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Abstract. Continental shelves are critical for the global car-
bon cycle as they store substantial amounts of organic carbon
(OC). Shelf sediments can also be subject to considerable
anthropogenic pressures, offshore construction and bottom
trawling for example, potentially releasing OC that has been
sequestered into sediments. As a result, these sediments have
attracted attention from policy makers regarding how their
management can be leveraged to meet national emissions re-
duction targets. Spatial models offer solutions to identifying
organic carbon storage hotspots; however, regional predic-
tions of OC often rely on global scale predictors which may
have biases on smaller scales, reducing their utility for practi-
cal management decisions. In addition, estimates of dry bulk
density (DBD), an important factor in calculating OC stock
from sediment OC content, are typically derived from an em-
pirical relationship developed in one region and applied else-
where, rather than from local in situ data, leading consid-
erable uncertainty in regional OC stock estimates. We com-
pared the performance of two spatial models of OC stock.
The first used unadjusted predictors and a commonly used
empirical relationship to estimate DBD. The second spatial
model incorporated bias-adjusted predictors and a machine
learning DBD model, trained on in situ DBD data. The ad-
justed model predicted a total OC reservoir of 46.6± 43.6 Tg
in the top 10 cm of sediment in the Irish Sea, which was

31.4 % lower compared to unadjusted estimates. 70.1 % of
the difference between adjusted and unadjusted OC stock es-
timates was due to the approach for estimating DBD. These
findings suggest that previous models may have overesti-
mated OC reservoirs and highlight the influence of accurate
DBD and predictor adjustments on stock estimates. These
findings highlight the need for increased in situ DBD mea-
surements and refined modelling approaches to enhance the
reliability of OC stock predictions. This study provides a
framework for refining spatial models and underscores the
importance of reducing uncertainties in key parameters to
better understand and manage OC storage potential of ma-
rine sediments.

1 Introduction

Continental shelves are important sinks of atmospheric car-
bon dioxide and play a key role in the global carbon cy-
cle (Bianchi et al., 2018; Frankignoulle and Borges, 2001;
Hedges and Keil, 1995). Marine sediments in these environ-
ments store substantial amounts of organic carbon (OC) over
millennia (Laruelle et al., 2018; Smeaton et al., 2021b). Ef-
fective management of these natural long-term stores of OC
has the potential to offer policy makers a mechanism to off-
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set emissions. As a result, nature-based solutions to mitigat-
ing anthropogenic greenhouse gas emissions have received
much scientific interest in recent years (Griscom et al., 2017).
For example, coastal vegetated habitats store > 30 Pg of OC
globally and management of these habitats is thought to have
the potential to offset approximately 3 % of annual global
greenhouse gas emissions (Macreadie et al., 2021). Global
estimates suggest that OC stocks in continental shelf sedi-
ments, ranging from 256 to 274 Pg, are up to nine times that
of coastal vegetated habitats (Atwood et al., 2020). Although
still heavily debated, emissions from human pressures on
marine sediments may be substantial (Hiddink et al., 2023;
Sala et al., 2021). Despite their large capacity to store OC,
efforts to quantify stocks and potential emissions reductions
from management are relatively recent (Diesing et al., 2017;
Epstein et al., 2024; Smeaton et al., 2021a). Subcontinental
and national scale OC stock estimates have been conducted.
For example Diesing et al. (2017) reported that the Northwest
European continental shelf holds between 230 and 880 Tg of
OC in the top 10 cm of the sediment column, while Smeaton
et al. (2021a) estimated that between 456 and 592 Tg of OC
were stored in surficial (0–10 cm) marine sediments within
the United Kingdom Exclusive Economic Zone.

Despite advancements in understanding OC storage in ma-
rine sediments, data and knowledge gaps remain. One such
data gap is that of marine sediment Dry Bulk Density (DBD).
DBD represents the mass of dry sediment within a given vol-
ume, which is multiplied by OC content and sediment depth
to calculate the mass of OC in that given volume, which is
termed OC stock (Taalab et al., 2013). DBD is a scaling fac-
tor on OC content and adjusts the OC stock in a given volume
based on the density of sediment or soil. Thus, DBD has a
significant effect on OC stock estimates. Previous estimates
of OC stocks in terrestrial soils suggest much of the uncer-
tainty in overall stock estimates results from uncertainty in
soil density (Dawson and Smith, 2007). Despite the impor-
tance of DBD in calculating OC stock, there remains a lack
of direct measurements for marine sediments. For example,
Atwood et al. (2020) compiled a global database of∼ 12 000
sediment cores to predict global OC stocks and over two-
thirds (69 %) of their data were lacking DBD measurements.

Subcontinental predictions of OC content are frequently
based on global environmental predictors (Diesing et al.,
2017, 2021, 2024; Smeaton et al., 2021a), which may contain
biases when applied to regional or smaller scales (Galmarini
et al., 2019). To address these discrepancies, bias adjustment
techniques are commonly used in other scientific disciplines,
for example in climate science, where large-scale models are
adjusted to better align with local observational data (Laux
et al., 2021; Luo et al., 2018). Bias adjustments reduce sys-
tematic errors in model outputs and ensures that projections
match local conditions and are reliable for practical applica-
tions (Laux et al., 2021). Bias adjustments have been used
to improve climate model utility in agricultural impact as-
sessments, such as predicting planting dates and crop suit-

ability in water-limited regions; to correct overestimations in
soil moisture models and to improve predictions in sea ice
thickness (Laux et al., 2021; Lee and Im, 2015; Mu et al.,
2018). Despite their widespread use in climate science, bias
adjustment methods are underutilised in other areas of spa-
tial environmental modelling, including OC stock modelling.
These studies collectively highlight that bias adjustments are
essential for improving the precision and applicability of cli-
mate model outputs across different environmental contexts,
providing rationale for their application in this study.

