Supplement of Biogeosciences, 22, 6153–6171, 2025 https://doi.org/10.5194/bg-22-6153-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Savanna ecosystem structure and productivity along a rainfall gradient: the role of competition and stress tolerance mediated by plant functional traits

Prashant Paudel et al.

Correspondence to: Benjamin Smith (ben.smith@nateko.lu.se)

The copyright of individual parts of the supplement might differ from the article licence.

Clustering of Species into functional groups

A hierarchical clustering process was used to group species into a different cluster based on similarity in plant strategies where species were progressively divided into functionally different groups. Initially, species were divided based on nitrogen fixation capacity, where only three species were identified as nitrogen fixers. Among nitrogen fixers, two species were identified as high-water-requiring species (C1: Nitrogen fixing Mesic Tree), and Acacia species was identified as intermediate water-requiring species (C2: Acacia-Nitrogen fixing intermediate trees). On another side, no-nitrogen fixers were savannas trees differing in height and leaf phenology (evergreen and deciduous). Firstly, savanna trees were divided into three groups based on height (height >25m as taller, 10-25m as medium, and <10 as small trees). These trees were further divided based on leaf phenology, resulting in five different clusters, namely tall eucalypt, medium evergreen savanna trees, medium deciduous trees, small evergreen trees, and small deciduous trees.

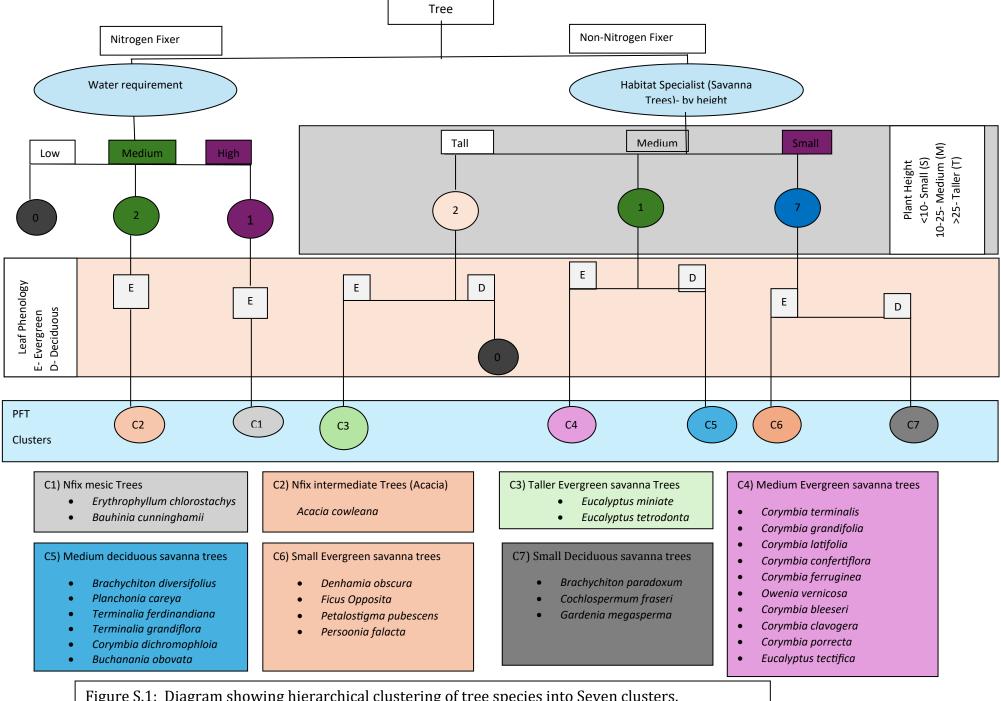


Figure S.1: Diagram showing hierarchical clustering of tree species into Seven clusters.

