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Abstract. The relationship between net primary produc-
tivity (NPP) and forest age varies among forest species,
yet there were no available NPP–age relationships estab-
lished for various forest species in subtropical China for
use in forest carbon modeling. This study explored the
NPP–age relationships for seven forest species in subtrop-
ical China using field survey data from the Strategic Pri-
ority Project of Carbon Budget (SPPCB), National For-
est Inventory (NFI) Type I (NFI-I), and Type II (NFI-II)
data. Forest species included Pinus massoniana (P. masso-
niana), Cunninghamia lanceolata (C. lanceolata), Eucalyp-
tus robusta (Eucalyptus), Other Coniferous Forests (OCF),
Softwood Broadleaf (SWB), Hardwood Broadleaf exclud-
ing Eucalyptus (HWB), and Mixed Forests (MF). Based on
these three datasets, we were able to derive subtropical for-
est species-specific NPP–age relationships using the Semi-
Empirical Model (SEM). Implementation of these species-
specific relationships in the process-based Integrated Terres-
trial Ecosystem Carbon Cycle (InTEC) model markedly im-
proved above-ground biomass (AGB) simulations for sub-
tropical forests relative to simulations driven by the pre-
viously published China-wide NPP–age relationships. The
greatest improvements were observed for P. massoniana,
OCF, Eucalyptus, and SWB, where root-mean-square errors
(RMSE) declined by 19.1 %–53.3 %. These species-specific
NPP–age relationships therefore provide a robust, spatially
explicit basis for forest carbon modeling and management in
subtropical China.

1 Introduction

Forests, recognized as one of Earth’s largest carbon sinks,
play a crucial role in mitigating climate change and regulat-
ing the global carbon cycle (Friedlingstein et al., 2020; Hicke
et al., 2007; Yingchun et al., 2012; Eggleston et al., 2006;
Pan et al., 2011). Through the process of photosynthesis,
forests absorb atmospheric carbon dioxide and convert it into
organic carbon, thereby reducing greenhouse gas concentra-
tions in the atmosphere (Chapin et al., 2006; Shang et al.,
2023). Specifically, net primary productivity (NPP) serves as
a key indicator of forest’s carbon sequestration capacity, di-
rectly reflecting the biomass accumulation and carbon stor-
age ability of forest ecosystems (Zha et al., 2013; Zhao and
Zhou, 2005). NPP exhibits notable variations with forest age
progression (Ben et al., 2004; Wang et al., 2007, 2011). Typ-
ically, forest NPP follows a pattern of rapid growth during
the early stages, peaking in the middle ages, and gradual de-
cline at old ages (Yu et al., 2017; He et al., 2012). However,
the NPP variation pattern with age varies with forest species
and climate conditions (Yu et al., 2017; Wang et al., 2018),
highlighting the importance of understanding NPP–age rela-
tionships across various forest species and climate zones for
accurate forest carbon modeling (Yu et al., 2017; Wang et al.,
2018; Li et al., 2024b) and effective forest management and
ecological restoration strategies (Luyssaert et al., 2008; Li
et al., 2024a).
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China’s subtropical region, characterized by a warm and
humid climate, fertile soil, and rich biodiversity, is a vi-
tal component of global forest ecosystems (Zhou et al.,
2014). This region contributes approximately 67.13 % of
China’s terrestrial ecosystem carbon sequestration (Chen
et al., 2019). The subtropical region boasts a diversity of for-
est species, including evergreen broad-leaved forests, conif-
erous forests, and mixed forests, with species such as Pi-
nus massoniana (P. massoniana), Cunninghamia lanceolata
(C. lanceolata), and Eucalyptus robusta (Eucalyptus) ex-
hibiting unique ecological characteristics that influence the
forest NPP–age relationships (Huang et al., 2010). In par-
ticular, evergreen broad-leaved and coniferous forests in this
region play crucial roles in the forest carbon cycle. There-
fore, exploring the NPP–age relationships for diverse forest
species in subtropical China is essential for formulating re-
gional forest management strategies.

Currently, two sets of national-scale forest NPP–age
curves have been established for China (Li et al., 2024a;
Wang et al., 2018). However, these NPP–age curves are con-
structed based on broad forest cover types such as conif-
erous forests, broad-leaved forests, or mixed forests, with-
out considering species-specific differences within the same
forest type. This limits their application in simulating for-
est carbon sequestration at the stand-scale and species level.
Preliminary research on the NPP–age relationship in sub-
tropical China’s forests has been conducted only in Zhe-
jiang Province, distinguishing only between coniferous and
broad-leaved forest species (Zheng et al., 2019). Although
this study provides a preliminary understanding of the forest
carbon cycle in subtropical regions, it fails to account for the
diversity of forest species in subtropical areas, especially at
the species level, limiting its applicability to national-scale
subtropical forest carbon sequestration simulations.

Moreover, constructing species-specific NPP–age curves
faces inherent limitations due to insufficient field measure-
ments or survey sample data. For example, field survey sam-
ples from the Strategic Priority Project of Carbon Budget
(SPPCB) (Fang et al., 2018) and China’s National Forest In-
ventory (NFI) Type I (NFI-I) sample data (Lin et al., 2023)
may not ensure an even distribution across different forest
age classes. The lack of samples from old-age forest classes
hinders the accurate depiction of NPP changes with forest
age, leading to biases in carbon sequestration simulations for
these classes. The NFI Type II (NFI-II) stand data provides
comprehensive coverage of all stands, complementing the in-
sufficient representativeness of sample data, especially for
old-age forest samples (Lin et al., 2023). However, NFI-II
data typically represent the average conditions of the entire
stand or dominant species, which may introduce biases in
heterogeneous stands (Lin et al., 2023). Therefore, it is cru-
cial to consider the representativeness of samples and the av-
erage values of NFI-II stand data, comprehensively assessing
the impact of integrating NFI-II stand data on the construc-

tion of NPP–age curves to determine the optimal approach
for constructing final curves.