Public data repositories provide an opportunity to use data
gathered over large spatial scales not practical to collect over
short- and medium-term research projects (Mitchell et al.,
2019). Ocean and earth sciences data, in particular, lend
themselves to being collated across research groups and sam-
pling expeditions. Much of the instrumentation and parame-
ters measured are the same, for example sediment proper-
ties and OC content. In order to perform bias adjustments
of globally modelled data, large datasets of parameters of
interest are required (Laux et al., 2021). Public reposito-
ries, for example, the Pangaea repository of datasets (Felden
et al., 2023), the International Council for the Exploration
of the Seas (ICES) data centre (https://www.ices.dk/data/
Pages/default.aspx, last access: 15 October 2024) and na-
tional repositories such as Ireland’s Marine Institute offer
large amounts of ocean data which can be used to perform lo-
calised bias adjustments. Additionally, data specifically use-
ful for spatial modelling of marine sedimentary OC stock,
for example OC content and DBD is available from the Mod-
ern Ocean Sediment Archive and Inventory of Carbon (MO-
SAIC) (Paradis et al., 2023; Paradis and Eglinton, 2024).

OC stock is not directly measured; it is calculated by mul-
tiplying OC content, DBD and sediment depth. This study
aimed to improve two components of this equation, OC con-
tent and DBD. Since the accuracy of OC stock estimates de-
pends on the accuracy of these inputs, we assume that any
improvements or errors in OC content and DBD would be
reflected in the final OC stock estimates. While it is not pos-
sible to directly verify whether our adjusted OC stock values
represent the true values, the improvements in model perfor-
mance for both OC content and DBD support the assumption
that our revised estimates are more accurate. To address this
question, the estimates of two spatial models to predict OC
stock in surficial sediments in the Irish Sea were contrasted.
The first model was developed by using unadjusted predic-
tors and a widely used DBD model (Diesing et al., 2017,
2021; Smeaton et al., 2021a) to estimate OC stock from OC
content; and the second model was developed by bias adjust-
ing and downscaling predictors using observational data and
a machine learning spatial model of DBD (Fig. 1).
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Figure 1. Summary of steps taken to train and predict form two different models, which include: (1) collating response data; (2a) compil-
ing OC content predictor data (predictorsunadj); (3a) training a random forest model to predict OC content on the non-adjusted predictor
data (OCunadj); (4a) modelling Dry Bulk Density (DBD) from porosity (DBDunadj); (5a) predicting OC stock across the study area using
OCcont,unadj and DBDunadj; (2b) bias adjusting predictorsunadj data using quantile-quantile mapping; (3b) compiling OC content predictor
data after it has been bias adjusted (OCcont,adj); (4b) training a random forest model to predict OC content on the bias adjusted predictor data
(predictorsadj); (5b) training a random forest model to predict DBD on the bias adjusted predictor data (DBDadj); (6) predicting OC stock
across the study area using OCcont,adj and DBDadj.

2 Regional setting

The Irish Sea was selected as the study area due to its eco-
logical and economic importance, making it a focal point for
marine resource management and conservation. It is a cross-
jurisdictional region bordered by both the UK and Ireland,
where overlapping policy and management frameworks ele-
vate its relevance for spatial planning. The Irish Sea supports
some of the highest fishing intensities in Europe, with bottom
otter trawling, a type of fishing gear typically used to catch
species on or near the seabed, in areas such as the western
Irish Sea “mud belt” and the “Smalls” reaching an annual av-
erage of 14 h per km2 between 2009 and 2014 (ICES, 2014).
These same areas account for the majority of Nephrops land-
ings in Ireland and contribute significantly to the European
market, with Nephrops caught within the Irish EEZ alone val-
ued at EUR 53.2 million (Gerritsen and Lordan, 2014). No-
tably, Nephrops inhabit muddy sediments, which are associ-
ated with high OC stocks. Although OC stock estimates exist
for the Irish Sea, they are often either coarsely resolved or ge-
ographically limited in scope (Diesing et al., 2017; Smeaton
et al., 2021a), highlighting the need for refined spatial mod-
elling. This is particularly important in the Irish Sea, where
although the region is generally data-rich, limited informa-
tion on the impacts of human activities on marine sedimen-

tary OC stocks has been identified as a barrier to incorpo-
rating OC into marine spatial planning frameworks (Allcock
et al., 2024; Crowe et al., 2023). Moreover, the availability
of broader environmental datasets makes the Irish Sea well
suited to test and apply the spatial modelling workflow de-
veloped in this study.

The Irish Sea is a shallow continental shelf sea between
the land masses of the island of Ireland and Great Britain,
with an average water depth of 60 m and a maximum depth
of approximately 315 m. The area has a complex geological
history of previous glaciation coupled with marine transgres-
sion, and so the seafloor in this area consists of a mosaic of
sediment types and bedforms (Arosio et al., 2023; Scourse
et al., 2019; Ward et al., 2015). At present, a combination of
wave and tidal current action results in a significant amount
of sediment being mobilised and transported within the re-
gion (Coughlan et al., 2021).

The study area detailed here covers a marine area of
75 229 km2 and spans latitudes 50 to 56° N and longitudes
8 to 2° W (Fig. 2). OC content (%) (OCcont) and OC stock
(OCstock) were estimated within the study area, excluding ar-
eas within inshore waters (Smeaton et al., 2021a). The in-
shore area was excluded from the study area and was defined
as the landward area of the low-water line along the coast as
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Figure 2. Study area within the Irish Sea (thin black border) and
within the greater North West European shelf (inset). Points indi-
cate organic carbon (OC) data coloured by the organic carbon con-
tent. Pink areas show internal waters that have been excluded from
the study area. Thick black outlined polygons indicate the western
Irish Sea “mud belt” (northern) and the “Smalls” (southern), areas
of known high mud content within the Irish Sea.

recognised by the Maritime Boundaries Geodatabase (Flan-
ders Marine Institute, 2023).

