
individual mountains, slopes, and time periods, characteriz-
ing the negative-sloped relationship between elevation and
NDVI. To this end, we transformed the data into a hierar-
chical nested list of lists; the dataset included 120 mountain
peaks, each of which had one to eight transects. Each tran-
sect had the two averaged year groups of NDVI data, for a to-
tal of 1848 distinct combinations of peak, transect, and year
group; some transects were removed entirely based on the
criteria listed above (Sect. 2.1). In our analyses, we included
only NDVI measurements from stations that were in rela-
tively close proximity to the treeline. That is, we included at
least the last 10 stations. If twice the number of stations af-
ter the manually identified treeline to the transect edge (i.e.,
the furthest measured station downslope) plus one (to explic-
itly account for the station representing the treeline itself)
exceeded 10, we used this greater number of stations instead.
When the latter calculation was greater than 10, this resulted
in an equal number of points above and below the treeline.
This approach ensured that we captured sufficient data from
both sides of the treeline and minimized the effect of terrain
variability from sources such as small bare peaks, increasing
the probability of detecting true relationships.

We modeled the NDVI-elevation relationships with NDVI
as the response variable and elevation as the predictor vari-
able to find the best type of regression equation and, ulti-
mately, the best approximation to the true relationship be-
tween these variables (Fig. 2; see below). These models al-
lowed us to associate NDVI and treeline elevation for calcu-
lation of our final response variables: change in elevation and
change in NDVI. We calculated three types of regressions
on each data frame (linear, reciprocal linear, and reciprocal
quadratic) to assess which model shape best describes the
NDVI-elevation relationship. The three models were com-
pared via the Akaike information criterion (AIC; Akaike,
2011) for each peak, transect, and time period. As all 1848
of these NDVI elevation relationships were best described by
a linear model, we retained only linear regression equations
for subsequent analyses. We excluded transects for which
the regression equation was not statistically significant or for
which the regression slope was positive; we used o« = 0.05
as the threshold for statistical significance in all regressions.
These latter criteria removed 688 of 1848 transects, leaving
1160 transects for analysis. Finally, since our goal was to cre-
ate temporal comparisons between the two time periods, we
also removed any transects for which regressions for either
time period did not meet the criteria outlined above; this fil-
ter removed another 202 transects from analysis. The final
dataset thus included 958 transects on 115 peaks.

The goal in these analyses was to calculate the change in
treeline elevation for use as a response variable in continent-
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Figure 1. The 119 high mountain peaks analyzed in this study. Triangles represent individual mountain peaks used in our analysis. The “X”
symbol is Mt. Washington, which was removed from the dataset prior to analysis. This map was constructed using QGIS ver 3.38.2. The

ESRI physical basemap was used to create the map.

wide models. Alpine treeline position represents a biocli-
matic threshold: trees cannot form self-sustaining closed-
canopy stands above it because low temperatures and a short
growing season limit carbon assimilation and wood forma-
tion (Ko6rner, 2012; Holtmeier, 2009). In turn, shifts in tree-
line elevation over time serve as a direct indicator of how lo-
cal thermal regimes and associated growing-season lengths
are changing on the landscape (Ko6rner, 2012; Holtmeier
and Broll, 2005). By modeling the change in treeline el-
evation, we capture how climate warming and other envi-
ronmental drivers are pushing the arboreal “limit” upslope.
To this end, we inserted the elevations at our manually se-
lected treeline position into the 2013-2017 NDVI linear re-
gression equations to calculate the NDVI values associated
with the present-day treeline. We then inserted that calcu-
lated NDVI value into the 1984—1988 regression equations
to obtain an estimate of treeline elevation (i.e., we sought
the elevation with the same 1984—-1988 NDVI value as the
present-day treeline on that slope of that mountain; Fig. 3).
Finally, we subtracted 1984—1988 treeline elevation values
from the 2013-2017 treeline elevation values to estimate the
change in treeline elevation over the broad temporal span of
this study.

Biogeosciences, 22, 5665-5681, 2025

We also calculated a second, simpler response variable,
which was simply the change in NDVI at the 2013-2017 tree-
line. In high-elevation contexts, an upward trend in NDVI
within elevation bands at the present-day treeline signals
increased tree recruitment, shrub encroachment, or earlier
green-up (Harsch et al., 2009; Rupp and Starfield, 2001).
Thus, by computing the change in NDVI over our study pe-
riod, we capture a functional or “greenness” dimension of
treeline dynamics that complements the structural dimension
(change in elevation). In other words, even before trees form
closed canopies, small shrubs or seedlings may begin to pho-
tosynthesize more vigorously, which will manifest as an in-
crease in NDVI. To this end, we inserted the manually lo-
cated 2017 treeline elevation into the two regression equa-
tions for that mountain and slope. This resulted in NDVI val-
ues at a particular elevation (i.e., recent treeline) for 2013—
2017 and 1984-1988 for each peak and direction. We sub-
tracted the 1984—1988 values from the 2013-2017 values to
obtain the change in treeline NDVI. A more positive value for
the change in NDVI indicates an increase in NDVI between
2013-2017 and 1984-1988.

