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Abstract. Limiting global warming to 2 °C by the end of
the century requires dramatically reducing CO2 emissions,
and also implementing carbon dioxide removal (CDR) tech-
nologies. Ocean-based CDR through ocean alkalinity en-
hancement (OAE) offers a particularly scalable and promis-
ing pathway. However, quantifying carbon removal achieved
by OAE deployments is challenging because it requires de-
termining air-to-sea CO2 transfer over large spatiotemporal
scales – and there is the possibility that ocean circulation will
remove alkalinity from the surface ocean before complete
equilibration. This challenge makes it difficult to establish
robust accounting frameworks suitable for an effective car-
bon market. Here, we propose using impulse response func-
tions (IRFs) to address such challenges. We perform model
simulations of a short-duration alkalinity release (the “im-
pulse”), compute the resultant air-sea CO2 flux as a function
of time, and generate a characteristic carbon uptake curve
for the given location (the IRF). Applying the IRF method re-
quires a linear and time-invariant system. We attempt to meet
these conditions by using small alkalinity forcing values and
creating an IRF ensemble accounting for seasonal variabil-
ity. The IRF ensemble is used to predict carbon uptake for
an arbitrary-duration alkalinity release. We test whether the
IRF approach provides a reasonable approximation by per-
forming OAE simulations in a global ocean model at loca-
tions that span a variety of dynamical and biogeochemical
regimes. We find that the IRF prediction can typically recon-

struct the carbon uptake in continuous-release simulations
in our model within several percent error. Our simulations
elucidate the influences of oceanic variability and deploy-
ment duration on carbon uptake efficiency. We discuss the
strengths and possible shortcomings of the IRF approach as a
basis for quantification and uncertainty assessment of ocean-
based CDR, facilitating its potential for adoption as a com-
ponent of the carbon removal market’s standard approach to
Monitoring, Reporting, and Verification (MRV).

1 Introduction

Limiting global warming to 1.5 or 2 °C as outlined in the
Paris Agreement necessitates the rapid reduction in CO2
emissions in conjunction with the deployment of carbon
dioxide removal (CDR) technologies (Rogelj et al., 2018).
The scenarios considered in the Intergovernmental Panel on
Climate Change report aligned with such climate goals re-
quire a total amount of CDR on the order of 100-1000 Gt of
CO2 through the end of this century (IPCC, 2023). An in-
creasing amount of research aims to develop a portfolio of
terrestrial and marine CDR (mCDR) methods and explore
their viability, scalability, and complex influences on the
Earth system (Nemet et al., 2018; Shepherd, 2009). Earth’s
atmosphere, hydrosphere, biosphere, and lithosphere are all
open systems that store and exchange carbon with one an-
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other. Evaluating mCDR effects thus necessitates a broad
process-level understanding of all constituents of the carbon
cycle. However, there remain critical gaps in both (1) the cur-
rent state of knowledge regarding mCDR influences within
the global carbon cycle and (2) the theoretical, observational,
and modeling tools underpinning a tractable mCDR assess-
ment framework.

Ocean-based CDR is hypothesized to have climatically
relevant scalable potential and ocean alkalinity enhancement
(OAE) offers an advantageous mCDR approach as it attempts
to accelerate a natural process on Earth (Gernon et al., 2021).
A “thermostat” operating on 1–10 million year timescales is
created by the weathering of carbonate and silicate minerals
on land and the subsequent deposition of carbonate minerals
in the ocean. When atmospheric CO2 is high, surface temper-
ature increases and the hydrological cycle strengthens, lead-
ing to increased chemical weathering. This weathering in-
creases the alkalinity of the surface ocean and draws CO2 out
of the atmosphere, eventually lowering surface temperatures
and leading to a phase reversal in the feedback (Walker et al.,
1981; Berner et al., 1983). Natural weathering sequesters on
the order of 1 Gt of CO2 yr−1 (Gaillardet et al., 1999). By ar-
tificially supplying alkalinity via OAE, a deficit in the partial
pressure of CO2 (pCO2) is generated in the surface ocean.
Gas exchange then leads to a flux of CO2 from the atmo-
sphere into the ocean, thus speeding up the natural uptake
of atmospheric CO2. However, ocean circulation and turbu-
lent mixing lead to lateral and vertical transport of alkalinity.
If alkalinity is subducted away from the surface, the pCO2
deficit will not lead to additional CO2 uptake by the ocean.
Ocean dynamics are thus crucial to modulating the efficiency
of mCDR interventions and pose a significant quantification
challenge for OAE.

Developing simplified models of the factors governing
OAE and employing statistical techniques to reduce the prob-
lem’s complexity is a major objective in facilitating success-
ful Monitoring, Reporting, and Verification (MRV) of CDR
interventions. MRV refers to the development of standards
and practices evaluating CDR influences in a systematic, un-
biased way across sectors (Reinhard et al., 2023; Fuss et al.,
2014). MRV of interventions such as afforestation, macroal-
gae cultivation, artificial ocean upwelling, ocean iron fertil-
ization, OAE, and solar radiation management has been at-
tempted by studies such as Keller et al. (2014), but it re-
mains clear that CDR quantification is plagued by uncer-
tainty. Furthermore, although land-based CDR has relatively
established MRV practices (Brack and King, 2021), marine-
based approaches are still in their infancy (Oschlies et al.,
2023; Ho et al., 2023). Developing MRV for mCDR is par-
ticularly urgent as mCDR commences its rapid emergence
into the carbon market (Bach et al., 2023). MRV for mCDR
is challenging due to the multiscale nature of ocean dynam-
ics spanning molecular to global and nanosecond to millen-
nial scales (Renforth and Henderson, 2017). For example, an
OAE deployment may occur on the scale of meters but will

be transported by the flow, experience gas exchange and po-
tential feedbacks mediated by biota as it disperses, and will
spread to basin and global scales over years/decades. A sin-
gle MRV technique is thus insufficient to capture all of the
complex spatiotemporal influences of an mCDR interven-
tion. From an observational perspective, mCDR is charac-
terized by unfavorable signal-to-noise ratios extending over
vast spatial scales. Furthermore, baselines, or counterfactual
experiments are needed to assess the influence of mCDR in-
terventions. The infeasibility of complete observation-based
MRV necessitates numerical modeling, which is also prob-
lematic due to the inherent difficulties in representing the
ocean component of the climate and its interactions with the
atmosphere, land, and biosphere using finite computational
resources (Ho et al., 2023).