This study aims to explore forest NPP–age relationships
for different forest species in subtropical China, with three
objectives: (1) to comprehensively assess the impact of in-
tegrating NFI-II stand data on the construction of NPP–
age curves; (2) to explore the NPP–age relationships of di-
verse forest species in subtropical China; and (3) to eval-
uate whether the forest species-specific NPP–age relation-
ships can improve forest aboveground biomass modeling.
Here, “forest species” denotes a functional–typological clas-
sification that groups individual tree species into ecolog-
ically and management-relevant categories rather than to
biological species in the strict taxonomic sense. The for-
est species examined in this study include P. massoniana,
C. lanceolata, Eucalyptus, Other Coniferous Forests ex-
cept for P. massoniana and C. lanceolata (OCF), Softwood
Broadleaf (SWB), Hardwood Broadleaf excluding Eucalyp-
tus (HWB), and Mixed Forests (MF). Each species is defined
by dominant taxa or shared functional or silvicultural traits,
thereby enabling robust parameterisation of NPP–age rela-
tionships across heterogeneous subtropical forest stands. The
resulting species-specific NPP–age relationships will provide
scientific support for estimating forest carbon sequestration
and formulating forest management strategies in subtropical
China, contributing to enhanced understanding and manage-
ment of forest carbon dynamics in this region.

2 Study Area, Data and Methods

2.1 Study Area

Fujian Province was selected as the study area (Fig. 1a) be-
cause of its highest forest coverage in China and data avail-
ability (Shang et al., 2025). It is located on the southeast-
ern coast, ranging from 23°33′ to 28°20′ N in latitude and
from 115°50′ to 120°40′ E in longitude. The province is pre-
dominantly mountainous, with over 80 % of its terrain com-
prising hills and mountains, ranging in elevation from ap-
proximately 1500 m in the northwest to around 500 m in
the southeast. Fujian experiences a subtropical monsoon cli-
mate, characterized by mean annual temperatures ranging
from 17 to 21 °C and annual precipitation between 1400
and 2000 mm. Figure 1a shows the spatial distribution of
the merged forest species. Three key forest species were di-
rectly selected for analyzing forest NPP in relation to age:
P. massoniana (27.54 % of the total studied forest species),
C. lanceolata (23.35 %), and Eucalyptus (4.14 %). P. mas-
soniana and C. lanceolata were chosen for their extensive
distribution within Fujian Province (Lin et al., 2023). Euca-
lyptus, although representing a smaller proportion of the for-
est, was included due to its artificial continuity, rapid growth,
high yield, and economic value (Zhou and Wingfield, 2011).
The remaining species were merged into four groups: HWB
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Figure 1. The distribution of forest species in Fujian Province (a) and the distribution of NFI-I, NFI-II, and SPPCB field survey samples (b).
Different colours indicate different forest species, and the grey colour is for bamboo. P. massoniana: Pinus massoniana, C. lanceolata: Cun-
ninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf,
OCF: Other Coniferous Forests excluding P. massoniana and C. lanceolata, MF: Mixed Forests.

(26.45 %), SWB (2.01 %), OCF (2.44 %), and MF (14.07 %).
Bamboo species were not discussed in this study.

2.2 Data

Forest field data from China’s National Forest Inventory
(NFI), comprising Type I point data (NFI-I) and Type II poly-
gon data (NFI-II), along with SPPCB field survey samples
(Fang et al., 2018), were used for building the forest NPP–
age relationships. Figure 1b shows the spatial distribution of
the NFI-I, NFI-II, and SPPCB forest field samples, repre-
sented by different colors. The SPPCB field survey samples
have previously been effectively used for constructing ten
forest NPP–age relationships across China (Li et al., 2024a;
Shang et al., 2023) and we only selected the 128 samples
located in Fujian for the analysis. It records the sample lo-
cation, survey time (from 2009 to 2013), forest cover type,
age, forest aboveground and underground biomass (Li et al.,
2024a). The ground survey size for each SPPCB sample was
1000 (600 m2 for some plantations), closely approximating
a 30 m resolution (Lin et al., 2023). NFI-I samples were ob-
tained from China’s 8th (2009–2013) and 9th (2014–2018)
National Forest Inventories. Each NFI-I sample records var-
ious attributes, including survey time and location, domi-

nant forest species, forest height, diameter at breast height
(DBH), forest stock volume, average forest age, and so on.
The ground survey size for each NFI-I sample is typically
667 m2 (1 mu, a square of 25.82 m× 25.82 m), closely ap-
proximating a 30 m resolution. After screening for different
forest species, a total of 2746 samples were retained for each
period.

Given the limited availability of NFI-I and SPPCB sam-
ples, these data might be insufficient to effectively constrain
the NPP–age curve in older forest age ranges. Consequently,
we incorporated NFI-II polygons into our analysis. These
polygons were rasterized into 30 m spatial resolution pixels
using the nearest neighbor resampling method, and all pix-
els within a forest polygon shared the same attributes (Lin
et al., 2023). The NFI-II samples were then created based
on the dominance of forest species, requiring a proportion
of 100 % (with an adjustment to “higher than 80 %” for C.
equisetifolia and SWB due to their sample sizes) and the
availability of relevant attribute records necessary for estab-
lishing forest NPP–age relationships (Lin et al., 2023). To
ensure sample homogeneity and confirm that each sample is
positioned at the center of the forest polygon, all adjacent
11 pixel× 11 pixel were required to meet both criteria (Lin
et al., 2023). Finally, NFI-II samples with old ages combined
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Figure 2. Age distributions of the seven forest species based on the NFI-I, NFI-II, and SPPCB field survey samples in Fujian Province. P. mas-
soniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf
excluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, MF: Mixed
Forest.

with the NFI-I and SPPCB samples (Figs. 1b and 2) were
used to construct the forest NPP–age relationships. For each
forest species, 80 % of samples were randomly selected for
building the NPP–age relationships, and the remaining 20 %
were used to validate the modeled aboveground biomass by
the InTEC model with these relationships (see Sect. 2.3.2 for
details).

