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Abstract. We investigate oxygen (O2) transport through
stomata, focusing on its interaction with water vapour (H2O)
flux. The dominant H2O flux exerts a drag force on other
gases, a well-studied effect in the ternary air–water vapor–
carbon dioxide (CO2) system but unexplored for O2 trans-
port. This study aims to: (1) apply the Stefan-Maxwell equa-
tions to a quaternary system of H2O, O2, CO2, and N2; (2)
identify conditions where O2 transport from stomata to the
atmosphere occurs against its mole fraction gradient (“up-
hill”); and (3) derive an expression linking the O2 mole frac-
tion in sub-stomatal air spaces (xoi) to that in the atmosphere
(xoa) based on atmospheric relative humidity.

Our theoretical results, constrained by typical values from
previous flux observations of this quaternary system, reveal
distinct transport regimes defined by the mole flux ratio of
H2O and O2 (Fw/Fo). Uphill O2 diffusion occurs in the
common regime where Fw/Fo� 1, and internal O2 mole
fraction increases towards its atmospheric value as relative
humidity tends to 100 %. These theoretical results offer a
framework for interpreting laboratory and field experiments
on stomatal O2 exchange under stagnant atmospheric or low
Reynolds number conditions and can support the develop-
ment of more physically accurate models of leaf–atmosphere
oxygen exchange.

1 Introduction

The terrestrial biosphere exchange of water (H2O), carbon
dioxide (CO2) and oxygen (O2), plays a crucial role in the
global water and carbon cycles. These cycles integrate pro-
cesses across scales, from the stomatal level to the global
atmosphere. Transport between stomata and the atmosphere
represents the smallest-scale process governing the exchange
of greenhouse gases. When scaled up to leaf and canopy
levels, this stomata-atmosphere interaction modifies surface
fluxes, which directly influence the diurnal variability of car-
bon tracers (Faassen et al., 2023) and impacts weather (Ja-
cobs and de Bruin, 1997; Boussetta et al., 2013) and climate-
carbon patterns (Bonan et al., 2024). Advancing our under-
standing of these interactions requires a more integrated ap-
proach that bridges ecophysiology and transport dynamics
across multiple scales (Vilà-Guerau de Arellano et al., 2023;
Miralles et al., 2025). In doing so, we improve the represen-
tation of carbon tracers across a wide range of scales.

While the exchange of CO2 (Goudriaan, 1977; von Caem-
merer and Farquhar, 1981) and H2O (Jarvis and Mc-
Naughton, 1986), typically quantified through molar flux
density, has been extensively studied and well-characterized,
the transport of O2 between stomata and the atmosphere
has received comparatively little attention. Recent advances
now allow biosphere-atmosphere exchange of O2 to be mea-
sured with increasing accuracy (Stephens et al., 2007; Ishi-
doya et al., 2013; Battle et al., 2019; Faassen et al., 2023),
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supported by conceptual land-atmosphere modelling stud-
ies (Yan et al., 2023; Faassen et al., 2024). This provides
a unique opportunity to study the H2O-CO2-O2 system
through a complete and integrated approach, advancing our
understanding of processes related to photosynthesis and the
transport of carbon tracers. Notably, O2 transport exhibits
distinct characteristics: O2 exists at a much higher mole frac-
tion in the atmosphere than either CO2 or water vapour, yet
its flux is of the same order of magnitude as that of CO2 and
typically two to three orders of magnitude smaller than the
water vapour flux. As a result, the O2 flux may be influenced
by fluxes of other gases. The significance of this issue can
strongly affect the interpretation of O2 exchange on stomatal
level, as was recently highlighted by Vesala (2024), whereas
on the scale of canopy exchange the O2-transport is domi-
nated by turbulent fluxes (Ishidoya et al., 2013; Faassen et al.,
2023).

The stomatal–atmosphere exchange is affected by molec-
ular interaction between gases (also referred to as species).
This exchange is primarily driven by the dominant effect of
water (i.e. stomatal transpiration) relative to the individual
fluxes of O2 and CO2. Specifically, transpiration at the stom-
atal level generates drag forces (also referred to as frictional
forces) and a bulk displacement of air known as Stefan (or
molar) flow. This process leads to gradients between the sub-
stomatal cavity and the atmosphere mole fractions, thereby
modifying their diffusive transport. Traditionally, the rela-
tionship between the flux of a given species and its mole frac-
tion gradient is described by Fick’s law, but the additional
drag forces associated with multicomponent interactions can
lead to the emergence of more complex (non-Fickian) flux–
gradient relationships. Accurately interpreting measurements
of O2, CO2, and H2O, as well as their representation in mod-
els, requires these species–species interactions to be taken
into account, e.g. Jarman (1974). In this framework, the
Stefan–Maxwell equations provide a more complete descrip-
tion than Fick’s law, unifying the effects of molar flow, inter-
species drag (friction), and diffusive flux into a single formu-
lation. Fick’s law can be deduced from the Stefan–Maxwell
equations as an approximation.