Finally, we assembled a suite of independent variables that
may be of interest as possible drivers of variation in rates of
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J. L. Corimanya et al.: Geographic patterns of upward shifts in treeline vegetation 5669

Color indicates direction of sign of slope
@ Negative slope
Positive slope

x Mt.Washington; removed from analysis

0 1,000 2,000 km
I 00

D,

Size indicates magnitude of slope absolute value
<+ Slope =0.002

. ‘ Slope =0.021

Figure 2. Map showing continent-wide patterns of regression slopes relating NDVI to elevation for each peak, averaged across the one
to eight transects available for each peak, for the 2013-2017 time period. Yellow circles represent a positive slope (excluded from final
analysis), and blue circles represent a negative slope. The size of the circles coincides with the magnitude of the absolute value of each slope
calculation. The “X” symbol is Mt. Washington, which was removed from the dataset prior to analysis. This map was constructed using
QGIS ver 3.38.2. The ESRI physical basemap was used to create the map.

treeline shift. We included (1) the number of stations in the
transect below the treeline (as a potential confounding fac-
tor), (2) the cardinal direction of the transect, (3) latitude,
and (4) longitude, all of which were derived from the orig-
inal data about each transect and peak in the analysis. We
also calculated (5) the distance to the closest coastline (in
meters) based on the coastline corresponding to official mar-
itime boundaries (Flanders Marine Institute, 2012). We built
araster file that contained the distance to the closest coastline
for each pixel (1.53 km resolution). We added these distance
values to the data table for the transect sampling points using
the point sampling tool in QGIS.

2.2.1 Model selection

To understand which of the above independent variables
likely drive(s) variation in the rate of treeline elevational
shifts, we used an iterative stepwise model selection pro-
cess. We selected the model that best describes western North
American geographic treeline elevational shift patterns us-
ing AIC. We explored two statistical models to ensure that
the final model would best explain geographic variation in
treeline dynamics. First, we built 18 linear mixed models,
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each of which contained a random effect of “peak ID” to ac-
count for variability in local landscape characteristics. Sec-
ond, we constructed 18 spatial mixed models using the R
package “spaMM” in which we specified Matern random ef-
fects to account for spatial autocorrelation by capturing spa-
tially structured variation in treeline elevation that is not ex-
plained by the fixed effects (Rousset and Ferdy, 2014). All
of these models were fitted using restricted maximum likeli-
hood.

For the first two model sets (total 32 models), the response
variable was the change in treeline elevation between the two
time periods. We produced a second array of models, parallel
to the first, in which we used change in treeline NDVI as the
response variable. All other model characteristics were the
same as for the models based on change in treeline elevation.

For all of the models described above, the fixed effects
were different combinations of the independent variables:
distance to coast, number of stations after treeline, cardinal
direction of slope, latitude, and longitude, as well as the inter-
action between latitude and longitude. The models ranged in
complexity, but we constrained the analysis to always include
latitude and longitude. We compared all 32 models in an AIC
table, as the response variable was constant and all models

Biogeosciences, 22, 5665-5681, 2025
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Figure 3. Example of a high mountain (Cerro de la Malinche, Tlax-
cala, Mexico) and inferences deriving from it regarding the posi-
tion of the treeline through time. Top panel: view of the moun-
tain in Google Earth, with eight transects radiating out from the
peak in cardinal and sub-cardinal directions. White dots indicate
stations at which NDVI values were sampled; purple stars indi-
cate the position of the treeline identified visually. Bottom panel:
dark red points and lines show the NDVI-elevation relationship in
the 1980s; blue points and lines show the same relationship in the
2010s. In one example (northward transect), the elevation of the
treeline observed for 2013-2017 (3960 m) was used to identify a
treeline NDVI threshold (0.3135), which was in turn used to identify
a likely elevation (3448 m) of the same NDVI level for 1980s con-
ditions. The background of top the panel is from © Google Earth.

were fit by restricted maximum likelihood. We assessed sig-
nificance by checking whether or not the 95 % confidence
interval of each fixed effect overlapped zero (Browne, 1979).
We considered results for which confidence intervals did
not overlap zero to be significant. Our dataset construction
and analysis steps are summarized in a diagram for clarity
(Fig. 4).
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3 Results
3.1 Generalities about treelines

Treeline locations were nonrandom in a number of ways.
On average, across all mountain peaks in our analyses, the
treeline was located at 2433 m. However, treeline position
varied systematically, in that a significant relationship ex-
isted between treeline and latitude: tropical treelines aver-
aged 3177 m, whereas temperate-zone treelines were lower,
at 2244 m. As such, all subsequent analyses in this study
needed to be conditioned on the geographic complexity un-
derlying the phenomenon of a treeline.