2.3 Methods

2.3.1 Building NPP–age relationships for different
forest species

The forest field NPP was calculated from the three types of
forest field samples, and it consisted of four components: to-
tal biomass increment, mortality, foliage turnovers, and fine
root turnovers in the soil (Chen et al., 2002; He et al., 2012;
Xia et al., 2019; Li et al., 2024a):

NPP= dBc+M +Lf+Lf (1)

where dBc is the annual increment of total living biomass (in-
cluding stems, branches, and coarse roots);M is mortality ig-
nored in this study due to a lack of observations at the ground

plots and its small proportion to NPP (Li et al., 2024a); Ll is
the turnover of leaves per year; and Lf is the turnover of fine
roots per year in the soil. All three NPP components vary
with stand age. Among them, the annual increment of total
living biomass is the dominant contributor, whereas foliage
and fine-root turnover are also indispensable parts of NPP (Li
et al., 2024a; He et al., 2012).

The annual increment of total living biomass was calcu-
lated from the annual biomass change (dB) and the ratio of
carbon content (Li et al., 2011; White et al., 2000; Wu et al.,
2016; Xia et al., 2019):

dBc = dB× c (2)

where dB is the annual biomass change and c is the species-
specific carbon content in biomass (see Table 1 for the con-
stant values). Biomass was not directly provided in the NFI-I
and NFI-II samples, but it could be calculated from the forest
volume (V ) using species-specific biomass regression equa-
tions. The coefficients for these regression equations are pre-
sented in Table 1 (Li et al., 2011; Wu et al., 2016). For the
SPPCB samples, which were not resurveyed over time, an-
nual biomass changes were estimated with the space-for-time
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Table 1. The coefficients of the species-specific biomass regression equations and carbon content (Li et al., 2011; Wu et al., 2016). B:
Biomass; V: Volume. P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith,
HWB: Hardwood Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and
C. lanceolata, MF: Mixed Forests.

Forest species Biomass regression equation (tha−1) Carbon content (%)

C. lanceolata B = 0.3999V + 22.5410 51.27
P. massoniana B = 0.52V 52.71
OCF B = 0.4631V + 24.2777 51.68
Eucalyptus B = 0.7893V + 6.9306 47.48
HWB B = 0.6255V + 91.0013 49.01
SWB B = 0.4754V + 30.6034 45.02
MF B = 0.8019V + 12.2799 48.93

Table 2. The input coefficients in the calculation of forest field NPP for different forest species. SLA is the specific leaf area; tl is the foliage
turnover ratio; Rfr,l is the ratio of NPP to fine roots and leaves. P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata,
Eucalyptus: Eucalyptus robusta smith, HWB: Other hardwood broadleaf excluding Eucalyptus, SWB: Softwood broadleaf, OCF: Other
coniferous mixed forests excluding P. massoniana and C. lanceolata, MF: Mixed forest.

Forest species SLA (m2 kgC−1) tl (year−1) Rfr,l (kgCkgC−1)

C. lanceolata 7.9 0.22 1.4
P. massoniana 6.7 0.26 1.4
OCF 8.2 0.26 1.4
Eucalyptus 26.3 0.86 1.2
HWB/SWB 32 0.86 1.2
MF 21.1 0.56 1.3

substitution method (Ma et al., 2017; Liu et al., 2024). To
reduce the influence of other factors and ensure that the ob-
served biomass change is primarily attributed to stand age,
pairs of samples used to calculate dB were restricted to the
same forest species, located within 5 km of each other, and
differing by no more than 3 years in stand age.

The turnovers of leaves and fine roots per year in the soil
could be calculated as follows (Chen et al., 2002; He et al.,
2012; Li et al., 2024a):

Ll =
LAI
SLA
× tl× c (3)

Lf = Rfr,l×Ll (4)

where LAI is the annual maximum of leaf area index (LAI)
downscaled from the GLOBMAP Version 3 LAI product (see
Sect. 2.3.2 for details) (Liu et al., 2012), SLA is the specific
leaf area, tl is the foliage turnover ratio, c is the species-
specific carbon content in biomass (same as that in Eq. 2),
and Rfr,l represents the ratio of carbon allocated to new fine
roots to carbon in new leaves. The detailed values for the co-
efficients of SLA, tl, andRfr,l for different forest species were
provided in Table 2 (Li et al., 2024a; Li et al., 2007; White
et al., 2000; Xie et al., 2022; Zhou et al., 2008). For HWB,
SWB, OCF, and MF, tl was assigned evergreen-species val-
ues because deciduous samples constitute only 2.23 % of the
total samples. The age-related dynamics in Ll and Lf are

mainly reflected by the age-related dynamics of the annual
maximum LAI (Li et al., 2024a; He et al., 2012).

The semi-empirical mathematical (SEM) function (Chen
et al., 2003; He et al., 2012; Li et al., 2024a) was used to build
the forest NPP–age relationships for different forest species
based on the calculated forest field NPP, as it was demon-
strated as the optimal method for building NPP–age curves
in China (Li et al., 2024a):

NPP(x)= a
[
1+ (b(x/c)d − 1)/e(x/c)

]
(5)

where NPP(x) is NPP at the age of x, and a, b, c, and d are
the coefficients of the SEM function. The uncertainty analy-
sis of the built NPP–age relationships was conducted using
the same method in the research of Li et al. (2024a).