To address this in the case of O2, we investigate the trans-
port of O2, CO2, H2O, and the inert carrier nitrogen (N2) be-
tween the leaf intercellular space within the stomata and the
atmosphere. Our approach is based on the well-established
theory of multicomponent diffusion (Jarman, 1974). Mathe-
matically, the theory is encapsulated in the Stefan–Maxwell
equations, which describe the net balance between the ther-
modynamic force (i.e. mole fraction gradient) on a given
species that drives its diffusion and the momentum exchange
(frictional drag) arising from binary collisions with all the
other species, which depends on their relative molar veloci-
ties. Previous studies have shown that Stefan flow can play
a significant role in CO2 transport at the stomatal level (Jar-
man, 1974), and may also be relevant at larger atmospheric
scales – from the canopy to the atmospheric boundary layer –

as well as for key compounds involved in the photosynthesis
cycle, such as O2 (Kowalski et al., 2021). However, a com-
prehensive mathematical description of oxygen exchange in
relation to water vapour, carbon dioxide, and nitrogen at the
stomatal level remains absent.

We adopt a two-step approach. First, we analyze a bi-
nary mixture following the method described in Lushnikov
et al. (1994) where one species diffuses in a stagnant carrier
species. Secondly, we examine a multicomponent (quater-
nary) system consisting of H2O, O2, CO2 diffusing in stag-
nant N2, building on previous analyses of ternary systems,
such as H2O-CO2-air (Jarman, 1974; von Caemmerer and
Farquhar, 1981). Our key objectives are:

1. To derive interrelated molar flux density and gradient
expressions for O2, H2O, and CO2 that account for the
net balance between drag and thermodynamic forces.

2. To identify general conditions under which the transport
of O2 occurs against its mole fraction gradient, referred
here as “uphill”, due to the drag effect of transpiration.

3. To derive an expression for the internal stomatal O2
mole fraction as a function of atmospheric relative hu-
midity.

To achieve these objectives, we apply the Stefan-Maxwell
equations to the system composed of N2-O2-H2O-CO2. We
focus on the transport processes between stomata and the at-
mosphere, without explicitly accounting for the biochemistry
of O2 sources and sinks within the leaf. While our study is
based on theoretical calculations, these are constrained by
representative measurements of water vapour, carbon diox-
ide, and oxygen fluxes at the leaf level (Vilà-Guerau de Arel-
lano et al., 2020), which are subsequently scaled down to the
stomatal level at which the Stefan-Maxwell equations apply.

The rest of the paper is structured as follows. In Sect. 2 we
outline the three key elements of multicomponent diffusion
theory that were used in this study: molar balance, decompo-
sition of species transport into molar flow and molecular dif-
fusive flux components, and the Stefan-Maxwell equations
relating species mole fraction gradients to species flux den-
sities. In Sect. 3, as a simple reference case, we use this the-
ory to derive expressions for gas transport in a binary system
consisting of one tracer species diffusing in stagnant air (e.g.
Jarman, 1974). In Sect. 4 we extend this theory to a more
realistic quaternary system consisting of O2, H2O and CO2
diffusing in stagnant N2. In particular, we derive a simple
expression linking the O2 mole fraction gradient to relative
humidity. We then identify the general regime conditions of
O2 transport with respect to the water vapour flux. We dis-
cuss the implications of these results in Sect. 5.
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2 Multicomponent diffusion theory

To study the exchange of O2 between a single stoma and a
stagnant atmosphere relating to H2O, CO2 and N2, we de-
rive a theory that is applied to gas transport through a sin-
gle stomatal pore. Our derivations are at the stomatal level,
but can be scaled up to the leaf level. When discussing our
results numerically using representative leaf-scale flux ob-
servations (Vilà-Guerau de Arellano et al., 2020), we con-
vert from stomatal-scale flux densities (mol m−2 pore s−1) to
leaf-scale flux densities (mol m−2 leaf s−1). In short, by mul-
tiplying the stomatal-scale flux density by the cross-sectional
area of a pore (m2 pore), we obtain the flux through a single
stoma. Multiplying this value by the stomatal density (num-
ber of stomata per m2 of leaf surface) then yields the flux
density at the leaf scale.