Here, we develop the idea of using impulse response func-
tions (IRFs) as a statistical MRV tool for mCDR. We use
OAE as a testbed for the IRF approach, but note this method-
ology should be suitable for other mCDR intervention strate-
gies, such as direct ocean removal. A useful metric for quan-
tifying OAE efficiency as a function of time, η(t) is:

η(t)=
1DIC(t)
1Alk(t)

, (1)

where1Alk(t) is the net amount of excess alkalinity put into
the system through the OAE intervention at a given time, and
1DIC(t) is the increase of ocean dissolved inorganic carbon
(DIC) due to the intervention as a function of time. There is
a theoretical maximum ηmax that varies between about 0.7
and 0.9 over the global ocean, which depends on tempera-
ture, salinity, and carbonate chemistry (Sarmiento and Gru-
ber, 2006). Ocean dynamics, such as convection or vertical
mixing, can alter the actual efficiency value from this theo-
retical value. Note that some studies use “efficiency” to mean
the fraction of the thermodynamic ηmax that was realized; we
choose to use efficiency as defined above to be consistent
with Zhou et al. (2025).

Figure 1 provides an overview of the proposed IRF ap-
proach. An “impulse” of alkalinity forcing is applied as a
pulse of a given1Alk at the surface from a point source. The
alkalinity plume spreads over time. The OAE release has an
associated characteristic uptake curve – η(t), which we call
the “impulse response function” – with an envelope of un-
certainty due to variability of the system that might be char-
acterized by repeating the IRF experiment multiple times to
sample differing winds, seasonal variability, mixing dynam-
ics, biological activity, etc. If the system is sufficiently linear
and time-invariant (detailed in the next section), we may per-
form a convolution of this uptake curve with any arbitrary
alkalinity forcing to obtain the resultant uptake curve for that
forcing. Figure 1c illustrates a continuous OAE deployment
as a function of time. Computing carbon uptake owing to al-
kalinity released during the accounting period highlighted in
purple would involve performing a convolution with alkalin-
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Figure 1. Overview of the IRF approach. (a) An alkalinity perturbation is applied as a pulse to the surface ocean from a point source; an
alkalinity plume spreads (blue contours). There is an increase in DIC given by the integrated flux of carbon dioxide into the ocean from the
OAE intervention (1FCO2 ). (b) The carbon uptake yields a characteristic uptake curve η. (c) If we now consider an arbitrary continuous
release of alkalinity as a time series, a convolution of this forcing time series and characteristic uptake curve (IRF) may be performed to
estimate the carbon uptake for accounting purposes. Note: t ′ is analogous to t and serves as a dummy integration variable.

ity forcing over that time period and the characteristic curve
shown in Fig. 1b.

2 Background on Impulse Response Functions

The application of IRFs to CDR quantification hinges upon
two mathematical requirements: linearity and time invari-
ance. Consider a system governed by a particular equation or
set of equations, such as the ocean; an input, x, is supplied to
the system, resulting in an output y. For mathematical pur-
poses, x and y are arbitrary, but we can imagine x in our
problem to be an alkalinity forcing x(t)=1Alk(t) and y to
be the resultant carbon uptake efficiency curve y(t)= η(t).
If we obtain an output y1 for input x1, and y2 for input x2,
then the linearity condition states that for an input x1+ x2
we will obtain an output y1+y2. A linear system should also
obey homogeneity, such that for input ax1+ bx2 we should
obtain output ay1+by2. The second condition is time invari-
ance. If we perturb our system with an impulse-like input
(in practice, applied over a discrete but small time interval)
at different points in time and obtain the corresponding im-
pulse response functions, or outputs, h1(t), h2(t), h3(t). . .,
these IRFs should be identical: h1(t)= h2(t)= h3(t). . .. In
other words, the IRF is stationary in time. A system satis-
fying both of these conditions is known as linear and time
invariant (LTI).

We make use of the Dirac delta function δ(t), which is a
distribution that is zero everywhere except at the origin (t =
0), with its integral over the entire real line being equal to 1:

δ(t)=

{
∞, t = 0

0, t 6= 0

such that
∫
∞

−∞
δ(t)dt = 1. The idea of a convolution is to take

an arbitrary signal x(t) and express it as a sum of simpler sig-
nals, i.e., a weighted sum of impulses. At t = 0, we express
x(t) as x(0) multiplied by the Dirac delta function, and like-
wise for all subsequent values of t (with appropriately shifted

delta functions) so that:

x(t)=

∞∫
−∞

x(t ′)δ(t − t ′)dt ′, (2)

where t ′ is a dummy variable for integration. Now, let us con-
sider the output y(t) to an input x(t) of an LTI system. The
IRF, denoted as h(t), is a known function describing how
our system responds to an impulse. Extending the convolu-
tion idea, we rewrite our output y(t) as a weighted sum of
impulse responses, so that:

y(t)=

∞∫
−∞

x(t ′)h(t − t ′)dt ′ = (x∗h)(t). (3)

We have rewritten a complex function y(t) in terms of
weights x(t) and impulse responses h(t). Note that linearity
allows us to integrate over all the individual inputs, and time
invariance allows us to conclude that if the response to δ(t)
is h(t), then the response to δ(t−1) is h(t−1). For the OAE
problem, we consider x to be an arbitrary alkalinity forcing,
y to be the resulting carbon uptake efficiency, and h to be
the uptake efficiency for an impulse-like alkalinity forcing,
so that Eq. (3) becomes:

η(t)=

∞∫
−∞

1Alk(t ′)h(t − t ′)dt ′ = (1Alk∗h)(t). (4)

One may ask: What is the advantage of rewriting y(t) or
η(t) in the form of Eqs. (3)–(4)? As shown in Fig. 2, the
IRF approach allows us to obtain the system’s response y(t)
for any arbitrary input x(t), provided that we know the IRF
h and that the ocean is acceptably well-approximated as an
LTI system. In other words, if we obtain the characteristic up-
take curve(s) for an impulse of alkalinity forcing, we can then
predict the uptake curve η(t) for any time series of alkalinity
forcing 1Alk(t). This is powerful because it implies that we
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Figure 2. An illustration of why IRFs provide a powerful statisti-
cal and data reduction tool for the OAE problem. We consider our
system to be the combination of chemical, biological, and physical
processes influencing carbon uptake and distribution in the ocean.
We probe the system by performing a model integration with a pulse
δ(t) of alkalinity forcing and computing the resultant impulse re-
sponse function h(t) defined as η(t) (OAE efficiency). Next, we
want to obtain the OAE efficiency curve y(t) for a continuous five-
year alkalinity deployment x(t). One option is to perform the full
model integration for this OAE deployment and compute the resul-
tant OAE efficiency. However, provided we have a sufficiently LTI
system, we can compute the convolution of the IRF and the forcing,
thus avoiding the need for an additional model integration.