2.3.2 Forest carbon modeling using the newly built
NPP–age relationships

The NPP–age relationships constructed for different for-
est species were integrated into the Integrated Terrestrial
Ecosystem Carbon Cycle (InTEC) model for forest carbon
modeling. To evaluate whether the forest species-specific
NPP–age relationships can improve forest carbon modeling,
the forest carbon modeling using the newly built NPP–age re-
lationships was compared with that of using the China-wide
NPP–age relationships (Shang et al., 2023; Li et al., 2024a).
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Table 3. Input Data of the InTEC Model. LAI: Leaf area index; BEPS: Biosphere-atmosphere Exchange Process Simulator; DEM: Digital
elevation model.

Input data Unit Spatial resolution Temporal resolution Data source

Climate data Precipitation mm 0.5° 1901–2023 CRU TS 4.08 (Harris
et al., 2020)

Temperature °C

Vapor pressure hpa

Cloud amount %

Atmospheric
composition
data

CO2 concentration molmol−1 Site scale 1960–2021 Mauna Loa (Keeling
et al., 1976)

Nitrogen deposition 10× gNm−2 yr−1 1.27°× 2.5° 1997–2013 (Gao et al., 2020)

Vegetation
data

Forest cover types / 30 m / NFI-II (Lin et al., 2023)

LAI m2 m−2 500 m 2015 GLOBMAP LAI V3
(Liu et al., 2012)

Forest age year 30 m 2015 NFI-II (Lin et al., 2023)

Reference NPP 10 gCm−2 yr−1 30 m 2015 BEPS (Cao et al., 2025)

NPP-age curves / / / This study

Soil data Sand content % 0.0083° / HDSW World Soil
Database (FAO and
IIASA, 2023)

Clay content % 0.0083° /

Soil depth 100 m 0.0083° /

Topographic
data

Latitude/longitude degree 30 m / /

DEM m 30 m / ASTER GDEM
(NASA/METI/AIST/-
Japan Space Systems
and U.S./Japan ASTER
Science Team, 2018)

Slope and aspect / 30 m / Calculated from DEM

Topographic wetness
index

/ 30 m /

Water table depth m 30 m /

The InTEC model integrates multiple processes, including
leaf photosynthesis (using the Farquhar biochemical model),
soil carbon and nitrogen cycling, net nitrogen mineraliza-
tion, and NPP–age relationships (Chen et al., 2000a, b). This
model estimates forest carbon balance by accounting for at-
mospheric, climatic, and biological changes since the pre-
industrial era. The impact of climate change on photosynthe-
sis is modeled through changes in the growing season length
and photosynthetic rate, while elevated CO2 concentrations
and leaf nitrogen content positively affect photosynthesis.
Model inputs include spatially distributed data on climate,
soil texture, nitrogen deposition, and vegetation parameters
derived from remote sensing (Table 3). Climate, atmospheric

composition, and soil data with resolutions coarser than 30 m
were resampled to 30 m using nearest-neighbor resampling.
Given the coarse resolution of the climate data, the empiri-
cal formulas embedded in the BEPS-TerrainLab model (Xie
et al., 2023; Govind et al., 2009) were applied to adjust the
resampled climate data using elevation, slope, aspect, and so-
lar position, thereby mitigating the impacts of both resolution
and topography. The 30 m NPP generated by the Biosphere-
atmosphere Exchange Process Simulator (BEPS) model for
2015, incorporating topographic effects (Cao et al., 2025),
served as the reference NPP. The annual maximum LAI,
originally from the 500 m GLOBMAP LAI V3 product, was
downscaled to 30 m using the Reduced Simple Ratio (RSR)

Biogeosciences, 22, 5705–5721, 2025 https://doi.org/10.5194/bg-22-5705-2025



P. Li et al.: Species-specific relationships between net primary productivity and forest age 5711

derived from Landsat data—an index used for LAI retrieval
(Liu et al., 2012).

LAI30 = RSR30/RSR500×LAI500 (6)
RSR= ρNIR/(ρNIR+ ρSWIR1) (7)

where LAI30 and LAI500 are the annual maximum LAI at
30 and 500 m resolution, respectively; RSR30 and RSR500 are
the corresponding RSR at 30 and 500 m resolution; ρNIR and
ρSWIR1 are Landsat surface reflectance in the near-infrared
and short-wave infrared 1 bands.

Forest carbon modeling was conducted from 1986 to 2023
at a 30 m resolution. The period from 1901 to 1985 was used
to spin up the soil carbon pools, reducing uncertainties in
subsequent simulations. Specifically, the InTEC model as-
sumes that the forest carbon cycle was in equilibrium before
the Industrial Revolution, with NPP equaling heterotrophic
respiration (Chen et al., 2000a, b). The model iterates using
historical climate and atmospheric composition data, allow-
ing the soil carbon pools to gradually adjust to a realistic and
stable state, thereby reflecting long-term ecological dynam-
ics prior to the study period (Chen et al., 2000a, b). Initial-
izing the soil carbon pools in this way reduces the model’s
sensitivity to arbitrary initial conditions, yielding more ro-
bust and reliable transient simulation results.

The performance of forest carbon modeling was indirectly
validated by comparing the modeled aboveground biomass
(AGB) with the calculated AGB from forest field surveys
or inventory data, since carbon flux measurements were not
available in Fujian province. For each forest species, 20 %
of samples were randomly selected for validation. Both the
SPPCB and NFI-I samples have a survey size closely approx-
imating a 30 m resolution (Lin et al., 2023), while the NFI-II
samples, though potentially larger than 30 m, were strictly
screened and constrained to be located at the center of ho-
mogeneous forest polygons. Given the potential for signifi-
cant AGB differences across different age groups, a stratified
random sampling strategy was employed to select the valida-
tion samples. Specifically, validation samples were randomly
selected within each 10 year age group to ensure adequate
representation across all age groups. This approach ensured
that the validation process was robust and representative of
the full range of forest ages, thereby providing a comprehen-
sive assessment of model performance across the entire age
spectrum of the forest stands.