Our key conclusions do not depend on this conversion fac-
tor, since this it cancels out when scaling (or downscaling)
from the stomata to the atmosphere. For simplicity we con-
sider one-dimensional gas transport through a stomatal pore
connecting the stomatal interior to the external atmosphere.
Appendix B describes the geometrical assumptions underly-
ing this simplification. The theory presented in the next sec-
tion can readily be generalized to three spatial dimensions.
Finally, for clarity, Table A1 in Appendix A, provides sym-
bol definitions, units, and representative parameter values, in-
cluding typical values for mole fractions, prescribed molar
flux densities based on observations, and molecular diffusiv-
ity coefficients.

2.1 Molar balance

Molar balance of a tracer provides the overall context for
the description of multicomponent diffusion. The molar bal-
ance equation for cα , the concentration of chemical species
α (units mol m−3), reads

∂cα

∂t
= −

∂Fα

∂l
= Rα, (1)

where Fα (mol m−2 s−1) and Rα are, respectively, the
stomatal-scale molar flux density and the net production rate
(i.e.. sources – sinks) of species α, t is time and l is the dis-
tance along the pore (see Fig. B1). For n species, the total
mole fraction of the mixture is

ct =

n∑
α=1

cα. (2)

and Eq. (1) can then be re-expressed in terms of the mole
fraction xα = cα/ct (t is here the total amount of species), as

∂xα

∂t
= −

1
ct

∂Fα

∂l
+ rα, (3)

where rα = Rα/ct.

2.2 Decomposition of fluxes into molar flow and
diffusive flux

For each chemical species α, we can decompose its molar
flux density Fα into a component related to the average flow
of the mixture as a whole (molar flow, also called Stefan
flow) and a diffusive component related to its transport rel-
ative to this average (diffusive flux). We first note that Fα is
related to the species velocity uα (relative to the stationary
laboratory frame) by

Fα = cαuα (4)

The mole-average velocity of the mixture (u) is defined as
the sum of the species velocities weighted by their respective
mole fractions:

u =

n∑
α=1

xαuα, (5)

By substituting xα = cα/ct into Eq. (5) and using Eq. (4),
u can be expressed in terms of the total molar flux density of
the mixture (Ft):

u =
Ft

ct
, (6)

where

Ft =

n∑
α=1

Fα, (7)

We can then decompose Fα (Eq. 4) into the sum of a Stefan
flow defined by

sα = cαu, (8)

and a diffusive flux defined by

fα = cα(uα − u). (9)

Using Eqs. (4) and (9), we can find an expression of the flux
Fα related to the molar flow and the diffusive flux:

Fα = cαuα = sα + fα. (10)

From these relationships we note that the total diffusive
flux of the mixture is zero, i.e..

∑n
α=1fα = 0.

Whereas Eqs. (8) and (9) define Stefan flow and diffusion
in terms of species velocities, we can use Eqs. (6) and (10)
to re-express these components in terms of the species molar
flux densities, giving

sα = xαFt (11)

and

fα = Fα − xαFt. (12)
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From Eq. (11) we note that the Stefan flow of a given
species is proportional to its mole fraction so that, for a
given total flux density Ft, we expect Stefan flow to be much
larger for O2 (xo = 0.21) than for H2O (xw = 10−2) or CO2
(xc = 4×10−4) (see Table A for additional values). Using the
decomposition of Eqs. (8)–(10), we can then re-express mo-
lar balance (Eq. 3) as

∂xα

∂t
+
∂(xαu)

∂l
= −

1
c

∂fα

∂l
+ rα. (13)

where the first and second terms on the right-hand side rep-
resent the contributions to molar transport from Stefan flow
and diffusion, respectively.

To complete our analysis of the molar O2-equation, and fo-
cusing on the molar balance for oxygen, Appendix D shows
Eq. (13) in a dimensionless form. The analysis shows that the
diffusive term can be ignored at atmospheric scales – due to
the dominance of turbulence with respect the molecular dif-
fusion transport. However, at the stomatal scale, character-
ized by low Reynolds numbers (rougly speaking maximum
values of 104, the Stefan flow and the diffusive terms needs
to be included. It is at this stomatal scale, and in order to solve
Eq. (13) for the mole fractions xα , we need to relate the Ste-
fan flow and diffusion terms to the species mole fractions.
This linkage is supplied by the Stefan-Maxwell equations,
and it is at this stage that the need for a multicomponent ap-
proach becomes apparent.