no longer have to explicitly simulate the fate of every mole of
alkalinity that we put into the ocean. We integrate the model
to compute the IRF and then perform convolutions to predict
the uptake for any alkalinity input. Of course, this simplifi-
cation relies on staying within the bounds of LTI. Although
we know that the ocean is not LTI, a major question that we
address in this work is whether the statistics of the system are
sufficiently stationary to allow us to apply the IRF approach
via either a single IRF or library of IRFs encapsulating sea-
sonal variability.

Several studies in the climate science field have success-
fully applied the IRF methodology to gain insight into vari-
ous systems. Kuang (2010) used linear response functions to
study deep cumulus cloud convection, which involves many
nonlinear processes. Nonetheless, an ensemble can be used
to create a reference state, and then linear response functions
to small perturbations around this mean state were used to

probe the dynamics of the cumulus ensemble and develop a
parameterization. Joos et al. (2013) used IRFs to characterize
the responses of metrics such as Global Warming Potential
and Global Temperature Change Potential to emission pulses
of CO2 into the atmosphere. Hassanzadeh and Kuang (2016)
used Green’s functions (note that IRFs are a special kind
of Green’s functions with zero initial conditions) to deter-
mine the mean response of the climate system to weak forc-
ing. They applied the response function alongside an eddy
flux matrix to study eddy-mean flow interactions and gain
insights into complex eddy feedbacks. All of these studies
identify clear bounds under which the LTI assumption holds
and the IRF approach is valid – doing so for the OAE prob-
lem is the subject of the next section.

3 Applying IRFs to the OAE Problem

Here we consider the chemical, physical, and biological con-
trols on OAE uptake efficiency and implications for the LTI
requirement. We begin by viewing the OAE problem as a
purely chemical process neglecting oceanic dynamics, i.e.,
any processes that may advect, disperse, or subduct added
alkalinity and thus modify the associated OAE efficiency
curve. We then discuss the role of flow physics in modulat-
ing efficiency, the challenge of temporal variability, and the
nonlinear dynamics arising from biological feedbacks.

3.1 Chemistry

From a chemical perspective, OAE operates by inducing a
pCO2 deficit at the surface ocean that is subsequently re-
laxed at a rate proportional to the gas exchange kinetics. The
OAE efficiency η(t) may be expressed as a simple exponen-
tial (Zeebe and Wolf-Gladrow, 2001) as:

η(t)= ηmax(1− e−t/τ ). (5)

There are two parameters controlling the uptake efficiency.
ηmax is typically 0.7–0.9 depending on the background car-
bonate system. τ is the timescale of equilibration determined
by gas exchange (Sarmiento and Gruber, 2006; He and Tyka,
2023) defined as:

τ =
∂DIC
∂pCO2

·

(
zML

K0kw

)
, (6)

where K0 is the CO2 solubility coefficient (Weiss, 1974),
zML is mixed layer depth, kw is the gas transfer velocity (Ho
et al., 2006; Wanninkhof, 2014), and pCO2 is the partial pres-
sure of CO2 (Sarmiento and Gruber, 2006). Typical values
for τ range from 0.5 to 24 months, with a mean global value
of 4.4 months (Jones et al., 2014). The linearity assumption
states that the uptake curve η(t) should obey superposition –
if two alkalinity pulses are applied independently, then η(t)
should be the same as the case where the alkalinity pulses are
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applied together. This also means that both ηmax and τ can-
not be functions of 1Alk. Otherwise, η(t) in Eq. (5) would
nonlinearly depend on 1Alk. We know this is not the case,
but we aim to quantify the expected error and assess whether
it is sufficiently small. We employ observed carbonate vari-
ables synthesized by the Global Ocean Data Analysis Project
(GLODAPv2) (Lauvset et al., 2016; Olsen et al., 2016), to
sample the full range of carbonate system conditions across
the global surface ocean. We take the mean Alk and DIC
state at every grid point and then apply perturbations to alka-
linity (i.e., 1Alk) ranging from 1 to 100 with intervals of
10 mmol m−3. For reference, the forcing employed in this
study is 3.17 · 10−4 mmol m−2 day−1 (or 10 mol m−2 yr−1).
We then analytically compute the corresponding ηmax and
τ as functions of temperature, salinity, phosphate, silicate,
Alk, and DIC based on the governing equations of the car-
bonate system (Sarmiento and Gruber, 2006). The calcula-
tion involves solving for the re-equilibrated DIC following a
1Alk addition and assumes a constant atmospheric pCO2 of
425 ppm. The difference in re-equilibriated and initial DIC
divided by 1Alk yields ηmax. We ask whether ηmax and τ
change substantially as the alkalinity perturbation increases.

We first test the linearity condition for ηmax in Fig. 3.
We note that the maximum theoretical OAE efficiency varies
from 0.75 at low latitudes to 0.9 at high latitudes. Looking
at the difference between the 1Alk= 100 and 1 mmol m−3

cases, there appears to be only a slight decrease in ηmax as the
forcing increases. To compare more quantitatively, we cre-
ate a parameter space of DIC and Alk based on surface cli-
matology and compute the ηmax for each value of the 1Alk
perturbation. We compute the slope of the resulting curve to
obtain the change in ηmax per mmol m−3 of added Alk. The
result is plotted in the left panel of Fig. 4. The percent change
in ηmax for 100 mmol m−3 of added Alk is less than 0.1 %,
nearly negligible for the entire parameter space considered
here. Given the expected magnitudes of Alk perturbations
induced by CDR deployments, it is unlikely that we will in-
troduce alkalinity perturbations in excess of 100 mmol m−3

at the CO2 equilibration scales following dilution and spread
of the alkalinity plume (though possible in the vicinity of the
OAE deployment). ηmax is essentially unaffected for such a
perturbation. Thus, we conclude that ηmax does not present
significant nonlinearity. We then consider a similar test for
the gas exchange timescale, τ . We assume that K0, zML, and
kw are not functions of alkalinity, and thus the nonlinearity
may be encapsulated by a parameter κ:

κ =
∂DIC
∂pCO2

. (7)

In the right panel of Fig. 4 we compute the rate of change
in κ per mmol m−3 of added Alk between 1Alk= 1 and
100 mmol m−3. We note that κ , and thus τ , is more sensi-
tive to the magnitude of the alkalinity perturbation than ηmax
was, increasing up to 65 % for a 100 mmol m−3 Alk pertur-
bation. Still, for the forcing values considered here we expect

τ to increase by at most only a few percent, not significantly
hindering the IRF linearity requirement (though this will be
assessed in the results).