3 Methods

To estimate OCstock in surficial sediments, we developed
and compared two modelling workflows. Each workflow in-
volved predicting OCcont and dry bulk density (DBD), which
were then combined to calculate OCstock. The key difference
between the two workflows was the way environmental in-
put data (predictors) were treated. The first approach used
unadjusted, commonly available predictors and a standard
DBD estimation method, while the second approach used
bias-adjusted predictors, which were corrected using obser-
vational data and used a machine learning model to esti-
mate DBD. A schematic overview of the workflow is pro-
vided in Fig. 1. Briefly, the process of bias-adjusting shifts
the distribution of predictor data based on observational data
in an effort to align predictor data with in situ observa-
tions. We evaluated the success of these improvements in two
ways. First, we tested whether bias-adjusted predictors more
closely matched local measurements, using an error metric
(Root Mean Squared Error; RMSE) which measured how far
predictions deviated from in situ observations. Second, we

assessed whether these improved predictors led to more ac-
curate predictions of OCcont and DBD using machine learn-
ing models, using cross-validation and RMSE. The assump-
tion underpinning this study is that predictors that better align
with in situ data would produce more reliable predictions of
OCcont and DBD and thus more reliable estimates of OCstock.

3.1 Compiling response and predictor datasets

3.1.1 Response data

Sediment OCcont and DBD measurements were obtained
from various sources, including published scientific litera-
ture, government organizations, and one private organization
(Table S1 in the Supplement). Prior to developing spatial
modes, response data were screened and smoothed to ensure
consistency and minimise erroneous data points that could
bias prediction stability. Only data from the top 10 cm of the
sediment column were included, as the study aimed to es-
timate surficial sediment OCstock as this is standard among
larger scale marine sediment OCstock quantification studies,
making our results comparable to others (Diesing et al., 2017,
2021, 2024). Within the wider Northwest European shelf,
sedimentation rates can range between 0 and 0.61 cm yr−1

(Diesing et al., 2021), assuming a mean sedimentation rate
of the mid-point between these values (0.31 cm yr−1), the
top 10 cm corresponds to approximately the last 33 years,
based on 210Pb sedimentation rates. Geographic locations of
all response data were visually inspected to ensure they fell
within the study area. Response data were spatially smoothed
to match the finest resolution model predictor (EMODNet
bathymetry, approximately 155 m by 230 m cell size). When
multiple response data values occurred within a single grid
cell, the average across the grid cell was calculated (Wei
et al., 2022). Regarding OCcont, where only Loss on Igni-
tion (LOI) values were available, OCcont was estimated using
Eq. (1), which was locally derived and based on 102 surficial
sediment Irish Sea samples analysed with an elemental anal-
yser (Grey et al., 2024):

OCcontent = LOI× 0.41+ 0.19, (1)

A total of 1670 in situ measurements of surficial sediment
OCcont were obtained from various sources within the study
area (Fig. 2). After spatial aggregation of OCcont data and
removing data points within the excluded inshore area, 450
data points were available for model training. DBD had 642
data points across the entire Northwest European Shelf.

3.1.2 Predictor data

To compare the two spatial models for predicting OCcont, we
developed two predictor datasets: pre-bias adjustment pre-
dictors (predictorspre) and post-bias adjustment predictors
(predictorspost) (Table 1). Predictor variables were selected
based on their availability and expected relevance to OCcont
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and predictors used in previous spatial modelling work of
OCcont (Diesing et al., 2017, 2021). Predictorspre were ob-
tained from various governmental organizations and scien-
tific literature (Table 1). Detailed descriptions of these pre-
dictors are provided in the methods in the Supplement.

As global scale models can have biases on regional scales
(Casanueva et al., 2018, 2020; Galmarini et al., 2019; Roberts
et al., 2019), we created predictorspost by bias adjusting and
downscaling predictorspre data using in situ data. To increase
the amount of observation data available for adjustment, we
included measurements from across the Northwest Euro-
pean Shelf, not just the Irish Sea. These data were sourced
from public repositories: Pangaea (https://www.pangaea.de/,
last access: 7 November 2024), The Marine Institute (https:
//erddap.marine.ie/erddap/tabledap/IMI_CTD.html, last ac-
cess: 20 March 2024) and MOSAIC (Paradis et al., 2023;
Paradis and Eglinton, 2024), and were temporally aligned
with predictor data. More detail of the observational data is
provided in Supplement.

3.2 Bias adjusting predictors

Depending on data availability, different approaches were
used to bias adjust predictorspre. For bottom water temper-
ature (Tbot), bottom water salinity (Sbot), mean and maxi-
mum bottom water velocities (Ubot,mean and Ubot,max), sur-
face chlorophyll a, summer surface suspended particulate
matter (SPMsummer) and winter surface suspended particu-
late matter (SPMwinter), a quantile-quantile (QQ) mapping
approach was used (Casanueva et al., 2020). For bias ad-
justing predictors, data availability varied significantly (Ta-
ble 1). For example, Tbot had more than 300 times the amount
of data as SPM, which had the least amount of data avail-
able. First, point observational data were harmonized with
predictorspre. Briefly, observation data were smoothed across
time and space and then interpolated to create a spatially con-
tinuous surface (Cheng et al., 2017, 2020; Cheng and Zhu,
2016). Original predictor data were then adjusted using the
interpolated surface by QQ mapping. This approach aligns
the quantiles in observational and modelled data and pre-
serves the spatial patterns of the original data, and has been
shown to outperform un-adjusted models (Ngai et al., 2017).
However, QQ mapping may be sensitive to outliers and is less
reliable in capturing extreme values (Casanueva et al., 2020).
To mitigate this, observational data were smoothed prior to
interpolation and QQ mapping to reduce the influence of ex-
treme values. More detail of the point data smoothing and
QQ mapping is provided in the Supplement.