3.2 Change in treeline elevation

Treelines have been changing, even over the relatively short,
30-40-year time span of this study. Indeed, treeline shifts
among the western North American peaks in this study had
a mean overall shift of 20.2m upslope. The distribution of
change values ranged from 165 m downslope to 127 m ups-
lope.

For the multivariate models relating change in treeline el-
evation to environmental drivers, we calculated the best-fit
models for the linear mixed models and spatial mixed mod-
els using AIC and the coefficient of determination (Rz). We
calculated the marginal and conditional R* values for linear
mixed models and a pseudo-R? value for the spatial mixed
models. The best linear mixed model included the number of
stations after the treeline, the direction of the transect moving
away from the peak, latitude, longitude, and the interaction
between latitude and longitude as fixed effects, with moun-
tain peak name as a random intercept (Table Al). From our
candidate set of spatial mixed models, the best fit included
only latitude as a fixed effect, with a Matern random effect
structure (Table A2). When comparing all models and the
two best-fitting models from the linear and spatial analyses,
the spatial mixed model was best overall (Tables A3 and 1).

The best spatial mixed model, which was also the best
model overall, showed that the change in treeline was not
significantly related to the only fixed effect, latitude (pseudo-
R? = 0.4512). This model was fit using a Gaussian random
effect with a Matern correlation structure. The smoothness
parameter (v) was estimated at 0.398, indicating a moder-
ate degree of spatial continuity in treeline elevation changes.
The range parameter (o) was 0.00466, suggesting that spa-
tial correlation between observations declines sharply over
very short distances. The variance of the spatial random ef-
fect (1) was estimated at 3 651 000, highlighting substantial
spatial variation in the data. The residual variance (¢) was
64 159, representing variability unexplained after accounting
for spatial effects (Table 2).

The less optimal best linear mixed model can be ex-
plored as well. It showed a significant relationship between
change in treeline and latitude, longitude, and the inter-
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Figure 4. (a) Diagrams the steps taken to (1) characterize mountains, (2) clean the data in preparation for analysis, and (3) select models. In
(b), the hierarchical structure of our dataset is conceptually illustrated.

Table 1. AIC table comparing the best linear mixed model and the best spatial mixed model from their respective comparisons, which had

change in treeline elevation as the response variable. There were two models in this comparison.

Model type  Terms AIC Delta AIC Weight
Spatial Latitude 6.89 x 10° 0.00 1.00
Linear No. of stations after treeline + direction + latitude x longitude  6.914 x 100 2.035x 10! 3.814x107

action between latitude and longitude (conditional R* =
0.6887, marginal R*> =0.2815). Change in treeline eleva-
tion was significantly higher at lower latitudes (8 = —100.6,
95% CI = [—155.1, —46.29], Table 3; Fig. 5a). The relation-
ship between change in treeline elevation and the interac-
tion between latitude and longitude was also significantly
negative (8 = —0.8418, 95% CI =[—1.345,—-0.3413], Ta-
ble 3): as longitude increases (eastward), the effects of lat-
itude on treeline shift become more negative, suggesting a
complex spatial relationship between these geographic vari-
ables and treeline dynamics. Longitude alone also had a sig-
nificant positive relationship with change in treeline elevation
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(B =36.21,95%CI =[13.00, 59.52], Table 3; Fig. 5b). This
result indicates that mountain treelines further east in North
America (farther from the Pacific Coast) have more drastic
temporal changes in their treeline elevations compared to the
more western mountain treelines in our study.

3.3 Change in treeline NDVI

As with the previous response variable, we fit a series of lin-
ear mixed models and spatial mixed models with a Matern
random effect structure for change in treeline NDVI as a re-
sponse variable and compared the resulting models via AIC,

Biogeosciences, 22, 5665-5681, 2025
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Table 2. Model summary of the top spatial mixed model. Fixed and random effect outputs are shown. The response variable for this model
was the change in treeline elevation. Significance would be denoted by bold text and was assessed by observing whether or not the confidence
interval overlapped zero, but this model found no significant relationships.

Term Estimate SE  Lower95%CI  Upper 95 % CI
Intercept 2562 1991 -5116 9901
Latitude -51.27  30.61 -126.8 10.34
Random intercept (variance)  3.651e+06
Random intercept (std. dev.) 1911
Residual (variance) 6.416e+04
Residual (std. dev.) 253.3

Table 3. Model summary of the top linear mixed model. Fixed and random effect outputs are shown. The response variable for this model
was change in treeline elevation. Significance is denoted by bold text and was assessed by observing whether or not the confidence interval

overlapped zero.