We acknowledge other potential sources of chemical non-
linearity may arise when considering the “additionality prob-
lem” (Bach, 2024). The climatic benefit of OAE may be de-
fined by its additionality, or how much the OAE intervention
increases CO2 removal relative to a baseline state without
OAE. However, OAE may also modify the natural alkalinity
cycle and associated baseline calcium carbonate saturation
state, leading to changes in biogenic calcification. The study
by Bach (2024) presents experiments showing that OAE can
reduce the generation of natural alkalinity, thereby reducing
additionality in many of the marine systems where OAE is
being considered. The additionality problem is enhanced in
natural alkalinity cycling hotspots, such as marine sediments.
Regarding time invariance, the carbonate chemistry equa-
tions are invariant by formulation. The only place where time
invariance may be violated in the above equations is in kw.
Since kw is determined by wind speed, and thus the dynami-
cal ocean/atmosphere component, we return to it in the next
section on physics. Thus, from a purely chemical perspec-
tive, we have shown that the LTI requirement is a reasonable
approximation.

3.2 Physics and Time Invariance

The physical equations governing the ocean and atmosphere
system are not, to first order, functions of alkalinity, and
we assume that the 1Alk perturbation magnitude will have
a negligible influence on resulting dynamics for at least
the decadal timescale following the OAE intervention. A
caveat is that in our numerical simulations we assume a non-
responsive atmosphere; i.e., the change in the atmospheric
CO2 reservoir is negligible. Although OAE will decrease
the atmospheric CO2 and thus impact CO2 uptake, for small
OAE deployments we can accurately capture the first-order
carbon uptake curve by assuming a non-interactive atmo-
sphere, making modeling more affordable (Tyka, 2024). We
assume that the linearity condition is sufficiently satisfied
from a physical perspective. However, the time invariance
condition poses ambiguity as to whether and how we may
successfully apply IRFs for MRV. Particularly for an OAE
deployment occurring over a small spatiotemporal scale, the
uptake curve may be significantly affected by local tidal
flows, turbulence and mixing patterns, and the seasonal and
interannual flow variability characterizing the particular time
and place of interest. Weather patterns and resulting wind dy-
namics also strongly influence air-sea gas exchange, as kw in
Eq. (6) depends on the average square of 10 m height neu-
tral winds (Ho et al., 2006; Wanninkhof, 2014). Similarly
to physical subduction, wind speed variability may lead to
drastically different carbon uptake curves and violate time
invariance. We employ two strategies to deal with these chal-
lenges posed by ocean and atmosphere variability. First, for
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Figure 3. Left: values of the maximum theoretical OAE efficiency ηmax for the global ocean based on climatological GLODAPv2 observa-
tions (Lauvset et al., 2016; Olsen et al., 2016) for a 1Alk perturbation of 1 mmol m−3. Right: the difference in ηmax for 1Alk of 100 and
1 mmol m−3. Note: these calculations assume an idealized, non-interactive atmosphere.

Figure 4. We assess how the efficiency ηmax and carbon uptake timescale τ change with the magnitude of the alkalinity perturbation 1Alk.
We compute ηmax and κ (Eq. 7) for in situ oceanic DIC and Alk values taken from the GLODAPv2 dataset and perturbations 1Alk= 1 to
100 mmol m−3 with intervals of 10 mmol m−3. We find the linearized rate of change of ηmax and κ relative to 1Alk. We may thus obtain
the percent change in ηmax (left) and τ (right) per mmol m−3 of alkalinity added.

our IRF experiments we use alkalinity pulses that extend for
a one-month duration and span several hundred square kilo-
meters, sufficient to integrate over dominant periodicities in
local flows (e.g. tides or eddy features). Additionally, we gen-
erate libraries of IRFs capturing seasonality and perform en-
sembles to estimate the uncertainty associated with interan-
nual variability. Nonetheless, due to the complexity and non-
linearity of the ocean-atmosphere system, it is challenging to
say a priori how this will project onto our ability to utilize
IRFs for CDR quantification successfully.

3.3 Biology

The biological system of the ocean poses a challenge to the
LTI requirement due to its inherent complexity and potential
for feedbacks. Bach et al. (2019) provides a survey of knowl-
edge gaps and hypotheses regarding how different chemical
forms of OAE may impact the biological system. For exam-
ple, in OAE interventions employing quicklime (CaO), cal-
cifying organisms are expected to benefit. On the contrary,
when using olivine, silicifiers and cyanobacteria are expected
to increase primary productivity significantly. Either scenario
may lead to changes in the biological carbon pump. Suessle
et al. (2025) discuss how the vertical fluxes of carbon, nitro-
gen, phosphorus, and silicon may be affected by perturbation
magnitudes of alkalinity. An encouraging result of their work

is that carbon export by oligotrophic plankton communities
is insensitive to OAE perturbations (though they suggest ad-
ditional investigation in less idealized models). In the last
year, numerous studies have probed the influences of vari-
ous marine-based CDR approaches on biological and carbon
cycle feedbacks. For example, Berger et al. (2023) found that
when macronutrient limitations and biological feedbacks are
parameterized in their model, the efficiency of macroalgae-
based CDR drops. Other studies have considered OAE ef-
fects on coastal fish larvae (Goldenberg et al., 2024), diatom
silicification (Ferderer et al., 2024) and phytoplankton re-
sponses (Xin et al., 2024; Hutchins et al., 2023). We conclude
that assessing a priori the magnitude of nonlinearity and time
invariance of the biological system to perturbations in 1Alk
is beyond the scope of this work. We acknowledge the po-
tential for biological feedbacks and the importance of con-
sidering and quantifying such phenomena. In the near term,
however, we expect OAE signals to be small except in the
local area immediately adjacent to perturbations (the near-
field). We envision an approach employing observations and
high-resolution models to quantify the near-field dynamics,
including various feedback elements, and subsequently hand
off these results to an IRF-based approach at larger scales
where signals are more diffuse.

