Supplement of Biogeosciences, 22, 6275–6289, 2025 https://doi.org/10.5194/bg-22-6275-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

On-site microbiome study of silica structures in a subterranean Mars analog environment

Martina Cappelletti et al.

Correspondence to: Martina Cappelletti (martina.cappelletti2@unibo.it)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary File

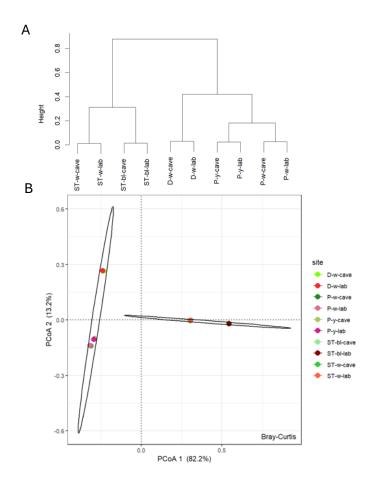


Figure S1: Comparison between the results obtained using the Cave_ and Lab_pipeline in terms of betadiversity. The legend acronyms refer to Table S1. Cluster dendrogram (A) and Principal coordinates analysis (B) of Bray-Curtis dissimilarities of all the samples analysed using cave_pipeline (names with "cave") and lab_pipeline (names with "-lab).

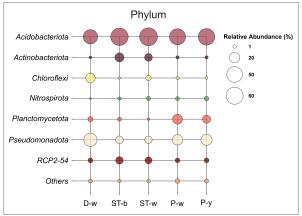


Figure S2: Bubble plot showing the most abundant microbial taxa in each sample at the phylum level.

Table S1: Description of the samples collected in Imawari Yeuta cave, including samples number, barcode association and sampling site characteristics

Sample code	Description					
D-w	White dots with dendritic aspect, similar to Qz samples that were previously described in Ghezzi et al. (2021, 2022)					
P-y	Yellow patina/biofilm on the quartzite floor of Imawarì Yeutà					
P-w	White patina/biofilm on the quartzite floor of Imawarì Yeutà immediately around the yellow patina					
ST-w	White colonies/patina at the interface of the silica stromatolite with the quartzite rock					
ST-b	Blackish/greyish patina covering the top part of the silica stromatolite					

Table S2: Description of the main characteristics of the two pipelines that were applied to analyse the ONT sequencing data including rate of subsampling, basecalling applied, internet need, and time to process 100k row reads

	Cave_procedure	Lab_procedure
Subsampling	25%	100%
Basecalling mode	Fast ^a	Accurate
Internet connection	Not needed	Preferable ^b
Taxonomy classification	EMU classifier (Silva database)	EMU classifier (Silva database)
Time to process 100k raw reads	Ca. 10 min ^c	Ca. 45 min - 1 h

^a Basecalling was directly performed during the sequencing run by the MinK1C Minion Internet connection is needed with computers/laptops with standard computational capacity

Table S3: Ecoplate carbon sources classification

Biochemical classification	Compounds
Carbohydrates	B-Methyl-D-Glucoside
	D-Xylose
	i-Erythritol
	D-Mannitol
	N-Acetyl-D-Glucosamine
	D-Cellobiose
	Glucose-1-Phosphate
	α-D-Lactose
	D,L-α-Glycerol Phosphate

^c Carrying out the subsampling

D- Galactonic Acid γ-Lactone			
Pyruvic Acid Methyl Ester			
D-Galacturonic Acid			
2-Hydroxy Benzoic Acid			
4-Hydroxy Benzoic Acid			
γ-Amino Butyric Acid			
D-Glucosaminic Acid			
Itaconic Acid			
α-Keto Butyric Acid			
D-Malic Acid			
Tween 40			
Tween 80			
α-Cyclodextrin			
Glycogen			
L-Arginine			
L-Asparagine			
L-Phenylalanine			
L-Serine			
L-Threonine			
Glycyl-L-Glutamic Acid			
Phenylethyl-amine			
Putrescine			

Table S4: Description of the raw sequencing data obtained by processing ONT sequencing reads obtained in the cave using the Cave_pipeline and Lab_pipeline

		Cave_pipeline		Lab_pipeline			
Sample	# basecalled reads	Filtered reads	# reads mapped by EMU	# basecalled reads	Filtered reads	# reads mapped by EMU	
Р-у	117509	27233	27231	105820	97993	97980	
P-w	102785	24244	24240	94623	88661	88649	
ST-w	132029	24476	24463	113894	86442	86397	
ST-bl	63345	13473	13466	56284	48034	48023	
D-w	135197	32719	32715	124739	119934	119917	

Table S5: Statistical analysis of the correlation between the cave and lab datasets for each sample

considering the whole dataset using Chi-square goodness of fit test

	p-value ^a							
Sample/Barcode	Taxonomy level							
	Phylum	Class	Order	Family	Genus			
Р-у	>0.99*	>0.99*	>0.99*	>0.99*	>0.99*			
P-w	>0.99*	>0.99*	>0.99*	>0.99*	>0.99*			
ST-w	>0.99*	>0.99*	>0.99*	>0.99*	>0.99*			
ST-b	>0.99*	>0.99*	>0.99*	>0.99*	>0.99*			
D-w	>0.99*	>0.99*	>0.99*	>0.99*	>0.99*			

^a Calculated through Chi-square goodness of fit test setting the null hypothesis (H0) = the two samples are NOT significantly different

Table S6:Shannon index values calculated using the results obtained from the cave_pipeline and the

lab_pipeline

Sample/Barcode	Shannon index									
	Phylum		Class		Order		Family		Genus	
	CAVE	LAB	CAVE	LAB	CAVE	LAB	CAVE	LAB	CAVE	LAB
P-y	1.31	1.33	1.46	1.48	2.51	2.55	2.68	2.72	2.86	2.91
P-w	1.41	1.42	1.57	1.62	2.58	2.64	2.78	2.84	2.96	3.01
ST-w	1.17	1.19	1.25	1.27	1.83	1.86	1.84	1.88	1.92	1.96
ST-bl	1.18	1.19	1.29	1.28	1.51	1.52	1.52	1.53	1.57	1.58
D-w	1.36	1.37	1.58	1.60	2.49	2.52	2.67	2.70	3.04	3.03

Table S7: Percentage of Amplicon sequence variants (ASV) unclassified at all taxonomy levels in each

sample

	Unclassified ASVs %								
Sample/Barcode	Taxonomy level								
	Phylum	Class	Order	Family	Genus				
Р-у	< 0.001	3.30	5.64	59.91	79.99				
P-w	< 0.001	3.32	5.91	54.12	78.67				
ST-w	< 0.001	8.07	10.08	79.25	86.67				
ST-b	< 0.001	9.67	15.71	84.26	90.18				
D-w	< 0.001	3.54	4.92	45.12	66.97				

^{*} Values for which H0 is NOT rejected, the two datasets are not statistically different