Term Estimate SE  Lower95%CI  Upper 95 % CI
Intercept 4177 1130 1991 6374
No. of stations after treeline 0.6273 1.397 —2.076 3.376
Direction (north) 18.72 52.51 —83.02 121.4
Direction (northeast) —4.987 51.42 —104.7 95.28
Direction (northwest) 63.72 49.17 —31.49 160
Direction (south) 74.53 48.35 —19.3 168.8
Direction (southeast) 32.52 50.39 —65.53 1304
Direction (southwest) 47.26 49.7 —49.43 143.9
Direction (west) 51.45 49.7 —45.04 148.2
Latitude —100.6 28.05 —-155.1 —46.29
Longitude 36.21 12.00 13.00 59.52
Latitude x longitude —0.8418 0.2587 —1.345 —0.3413
Random intercept (variance)  8.989 x 10*

Random intercept (std. dev.) 299.8

Residual (variance) 6.874 x 10*

Residual (std. dev.) 262.2

both individually and in totality. The top linear mixed model
(marginal R* =0.3300, conditional R* =0.7349) and the
top spatial mixed model had only latitude as predictor vari-
ables when compared only to models of their respective type
(Tables A4 and AS5). The best-fitting model when comparing
all linear and spatial mixed models and when comparing the
top models from the spatial mixed model and linear mixed
model AIC tables was the spatial mixed model with the fixed
effect of latitude (pseudo-R* = 0.6067; Tables A6 and 4).

The best-fit linear mixed model revealed that change in
treeline NDVI was significantly related only to latitude (8 =
—0.003303, 95% CI=[—-0.004121, —0.002484], Table 5,
Fig. 6). The negative slope of this relationship indicates that
change in NDVI is greater at lower latitudes, indicating more
treeline greenness in the tropics and subtropics in more re-
cent years.

Among the set of spatial mixed models, the top model con-
curred with the top linear mixed model. Latitude was again
significantly negatively related to change in treeline NDVI
(B =—0.003852, 95%CI =[—0.005047, —0.002705], Ta-
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ble 6, Fig. 6); no other variables had significant effects.
The negative slope underlines the linkage between lower
latitudes and more intense treeline movement. This model
was the best-performing overall out of all models tested that
had change in NDVI as the response variable. The smooth-
ness parameter (v) was estimated at 0.259, indicating mod-
erate spatial continuity in the data. The range parameter (p)
was 1.006, suggesting that spatial correlation between ob-
servations diminishes rapidly over very short distances. The
variance of the spatial random effect (A) was estimated at
0.00298, reflecting residual spatial variability in the data. The
residual variance (¢) was estimated at 0.00107, representing
the remaining variability not explained by the spatial random
effect (Table 6).
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Figure 5. Summary of univariate relationships between treeline elevational shifts and latitude and longitude. Panel (a) shows latitude on the
x axis, while (b) shows longitude on the x axis. Regression lines (a, b) are denoted in black. Note that the interaction term between these

two independent variables is also statistically significant.

Table 4. AIC table comparing the best linear mixed model and the best spatial mixed model from their respective comparisons, which had
change in treeline NDVI as the response variable. Two models were featured in this comparison.

Model type  Terms AIC  Delta AIC Weight
Spatial Latitude —1.532 x 103 0 9.995x 10!
Linear Latitude —1.517x10% 1.51x10' 5268x 1074

4 Discussion
4.1 Overview

This study represents a first broad-scope view of spatial pat-
terns of temporal shifts in treeline elevation across a major
world region. In that sense, it is novel, but our insights have
been limited by a number of data-related challenges: e.g., the
necessity of eliminating the northernmost set of high peaks
because treelines were not uniquely associated with individ-
ual peaks, as well as the removal of a number of peaks from
consideration owing to positive slopes in regression models
relating NDVI to elevation. These complications point out
the nascent nature of this endeavor and the need for quite a
bit more exploration and experimentation.

Our results underlined some previous results, such as tree-
lines occurring at higher elevations in the tropics and sub-
tropics and at lower elevations at higher latitudes (Korner,
1998). This broad pattern makes sense, of course, if one
thinks of the conditions present at the highest elevations —
they are at the extremes of what is survivable for upright
trees (Korner, 2021). If the treeline is set at least in part by
hard physiological limits, and given global climate patterns
and how they vary with latitude (Peterson et al., 2016), then

https://doi.org/10.5194/bg-22-5665-2025

high-latitude treelines would necessarily be lower in eleva-
tion.

More importantly and more novel, however, our results
show clear associations between the magnitude of tree-
line shift and latitude such that tropical treelines have
shifted upward faster than higher-latitude treelines in recent
decades (Jiménez-Garcia et al., 2021). Such an effect has
not been appreciated or reported previously, at least to our
knowledge, but may relate to the greater physiological flexi-
bility that may characterize tropical treelines: that is, high-
latitude treelines may be fixed in elevation by hard phys-
iological limits related to freeze tolerance (Korner, 2021).
This focus of treeline mobility in the tropical zone, unfortu-
nately, coincides with significant knowledge gaps, given that
the great majority of detailed studies of treelines and their dy-
namics have been conducted on peaks at higher latitudes (Shi
et al., 2022; Zhao et al., 2015; Korner, 1998; Lu et al., 2021).