For sediment properties (mud (the sum of silt and clay),
sand, and gravel content) three existing spatial models were
averaged (Mitchell et al., 2019; Stephens and Diesing, 2015;
Wilson et al., 2018) as previous research has shown averag-
ing multiple models can improve predictions (Dormann et
al., 2018). Sediment compositional data were pre-treated be-
fore averaging as they are proportional, bounded by 0 and

1 and their sum must equal 1 (Supplement) (Mitchell et al.,
2019; Stephens and Diesing, 2015; Wilson et al., 2018).

Other variables were handled as follows: adjusted current
and wave orbital velocities at the seabed were sourced di-
rectly from locally developed models (Table 1) (Coughlan
et al., 2021); distance to coast was not adjusted as it is a
simple calculation and bathymetry was taken directly from
EMODNet, which is a widely used high resolution model
and was developed specifically for European waters (https:
//emodnet.ec.europa.eu/, last access: 23 February 2024).

3.3 Validating predictor accuracy

The predictorspost dataset was validated against observation
data to assess whether bias adjustment improved their agree-
ment with in situ data. To avoid artificial skill, a k fold cross-
validation approach was used, where each fold excluded a
different, non-overlapping fifth of the observation dataset
during adjustment (Maraun and Widmann, 2018). For each
fold, the Root Mean Squared Error (RMSE) was calculated
using only the excluded data, providing a more reliable es-
timate of prediction error (Maraun and Widmann, 2018).
The average RMSE across all folds was then compared to
the RMSE of the original (pre-adjustment) predictors. Lower
RMSE values represent improvements in model performance
(Maraun and Widmann, 2018).

3.4 Dry bulk density estimates

DBD is the mass of dry sediment per unit volume of wet
sediment and is required to calculate OCstock from OCcont.
Although not used as a predictor OCcont, it is crucial in cal-
culating OCstock. Two versions of DBD were developed: an
un-adjusted estimate and an adjusted version, to pair with
respective OCcont models (un-adjusted vs. adjusted). Pre-
adjusted DBD (DBDpre) was calculated using a commonly
used approach from sediment porosity using Eqs. (2), (3) and
(4) (Diesing et al., 2017; Smeaton et al., 2021a):

DBDkgm−3
= (1−φ)ρs, (2)

ρs = 2650kgm−3, (3)
φ = 0.3805×mudcont+ 0.42071, (4)

Sediment porosity (ϕ) was calculated as a function of spa-
tially averaged mud content (mudcont) and assumed a con-
stant grain density (ρs) of 2650 kg m−3. In contrast, bias ad-
justed DBD (DBDpost) was spatially modelled using in situ
DBD measurements from the Northwest European Shelf and
a machine learning approach (Breiman, 2001). The model
training procedure and specific algorithm and predictor se-
lection is described in detail in Sect. 3.5, alongside modelling
of OCcont.
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3.5 Training machine learning models

Two models of OCcont were trained to compare the use
of pre-adjustment (OCcont,pre) and bias-adjusted (OCcont post)
predictors. Both models used the Random Forest (RF)
algorithm, which performs well for geospatial modelling
(Diesing et al., 2021; Hengl et al., 2015; Meyer et al., 2018).
Predictors were selected using the Forward Feature Selection
(FFS) algorithm, which iteratively builds models by adding
one predictor at a time (Meyer et al., 2018). It begins with
all possible 2-predictor combinations, retains the best per-
forming pair, and then adds additional predictors only if they
reduce the model’s RMSE (Meyer et al., 2018).

After training, partial dependence plots were used to visu-
alize the associations between OCcont and the selected pre-
dictors. The adjusted DBD model, DBDpost, was developed
in the same way, using an RF FFS applied to the bias adjusted
predictors and was later used to calculate OCstock.

3.6 Model validation

All FFS RF models (OCcont,pre, OCcont,post and DBDpost)
were validated using the k Nearest Neighbour Distance
Matching (kNNDM) Leave-One-Out (LOO) Cross Valida-
tion (CV) approach (Milà et al., 2022). This approach
matches the distance distribution functions of training to test-
ing data to the distance distribution function of prediction to
training data (Figs. S2 and S3 in the Supplement). Random
k-fold cross-validation can produce overly optimistic perfor-
mance estimates by allowing spatially autocorrelated data to
be split across training and testing sets. In contrast, kNNDM
explicitly enforces spatial independence between folds, so
that models are evaluated on data that is spatially uncor-
related with the training data. This provides a more realis-
tic estimate of model In addition to kNNDM, the RMSE of
DBDpost predictions was calculated against in situ measure-
ments to evaluate whether the machine learning model out-
performed the unadjusted estimates of DBD (DBDpre) (de-
tails in Sect. 3.4). Model stability was also tested by exam-
ining prediction consistency across repeated runs using the
final selected predictors. We looked at prediction stability in
the highest and lowest 15 % of predicted values, we specifi-
cally chose this threshold as this is the range most susceptible
to the effects of outliers (Lange et al., 2025).