Biogeosciences, 22, 5723–5739, 2025 https://doi.org/10.5194/bg-22-5723-2025



E. Yankovsky et al.: IRFs as a framework for quantifying ocean-based CDR 5729

4 Numerical Experiments

Having presented the IRF framework and the physical, chem-
ical, and biological system constraints to applying IRFs in the
real ocean, we move towards applying IRFs for quantifying
OAE-based CDR in a global climate model. The objective
is to first obtain an IRF (or a “library” of IRFs accounting
for seasonal variability) and then use it to predict the uptake
curve of a continuous alkalinity deployment. We will assess
the accuracy with which the IRF prediction can reproduce
the actual continuous release model simulation, and consider
several distinct dynamical and biogeochemical regimes in the
ocean.

Our study followed the experimental design outlined in
Zhou et al. (2025), hereafter referred to as Z25. Z25 em-
ployed the Community Earth System Model version 2,
CESM2 (Danabasoglu et al., 2020), in the forced ocean-ice
configuration, FOSI (Yeager et al., 2022). The ocean com-
ponent of the model is the Parallel Ocean Program version 2
(POP2), integrated at a 1° horizontal resolution and forced by
the Japanese 55-year atmospheric reanalysis dataset, JRA55
(Kobayashi et al., 2015). The forcing includes the histori-
cal transient in atmospheric CO2, and the model was inte-
grated using repeating JRA55 forcing cycles from 1850 to
near-present, thus accounting for the accumulation of an-
thropogenic CO2 in the ocean. POP2 is coupled to the Ma-
rine Biogeochemistry Library, MARBL (Long et al., 2021).
MARBL simulates two carbonate systems in parallel online;
thus, the baseline and the case with the OAE intervention are
computed simultaneously within a single model integration.
The Z25 study divided the Global Ocean into 690 polygons
and performed separate global model integrations for OAE
deployments within each polygon. Alkalinity was released at
the polygon’s surface at a constant rate of 10 mol m−2 yr−1

for one month (sufficiently short to resolve seasonal and
interannual variability), and the model was integrated for
15 years post-release. As discussed in Z25 and He and Tyka
(2023), such a flux magnitude generally ensures that: (1) the
pH increase is less than 0.1, which is the amount that pH
has already decreased in the surface ocean since preindustrial
times (Doney et al., 2009), and (2) the aragonite saturation
state change is less than 0.5, preventing the secondary pre-
cipitation of calcium carbonate which would decrease OAE
efficiency (Moras et al., 2022). To investigate the seasonal
variations of OAE efficiency, four separate simulations were
performed for each polygon with alkalinity releases in Jan-
uary, April, July, and October 1999. Thus, Z25 provides the
first geographically-refined global map of OAE efficiency
with an assessment of seasonal variability. For additional de-
tails on the experimental design, model details, and discus-
sion of global variations in OAE efficiency, please refer to
Z25 (Zhou et al., 2025).

In our work, we treated the simulations of Z25 as the “im-
pulse” experiments, and the seasonal Z25 uptake curves as
our “IRF library”. We chose 9 polygons in the North Atlantic,

and 8 polygons in the North Pacific, with various efficiencies
and seasonal variability. We then performed continuous OAE
release experiments beginning in 1999 and lasting five years,
with the same magnitude of forcing as in Z25. For select
polygons, we also performed a one-year continuous release
experiment. We computed a convolution of our prescribed
forcing with the Z25 seasonal IRF library to get an IRF-
based prediction of the carbon uptake efficiency as a func-
tion of time for the continuous release simulations. We then
compared the explicitly-simulated and predicted efficiency
curves to assess the validity of the IRF approach. To quantify
the uncertainty associated with interannual variability, we ad-
ditionally performed ensemble simulations for a selection of
the polygons we considered. The ensembles consist of sepa-
rate one-month alkalinity deployments (identical to Z25) in
January of 16 years, ranging from 1999 to 2014. Examining
the spread in uptake efficiency curves across these 16 January
OAE deployments provides insight into the expected uncer-
tainty of the IRF prediction (which is based on just one year)
for a given polygon.

5 Results

Here, we go through the procedure for applying the IRF-
based CDR quantification to the OAE problem. We will be-
gin by discussing the spatiotemporal scales of the OAE prob-
lem, discuss seasonal and interannual variability and its in-
fluences on the IRF approach and resultant uncertainty, and
end by showing a synthesis evaluating the performance of the
IRF prediction across different ocean basins and dynamical
regimes.

5.1 Spatiotemporal Scales

As stated above, the first step is to obtain the IRF library for
a given polygon from Z25; Fig. 5 presents one example for
the coast of southern California. The excess alkalinity at the
surface is seen to spread through the entire zonal extent of the
Pacific by about 10 years. By 15 years, most of the surface
of the Pacific within 40° of the equator has excess alkalinity
associated with the intervention.

In Fig. 6 we show the distribution of excess alkalinity at
the surface for the January “impulse” simulation as well as
our two continuous release cases, 15 years post-release. One
can see that the surface alkalinity distribution, when normal-
ized by the total amount of alkalinity added (accomplished
by scaling the colorbar), appears to have the same distribu-
tion for all cases. The lower left panel of Fig. 6 shows the
time series of alkalinity forcing – note that alkalinity flux is
the same 10 mol m−2 yr−2 for the month-long and continu-
ous releases. The middle panel shows the net change in DIC
inventory for each case, and the last panel shows the curves of
OAE efficiency η for each case. Note that the blue curves are
our “IRFs” since they represent the response of the system
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Figure 5. Evolution of excess alkalinity at the surface following the month-long January alkalinity release off the coast of California, see
Polygon 214 in Fig. 12. Times post-release are 1 month, 1 year, 5 years, 10 years, and 15 years (a–e, respectively).