Our results were suggestive of further effects, related to
longitude and perhaps distance to coastlines; proximity to
ocean has been underlined in past studies as important in de-
termining treeline elevations at least (Hansson et al., 2023).
That is, although we included a variable summarizing geo-
graphic distance to the coastline, it did not have any signifi-
cant effect in the best models. Rather, in some of the models

Biogeosciences, 22, 5665-5681, 2025
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Table 5. Model summary of the top linear mixed model. Fixed and random effect outputs are shown. The response variable for this model
was change in treeline NDVI. Significance is denoted by bold text and was assessed by observing whether or not the confidence interval

overlapped zero.

Term Estimate SE  Lower95%CI  Upper 95 % CI
Intercept 0.1226 0.01870 0.08596 0.1593
Latitude —0.003303 0.0004176 —0.004121 —0.002484
Random intercept (variance) 3.651
Random intercept (variance) 0.002359
Random intercept (std. dev.) 0.04857
Residual (variance) 0.001545
Residual (std. dev.) 0.03931
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Figure 6. Summary of the univariate relationship between NDVI at manually identified 2017 treeline elevations. The change in NDVI, on
the y axis, represents 2017 NDVI minus 1984 NDVI. Latitude, which was significant in the models with change in treeline NDVI as the
response variable, is shown on the x axis. The regression line from the linear model of change in treeline NDVI vs. latitude is denoted by the

black line.

that ranked among the best, effects of longitude were indeed
substantial. We suspect that this lack of a clear effect of dis-
tance to coastlines may be related to the relatively minor rep-
resentation of peaks close to coastlines in our dataset.

4.2 Limitations

The deepest concern regarding the analyses presented herein
is, of course, the relatively short time span covered by the
Landsat imagery, with our analyses spanning just a bit more
than three decades. This time span is, of course, what is avail-
able from remote sensing data streams, as Landsat is among
the deepest-time remote sensing data sources available any-
where. Even our relatively short time span of Landsat data,
however, does cross the use of multiple sensors to produce
the imagery, which may introduce noise into the results that
we present herein (Vogelmann et al., 2016). The only rem-
edy for this concern about time span is therefore to appeal
to other data sources, such as aerial or ground-based pho-
tos (Jiménez-Garcia et al., 2021; Peterson et al., 2022).

Biogeosciences, 22, 5665-5681, 2025

This study covered an impressive expanse in western
North America, from 9.4° N in Costa Rica north to 54.1°N
in southwestern Canada and from the shores of the Pacific
Ocean to the Front Range of the Rocky Mountains in Col-
orado. However, this geographic span includes relatively
fewer high mountain peaks in Mexico and Central America,
at least compared with the northern peaks in the study; a fur-
ther possible limitation of our work stems from the broad
latitudinal gaps in northern Mexico. Finally, our inability to
associate specific treelines with specific high peaks north of
southernmost Canada meant that the highest-latitude peaks
could not be included in the study. Some of these concerns
can be remedied by broadening the area of study and further
analysis, perhaps globally, but the latter concern will remain
complicated, as very high-latitude peaks tend to be mostly
above the treeline such that we do not see a way to create a
peak-based analysis of those regions.

Finally, a concern could be that of anthropogenic effects
that are not related to climate. That is, although we elimi-
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Table 6. Model summary of the top spatial mixed model. Fixed and random effect outputs are shown. The response variable for this model
was change in treeline NDVI. Significance is denoted by bold text and was assessed by observing whether or not the confidence interval

overlapped zero.

Term Estimate SE  Lower95%CI  Upper 95 % CI
Intercept 0.1395 0.02449 0.09113 0.1890
Latitude —0.003852  0.0005828 —0.005047 —0.002705
Random intercept (variance) 0.002983
Random intercept (std. dev.) 0.05462
Residual (variance) 0.001074
Residual (std. dev.) 0.03277

nated from consideration any peaks that had human activities
visible at the peak or near the treeline (e.g., agricultural ac-
tivities), we could not control for changing practices of fire
control, for example. In this sense, if fire control has been
implemented or has become more effective over the past few
decades, that — unrelated to climate — could elevate NDVI
owing to reduced fire-based removal of vegetation. We hope
that the broad variety of peaks included in this study will
avoid any confounding effects of this concern.

4.3 Conclusions and next steps

The results of this study point rather dramatically to the cru-
cial importance of a major knowledge gap regarding high-
elevation vegetation dynamics. That is, the bias of treeline
studies away from tropical regions and towards temperate-
zone and boreal-zone regions coincides — unfortunately —
with the most dramatic regions of treeline elevational shifts.
As we have pointed out in previous contributions (Jiménez-
Garcia et al., 2021), treelines in the tropics and their dynam-
ics remain little-documented and poorly characterized.

At the same time, the results of this study and others (Pe-
terson et al., 2022; Singh et al., 2012) indicate that remote
sensing data streams are both relevant and informative and
have as a result been incorporated into many treeline stud-
ies (Garbarino et al., 2023). Although the detail available
in on-the-ground studies cannot be achieved, significant in-
sight can indeed be gained from satellite-based observations
and data streams, particularly when multiple data streams are
integrated (Garbarino et al., 2023). As such, we are in the
process of extending this approach globally and using more
diverse remote sensing data streams, in the hope of garner-
ing additional useful insights into patterns of treeline change
worldwide and into processes that drive treeline change phe-
nomena.
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Appendix A: Supplementary tables

Table Al. AIC table comparing all linear mixed models which had change in treeline elevation as the response variable. In all, 18 models
were involved in this comparison.