2.3 Stefan-Maxwell equations

Stefan-Maxwell equations provide a framework to study the
dependence of the flux as a function of the gradients of
other of all other species. For a multicomponent system con-
sisting of n chemical species, the relationship between the
one-dimensional mole fraction gradient of species α and the
species flux densities is given by the Stefan-Maxwell equa-
tion (Curtiss and Hirschfelder, 1949; Kalkkinen et al., 1991;
Bird et al., 2007):

∂xα

∂l
=

n∑
β=1,β 6=α

xαFβ − xβFα

cDαβ
=

n∑
β=1,β 6=α

xαfβ − xβfα

cDαβ

=

n∑
β=1,β 6=α

xαxβ(uβ − uα)

Dαβ
, (14)

where Dαβ is the binary diffusivity of species α and β, and
the summations are over all species β other than species α.
The second equality follows (i) substituting Fα and Fβ in the
numerator using Eq. (12) and (ii) cancellation of the Stefan
flow components (xαFt and xβFt). The last and third equality
follows substituting Fα and Fβ using Eq. (4).

Physically, Eq. (14) describes the net balance of forces on
species α. The left-hand side is the thermodynamic driving
force for diffusion of species α while the right-hand side is
the sum of the drag (frictional) forces due to molecular col-
lisions between species α and all the other species. The drag

force on species α due to collisions with species β is propor-
tional to the product of their mole fractions (xαxβ ) and their
velocity difference (uβ−uα). The inverse of the binary diffu-
sivity (1/Dαβ ) then represents an effective drag coefficient.
A useful feature of the Stefan-Maxwell equations is that the
binary diffusivities are virtually independent of species mole
fractions (Bird et al., 2007). As shown below (Sects. 3 and
4), Eq. (14) can be inverted to express the molar flux den-
sity of species α (Fα) in terms of the spatial gradients of all
other species in the system. This facilitates the comparison
with Fick’s law. It also shows the implications of solving the
molar balance equation (Eq. 13) using a multicomponent ap-
proach that accounts for the interactions between the differ-
ent species.

3 Binary mixture: one species diffusing in stagnant air

We first apply Eq. (14) to a binary system (n= 2) consist-
ing of one tracer species (e.g. α =H2O, O2 or CO2) diffus-
ing in stagnant air. Here we define air composed solely by
nitrogen and indicated by the subscript a. This provides a
simplified but useful reference case against which the more
realistic quaternary system will be compared (Sect. 4). In this
case there is only one term on the right-hand side of Eq. (14
(β = α). Substituting Fa = 0 (stagnant air, i.e.. ua = 0, where
a means air) and xa = 1− xα , then solving for Fα gives:

Fα = −
ctDαa

1− xα

(
∂xα

∂l

)
, (15)

where Dαa is the binary diffusivity of species α in air. The
total molar flux density of the binary mixture is simply Ft =

Fα+Fa = Fα (since Fa = 0), so from Eqs. (11), (12) and (15)
the Stefan flow and diffusive components of Fα are given by

sα = xαFα = −
xα

1− xα
ctDαa

(
∂xα

∂l

)
(16)

and

fα = (1− xα)Fα = −ctDαa

(
∂xα

∂l

)
(17)

Eq. (15) shows that for this simple binary system, the molar
flux density of the diffusing species (Fα) is proportional to
its mole fraction gradient

(
∂xα
∂l

)
, i.e. a Fickian diffusion law,

with an effective diffusion coefficient Dαa/(1− xα) that de-
pends on the mole fraction xα . In Sect. 4, we contrast this re-
sult with the four-component system (N2-O2-H2O-CO2) for
which, in general, the molar flux densities of water and oxy-
gen (Fw and Fo) each depend on both mole fraction gradi-
ents

((
∂xw
∂l

)
and

(
∂xo
∂l

))
, leading to non-Fickian diffusion.

In Sect. 4 we will also show that, for water vapour (α = w),
the Fickian diffusion result of Eq. (15) is a special case of the
expression for Fw in the four-component system, in the lim-
iting case that the water vapour flux density is much greater
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than that for oxygen or carbon dioxide (i.e.. Fw� Fo or Fc),
which is a realistic assumption. For oxygen (α = o), how-
ever, this is not the case (Sect. 4).

As anticipated from Eq. (11), when xα is much smaller
than 1 (i.e. for a dilute tracer), the contribution of Stefan flow
(Eq. 16) becomes negligible, and Fα is dominated by the dif-
fusive component fα (Eq. 17). Therefore, the dependence of
the effective diffusion coefficient on xα can be interpreted as
a correction to Eq. (17) arising from the influence of Stefan
flow. This correction is significant for O2. For CO2, the cor-
rection is smaller but still non-negligible, as demonstrated in
the next section, where we apply the full derivation of the
Stefan–Maxwell equations (Eq. 14) to the four-component
system under study.

