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Table S1: Summary of sources of legacy organic carbon data.

Source Numbel.' of Data Access Link
points
Agri-Food & Biosciences Institute Northern Ireland 93 Private
(AFBI)
Archived samples (UCD/DCU) 45 Private
Natural Resources Wales 70 Public with request https://naturalresources.walgs/ev1dence—and—data/iccessmg-our—
data/request-environmental-data/?lang=en
International Council tgrc'glg)Exploratlon of the Sea 931 Public https://datras.ices.dk/Home/Access.aspx
INFOMAR 20 Public with request https://www.marine.ie/data-request
Mason et al. (2017) 137 Public https://data.cefas.co.uk/view/18354
MERC consultancy 12 Private
Marine Institute 235 Public with request https://www.marine.ie/data-request
Natura PSA 127 Public with request

https://www.marine.ie/data-request
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Fig. S1: Spatial folds showing training/test data splits. Points used to train the OCcontent Random Forest model
are coloured black, while red data points were used to test performance for each fold. The k-Nearest Neighbour
Distance Matching (kKNNDM) function was used to ensure spatial independence between training and testing
splits.
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Fig. S2: Spﬁtial folds showing training/test data splits. Points used to train the DBD Random Forest model are
coloured black, while red data points were used to test performance for each fold. The k-Nearest Neighbour
Distance Matching (kKNNDM) function was used to ensure spatial independence between training and testing
splits.
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Fig. S3: Partial dependence plots showing the relationship between OC content and non-bias adjusted model
predictors selected by Forward Feature Selection (FFS): (a) surface summer suspended particulate matter, (b)
distance to the nearest coast, (c) bottom water temperature, (d) bottom water salinity, (e) surface chlorophyll-a,
(f) maximum wave orbital velocity at the seafloor and (g) sand content.



Table S2: Summary of different model predictors importance on Mean Squared Error (MSE) for the three

Random Forest models trained (OCecont,pre, OCcont,post and DBDpost).

Predictor % Increase in model MSE
OCeont,pre
SPMiummer 37.1
Distance to the nearest coast 23.9
Thot 23.4
Shot 22.4
Chlorophyll-a 21.2
Uorb,max 20.6
Sandcont 15.8
OCeont,post
mudcont 56.8
Uorb,max 324
Distance to the nearest coast 23.9
Chlorophyll-a 23.8
Bathymetry 21.7
DBDjoq
Sandcont 459
SPMsummer 32.2
SPMuyinter 26.3
Uorb,mean 22.5
Uorb,max 21.9
Ubot,mean 19.6
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Fig. S4: Area of Applicability (AOA) for (a) adjusted OC content and (b) adjusted DBD. Pixels that are labelled
‘inside AOA’ represent locations where training and prediction data are within a determined dissimilarity
threshold and are similar enough to assume a robust model prediction.



Supplementary methods

Predictor data

Distance to coast: Distance to coast was calculated using the distance() function in the terra package
(https://cran.r-project.org/web/packages/terra/index.html) in R. This function calculates the distance to
a predefined coastline in metres using longitude and latitude, which is unlike Mitchell et al. (2019) who
calculated Euclidean distances.

Bathymetry: A bathymetric Digital Terrain Model (DTM) was downloaded from the EMODnet-
bathymetry portal (http://www.emodnet-bathymetry.eu/) (EMODNet REF) and was clipped to the study

area. EMODnet-bathymetry data has a grid size of approximately 155 m by 230 m. As this was the
finest resolution predictor data, all other predictor variables (see below) were resampled to this same

grid size using the resample() function in the terra package in R.

Predictors prior to adjustment (Predictorsp)

Bottom water salinity, bottom water temperature, mean and maximum bottom water velocities, surface
chlorophyll-a, surface suspended particulate matter (winter and summer): Bottom water temperature
(BWT), bottom water salinity (BWS), mean and maximum bottom water velocities surface
chlorophyll-a and surface suspended particulate matter were all obtained from the Copernicus marine
data portal (https://data.marine.copernicus.eu/products). The Global Ocean Physics Reanalysis data set
(GLOBAL MULTIYEAR PHY 001 030) was used for BWT, BWS, and mean and maximum bottom

water velocities. Surface chlorophyll-a, summer surface suspended particulate matter (SPM) winter
SPM were all obtained from the Global Ocean Colour from satellite observations
(OCEANCOLOUR_GLO _BGC L4 MY_009_104) data set. Monthly averages between January 2000
and December 2019 were downloaded at a 4 km resolution for each of these predictors. In order to
produce summer and winter averages for surface suspended particulate matter, data were averaged
across the 20 years for the summer months (June, July and August) and winter months (December,
January and February).