3.7 Model uncertainty

It should be noted that the uncertainty estimates derived
here are limited to model variance. Uncertainty introduced
from measurement error in response variables (OC content or
DBD) and input predictors, for example, chlorophyll a, Tbot,
sediment properties, etc. was not quantified due to a lack of
available uncertainty in the underlying datasets. Uncertainty
for both OCcont models and DBDpost was estimated using the
sum of the standard deviations of 25 RF model predictions

(Diesing et al., 2021). For each run, response data were ran-
domly split into 70 % training and 30 % testing sets, resulting
in 25 models. For each pixel, the standard deviation of the
25 predictions was computed. The total uncertainty was then
determined by summing these standard deviations across the
study area (Diesing et al., 2021). In addition, an Area of Ap-
plicability (AOA) analysis was conducted to assess whether
our adjusted OC content and DBD models could be reliably
applied to the study area (Meyer and Pebesma, 2021). AOA
identifies regions where the training and prediction data are
comparable, indicating where machine learning models are
likely to make reliable predictions. The analysis calculates a
Dissimilarity Index (DI), which quantifies how different the
prediction data are from the training data.

3.8 Calculation of organic carbon stock and total
reservoir

The spatial variation in OCstock, which is the mass of OC
stored in sediment per unit area to a specific depth, was
calculated using both unadjusted (OCcont,pre and DBDpre)
and adjusted inputs (OCcont,post and DBDpost) inputs. OCstock
was calculated using the following equations (Diesing et al.,
2017) :

OCstock,pre kgm−2
= OCcont pre×DBDpre

× cell area× depth (5)

OCstock,post kgm−2
= OCcont post×DBDpost

× cell area× depth (6)

OCcontent and DBD were the predicted outputs from the re-
spective pre-adjustment (pre) and post bias adjustment mod-
els (post) Cell area was calculated for each grid cell using
the cellSize() function in the terra package (Hijmans, 2025)
in R, which accounts for spatial variation in cell size rather
than assuming a constant cell size across the study area. A
constant depth of 10 cm was used to estimate surficial sedi-
ment. These equations were applied to every grid cell across
the study area.

To estimate the total organic carbon (OC) reservoir in the
study area, predicted OC stock values were summed across
all grid cells. To assess the relative contribution of OC con-
tent and DBD estimates to the final OC stock values, we cal-
culated OC stock using all four combinations of input mod-
els: (1) Pre-adjustment OC content with post bias-adjustment
DBD, (2) pre-adjustment OC content with adjusted DBD,
(3) adjusted OC content with unadjusted DBD, and (4) ad-
justed OC content with adjusted DBD. Total OC stock un-
certainty was calculated using the following equation:

OCuncertaintystock kgm−2
= OCuncertaintycont

×DBDuncertainty× cell area× depth (7)
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4 Results

4.1 Data collation

4.1.1 Data sourced

Predictor improvement

With the exception of SPMsummer and Tbot, all bias adjusted
predictors (predictorspost) data showed improved agreement
with in situ data, based on RMSE comparisons (Table 1).
As no improvement was observed in SPMsummer and Tbot,
their pre-bias adjustment versions were retained in the
predictorspost dataset for model training.

The degree of adjustment varied across variables (Fig. 3).
For instance, mean RMSE change for Sbot was minimal,
With a mean difference of 0.09 psu between predictorspre
and predictorspost. In contrast, SPMwinter was adjusted to a
greater degree, showing a mean change of −9.97 mg L−1,
which is also reflected in a greater shift in its distribution
(Fig. 3). Sediment properties, mud, sand and gravel content
were not changed to a large degree (Fig. 3). The mean change
between predictorspre to predictorspost for mudcont, sandcont
and gravelcont was −0.03, 0.07 and −0.04, respectively.

4.2 Random forest modelling

4.2.1 OCcont and DBDpost Variable selection

Different predictors were selected during the OCcont model
training process. Seven important predictors were se-
lected for OCcont,pre (Fig. S3), while five were chosen for
OCcont,post (Fig. 4). For OCcont,post, the selected predic-
tors were mudcont, uorb,max, distance to the nearest coast,
chlorophyll a and bathymetry. Among these, mudcont and
uorb,max were the most important, removing them increased
the model’s Mean Squared Error (MSE) by 56.8 % and
32.4 %, respectively (Table S2). Partial plots showed OCcont
increased with mudcont and decreased with uorb,max (Fig. 4).

For OCcont,pre, the selected predictors were SPMsummer,
distance to the nearest coast, Tbot, Sbot, chlorophyl a, uorb,max
and sandcont (Fig. S3). The most important of these was
SPMsummer, whose removal increased model MSE by 37.1 %
(Table S2).

Six important predictors were selected for the DBDpost
model: sandcont, SPMsummer, SPMwinter,uorb,mean, uorb,max,
and Ubot,mean. Sandcont, was the most important predictor,
with a positive relationship to DBD (Fig. 5). Its removal in-
creased model MSE by 45.9 % (Table S2).

4.2.2 Model performance and predictions

OCcont,post had an R2 of 0.47 and RMSE of 0.31 %,
and showed a slight improvement in performance com-
pared to OCcont,pre, (OCcont,post1R

2
=+0.06 vs. OCcont,pre;

OCcont,post1RMSE=−0.01 % vs. OCcont,pre). Despite this,

predicted OCcont values were generally similar across
the study area. The mean OCcont,post prediction was
0.58± 0.61 %, compared to 0.65± 0.67 % for OCcont,pre (Ta-
ble 2). Spatial differences were not uniform, OCcont,adj was
higher in areas such as near the Irish coast and southeast
of the Isle of Man (Fig. 5). Area of Applicability (AOA)
analysis of our adjusted OCcont model showed that 97.1 %
of the study area fell within its AOA (Fig. S4). For the
DBDpost model, 93.6 % of the study area was within the
AOA (Fig. S4). RF model stability analysis revealed that a
prediction stability of 95 % was achieved with only 29 trees
(the models were trained with 500 trees), indicating highly
consistent predictions across runs. This low tree requirement
suggests the RF models are not overly sensitive to variation
in the training data.

