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Table S1: Summary of sources of legacy organic carbon data. 

Source 
Number of Data 

points 
Access Link 

Agri-Food & Biosciences Institute Northern Ireland 

(AFBI) 
93 Private  

Archived samples (UCD/DCU) 45 Private  

Natural Resources Wales 70 Public with request 
https://naturalresources.wales/evidence-and-data/accessing-our-

data/request-environmental-data/?lang=en 

International Council for the Exploration of the Sea 

(ICES) 
931 Public https://datras.ices.dk/Home/Access.aspx  

INFOMAR 20 Public with request https://www.marine.ie/data-request 

Mason et al. (2017) 137 Public https://data.cefas.co.uk/view/18354  

MERC consultancy 12 Private  

Marine Institute 235 Public with request https://www.marine.ie/data-request 

Natura PSA 127 Public with request https://www.marine.ie/data-request 

 

https://naturalresources.wales/evidence-and-data/accessing-our-data/request-environmental-data/?lang=en
https://naturalresources.wales/evidence-and-data/accessing-our-data/request-environmental-data/?lang=en
https://datras.ices.dk/Home/Access.aspx
https://www.marine.ie/data-request
https://data.cefas.co.uk/view/18354
https://www.marine.ie/data-request
https://www.marine.ie/data-request


 

 
Fig. S1: Spatial folds showing training/test data splits. Points used to train the OCcontent Random Forest model 

are coloured black, while red data points were used to test performance for each fold. The k-Nearest Neighbour 

Distance Matching (kNNDM) function was used to ensure spatial independence between training and testing 

splits.  

 

 
Fig. S2: Spatial folds showing training/test data splits. Points used to train the DBD Random Forest model are 

coloured black, while red data points were used to test performance for each fold. The k-Nearest Neighbour 

Distance Matching (kNNDM) function was used to ensure spatial independence between training and testing 

splits. 

 

 



 
Fig. S3: Partial dependence plots showing the relationship between OC content and non-bias adjusted model 

predictors selected by Forward Feature Selection (FFS): (a) surface summer suspended particulate matter, (b) 

distance to the nearest coast, (c) bottom water temperature, (d) bottom water salinity, (e) surface chlorophyll-a, 

(f) maximum wave orbital velocity at the seafloor and (g) sand content. 



Table S2: Summary of different model predictors importance on Mean Squared Error (MSE) for the three 

Random Forest models trained (OCcont,pre, OCcont,post and DBDpost). 

Predictor % Increase in model MSE 

OCcont,pre 

SPMsummer 37.1 

Distance to the nearest coast 23.9 

Tbot 23.4 

Sbot 22.4 

Chlorophyll-a 21.2 

uorb,max 20.6 

Sandcont 15.8 

OCcont,post 

mudcont 56.8 

uorb,max 32.4 

Distance to the nearest coast 23.9 

Chlorophyll-a 23.8 

Bathymetry 21.7 

DBDpost 

Sandcont 45.9 

SPMsummer 32.2 

SPMwinter 26.3 

uorb,mean 22.5 

uorb,max 21.9 

Ubot,mean 19.6 

 
 
 



 
Fig. S4: Area of Applicability (AOA) for (a) adjusted OC content and (b) adjusted DBD. Pixels that are labelled 

‘inside AOA’ represent locations where training and prediction data are within a determined dissimilarity 

threshold and are similar enough to assume a robust model prediction. 



Supplementary methods 

Predictor data 

Distance to coast: Distance to coast was calculated using the distance() function in the terra package 

(https://cran.r-project.org/web/packages/terra/index.html) in R. This function calculates the distance to 

a predefined coastline in metres using longitude and latitude, which is unlike Mitchell et al. (2019) who 

calculated Euclidean distances.  

Bathymetry: A bathymetric Digital Terrain Model (DTM) was downloaded from the EMODnet-

bathymetry portal (http://www.emodnet-bathymetry.eu/) (EMODNet REF) and was clipped to the study 

area. EMODnet-bathymetry data has a grid size of approximately 155 m by 230 m. As this was the 

finest resolution predictor data, all other predictor variables (see below) were resampled to this same 

grid size using the resample() function in the terra package in R.  

Predictors prior to adjustment (Predictorspre) 

Bottom water salinity, bottom water temperature, mean and maximum bottom water velocities, surface 

chlorophyll-a, surface suspended particulate matter (winter and summer): Bottom water temperature 

(BWT), bottom water salinity (BWS), mean and maximum bottom water velocities surface 

chlorophyll-a and surface suspended particulate matter were all obtained from the Copernicus marine 

data portal (https://data.marine.copernicus.eu/products). The Global Ocean Physics Reanalysis data set 

(GLOBAL_MULTIYEAR_PHY_001_030) was used for BWT, BWS, and mean and maximum bottom 

water velocities. Surface chlorophyll-a, summer surface suspended particulate matter (SPM) winter 

SPM were all obtained from the Global Ocean Colour from satellite observations 

(OCEANCOLOUR_GLO_BGC_L4_MY_009_104) data set. Monthly averages between January 2000 

and December 2019 were downloaded at a 4 km resolution for each of these predictors. In order to 

produce summer and winter averages for surface suspended particulate matter, data were averaged 

across the 20 years for the summer months (June, July and August) and winter months (December, 

January and February). 