2.3.3 Comparison between the species-specific and
China-wide NPP–age relationships

The NPP–age relationships for seven forest species (referred
to as species-specific curves) in Fujian province were com-
pared with the built NPP–age relationships for entire China
(shortened to as China-wide curves) (Li et al., 2024a). Pre-
viously, ten China-wide NPP–age curves were built by sep-
arating the southern and northern regions and five forest
cover types (Li et al., 2024a): evergreen broad-leaved forests

(EBF), evergreen needle-leaved forests (ENF), deciduous
broad-leaved forests (DBF), deciduous needle-leaved forests
(DNF), and mixed forests (MF). Only the southern-region
ENF, EBF and MF curves were relevant to Fujian province,
so the species-specific curves for C. lanceolata, P. masso-
niana and OCF were compared against the southern ENF
curve, those for Eucalyptus, HWB and SWB against the
southern EBF curve, and the MF curve against the southern
MF curve. The intrinsic features of the species-specific and
China-wide NPP–age curves and their performances within
the InTEC carbon modeling were systematically compared.

3 Results

3.1 Comparisons of forest NPP–age relationships
constructed with and without NFI-II samples

The NPP–age relationships constructed with and without
NFI-II samples using the SEM function were compared in
Fig. 3. This comparison was motivated by two consider-
ations: (i) NFI-I and SPPCB samples alone may not pro-
vide sufficient data to reliably constrain NPP–age curves
for old forests and (ii) NFI-II samples, derived from NFI-II
polygons, may introduce inherent uncertainties. Their curve-
fitting performances were quantitatively assessed using R2

and RMSE, as shown in Fig. 4.
The age of the forest at its maximum NPP (referred to as

the peak NPP age), a critical indicator of the NPP–age rela-
tionship, remained consistent for Eucalyptus, P. massoniana,
C. lanceolata, OCF, and MF, regardless of whether NFI-II
samples were included, while only a 1 year difference was
observed for HWB and SWB. Notably, without using NFI-
II samples, NPP values for C. lanceolata and SWB dropped
close to zero in ages older than 150 years, suggesting a tran-
sition from forest carbon sinks to carbon sources in old ages.
This finding contrasts with previous studies, which suggest
that older forests continue to act as carbon sinks (Gundersen
et al., 2021; Luyssaert et al., 2008). For Eucalyptus, the NPP
reduction exceeded 70 % without NFI-II samples, diverging
significantly from previous studies that generally report re-
ductions by about one-third (Luyssaert et al., 2008; Wang
et al., 2011) or half (Ryan et al., 2004; Mund et al., 2002) of
peak NPP. These discrepancies highlight the importance of
including NFI-II samples for accurately modeling the NPP–
age relationships for Eucalyptus, C. lanceolata, and SWB.

For P. massoniana, HWB, OCF, and MF, the inclusion
of NFI-II samples had minimal effects on the overall pat-
tern of the NPP–age curves. When NFI-II samples were in-
cluded, R2 slightly decreased by less than 0.025 for P. mas-
soniana, HWB, and OCF, but slightly increased by 0.003 for
MF. Similarly, RMSE values showed a minor increase (under
2 gCm−2 yr−1) for P. massoniana and OCF, while a slight
decrease (under 7 gCm−2 yr−1) for HWB and MF. There-
fore, we ultimately opted to consistently use NFI-II samples
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Figure 3. NPP–age curves fitted by the SEM function for different forest species with and without using NFI-II samples. The green and
red lines depict the forest NPP–age curves with and without using NFI-II samples, respectively. Solid lines indicate the forest age ranges
where field data are available, while dashed lines represent extrapolated curves beyond the field sample age range. The red and blue circles,
with associated grey error bars, represent the average NPP values and their one standard deviation. The green and red lines depict the built
forest NPP–age curves with and without using NFI-II samples. Solid lines indicate the forest age ranges where field data are available, while
dashed lines represent extrapolated curves beyond the maximum age of the field samples. P. massoniana: Pinus massoniana, C. lanceo-
lata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding Eucalyptus, SWB: Softwood
Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, MF: Mixed Forest.

in constructing the NPP–age curves, as incorporating NFI-
II samples can extend the age range over which the curves
are constrained, thus enhancing the data coverage and con-
sistency.

3.2 Characterization of forest NPP–age curves among
different forest species

The final species-specific forest NPP–age curves were se-
lected from the built curves using all field NPP samples
(green lines in Fig. 3), and their coefficients were provided in
Table 4. To facilitate a comparative characterization of forest
NPP–age relationships among different forest species, these
curves were normalized and jointly displayed in Fig. 5. Solid

lines indicate the age range supported by field data (the tri-
angle in each line indicates the maximum age), while dashed
lines indicate predicted values beyond this range using the
SEM function. The NPP–age patterns were generally con-
sistent across all species, with NPP increasing during young
stages, peaking in a middle age, and then declining and sta-
bilizing in old ages (Li et al., 2024a; He et al., 2012; Yu
et al., 2017; Zheng et al., 2019; Wang et al., 2018, 2011).
But there were also variations in the timing of peak NPP, as
well as differences in the rate of decline in older age stages.
Specifically, the peak NPP ages for Eucalyptus, P. massoni-
ana, C. lanceolata, SWB, HWB, OCF, and MF were identi-
fied as 9, 32, 25, 22, 37, 24, and 30 years, respectively. The
ratios of stabilized NPP in old ages to the maximum NPP
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Figure 4. R2 and RMSE of the built NPP–age curves for differ-
ent forest species with and without NFI-II samples. P. massoniana:
Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Euca-
lyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf ex-
cluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Conif-
erous Forests except for P. massoniana and C. lanceolata, MF:
Mixed Forest.