Tree PFTs parameter values

The compilation of species traits information (data) for all 28 species, including understory vegetation, from various sources such as AusTraits (Falster et al., 2021; Williams et al., 1997) and Atlas of Living Australia (https://www.ala.org.au/), was done. Key traits such as leaf phenology, leaf longevity, wood density, nitrogen fixation potential, plant height, specific leaf area, shade tolerance, and leaf turnover rate were compiled. These traits reflect both the phenological and morphological characteristics of the species, as well as their ecological strategies. According to Williams et al. (1997), tropical savannas typically contain either tropical broadleaved evergreen or tropical broadleaved raingreen trees, which shed their leaves in the dry season, depending on the rainfall patterns and evolutionary history of the region. Additionally, data on the rainfall status at species occurrence sites and their responses to fire were recorded to provide a comprehensive understanding of their ecological roles. Following the compilation of species traits, these data were used to define the parameters for each Plant Functional Type (PFT). The parameters included leaf phenology (evergreen or rain green), leaf longevity, wood density, specific leaf area, shade tolerance, leaf turnover rate (calculated as 1/leaf longevity), and the ratio of leaf area to sapwood cross-section area (k_latosa). For each PFT cluster, the mean values of these parameters were calculated by averaging the recorded values of the species within that cluster.

Table S.1: Parameters and their field observation values and adjusted values for simulation representing the savanna ecosystem.

Parameters	PFTs									
	Tall eucalypt (Tall_euc)	Medium evergreen (Med_eve)	Medium Deciduous (Med_dec)	Acacia	Small evergreen (small_eve)	Small deciduous (small_dec)	Nitrogen fixing mesic tree (Nfix_mecic)			
Zone	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical	Tropical			
Leaf phenology	Broadleaved	Broadleaved	Broadleaved	Broadleaved	Broadleaved	Broadleaved	Broadleaved			
	Evergreen	Evergreen	Raingreen	Evergreen	Evergreen	Raingreen	Raingreen			
Shade tolerance	Intolerant	Intolerant	Intolerant	Intolerant	Intermediate tolerant	Intolerant	Intolerant			
SLA (m²/kgC)	11	11	18	12	11 (30.26)	26	20			

Parameters	PFTs								
	Tall eucalypt (Tall_euc)	Medium evergreen (Med_eve)	Medium Deciduous (Med_dec)	Acacia	Small evergreen (small_eve)	Small deciduous (small_dec)	Nitrogen fixing mesic tree (Nfix_mecic)		
Wood Density (kgC/m³) (field observation)	425	350	216	290 (355)	320	355	500		
Wood Density (kgC/m³)- (adjusted)	230	250	250	350	190	250	250		
Leaf area to Sapwood cross-section area - (field observation)	5000	3900	3150	4600	3000	1760	3800		
Leaf area to Sapwood cross-section area (adjusted)	5200	4500	4000	4500	4000	2000	3800		
Leaflong (years)	1.5 (13-18 months)	1.5 (use from Tall_euc)	0.8 (9 months)	2	2	0.4 (3-5 months)	0.7 (9 months)		
Turnover leaf (fraction/year)	0.6	0.66	1	0.5	0.5	1	1		
Root in top 50 cm (%)	43.1	43.1	47.6	45	55	47.6	62.8		

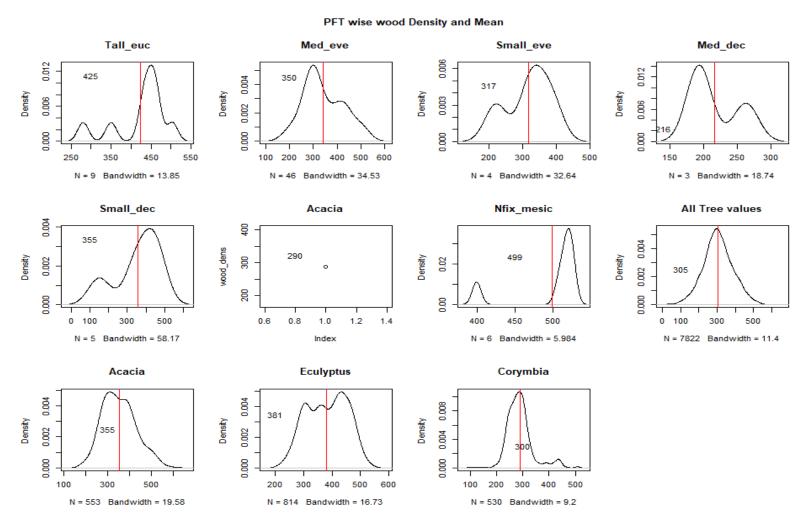


Figure S.2: PFT wise wood density from AusTraits (*Acacia*, Med_dec - Medium sized deciduous trees, Med_eve - medium sized evergreen trees, Nfix_mesic - Nitrogen fixing mesic trees, Small_dec - Small sized deciduous trees, Small_eve - Small sized evergreen trees, Tall_euc - tall eucalyptus trees).