Model terms AIC  Delta AIC Weight
No. of stations after treeline + direction + latitude x longitude 6.8 x 103 0.0 57
Direction + latitude x longitude 6.8 x 103 70 40
Latitude + longitude + no. of stations after treeline + direction 6.8 x 103 7.4 1.4 x 1072
Latitude + longitude + direction 6.8 x 103 82 9.7x1073
Distance to the coast (m) + direction + no. of stations after treeline + latitude x longitude 6.8 x 103 17 9.7 x 107
Distance to the coast (m) + direction + latitude x longitude 6.8 x 103 18 6.8x107?
Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude 6.8 x 103 19 4.8 x 107
Distance to the coast (m) + direction + latitude + longitude 6.8 x 103 19 3.4 %107
No. of stations after treeline + latitude x longitude 6.9 x 103 56 4.7 x10713
Latitude x longitude 6.9 x 103 56 3.5x10713
Latitude + longitude + no. of stations after treeline 6.9 x 103 64 92x10"1
Latitude + longitude 6.9 x 103 64 6.8x1071
Latitude 6.9 x 103 69 7.3x10716
Longitude 6.9 x 103 71 22x10716
Distance to the coast (m) + no. of stations after treeline + latitude x longitude 6.9 x 103 73 7.9x 1071
Distance to the coast (m) + latitude x longitude 6.9 x 103 74 59x%x 10~V
Distance to the coast (m) + no. of stations after treeline + latitude + longitude 6.9 x 103 74 38x 10717
Latitude + longitude + distance to the coast (m) 6.9 x 103 75 29x10717

Table A2. AIC table comparing all spatial mixed models which had change in treeline elevation as the response variable. In all, 18 models
were involved in this comparison.

Term AIC  Delta AIC Weight
Latitude 6.9 x 10° 0.0 35
Latitude x longitude 6.9 x 103 1.2 19
Longitude 6.9 x 103 1.5 16
No. of stations after treeline + latitude x longitude 6.9 x 103 30 7.6x 1072
Latitude + longitude 6.9 x 103 32 7.1x1072
Distance to the coast (m) + latitude x longitude 6.9 x 103 39 49x1072
Latitude + longitude + distance to the coast (m) 6.9 x 103 45 3.6x1072
Latitude + longitude + no. of stations after treeline 6.9 x 103 51 27x1072
Distance to the coast (m) + no. of stations after treeline + latitude x longitude 6.9 x 103 58 1.9x1072
Distance to the coast (m) + no. of stations after treeline + latitude + longitude 6.9 x 103 64 1.4x1072
Direction + latitude x longitude 6.9 x 103 10 1.8x1073
No.of stations after treeline + direction + latitude x longitude 6.9 x 103 12 74x1074
Latitude + longitude + direction 6.9 x 103 12 69x107*
Distance to the coast (m) + direction + latitude x longitude 6.9 x 103 13 4.6x10~%
Distance to the coast (m) + direction + latitude + longitude 6.9 x 103 14 34x107%
Latitude + longitude + no. of stations after treeline + direction 6.9 x 103 14 27x1074
Distance to the coast (m) + direction + no. of stations after treeline + latitude x longitude 6.9 x 103 15 1.9x10™%
Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude 6.9 x 103 16 1.4x107%
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Table A3. AIC table comparing all linear mixed models and spatial mixed models which had change in treeline elevation as the response
variable. In all, 36 models were involved in this comparison.