In contrast, the adjusted DBD model (DBDpost) had a bet-
ter agreement with in situ data compared to DBDpre (Ta-
ble 1). DBDpost explained 48% of the variance in in situ DBD
data, with an RMSE of 192 kg m−3. Within the study area,
DBDpost predicted consistently lower values than DBDpre,
with a mean reduction of 310 kg m−3. This reduction was
even more pronounced in high mud regions like the Smalls
and the western Irish Sea “mud belt”, where average reduc-
tions reached 506 kg m−3 (Fig. 6).

These differences in DBD significantly influenced to-
tal OCstock estimates. Using the bias adjusted model
(OCstock,post), the total OC reservoir was 46.6± 43.6 Tg in
the study area, which was 68.6 % of the unadjusted model
estimate of 67.9± 63.0 Tg (Table 2). Despite this difference
in magnitude, both models predicted similar spatial patterns,
with higher OCcont and OCstock in the western Irish Sea “mud
belt” and “The Smalls” (Fig. 6), and lower values in deeper
central areas of the Irish Sea.

The results show that improvements in DBD modelling
had a stronger influence on total OCstock estimates than
improvements in OCcont. Replacing DBDpre with DBDpost
(while holding OCcont constant) lead to a 15.1 Tg reduction
in the total OC reservoir. In comparison, updating OCcont
alone reduced the estimate by 6.5 Tg.

5 Discussion

Our findings show that bias-adjusted model inputs reduced
estimates of organic carbon (OC) stock in surficial sediments
within the Irish Sea by nearly one-third (31.4 %). Adjusted
inputs better aligned with in situ measurements, with lower
errors observed for both OCcont,post and DBDpost compared
to their unadjusted counterparts. Among these, the greatest
reduction in OC stock resulted from RF modelling of DBD,
which replaced widely used porosity-based approaches. Im-
portantly, OC stock is not a directly measured value. In the
equation for calculating OC stock (Eq. 5), DBD acts as a
scaling factor that multiples the content of OC in the sed-
iment by the amount of sediment (DBD). Therefore, it is
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Figure 3. Cumulative distribution functions (CDF) of bias adjusted (adjusted) and not bias adjusted (modelled) model input data and obser-
vational data used in bias adjustment.

Figure 4. Partial dependence plots showing the relationship between OC content and bias adjusted predictors selected by FFS: mud content,
maximum wave orbital velocity at the seafloor, distance to the nearest coast, surface chlorophyll a, and bathymetry.

likely that better predictions of OC content and DBD will
result in more realistic estimates of OC stock. Additionally,
these findings highlight the importance of using improved
DBD models and suggests that previous estimates of OC
stock that used the porosity empirical relationship may repre-
sent overestimates. These improvements in OC stock estima-
tion are directly relevant to marine spatial planning, particu-
larly in the context of managing OC stocks under climate and
biodiversity targets. More accurate and regionally relevant
OC stock estimates can improve the reliability of national as-
sessments, help prioritise areas for protection, and inform in-

dustry activities, such as offshore renewable energy develop-
ment and fisheries management. Our results underscore the
importance of improving input data to enhance model relia-
bility for informing marine spatial planning decisions.

Approximately two-thirds (70.1 %) of the difference be-
tween adjusted and unadjusted OC stock estimates was due
to adjustments in DBD, with the remainder attributable
to differences in OC content predictions. DBDpost had re-
duced error and consistently lower values across the study
area (DBDpost mean 1191± 175 kg m−3; DBDpre mean:
1501± 65 kg m−3). While recent work has applied machine
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Figure 5. Partial dependence plots showing the relationship between bias adjusted predictors selected by FFS and dry bulk density (DBD):
sand content, surface summer suspended particulate matter, surface winter suspended particulate matter, mean wave orbital velocity at the
seafloor, maximum wave orbital velocity at the seafloor, and current velocity at the seafloor.

Table 2. Summary of outputs from models trained on non-bias adjusted data (predictorspre) and bias adjusted data (predictorspost). Mean
OCcont represents the mean prediction value across the study area; total reservoir estimate is the total OC stock reservoir for the study area;
mean DBD is the mean DBD predicted across the study area.

Total reservoir OC
Mean DBD Mean estimate (Tg)±

Input data (kg m−3)± sd OCcont (%)± sd total uncertainty

Predictorspre 1501.60± 66 0.65± 0.62 67.9± 62.9
Predictorspost 1191± 175 0.57± 0.58 46.6± 43.6

learning to estimate DBD (Diesing et al., 2024), most pre-
vious work has focused on modelling OC content, with less
attention given to DBD (Diesing et al., 2017, 2021; Smeaton
et al., 2021a). For example, unadjusted DBD was mod-
elled from porosity using DBD data solely collected from
the Mississippi-Alabama-Florida shelf (Jenkins, 2005) and
implicitly assumes global applicability of this relationship.
Moreover, the unadjusted DBD estimate assumed a constant
grain density (2650 kg m−3) (Diesing et al., 2017), how-
ever, even within similar sediment types grain density can
vary, marine mud grain densities can range from 2410 to
2720 kg m−3 (Opreanu, 2003). In contrast, > 90 % of the
study area has predictor data comparable to training data, we
can assume that the relationships “learned” by the model dur-