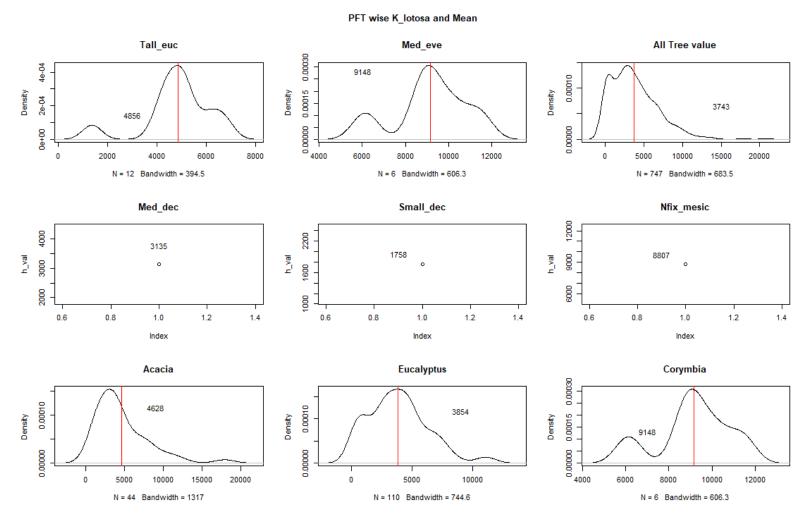


Figure S.3: PFT wise leaf area to sapwood cross section area (klatosa) from AusTraits (Acacia, Med_dec - Medium sized deciduous trees, Med_eve - medium sized evergreen trees, Nfix_mesic - Nitrogen fixing mesic trees, Small_dec - Small sized deciduous trees, Tall_euc - tall eucalyptus trees).

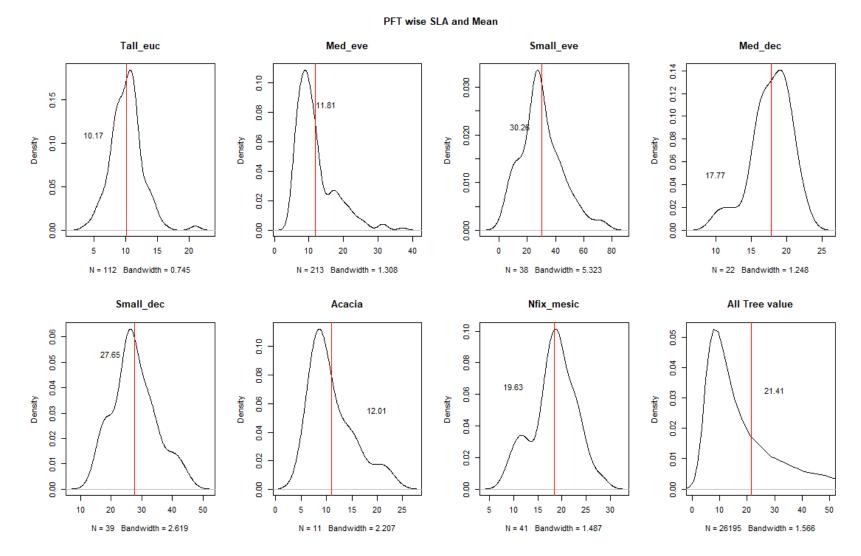


Figure S.4: PFT wise Specific leaf area from AusTraits (*Acacia*, Med_dec - Medium sized deciduous trees, Med_eve - medium sized evergreen trees, Nfix_mesic - Nitrogen fixing mesic trees, Small_dec - Small sized deciduous trees, Small_eve - Small sized evergreen trees, Tall_euc - tall eucalyptus trees).

Species-level fractional cover of plot-based point intercept survey(ausplot: (Munroe et al., 2021) were aggregated to PFTs level for comparing simulated foliar projective cover (FPC). Both simulated and observed PFTs distribution along the gradient shows similar patterns, although simulated outputs showed clearer trends. This likely reflects the nature of data disparity, observed PFC was measured at the site scale (1 ha) along the transect (Munroe et al., 2021), capturing local patterns of composition and abundance influenced by microenvironments, disturbance histories, and stochastic processes—factors that are difficult to represent mechanistically in models. The simulated FPC, by contrast, represents a landscape-scale average vegetation. Similarly, the presence of grasses (hummock and tussock) in the wetter end of the gradient was higher than simulated C4 grasses; this disparity is partly due to the use of a default global representation for this functional group.