Sediment properties (mud, sand and gravel content): Recent research has produced several versions of
sediment property datasets for the NW European Shelf (Mitchell et al. 2019; Stephens & Diesing 2015;
Wilson et al. 2018). Given the significant influence of sediment properties on OC stock predictions
(Diesing et al. 2017; Smeaton et al. 2021), it was critical to empirically justify the selection of mud,
sand, and gravel content used to train OCcontent pre to avoid artificially reducing its performance relative
to OCeontent post- TO achieve this, observation data from the Marine Institute
(https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) and Mitchell et al. (2019) were used to
calculate the RMSE for the models of Mitchell et al. (2019), Stevens & Diesing (2015), and Wilson et
al. (2018). Additionally, as sediment data are compositional, bounded by 0 and 1 and must sum to 1
these data were pre-treated prior to averaging. Additive log ratio (ALR) transformations were applied

prior to averaging using Eq. 2 and Eq. 3 (Mitchell et al., 2019):


http://www.emodnet-bathymetry.eu/
https://data.marine.copernicus.eu/products

mud

ALRy, = log (7). (Eq. S1)
_ sand
ALR; = log (,/=0). (Eq. S2)

After averaging ALR transformed values, (Mitchell et al., 2019; Stephens and Diesing, 2015; Wilson et al.,
2018)they were back transformed to compositional data using the following Eq. 4, Eq. 5 and Eq. 6 (Mitchell

et al., 2019):
_ exp (ALRyp)
mud = exp(ALRp)+exp(ALRs)+1’ (Eq. S3)
_ exp (ALRg)
sand = exp(ALRg)+exp(ALRp)+1’ (Eq.S4)
gravel = 1 — (mud + sand), (Eq.S5)

These back transformed values were used as the final mud, sand and gravel predictors in predictorspes:.
Maximum and mean wave orbital velocity at the seafloor: Mean and maximum wave orbital velocities
at the seafloor were sourced from Wilson et al. (2018). Wave conditions, derived from the ERA -Interim
reanalysis (Dee et al., 2011), were integrated with significant wave height, mean wave period, and
mean wave direction (ECMWEF: http://www.ecmwf.int/en/research/climate-reanalysis/). The ERA-
Interim reanalysis features a spatial resolution of approximately 79 km and a temporal resolution of 6

hours.

Observational data used to bias adjust inputs

Data repositories Pangaea (https://www.pangaea.de) and the Marine Institute
(https://erddap.marine.ie/erddap/tabledap/IMI_CTD.html) were searched for in situ measurement data.
When extracting bottom water observational data, EMODNet bathymetry was used to ensure data
points were <2m from the sea floor. If surface predictors were being extracted, only data points from
<2m water depth were used. As predictorsy.. data were subset to between the years 2000 and 2020

observational data was constrained to between these years.

Quantile-quantile mapping bias adjustment

As in situ data represents a measurement taken at one point in space and time, they were smoothed both
in space and in time in order to be harmonized with model data which represents monthly averages
(Cheng et al. 2017; Cheng et al. 2020). Point grids of each month were created by grouping data by
month applying a nine-point filter to each data point for each month. Then, 3 months of data were
merged together centred around the month of interest. For example, if creating a smoothed point grid
for June, point data from May, June and July were merged together. Smoothed point grids were
interpolated using Inverse Distance Weighting (IDW) to create a continuous surface from point data for
June. This process was repeated for each month, resulting in 12 interpolated surfaces for each month of

the year. All 12 monthly surfaces were averaged together to obtain the annual average. This annual



average continuous surface was then used to bias adjust the predictorsp.. using QQ mapping, resulting
in a model that has been bias adjusted based on local in situ measurements (Cheng et al. 2017; Cheng

et al. 2020).
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