ing training are still applicable in the majority of the study
area. Additionally, Atwood et al. (2020) estimated DBD us-
ing a transfer function based on OC content, however, the
function was not based solely on marine sediment data and
contained OC content values substantially greater than those
observed on continental shelves. Since OC storage varies
from inland to coastal to shelf sediments (Smeaton et al.,
2021a), these methods may not be representative of shelf
sediments. Our results support calls for standardized DBD
measurement protocols and highlight DBD as a key uncer-
tainty in OC stock estimates (Graves et al., 2022). More re-
liable DBD estimates, as presented here, will result in more
robust baseline assessments of marine sediment OC stocks,
which are crucial to investigating the effects of human pres-
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Figure 6. (a) Predicted organic carbon (OC) content using adjusted
model inputs; (b) the associated uncertainty and (c) difference be-
tween not bias adjusted and bias adjusted predictions across the
study area (difference=OCcontent pre–OCcontent post); (d) Predicted
dry bulk density (DBD) content using adjusted model inputs; (e) the
associated uncertainty and (f) difference between DBD modelled
from porosity and using an RF (DBDadj–DBDunadj); (g) Predicted
organic carbon (OC) stock using adjusted model inputs; (h) the as-
sociated uncertainty and (i) difference between not bias adjusted
and bias adjusted predictions across the study area (difference =
OCstock,unadj–OCstock,adj). Negative values in panels (c), (f), and
(i) indicate where predictions with adjusted model inputs were
higher than non-bias adjusted inputs.

sures on seabed OC stocks and whether managing these sys-
tems can result in meaningful emissions reductions. For ex-
ample, more accurate DBD estimates can result in reduc-
ing the substantial uncertainties in CO2 emissions result-
ing from bottom trawling. Sala et al. (2021) and Atwood et
al. (2024) both suggest that as a result of bottom trawling,
significant amounts of CO2 may be emitted from resuspend-
ing OC stocks in marine sediment. However, results from our
study show OC stocks in surficial sediments may be substan-
tially lower than previously reported. Additionally, impacts
of trawling on marine sedimentary OC stocks has been iden-
tified as data deficient in the Irish Sea (Crowe et al., 2023),
therefore, in order to incorporate marine sediment OC stocks
in national marine spatial planning frameworks, more data
are needed to refine estimates and provide policy makers ro-
bust empirical evidence with which to base management de-
cisions.

Consistent with previous work, mud content (mudcont) was
identified as the most important predictor of OC content
(Diesing et al., 2017; Smeaton et al., 2021a). Muds across
fjords and other coastal sediments have been shown to con-
tain greater amounts of OC than sand, coarse sediments and
mixed sediments (Smeaton et al., 2021a). The clay fraction
in marine muds provides a large surface area for the adsorp-
tion and preservation of organic matter, including reactive
interlayer surfaces in certain clay minerals, making it a key
factor in OC sequestration (Babakhani et al., 2025; Keil and
Hedges, 1993; Kennedy et al., 2002). The capacity for sedi-
ments to bind OC through clay-OC interactions can also vary
with different mineral phases occurring in sediments, varying
in the surface charge and distribution, topography and parti-
cle size and subsequent geochemical conditions constraining
these characteristics (e.g. pH and ionic strength of pore wa-
ter) (Bruni et al., 2022; Hunt et al., 2020; Kleber et al., 2021;
Smeaton and Austin, 2019).

Our results showed a largely positive relationship between
mud content and OC content, but extremely low mudcont
values (< 0.05 %) were also associated with high OC con-
tent, which contrasts previous work that reported a posi-
tive relationship between the two parameters (Diesing et al.,
2017; Smeaton et al., 2021a). In continental shelves rela-
tionships between mud and OC content are complex. Lit-
tle variation in OC content between mud, sand and coarse
sediments has been reported on shelf areas (Smeaton et al.,
2021a). However, the lability of organic matter can vary sig-
nificantly between these environments (Smeaton and Austin,
2022). Marine muds have been shown to store organic mat-
ter ranging from highly reactive to highly resistant to degra-
dation, whereas coarser sediments typically only contain or-
ganic matter highly resistant to degradation (Smeaton and
Austin, 2022). Furthermore, muddy sediments tend to house
higher infaunal biomass than coarser sediment, and these
benthic faunae coupled with microbial metabolism play a key
role in mediating OC mineralisation and preservation (Lin
et al., 2022). For example, Zhang et al. (2024) bioturbation-

https://doi.org/10.5194/bg-22-5975-2025 Biogeosciences, 22, 5975–5990, 2025



5986 M. Chatting et al.: The role of dry bulk density and predictor adjustments

induced remineralisation can account for between 25 % and
30 % of total seabed respiration (Zhang et al., 2024). These
biological processes act alongside sediment disturbance from
commercial fishing to create this nuanced relationship be-
tween mud and organic matter content (Epstein and Roberts,
2022; Zhang et al., 2024), which may explain why mud did
not exhibit a clear positive relationship with OC content.

In addition, the importance of maximum wave orbital ve-
locity at the seafloor in our model highlights the role of
hydrodynamics in shaping OC content. In agreement with
previous research (Song et al., 2022), we found an inverse
relationship between OC content and maximum wave or-
bital velocity at the seafloor. High energy environments with
thicker Sediment Mixed Layers (SML) limit OC burial by
resuspending fine particles and increasing oxygen exposure,
potentially increasing remineralization and reducing organic
carbon accumulation rates (Song et al., 2022). However, in
dynamic coastal regions, processes governing carbon min-
eralization in marine sediments are still not clear. First, the
interaction between sediment resuspension, microbial com-
munity activity, and carbon mineralization pathways remains
poorly constrained (LaRowe et al., 2020). Oxygen expo-
sure time is a key driver of OC degradation (Hartnett et al.,
1998) and the extent of short-term disturbance events, such
as storms or trawling, that impact oxygen penetration depth
and thus carbon remineralization rates is not well understood
(Bartl et al., 2025; Glud, 2008). Additionally, the interac-
tion between bioturbation and resuspension driven transport
of sediments is not well quantified in models predicting car-
bon storage (Cozzoli et al., 2019). The hydrodynamic regime
has a strong influence over sediment type, as high energy en-
vironments prevent mud deposition or resuspend finer parti-
cles, while low energy environments allow fine sediments to
settle and accumulate, which is conducive to mud deposition
and OC accumulation (Hanebuth et al., 2015). Similar find-
ings were reported by Diesing et al. (2017), where low hydro-
dynamic activity was positively correlated with OC content.
These insights, coupled with the present work, underscore
the need to incorporate sediment dynamics, such as sediment
mixing or disturbance, into models predicting OC stock, par-
ticularly in light of human activities such as trawling and off-
shore development (Epstein and Roberts, 2022).