Figure 6. Overview of the simulations used to test the IRF approach at the southern California location (Polygon 214 in Fig. 12). The top row
shows the excess alkalinity at the surface for the month-long January OAE simulation 15 years post-release, the 1-year continuous release
15 years post-release (16 years since the beginning of the model integration), and the 5-year continuous release also 15 years post-release.
The colorbars are adjusted for the latter two based on the total amount of alkalinity released so that they are directly comparable to the first
plot in terms of color. One can thus observe that the surface alkalinity distributions between these cases are nearly identical. The bottom row
shows the alkalinity forcing time series for the four separate month-long and two continuous release cases, the excess DIC inventory as a
function of time, and the OAE efficiency (η) as a function of time for each case.
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Figure 7. Using the month-long alkalinity release simulations conducted in January, April, July, and October by Zhou et al. (2025), we
construct a library of IRFs for each location corresponding to each month by linearly interpolating between months 1, 4, 7, and 10. The left
panel shows the resulting monthly IRFs for California (Polygon 214, Fig. 12), and the right panel is Iceland (Polygon 36).

to an alkalinity forcing impulse. The continuous-release sim-
ulations have different uptake curves; the kinks in the curve
represent the cessation of alkalinity addition. Net 1Alk (de-
nominator of η) increases as alkalinity is added, causing a
flatter curve. The kink is most obvious in the 5-year release.

5.2 Seasonality

As discussed, our IRF metric is efficiency η(t). Z25 provides
us with seasonal IRFs, but a few details should be noted re-
garding their implementation. Since the IRFs end at 15 years,
we fit an exponential curve to them so that we have an ana-
lytical form for the IRF that we may extend longer in time.
The exponential has the form:

h(t)= η(t)= ηmax

[
1−αe

−t
(

1
τ1
+

1
τ2

)
− (1−α)e−

t
τ3

]
,

with α =
τ2

τ1+ τ3
. (8)

In Eq. (8), τ1, τ2, and τ3 are adjustment timescales over
which the CO2 equilibration occurs; τ1 is the fast adjust-
ment driven by gas exchange, τ2 is the longer-term adjust-
ment, and τ3 represents the transition from τ1 to τ2. The
three timescales and ηmax are the free parameters which are
solved for using a curve fitting algorithm for each of the sea-
sonal IRF experiments. ηmax is initialized with an average cli-
matological value but adjusted as the curve fitting iterations
progress. We found this analytical form to reconstruct the
IRF data successfully; for more details on curve fitting meth-
ods see supplementary information of Zhou et al. (2025). We
could just as readily use the η(t) curves themselves without
performing the fitting, but to decrease the data volume and
allow for longer time series in our convolutions, we opted
for the curve-fitting route. The next detail is how to apply the
IRFs to perform the convolution with forcing and obtain an
IRF-based carbon uptake prediction. Since our two contin-
uous release simulations both begin in January, our first ap-
proach is simply to take the January IRF and proceed. How-

ever, Z25 identified many regions as having strong seasonal-
ity, thus violating the time invariance condition. In Fig. 7, we
perform a linear interpolation of the January, April, July, and
October 1999 IRFs to get a monthly IRF library. We show
the resulting IRFs for the California location considered in
Figs. 5–6. Note that at this location, all IRFs are relatively
close together, i.e., seasonality is weak, and time invariance
is not violated significantly. However, considering the same
plot for the Iceland OAE location, we notice up to a 50 % in-
crease in efficiency between the winter and summer months
(Fig. 7).

Our first approach is to simply take the January IRF and
perform the convolution with a time series of 1 and 5-year
continuous alkalinity forcing to obtain the resulting IRF pre-
dictions, η(t)1 yr,5 yr = (1Alk∗ηJan)(t). We compare the ac-
tual and predicted η(t) for the continuous release simulations
in Fig. 8. For the California location, the January IRF pre-
diction performs well and aligns with the η(t) curves for
both continuous-release simulations. The greatest deviation
occurs in years 2–5 and is attributable to interannual vari-
ability, but after a few years, the predicted and actual curves
converge. However, this is not the case for Iceland. We see
a significant underestimation of about 20 % by the IRF com-
pared to the model result. This is because we have violated
time invariance and are using the January IRF, which does
not encapsulate the summer behavior at this location. So, in-
stead, we perform the convolution month-by-month using the
monthly IRFs from Fig. 7. Note that at the Iceland location,
using the monthly IRFs substantially improves the IRF pre-
diction, so it is nearly aligned with the actual model result.
Interestingly, at the California location, the seasonal and Jan-
uary IRFs have roughly the same deviation from the actual
curve. This indicates that the interannual and seasonal vari-
ability have similar magnitudes, whereas in Iceland, the sea-
sonal variability substantially dominates in magnitude.
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Figure 8. Comparison of the IRF prediction and model integration result for the continuous release simulations in California (left) and
Iceland (right), Polygons 214 and 36 in Fig. 12. The black line shows the OAE efficiency (η) curve for the month-long January release. The
solid orange and dark cyan lines are the OAE curves obtained from the model integration of a 1 and 5-year continuous alkalinity release
experiment, respectively. The dashed line shows the corresponding prediction using IRFs constructed for each month as shown in Fig. 7.
The dotted line is the prediction using only the January IRF, without constructing an individual IRF for each month to account for seasonal
variability.

Figure 9. Ensemble results of efficiency η for the California loca-
tion (Polygon 214, Fig. 12). We conduct a series of 16 model inte-
grations beginning in each year from 1999 to 2014, with a month-
long release of alkalinity in January of each starting year. These
results are shown as red lines, and their mean is shown as a dashed
black line. In gray is the envelope encompassing three standard de-
viations from the mean; in blue are the four seasonal simulations of
month-long OAE deployments in January, April, July, and October
of 1999. This figure allows one to compare the seasonal variability
in η to the interannual variability. The insert shows the standard de-
viation in η of the January releases at this location as a function of
time. Analogous plots for other locations are shown in Fig. 11.