Figure 5. The normalized NPP–age curves built from the SEM
function. The solid lines are for the age period with field data (the
triangle in each line indicates the largest age with the field data), and
the dashed lines are for the age period without field data. P. mas-
soniana: Pinus massoniana, C. lanceolata: Cunninghamia lance-
olata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood
Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf, OCF:
Other Coniferous Forests except for P. massoniana and C. lanceo-
lata, MF: Mixed Forest.

(stabilized-to-peak NPP ratios) were 59.1 %, 57.3 %, 65.5 %,
56.8 %, 59.5 %, 56.0 %, and 57.9 %, respectively. These val-
ues align with previous studies, which typically report re-
ductions by approximately one-third (Luyssaert et al., 2008;
Wang et al., 2011) or half (Ryan et al., 2004; Mund et al.,
2002) from the peak NPP.

Table 4. Coefficients of species-specific forest NPP–age curves
built by the SEM function in Fujian Province. a–d: the coefficients.
P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia
lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hard-
wood Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf,
OCF: Other Coniferous Forests except for P. massoniana and
C. lanceolata, MF: Mixed Forest.

Forest species Parameters

a b c d

C. lanceolata 470.8 1.894 13.78 1.353
P. massoniana 415.3 0.132 7.61 4.136
OCF 422 1.325 9.697 2.267
Eucalyptus 484 1.225 3.664 2.226
HWB 507.2 1.132 14.38 2.316
SWB 468 0.532 6.847 3.104
MF 444.2 1.246 12.11 2.26

Broadleaf species such as HWB and SWB demonstrated
later peak NPP ages and lower stabilized-to-peak NPP ratios
compared to conifer species like C. lanceolata, P. massoni-
ana, and OCF. The higher wood density and longer lifes-
pans of broadleaf species allow them to sustain produc-
tivity and carbon absorption over an extended period (Xu
et al., 2024), while conifer species, despite their rapid early
growth and carbon fixation, show earlier and steeper de-
clines, reflecting differences in their ecological and physio-
logical strategies (Bigler and Veblen, 2009). HWB exhibited
a later peak NPP age and lower stabilized-to-peak NPP ra-
tio compared to SWB. This can be explained by the fact that
hardwood species maintain stronger carbon absorption dur-
ing later growth stages due to their higher wood density and
longer lifespans (Luyssaert et al., 2008; Mun et al., 2020).
In contrast, softwood species excel in rapid carbon seques-
tration during early stages but experience earlier and more
significant productivity declines (Stephenson et al., 2014).
Compared to C. lanceolata, P. massoniana shows a later
peak NPP age and higher stabilized-to-peak NPP ratio, as
P. massoniana supports prolonged carbon sequestration (Jus-
tine et al., 2017; Bai and Ding, 2024), while C. lanceolata
prioritizes rapid early growth (Zhou et al., 2016).

The NPP–age curve for Eucalyptus forests exhibits a rela-
tively low peak NPP age of 9 years compared to other forest
species. This early peak age underscores the species’ abil-
ity to achieve significant productivity at a young age, mak-
ing it well-suited for fast-growing timber plantations (Zhang
et al., 2023; Qin and Shangguan, 2019). While this early pro-
ductivity surge is advantageous for short-rotation forestry, it
often leads to a shortened early life cycle, causing a notice-
able reduction in productivity soon after reaching peak levels
(Zhang et al., 2023; Zhou and Wingfield, 2011).
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Figure 6. Comparison between the species-specific and China-wide normalized forest NPP–age curves. P. massoniana: Pinus massoniana,
C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood Broadleaf excluding Eucalyptus, SWB:
Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata, MF: Mixed Forest.

3.3 Comparison to the forest NPP–age curves built
previously

The normalized seven species-specific NPP–age curves were
compared with three previously built China-wide curves
(Fig. 6). The species-specific curves for C. lanceolata,
P. massoniana and OCF were compared against the southern
ENF curve, those for Eucalyptus, HWB and SWB against the
southern EBF curve, and the MF curve against the southern
MF curve. In general, the species-specific NPP–age curves
constructed exhibit earlier peak ages and faster decline in old
ages, particularly for Eucalyptus, C. lanceolata, OCF, and
SWB.

The peak NPP age for Eucalyptus is 9 years, much smaller
than that from the China-wide NPP–age curve. But it aligns
with the reported rapid growth and significant productivity
of Eucalyptus at young ages (Zhang et al., 2023; Qin and
Shangguan, 2019). The peak NPP age for P. massoniana
in Fujian Province is 32 years, which agrees well with the
34 years of ENF in southern China (Li et al., 2024a). While
C. lanceolata peaks at 25 years, earlier than ENF in southern
China, but close to the 23 years found for coniferous forests
in Zhejiang Province (Zheng et al., 2019). Other coniferous
forests except for P. massoniana and C. lanceolata have peak
NPP ages of 24 years, similar to coniferous forests in Zhe-

jiang (Zheng et al., 2019). These relatively early peak ages
indicate their efficient photosynthesis and resource utiliza-
tion during the early growth stages (Lu et al., 2015; Huang
et al., 2007).