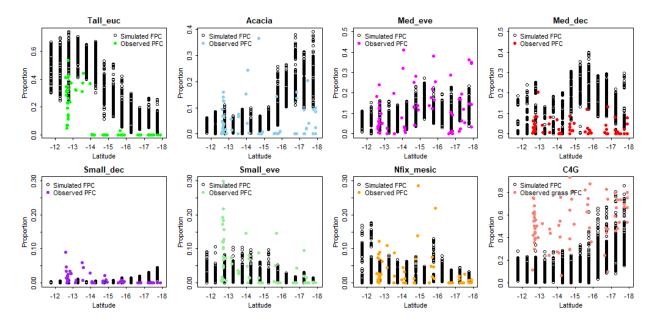


Figure S.5: PFT-wise simulated FPC and observed PFC from ausplot along the rainfall gradient (Acacia, C₄G – grasses, Med_dec - Medium sized deciduous trees, Med_eve - medium sized evergreen trees, Nfix_mesic - Nitrogen fixing mesic trees, Small_dec - Small sized deciduous trees, Small_eve - Small sized evergreen trees, Tall_euc - tall eucalyptus trees), both 'Hummock grass &Tussock grass' are inclided in observed PFC of grass.

References

Falster, D., Gallagher, R., Wenk, E. H., Wright, I. J., Indiarto, D., Andrew, S. C., Baxter, C., Lawson, J., Allen, S., Fuchs, A., Monro, A., Kar, F., Adams, M. A., Ahrens, C. W., Alfonzetti, M., Angevin, T., Apgaua, D. M. G., Arndt, S., Atkin, O. K., Atkinson, J., Auld, T., Baker, A., von Balthazar, M., Bean, A., Blackman, C. J., Bloomfield, K., Bowman, D. M. J. S., Bragg, J., Brodribb, T. J., Buckton, G., Burrows, G., Caldwell, E., Camac, J., Carpenter, R., Catford, J. A., Cawthray, G. R., Cernusak, L. A., Chandler, G., Chapman, A. R., Cheal, D., Cheesman, A. W., Chen, S. C., Choat, B., Clinton, B., Clode, P. L., Coleman, H., Cornwell, W. K., Cosgrove, M., Crisp, M., Cross, E., Crous, K. Y., Cunningham, S., Curran, T., Curtis, E., Daws, M. I., DeGabriel, J. L., Denton, M. D., Dong, N., Du, P., Duan, H., Duncan, D. H., Duncan, R. P.,

Duretto, M., Dwyer, J. M., Edwards, C., Esperon-Rodriguez, M., Evans, J. R., Everingham, S. E., Farrell, C., Firn, J., Fonseca, C. R., French, B. J., Frood, D., Funk, J. L., Geange, S. R., Ghannoum, O., Gleason, S. M., Gosper, C. R., Gray, E., Groom, P. K., Grootemaat, S., Gross, C., Guerin, G., Guja, L., Hahs, A. K., Harrison, M. T., Hayes, P. E., Henery, M., Hochuli, D., Howell, J., Huang, G., Hughes, L., Huisman, J., Ilic, J., Jagdish, A., Jin, D., Jordan, G., Jurado, E., Kanowski, J., et al.: AusTraits, a curated plant trait database for the Australian flora, Sci. Data, 8, 1–20, https://doi.org/10.1038/s41597-021-01006-6, 2021.

Munroe, S., Guerin, G., Saleeba, T., Martín-Forés, I., Blanco-Martin, B., Sparrow, B., and Tokmakoff, A.: *ausplotsR*: An R package for rapid extraction and analysis of vegetation and soil data collected by Australia's Terrestrial Ecosystem Research Network, J. Veg. Sci., 32, e13046, https://doi.org/10.1111/jvs.13046, 2021.

Williams, R. J., Myers, B. A., Muller, W. J., Duff, G. A., and Eamus, D.: Leaf Phenology of Woody Species in a North Australian Tropical Savanna, Ecology, 78, 2542–2558, 1997.