5.3 Interannual variability

To gain deeper insight into the variability – particularly to test
our statement above that seasonal and interannual variabil-
ity are comparable at the California location – we performed
ensemble simulations detailed in Sect. 4. This is illustrated
in Fig. 9 for the California location. One can immediately
observe that there is variation in January uptake curves de-
pending on the year. Interestingly, the standard deviation of
the ensemble members peaks between 1–2 years and then de-
creases. This explains why in Fig. 8, the 1999-based IRF pre-
diction deviates slightly from the explicit simulation in the
several years following the OAE deployment and then con-
verges to the model result. We have shown that the IRF-based
CDR quantification is valid once the time variance of the IRF
is accounted for at two sample locations – California and Ice-
land. We now test the approach of applying the monthly IRFs
capturing seasonal variability at four other locations with dif-
fering dynamical regimes and uptake curves. These regions
are: the Labrador Sea, North Sea, Western Equatorial Pacific,
and North Pacific (see Polygons 0, 16, 334, and 305, respec-
tively in Fig. 12). As in the prior section, we first compute a
monthly IRF for each location by fitting an exponential curve
to the four seasonal IRFs from Z25 and linearly interpolating
between the months. We compute the convolution of IRF and
alkalinity forcing month-by-month for our 1 and 5-year con-
tinuous alkalinity forcing cases. We perform model integra-
tions for the continuous OAE releases and compare the re-
sulting uptake with our IRF prediction. Finally, we perform
ensembles consisting of 16 members. Each member simu-
lates a month-long January alkalinity release in a year rang-
ing from 1999–2014, and is integrated for five years post-
release.

The results for these four locations are shown in Fig. 10.
We first note that the IRF prediction matches nearly perfectly
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Figure 10. Comparison of the IRF prediction and model integration results for the continuous release simulations in the Labrador Sea
(Polygon 0, Fig. 12), North Sea (Polygon 16), the western equatorial Pacific (Polygon 334), and north Pacific (Polygon 305). The black line
shows the OAE efficiency (η) curve for the month-long January release. The solid orange and dark cyan lines are the OAE curves obtained
from the model integration of a 1 and 5-year continuous alkalinity release experiment, respectively. The dashed line shows the corresponding
prediction using IRFs constructed for each month.

with the 1-year release simulation at all four locations. This
agreement stems from the fact that the monthly IRFs used in
this prediction were taken from the year the alkalinity was
released, so we mostly account for the effects of seasonal
variability – and interannual variability is not a factor. How-
ever, for the 5-year case, we are still using the 1999 IRF,
even though alkalinity continued to be released from 1999–
2004. As a result, the IRF does not capture the effects of in-
terannual variability. Nonetheless, we see remarkable agree-
ment between the IRF and model results in all regions except
the Labrador Sea (where there is roughly a 10 % error). In
the North Sea, interannual variability becomes important 2–
6 years into the simulation, and the IRF diverges from the
model result. However, over time, the ensemble spread de-
creases (variability averages out), and the IRF curve con-
verges with the explicit simulation results after 7 years. Sim-
ilar, though slightly smaller trends, are also apparent in the
Pacific cases. The interannual variability is shown in Fig. 11.
For the Labrador Sea, the model simulates a large interannual
variability that explains the error in the IRF prediction. At
this location, strong wintertime convection removes the alka-
linity from the surface and leads to very low values of η. The
magnitude of this convection is highly variable year-to-year.
We note that the year 1999, for which our IRFs were con-
structed, had particularly strong convection and a lower-than-
average efficiency – this is why the IRF prediction in Fig. 10
underestimated the actual curve. Furthermore, the standard

deviation of the ensemble members increases as a function
of time, so the IRF and model results do not converge with
time, implying that convection removes alkalinity from the
surface for longer timescales than the 10–20 years we con-
sider. Interestingly, at the three other locations, the ensemble
standard deviation peaks and then decreases. Again, this ex-
plains why the IRF predictions that initially deviated from
the model result eventually converged. Interestingly, despite
the interannual variability often being similar in magnitude
to seasonal variability, and our IRFs not taking into account
the interannual variance, we still obtain an excellent matchup
with the model results.

5.4 Comparison across regions

In Fig. 12 we synthesize all of the results for the polygons
considered in this study. Note that the 1-year continuous re-
lease case is less “challenging” for the IRF approach as our
IRFs were also constructed from 1999 impulse experiments.
The 5-year case faces the time invariance problem, since we
add alkalinity to years other than 1999 but still use the 1999
IRFs. Remarkably, in all cases, the error of the IRF approach
is less than 7 %, even in the highly variable Labrador Sea.
In the Pacific, the errors are even smaller, within 1 % of the
model result. One can see that the higher errors stem from
the higher interannual variability (violating the LTI require-
ment). The 1 : 1 line in panel (c) shows where the IRF pre-
diction matches the model result, and nearly all points with
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Figure 11. Ensemble results of efficiency η for the same locations as Fig. 10. Month-long January releases from 1999 to 2014 are shown as
red lines and the mean is shown as a dashed black line. We also show the envelope encompassing three standard deviations from the mean,
as well as the four seasonal simulations of month-long OAE deployments in 1999 (blue lines). The lowest row shows the standard deviation
in η of the January releases as a function of time.

the associated error bars fall onto this line. We conclude that
once an appropriate seasonally-varying IRF is constructed,
the IRF approach may be applied to successfully predict the
carbon uptake associated with an OAE deployment without
the need to perform a model integration explicitly. We are
able to stay within sufficient bounds of linearity and time in-
variance required for the IRF approach to work.

We note the potential of creating IRF libraries over the
historical period to account for interannual variability (for in-
stance, ENSO). An interesting question to consider is when
should a given IRF be recomputed, or how accurate is an IRF
years later? Here we can only speculate, given that our sim-
ulations ran for a maximum of 20 years. In certain regions
interannual variations are substantial and the IRF approach

leads to high errors even with a 5-year old IRF. Other regions
exhibit smaller interannual variability over years-decades.
The frequency with which IRFs need to be recomputed will
vary depending on the variability of the region under consid-
eration and the model used to compute the IRFs. We hypoth-
esize that the relatively laminar 1° CESM exhibits less tur-
bulence and flow variability than a higher-resolution model.
Promisingly, the standard deviation in ensemble members
decreases over time in most regions. Based on our results, us-
ing a seasonal IRF library from one year and then performing
an alkalinity release for 5–10 years afterwards will lead to a
reasonable prediction in most regions.
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Figure 12. (a) Polygons defined by Zhou et al. (2025), with the ones considered in this study for testing the IRF approach labeled in black.
(b) Bar charts show the ratio of the modeled continuous release compared to the IRF prediction 15 years after the end of the alkalinity release.
Dark pink is the 5-year continuous release case, and violet (semi-transparent) is the 1-year continuous release case. The numbers on the bars
indicate the standard deviation after 5 years of ensembles performed for a given polygon. Note that not all polygons have an ensemble result,
and not all polygons have a 1-year result (due to computing constraints). (c) Similar to (b), here we present the IRF prediction vs. the actual
model result for the 5-year release cases, with the one-to-one line shown as a black dashed line. Error bars show the standard deviation from
the ensemble results.