Diesing et al. (2017), Smeaton et al. (2021a) and Atwood
et al. (2020) all reported improved model accuracy compared
to the present study. For example, Diesing et al. (2017) and
Atwood et al. (2020) reported R2 values of 75 % and 76 %,
respectively, compared to 47 % in the present study (bias ad-
justed OC content). These apparent differences in model per-
formance may be due to the validation approach used and
spatial autocorrelation, which may be inflating model met-
rics (Milà et al., 2022). For example, the present study used
the kNNDM algorithm to ensure spatial independence be-
tween cross validation training folds. However, random k
fold cross validation, as used by Atwood et al. (2020) and
Diesing et al. (2017), are likely to train and test on data

that are spatially dependant, and thus artificially increasing
the likelihood of the model predicting correctly (Milà et al.,
2022). Similarly, Smeaton et al. (2021a) who did use a form
of spatial cross validation reported comparable model per-
formance to our study (R2

= 53 %, RMSE= 1.72). Smeaton
et al. (2021a) used “spatial blocks” to determine train/test
splits. However, these spatial blocks were defined as ICES
statistical grids, which do not ensure spatial independence
between train/test folds, unlike the kNNDM algorithm used
in the present study.

Predictions presented here still carry uncertainty, despite
reducing model error through adjusting model input data.
Uncertainty in OC stock estimates was greatest in nearshore
areas, around the perimeter of the western Irish Sea “mud
belt” and the “Smalls”, which coincided with higher OC
stock predictions. These areas intersect with zones of in-
tense human activity, such as bottom trawling and offshore
development (Crowe et al., 2023), highlighting the need
for caution in marine spatial planning decisions that rely
solely on model outputs. Improving spatial coverage of in
situ measurements, especially of DBD and OC content, in
these higher uncertainty zones would help refine model es-
timates. The OC stock uncertainty presented here likely un-
derestimates the true uncertainty due to unreported sampling
errors in OC content measurements and modelled predictor
data. Additionally, DBD data were lacking across the study
area and only 3 % (18 of 642) of all DBD observational data
used in bias adjustment were located within the study area.
However, despite low spatial coverage of training data points
within the study area, analysis of the adjusted DBD model’s
AOA revealed it can still be expected to perform well within
the study area. Findings from the present study show spa-
tial models of organic carbon can still be significantly im-
proved from increased in situ data. Additionally, incorporat-
ing these datasets into public repositories can improve ef-
forts to estimate organic carbon stocks by providing ground
truthed data on which to base numerical models. The refined
estimates presented in this study rely on large amounts of in
situ data and environmental predictors, making this approach
most suitable for data-rich regions. Within our study area, the
limited availability of DBD measurements required the use
of an Area of Applicability (AOA) analysis to assess whether
the adjusted DBD model could be reliably applied, highlight-
ing potential limitations of this approach in data-poor set-
tings. Nonetheless, our findings demonstrate that where suffi-
cient observational data are available, OC stock estimates can
be substantially improved. As more in situ datasets become
available in currently under-sampled regions, this modelling
framework can be replicated and further refined to support
better-informed carbon assessments.
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6 Conclusions

Overall, our findings suggest that marine sedimentary OC
stocks could be lower than previously estimated, with im-
plications for marine spatial planning and nature-based cli-
mate solutions. A key result of this study is that uncertainties
in dry bulk density (DBD) estimates strongly influence OC
stock predictions. We show that reliance on previously de-
veloped empirical relationships for DBD can introduce sub-
stantial error, underscoring the need for regionally relevant
data. Improved OC stock estimates, grounded in more accu-
rate DBD values, can support more informed seabed man-
agement by identifying areas with higher carbon vulnerabil-
ity or conservation potential. The findings suggest that im-
proving model inputs based on in situ data, may help refine
model predictions to be more locally relevant. We highlight
the critical role that accurate DBD estimates play in deter-
mining OC stock. Moving forward, more comprehensive in
situ DBD measurements and refined DBD models are essen-
tial for improving the accuracy of OC stock predictions. Al-
ternatively, OC stocks could be calculated directly per sed-
iment core, reducing the number of models needed to esti-
mate OC stocks, thus reducing uncertainty in final estimates.
These efforts will be instrumental in developing better strate-
gies for managing marine sedimentary OC stocks.

Code and data availability. Spatially modelled organic carbon
content, stock data, and their associated uncertainties are available
as a Zenodo repository (https://doi.org/10.5281/zenodo.14859981,
Chatting, 2025). Additionally, the bias adjusted predictor data lay-
ers developed and the random forest dry bulk density model can be
accessed from Zenodo (https://doi.org/10.5281/zenodo.14859981,
Chatting, 2025). The underlying code used to develop
these data layers and produce spatial predictions of or-
ganic carbon content and stock is available from Zenodo
(https://doi.org/10.5281/zenodo.14859981, Chatting, 2025).
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