Model type  Terms AIC  Delta AIC Weight
Spatial Latitude 6.9 x 103 0.0 34
Spatial Direction + latitude x longitude 6.9 x 103 10 1.8x1073
Linear No. of stations after treeline + latitude x longitude 6.9 x 103 11 14x1073
Linear Distance to the coast (m) + latitude x longitude 6.9 x 103 11 13x1073
Spatial Latitude x longitude 6.9 x 103 1.2 19
Linear Latitude + longitude + distance to the coast (m) 6.9 x 10° 12 75%x107*
Spatial No. of stations after treeline + direction + latitude x longitude 6.9 x 103 12 73x1074
Spatial Latitude + longitude + direction 6.9 x 103 12 68x1074
Linear Distance to the coast (m) + no. of stations after treeline + latitude x longitude 6.9 x 103 13 50x107%
Spatial Distance to the coast (m) + direction + latitude x longitude 6.9 x 103 13 46x1074
Spatial Distance to the coast (m) + direction + latitude + longitude 6.9 x 103 14 34x1074
Linear Distance to the coast (m) + no. of stations after treeline + latitude + longitude 6.9 x 103 14 29x10~*
Spatial Latitude + longitude + no. of stations after treeline + direction 6.9 x 103 14 27x1074
Spatial Longitude 6.9 x 103 1.5 16
Spatial Distance to the coast (m) + direction + no. of stations after treeline + latitude x longitude 6.9 x 103 15 1.8x107%
Spatial Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude 6.9 x 103 16 14x1074
Linear Latitude 6.9 x 103 17 8.1x107
Linear Latitude + longitude 6.9 x 10° 18 3.8x1077
Linear Direction + latitude x longitude 6.9 x 103 19 32x1073
Linear Longitude 6.9 x 10° 19 20x107?
Linear Latitude + longitude + no. of stations after treeline 6.9 x 103 20 1.5x107°
Linear No. of stations after treeline + direction + latitude x longitude 6.9 x 103 20 13x107°
Linear Distance to the coast (m) + direction + latitude x longitude 6.9 x 103 21 1.2x107
Linear Distance to the coast (m) + direction + latitude + longitude 6.9 x 103 22 7.0x107°
Linear Distance to the coast (m) + direction + no. of stations after treeline + latitude x longitude 6.9 x 10° 22 48x107°
Linear Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude 6.9 x 103 23 28x107°
Linear Latitude + longitude + direction 6.9 x 10° 27 43x1077
Linear Latitude + longitude + no. of stations after treeline + direction 6.9 x 10 29 1.8x 1077
Spatial No. of stations after treeline + latitude x longitude 6.9 x 103 3.0 7.5x1072
Spatial Latitude + longitude 6.9 x 103 32 7.0x 1072
Spatial Distance to the coast (m) + latitude x longitude 6.9 x 103 39 49x1072
Spatial Latitude + longitude + distance to the coast (m) 6.9 x 103 45 36x1072
Spatial Latitude + longitude + no. of stations after treeline 6.9 x 103 51 27x1072
Spatial Distance to the coast (m) + no. of stations after treeline + latitude x longitude 6.9 x 10° 58 1.9x1072
Spatial Distance to the coast (m) + no. of stations after treeline + latitude + longitude 6.9 x 103 64 14x1072
Linear Latitude x longitude 6.9 x 103 92 3.5x1073
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Table A4. AIC table comparing all linear mixed models which had change in treeline NDVI as the response variable. In all, 18 models were

involved in this comparison.
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Terms AIC  Delta AIC Weight
Latitude -1.5x10° 0.0 74
Longitude —1.5x103 22 25
Latitude + longitude —15x%103 12 1.9 x 103
Latitude + longitude + no. of stations after treeline —15x% 103 29 3.8x1077
Latitude x longitude —1.5x103 32 99x1078
Latitude + longitude + distance to the coast (m) -1.5% 103 46 8.0x 10711
No. of stations after treeline + latitude x longitude —1.5x103 49 2.0x10~1
Distance to the coast (m) + no. of stations after treeline + latitude + longitude ~1.5% 103 63 1.6x10"14
Distance to the coast (m) + latitude x longitude —1.5x10° 64 9.4x 10715
Latitude + longitude + direction —1.5x103 74 7.0x 10717
Distance to the coast (m) + no. of stations after treeline + latitude x longitude —1.5x 10 81 1.9x10718
Latitude + longitude 4 no. of stations after treeline 4 direction —15x%103 91 15x10720
Direction + latitude x longitude —1.5x103 94 33x1072!
Distance to the coast (m) + direction + latitude + longitude —1.4x103 L1x102 25x10~%4
No. of stations after treeline + direction + latitude x longitude —1.4x103 1.1x102 7.1x107%
Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude = —1.4 x 103 13x102 53x10728
Distance to the coast (m) + direction + latitude x longitude —14x103 1.3x102 3.0x10728
Distance to the coast (m) + direction + no. of stations after treeline + latitude x longitude —1.4 x 103 14x 10> 63 x 10732

Table AS. AIC table comparing all spatial mixed models which had change in treeline NDVI as the response variable. In all, 18 models were

involved in this comparison.

Terms AIC  Delta AIC Weight
Latitude -1.5x 103 0.0 40
Latitude + longitude —1.5x10° 1.7 18
Latitude x longitude —15x% 103 3.6 6.6x1072
Latitude + longitude + no. of stations after treeline —1.5x 103 3.6 6.5x1072
Latitude + longitude + distance to the coast (m) -15x103 30 89x1072
Distance to the coast (m) + latitude x longitude —1.5x 103 48 3.7x1072
Longitude —1.5x 103 46 4.1x1072
No. of stations after treeline + latitude x longitude —1.5x10° 56 2.5x1072
Distance to the coast (m) + no. of stations after treeline + latitude + longitude —15x%x 103 50 33x1072
Latitude + longitude + direction —1.5x 103 62 1.8x1072
Distance to the coast (m) + no. of stations after treeline + latitude x longitude —1.5x 103 6.8 1.4x1072
Distance to the coast (m) + direction + latitude + longitude —1.5x 103 77 85x1073
Direction + latitude x longitude —1.5x10° 82 6.6x1073
Latitude + longitude + no. of stations after treeline + direction -1.5x 103 81 7.1x1073
Distance to the coast (m) + direction + latitude x longitude —1.5x 103 95 3.6x1073
Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude = —1.5 x 103 96 33x1073
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Table A6. AIC table comparing all linear mixed models and spatial mixed models which had a change in treeline NDVI as the response
variable. In all, 36 models were involved in this comparison.