6 Discussion and Conclusions

We have presented compelling results indicating that impulse
response functions (IRFs) may be a powerful tool in aiding
the Monitoring, Reporting, and Verification (MRV) of ocean
alkalinity enhancement (OAE) interventions. The premise is
that we can probe the complex ocean, terrestrial, biological,
and atmospheric system by forcing it with an “impulse” –
a short pulse of alkalinity applied to the surface ocean. By
constructing an OAE efficiency curve for the resultant car-
bon uptake from our intervention, we can predict the carbon
uptake for any arbitrary time series of alkalinity forcing, pro-
vided we have a linear and time invariant (LTI) system. We
first discussed and quantified the sources of nonlinearity and
time invariance in the system. We then tested the IRF ap-
proach in the CESM 1° resolution global climate model. For
our impulse simulations, we used the OAE Efficiency At-
las created by Zhou et al. (2025) (Z25). We performed con-
tinuous alkalinity release simulations, and found remarkable
agreement between the IRF prediction and model results. In
most regions, the IRF prediction is typically within 1 % of
the actual model result. We determined the accuracy of the
IRF to hinge predominantly on the magnitude of the interan-

nual variability at the given location; we quantified this by
performing 16-member ensembles.

Though this study has shown great potential for future use
of IRFs for MRV of ocean alkalinity enhancement interven-
tions, many additional questions have come up. The biggest
challenge in assessing OAE influences is its multiscale na-
ture, which is highly sensitive to the various modes of vari-
ability comprising the Earth system. The global model used
here has a horizontal resolution of 1° (≈ 100 km). This res-
olution cannot resolve oceanic mesoscale features, such as
eddies, certain coastal processes, or submesoscale dynamics
such as fronts, filaments, mixed layer eddies, and inertial-
symmetric instabilities. These smaller scale dynamics may
lead to or inhibit vertical transport of alkalinity that could be
highly relevant to setting the OAE efficiency. There is also
the question of how realistic our initial condition and forcing
scenario are. Our polygons were all on the order of several
hundred kilometers in length and width and experienced con-
stant alkalinity forcing over that area with a relatively small
flux of 10 mol m−2 yr−1. In practice, alkalinity will be re-
leased from point sources, and tracing its progression from
the order of a few meters to the size of the polygons repre-
sents a large technical challenge. Due to the multiscale na-
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ture, there is no numerical framework capable of resolving
all of the relevant spatiotemporal scales and multi-scale cou-
pling is prohibitively computationally expensive.

Constraining the small-scale turbulence and mixing influ-
encing the near-field and short-term evolution of an alka-
linity plume and coupling this to the larger-scale dynamics
remains an important avenue for future work. We envision
using the IRF for tracing the evolution of the OAE inter-
vention at the larger, gas-exchange scales. Linking the high-
resolution near-field modeling/observations to the coarser-
resolution regional/global scale modeling remains a critical
component to successful MRV of OAE. Additionally, ex-
ploring what length of “impulse” is appropriate (here we
only considered one month) may be an interesting question
to pursue when considering various modes of oceanic vari-
ability. In our coarse global model, the month-long pulses
were sufficiently short compared to the characteristic sea-
sonal variability. As a result, we constructed a library of IRFs
sampling over this variability. If we consider high-resolution
simulations of a tidally-driven estuary, for example, an hour-
long pulse would preference a particular tidal phase, and we
would similarly need to construct a library of IRFs sampling
the tidal cycle. Or, we could envision a longer deployment of
12–24 h to sample over the full tidal cycle.

Another assumption in our work is that of non-interactive
atmosphere and terrestrial components. Although generally
considered second-order effects for the purpose of carbon
accounting (Tyka, 2024), interactive atmosphere and terres-
trial carbon pools may be important future considerations.
An interactive atmosphere decreases the sensitivity of the bi-
ological pump to changes in carbon uptake, and including
the terrestrial component increases the fertilization-induced
marine carbon uptake Oschlies (2009). Exploring a more re-
alistic interaction of the ocean, atmosphere, and land sys-
tems is an important future step in understanding OAE influ-
ences in projecting onto the global carbon budget (Friedling-
stein et al., 2023). We acknowledge the limitations arising
from using one modeling framework with its particular set
of assumptions and biases – nonetheless, our results are an
encouraging proof-of-concept that may now be extended to
other modeling efforts and inter-comparison projects.

The next steps in this work involve closing the gap be-
tween the laminar dynamics of the order 100 km grid model
used in this study and the meter-to-kilometer scale dynam-
ics potentially relevant for MRV of OAE interventions. We
are applying the results of this work to guide further re-
gional modeling efforts aimed at resolving mesoscale tur-
bulence, and potentially some submesoscale dynamics. We
anticipate future work applying the Regional Ocean Model-
ing System (ROMS) (Shchepetkin and McWilliams, 2005)
to perform high-resolution regional simulations analogous to
the CESM simulations presented here. Regional simulations
will allow us to study the role of smaller-scale ocean dynam-
ics in modulating carbon uptake and OAE efficiency. A prior
study by Wang et al. (2023) performed an OAE simulation

in the Bering Sea using a 10 km resolution ROMS configura-
tion. They emphasize the need for modeling at various scales
and their study helps set the stage for our future research. We
hope to address fundamental questions of whether/how OAE
dynamics change as a function of model grid resolution. We
will also assess the performance of the IRF prediction as in-
creasing flow variability becomes resolved. Overall, based
on these promising results, we believe the IRF approach pro-
vides a foundation for quantification and uncertainty assess-
ment of OAE.

Code and data availability. The experiments and data used to con-
struct the impulse response functions detailed in the manuscript
are presented in Zhou et al. (2025). A repository showing the IRF
methodology may be found at: https://github.com/CWorthy-ocean/
IRF_Method (last access: October 2025). The code for carbonate
chemistry system calculations used in Figs. 3 and 4 may be found
at: https://github.com/CWorthy-ocean/ocean-c-lab (last access: Oc-
tober 2025). Jupyter notebooks used to analyze the data and create
the figures in this manuscript may be found in the Zenodo reposi-
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