The peak NPP age of HWB is 37 years, similar to that
of EBF in southern and eastern China, which peaks at 30 to
40 years (Li et al., 2024a; Wang et al., 2011). In contrast,
the NPP of SWB peaks at 22 years, which is relatively early
compared to HWB. Soft broadleaf species generally priori-
tize rapid early growth in response to favorable environmen-
tal conditions (Fujita et al., 2012). Among broadleaf species,
Eucalyptus exhibits the earliest peak NPP of 9 years, mak-
ing it highly suitable for short-rotation forestry, but sharp
post-peak declines limit its long-term carbon storage poten-
tial. The peak NPP age of MF in Fujian is 30 years, which
is similar to that of mixed forests in the south and south-
west of China ( Li et al., 2024a) and close to the 32 years
of peak NPP age for MBF in central China (Wang et al.,
2011). Mixed forests combine the fast growth of broadleaf
species with the longevity of conifers, achieving a balance in
productivity across growth stages. Their diverse composition
enhances resource utilization efficiency and reduces compe-
tition, allowing for sustained and stable carbon absorption
(Xu et al., 2024).
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Figure 7. Validation and comparison of the simulated aboveground biomass by using the species-specific and China-wide forest NPP–age
curves. P. massoniana: Pinus massoniana, C. lanceolata: Cunninghamia lanceolata, Eucalyptus: Eucalyptus robusta smith, HWB: Hardwood
Broadleaf excluding Eucalyptus, SWB: Softwood Broadleaf, OCF: Other Coniferous Forests except for P. massoniana and C. lanceolata,
MF: Mixed Forest.

3.4 Forest biomass modeling using the species-specific
NPP–age curves

The built species-specific NPP–age curves were incorporated
into the InTEC model for forest biomass modeling. But due
to the lack of field soil carbon data for validation, we primar-
ily focused on validating the modeled forest AGB. We com-
pared the simulated AGB obtained by using the newly con-
structed species-specific NPP–age curves with that obtained
by using the previously built nationwide NPP–age curves
(Fig. 7). Accuracy was evaluated with R2 and RMSE against
the calculated field AGB from a randomly withheld 20 % of
the forest field samples, and higherR2 and lower RMSE indi-
cate better performance. Overall, the species-specific NPP–

age curves significantly outperformed the nationwide curves
in simulating AGB accuracy.

For coniferous forests, the nationwide NPP–age curve
tended to overestimate AGB for ages ranging between 40
and 120 years. In contrast, the species-specific curves de-
clined more rapidly after the peak NPP year. This might be
closely related to the mechanism through which the subtrop-
ical warm and humid environment accelerates plant phys-
iological aging (Chen et al., 2024). When using species-
specific curves, the accuracy of simulating AGB for C. lance-
olata was slightly higher, while for both C. lanceolata and
OCF, the accuracy was significantly improved, with an aver-
age reduction in RMSE ranging from 9.4 to 14.4 Mgha−1.
For Eucalyptus and SWB in broadleaf forests, the nation-
wide curve overestimated AGB for trees older than their
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peak NPP age but underestimated it for Eucalyptus younger
than 20 years. The accuracy of simulating AGB for HWB
based on species-specific curves was slightly enhanced, but
for Eucalyptus and SWB, it was significantly improved, with
an average increase in R2 greater than 0.3 and a decrease
in RMSE exceeding 18.5 Mgha−1. Similarly, the accuracy
for MF was also enhanced, with an average RMSE reduc-
tion of 7.56 Mgha−1. Overall, the larger the differences be-
tween species-specific and nationwide NPP-age relationships
(Fig. 6), the larger improvements are found in simulated
AGB values (Fig. 7).

These results demonstrate that the newly developed
species-specific NPP–age curves significantly enhance the
accuracy of AGB simulations in the InTEC model for sub-
tropical forests, particularly for early-maturing species such
as Eucalyptus, by capturing regional-specific growth strate-
gies. Notably, the improvement in simulation accuracy var-
ied across different age classes, highlighting the importance
of considering age dynamics in forest carbon sink modeling
and predictions.

4 Discussions

This study established NPP–age relationships for seven for-
est species and species groups in Fujian Province based on
field survey data from NFI-I, NFI-II, and SPPCB using the
SEM model. It also evaluated whether the species-specific
NPP–age relationships can improve forest biomass mod-
elling using the InTEC model. Since NFI-I and SPPCB sam-
ples alone do not provide adequate data for old forests, and
NFI-II samples introduces inherent uncertainties, we com-
pared NPP–age relationships constructed with and without
NFI-II samples. Results showed that incorporating NFI-II
samples was crucial for accurately modeling NPP–age re-
lationships for Eucalyptus, C. lanceolata, and SWB, but
had minimal impacts on P. massoniana, HWB, OCF, and
MF. Nevertheless, NFI-II helped extend the data range to
older ages. The constructed species-specific NPP–age rela-
tionships using all three available datasets were shown to im-
prove modelled biomass in subtropical China, highlighting
the importance of species-specific parameterization in forest
biomass modeling. The resulting NPP–age curves will pro-
vide scientific support for accurate estimation of forest car-
bon sequestration and the formulation of forest management
strategies in subtropical China (Li et al., 2024c), contributing
to enhanced understanding and management of forest carbon
dynamics in this region with the largest sinks in China.

There were several limitations. Firstly, inherent inconsis-
tencies may arise among the three field data sets, particu-
larly notable discrepancies between the NFI-II stand data
and the SPPCB and NFI-I sample data. The NFI-I and SP-
PCB field samples may lack sufficient representation within
the old age classes of forests (Fig. 2), potentially leading
to unconstrained NPP–age curves for certain forest species

in old ages, which may exhibit an unreasonably declining
trend and a transition from forest carbon sinks to carbon
sources, i.e. NPP declines to values close to zero (Fig. 3). To
strengthen the constraint on the curves for the old age classes,
this study incorporated NFI-II stand data by converting stand
attributes into point samples. However, for stands character-
ized by high heterogeneity, deviations may still occur despite
efforts to mitigate this effect through screening based on the
dominance of forest species (Lin et al., 2023). To visually in-
dicate the data constraint on the constructed NPP–age curves,
solid lines were used to denote the curve portions supported
by field data, while dashed lines were employed for the curve
portions lacking field data. In future studies, collecting more
field data on old forests will facilitate determining the shape
of the forest NPP–age curves at older ages.