Model type  Terms AIC Delta AIC Weight
Spatial Latitude —1.532x10%  0.000 x 100 4,033 x 107!
Spatial No. of stations after treeline + direction + latitude x longitude —1522x10%  1.010x 101  2.578 x 1073
Spatial Distance to the coast (m) + direction + no. of stations after treeline + latitude x longitude = —1.521 x 100 1.131x 10" 1.409 x 1073
Linear Latitude + longitude + distance to the coast (m) —1.517x10%  1.509 x 10! 2.130 x 10~*
Linear Latitude —1.517x10%  1.510x 10" 2.125x 1074
Linear Latitude + longitude —1517x10° 1540 x 10!  1.829x 1074
Linear Distance to the coast (m) + latitude x longitude —1.516x 103 1.614x 10" 1.263 x 107
Spatial Latitude + longitude —1.531x10°  1.666 x 100 1.753 x 10!
Linear Latitude x longitude —1516x 103 1.676x 10!  9.267 x 1073
Linear Distance to the coast (m) + no. of stations after treeline + latitude + longitude —1.515% 103 1.705x 10} 8.002 x 10~
Linear Latitude + longitude + no. of stations after treeline —1.515x 103 1.735x 10! 6.903 x 107
Linear Longitude —1.515x 103 1.763x 10! 5983 x 107
Linear Distance to the coast (m) + no. of stations after treeline + latitude x longitude —1514%x10° 1.809 x 10! 4.750 x 107
Linear No. of stations after treeline + latitude x longitude —1.514x10° 1.871x 10" 3.489x 107>
Linear Latitude + longitude + direction —1.514x 10 1.891x 10! 3.152x 1073
Linear Distance to the coast (m) + direction + latitude + longitude —1.514%x 103  1.891 x 10} 3.153 x 1075
Linear Distance to the coast (m) + direction + latitude x longitude —1.513x 103 1.990 x 101 1.927 x 1075
Linear Direction + latitude x longitude —1.512x 103 2.043x 10" 1.477 x 1073
Linear Latitude + longitude + no. of stations after treeline + direction —1.512x10° 2.072x 10" 1280 x 107>
Linear Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude =~ —1.512 x 103 2.074x 101 1.267x 107
Linear Distance to the coast (m) + direction + no. of stations after treeline + latitude x longitude ——1.511 x 103 2.172x 101 7.755 x 10~°
Linear No. of stations after treeline + direction + latitude x longitude —1.510x 103 2.224x 10! 5969 x 1076
Spatial Latitude + longitude + distance to the coast (m) —1.529% 103 3.020x10°  8.910 x 1072
Spatial Latitude x longitude —1.529%x10° 3.610x10° 6.634 x 1072
Spatial Latitude + longitude + no. of stations after treeline —1529%x 103  3.649x 100  6.503 x 102
Spatial Longitude —1.528x 103 4.585x 100  4.074 x 1072
Spatial Distance to the coast (m) + latitude x longitude —1.528x 103 4.793x10° 3.670 x 1072
Spatial Distance to the coast (m) + no. of stations after treeline + latitude + longitude —1.527x 103 5.006 x 10°  3.299 x 10~2
Spatial No. of stations after treeline + latitude x longitude —1.527x 103 5.600 x 100  2.453 x 1072
Spatial Latitude + longitude + direction —1.526 x 10> 6.212x 100  1.806 x 102
Spatial Distance to the coast (m) + no. of stations after treeline + latitude x longitude —1.526x 103 6.774x 10°  1.363 x 1072
Spatial Distance to the coast (m) + direction + latitude + longitude —1.525x 103 7.724x10° 8.480x 1073
Spatial Latitude + longitude + no. of stations after treeline + direction —1.524x 103 8.093x10° 7.049 x 1073
Spatial Direction + latitude x longitude —1.524x 103 8216x10° 6.630x 1073
Spatial Distance to the coast (m) + direction + latitude x longitude —1.523x 103 9.452x 107  3.573x 1073
Spatial Distance to the coast (m) + direction + no. of stations after treeline + latitude + longitude =~ —1.523 x 10> 9.608 x 100 3.305x 1073
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Code and data availability. All data and code are avail-
able on a public GitHub repository found at the following
URL: https://github.com/jocori/GeographicTreelinePatterns.git
(last access: 9 October 2025). The dataset Landsat 5 TM
Annual NDVI Composite [deprecated] is available at
https://developers.google.com/earth-engine/datasets/catalog/
LANDSAT_LT5_LIT_ANNUAL_NDVI (last access: 9 October
2025).
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