Sediment properties (mud, sand and gravel content): Recent research has produced several versions of 

sediment property datasets for the NW European Shelf (Mitchell et al. 2019; Stephens & Diesing 2015; 

Wilson et al. 2018). Given the significant influence of sediment properties on OC stock predictions 

(Diesing et al. 2017; Smeaton et al. 2021), it was critical to empirically justify the selection of mud, 

sand, and gravel content used to train OCcontent pre to avoid artificially reducing its performance relative 

to OCcontent post. To achieve this, observation data from the Marine Institute 

(https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) and Mitchell et al. (2019) were used to 

calculate the RMSE for the models of Mitchell et al. (2019), Stevens & Diesing (2015), and Wilson et 

al. (2018). Additionally, as sediment data are compositional, bounded by 0 and 1 and must sum to 1 

these data were pre-treated prior to averaging. Additive log ratio (ALR) transformations were applied 

prior to averaging using Eq. 2 and Eq. 3 (Mitchell et al., 2019): 

http://www.emodnet-bathymetry.eu/
https://data.marine.copernicus.eu/products


𝐴𝐿𝑅𝑚 = log⁡(
𝑚𝑢𝑑

𝑔𝑟𝑎𝑣𝑒𝑙
),                 (Eq. S1) 

𝐴𝐿𝑅𝑠 = log⁡(
𝑠𝑎𝑛𝑑

𝑔𝑟𝑎𝑣𝑒𝑙
),                 (Eq. S2) 

After averaging ALR transformed values, (Mitchell et al., 2019; Stephens and Diesing, 2015; Wilson et al., 

2018)they were back transformed to compositional data using the following Eq. 4, Eq. 5 and Eq. 6 (Mitchell 

et al., 2019): 

𝑚𝑢𝑑 =
exp⁡(𝐴𝐿𝑅𝑚)

exp(𝐴𝐿𝑅𝑚)+exp(𝐴𝐿𝑅𝑠)+1
,                (Eq. S3) 

𝑠𝑎𝑛𝑑 =
exp⁡(𝐴𝐿𝑅𝑠)

exp(𝐴𝐿𝑅𝑠)+exp(𝐴𝐿𝑅𝑚)+1
,                (Eq. S4) 

𝑔𝑟𝑎𝑣𝑒𝑙 = 1 − (𝑚𝑢𝑑 + 𝑠𝑎𝑛𝑑),                (Eq. S5) 

These back transformed values were used as the final mud, sand and gravel predictors in predictorspost. 

Maximum and mean wave orbital velocity at the seafloor: Mean and maximum wave orbital velocities 

at the seafloor were sourced from Wilson et al. (2018). Wave conditions, derived from the ERA-Interim 

reanalysis (Dee et al., 2011), were integrated with significant wave height, mean wave period, and 

mean wave direction (ECMWF: http://www.ecmwf.int/en/research/climate-reanalysis/). The ERA-

Interim reanalysis features a spatial resolution of approximately 79 km and a temporal resolution of 6 

hours. 

Observational data used to bias adjust inputs 

Data repositories Pangaea (https://www.pangaea.de) and the Marine Institute 

(https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) were searched for in situ measurement data. 

When extracting bottom water observational data, EMODNet bathymetry was used to ensure data 

points were <2m from the sea floor. If surface predictors were being extracted, only data points from 

<2m water depth were used. As predictorspre data were subset to between the years 2000 and 2020 

observational data was constrained to between these years.  

Quantile-quantile mapping bias adjustment 

As in situ data represents a measurement taken at one point in space and time, they were smoothed both 

in space and in time in order to be harmonized with model data which represents monthly averages 

(Cheng et al. 2017; Cheng et al. 2020). Point grids of each month were created by grouping data by 

month applying a nine-point filter to each data point for each month. Then, 3 months of data were 

merged together centred around the month of interest. For example, if creating a smoothed point grid 

for June, point data from May, June and July were merged together. Smoothed point grids were 

interpolated using Inverse Distance Weighting (IDW) to create a continuous surface from point data for 

June. This process was repeated for each month, resulting in 12 interpolated surfaces for each month of 

the year. All 12 monthly surfaces were averaged together to obtain the annual average. This annual 



average continuous surface was then used to bias adjust the predictorspre using QQ mapping, resulting 

in a model that has been bias adjusted based on local in situ measurements (Cheng et al. 2017; Cheng 

et al. 2020). 
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