Second, this study did not account for the difference of
planted forests and natural forests on the NPP–age relation-
ships, nor the impact of forest managements such as selec-
tive logging and shelterwood cutting. Eucalyptus in planta-
tions often grows rapidly due to intensive management, but
this can lead to ecosystem degradation, such as soil erosion
and reduced biodiversity. In contrast, Eucalyptus in natural
forests grows more slowly but supports a more stable ecosys-
tem (Ying et al., 2010). P. massoniana and C. lanceolata
in natural forests exhibit higher ecosystem complexity and
biodiversity, which results in slower growth rates but longer
growth cycles with higher NPP (Liu et al., 2014). The tim-
ing of selective cutting and shelterwood cutting also signif-
icantly affects forest growth. Properly timed logging prac-
tices can promote tree health, growth, and resource renewal,
while mistimed logging can negatively impact growth rates
and wood quality (Wu et al., 2018). Due to the lack of data,
this study did not distinguish between planted and natural
forests and did not consider the impact of forest management.
Future research may be directed towards acquiring compre-
hensive data to better understand the growth differences be-
tween planted forests and natural forests and the influence of
forest managements on forest NPP–age relationships.

Third, the input coefficients for specific leaf area, foliage
turnover ratio, and the ratios of the turnovers of fine roots
and leaves to NPP used in calculating forest field NPP for di-
verse forest species may introduce uncertainties into the for-
est NPP–age relationships. Currently, these coefficients are
primarily sourced from literature (Li et al., 2024a; Li et al.,
2007; White et al., 2000; Xie et al., 2022; Zhou et al., 2008),
with data originating from subtropical provinces in China
such as Guangxi (Xie et al., 2022), Jiangxi (Li et al., 2007),
and Guiyang (Zhou et al., 2011), as well as from other re-
gions (White et al., 2000). Data from these regions may dif-
fer from those in subtropical China, potentially leading to
biases in the calculation of forest field NPP and final built
NPP–age curves. Moreover, as deciduous samples constitute
only 2.23 % of the total samples, HWB, SWB, OCF and
MF were assigned evergreen foliage turnover coefficients.
Therefore, future studies should prioritize local field mea-
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surements of these key coefficients, particularly for decidu-
ous species, to refine the NPP–age relationships and to quan-
tify the age-dependent carbon sequestration capacity of each
species more accurately.

Fourth, there were also other factors that could influence
the forest NPP–age relationships, such as the site conditions
and soil fertility (Li et al., 2024a). Under favorable site con-
ditions, forests typically exhibit faster NPP growth during
their early stages, attain higher peak NPP values, and un-
dergo steeper declines in NPP as they age (Wang et al., 2018;
Yu et al., 2017). Conversely, forests with poor soil fertil-
ity tend to exhibit slower NPP growth in their early stages,
achieve lower peak NPP values, and undergo less dramatic
declines in NPP as they mature. Notably, the rapid replace-
ment of natural broadleaf forests with plantations dominated
by species such as P. massoniana and C. lanceolata in sub-
tropical regions has significantly reduced soil fertility (Ming
et al., 2019; Ni et al., 2021; Li et al., 2023). Therefore, in fu-
ture research endeavors, it is imperative to consider site con-
ditions and soil fertility to improve the construction of forest
NPP–age curves.

Last, the varying spatial resolutions of model inputs may
affect the accuracy of model simulations. Downscaling LAI
from 500 to 30 m resolution using the RSR derived from
Landsat data helps mitigate some scale-related impacts.
However, in complex mountainous terrain, retrieving 30 m
LAI may require consideration of additional factors, such
as topography. Future research could focus on directly re-
trieving 30 m LAI based on Landsat data and Global Ecosys-
tem Dynamics Investigation (GEDI) lidar data (Liang et al.,
2025), thereby improving model accuracy. Besides, the em-
pirical formulas embedded in the BEPS-TerrainLab V2.0
model (Xie et al., 2023; Govind et al., 2009) were also used
to reduce the impacts of coarse resolution climate data. As
higher-resolution remote sensing products and more ground
climate data become available, it will be possible to integrate
higher-resolution climate data to further enhance the perfor-
mance and reliability of the InTEC forest carbon modeling.

5 Conclusions

This study investigated the NPP–age relationships for seven
forest species and species groups in subtropical China, lever-
aging the extensive datasets from the SPPCB, NFI-I, and
NFI-II forest field surveys along with the SEM function. For-
est species examined encompassed P. massoniana, C. lance-
olata, Eucalyptus, OCF, SWB, HWB, and MF. Given that
the NFI-I and SPPCB samples alone might not adequately
represent old forests, while the NFI-II samples offer compre-
hensive coverage across all stands but could potentially in-
troduce inherent uncertainties, we conducted a comparative
analysis of the NPP–age curves with and without the inclu-
sion of NFI-II samples. Results showed that incorporating
NFI-II samples was crucial for accurately modeling NPP–

age relationships for Eucalyptus, C. lanceolata, and SWB,
but had minimal impacts on P. massoniana, HWB, OCF, and
MF. Therefore, we incorporated NFI-II samples in construct-
ing the species-specific NPP–age curves to enhance the data
coverage and consistency. Significant differences are found
between the species-specific and nation-wide NPP-age rela-
tionships in both NPP peak age and the ratio of stabilized
NPP at old ages to the peak NPP, suggesting dependence of
the relationships on forest species and climate.

The built species-specific NPP–age curves were sub-
sequently incorporated into the InTEC model for forest
biomass modeling, and results demonstrate that the newly es-
tablished species-specific curves significantly improved the
accuracy of AGB simulations in the InTEC model for sub-
tropical forests, particularly for early-maturing species such
as Eucalyptus. Notably, the enhancement in simulation accu-
racy varied across different age classes, underscoring the sig-
nificance of considering age dynamics in forest carbon sink
modeling and predictions. These species-specific NPP–age
curves will serve as a fundamental basis for reliable forest
carbon modeling and effective forest management in sub-
tropical China.
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