4 Quaternary mixture: water vapour, oxygen and
carbon dioxide diffusing in stagnant nitrogen

We now apply the Stefan–Maxwell equations (Eq. 14) to a
four-component mixture consisting of water vapour, oxygen,
and carbon dioxide diffusing in stagnant nitrogen (labelled
by species indices α = w,o,c, and n, respectively). Figure 1
shows the flux directions of the four components (Fig. 1a),
their orders of magnitude, and the decomposition of the O2-
flux into a Stefan flow and a diffusive molar flux component
(Fig. 1b). If we consider the flux components in Fig. 1b from
the perspective of the physiological constraints, fo depends
on the photosynthesis rate and stomatal conductance. so de-
pends on the transpiration rate, that is on water vapour pres-
sure deficit and on stomatal conductance. If the conductance
decreases, both fo and so decrease, too.

In Eq. (14), for each species α there are now three terms in
the sum over all other species β 6= α on the right-hand side.
For H2O, O2 and CO2 (α = w,o,c) we obtain the following
expressions for their mole fraction gradients in terms of the
stomatal-scale molar flux densities:

∂xw

∂l
=
xwFo− xoFw

ctDow
+
xwFn− xnFw

ctDwn
+
xwFc− xcFw

ctDwc
(18a)

∂xo

∂l
=
xoFw− xwFo

ctDow
+
xoFn− xnFo

ctDon
+
xoFc− xcFo

ctDoc
(18b)

∂xc

∂l
=
xcFo− xoFc

ctDoc
+
xcFn− xnFc

ctDcn
+
xcFw− xwFc

ctDwc
. (18c)

4.1 Non-Fickian relationship between H2O and O2
gradients and fluxes

The derived equations relating gradients to multiple fluxes
(Eqs. 18a–18c) simplify if we assume that (1) on stoichio-
metric grounds the CO2 molar flux density is equal and op-
posite to the O2 molar flux density (Fc =−Fo), and (2)
N2 is stagnant (Fn = 0). Focusing now on H2O and O2,
and making the substitutions Fc =−Fo, Fn = 0 and xn =

1−xo−xw−xc, Eqs. (18a)–(18c) can be written in the form:

∂xw

∂l
=

1
ct
(AFw+BFo) (19a)

∂xo

∂l
=

1
ct
(CFw+DFo), (19b)

where

A=−
xo

Dow
−

1− xo− xw− xc

Dwn
−

xc

Dwc
(20a)

B = xw

(
1
Dow
−

1
Dwc

)
(20b)

C =
xo

Dow
(20c)

D = −
xw

Dow
−

1− xo− xw− xc

Don
−
xo+ xc

Doc
. (20d)

The right-hand sides of Eqs. (19a)–(19b) only depend on
Fw and Fo. Eqs. (19a)–(19b) can be inverted (e.g. using the
standard rules of matrix algebra) to express the fluxes in
terms of the gradients:

Fw =
ct

AD−BC

{
D
1xw

1l
−B

1xo

1l

}
(21a)

Fo =
ct

AD−BC

{
−C

1xw

1l
+A

1xo

1l

}
. (21b)

Therefore, in general, each of the H2O and O2 fluxes Fw
and Fo depends on both gradients – and vice-versa, as seen
from Eqs. (19a)–(19b) – giving a non-Fickian diffusion law
between fluxes and gradients.

This is a general characteristics of the Stefan-Maxwell
equations (Eq. 14), whether expressed in terms of Fα or fα .
The physical interpretation is that while ∂xα/∂l represents
the thermodynamic force driving the diffusion of species α
in the absence of other species, within a mixture this force
is counterbalanced by the total drag force exerted on species
α by all other species. This drag force depends on the rel-
ative velocities – and consequently on the flux densities –
of all species in the mixture. The Stefan-Maxwell equations,
whether expressed in terms of Fα or fα , describe this balance
of forces. As a result, when solving for Fα or fα by inverting
the Stefan-Maxwell equations, Fα or fα depend on the mole
fraction gradients of all species, not just on ∂xα/∂l.

However, in the present case, Eqs. (21a)–(21b) simplify
further if we note that typically Fw is much larger than Fo,
so that in the right-hand sides of Eqs. (19a)–(19b) the terms
involving Fo are much smaller than the terms involving Fw,
and to a first approximation can therefore be neglected, lead-
ing to

∂xw

∂l
≈

1
ct
AFw ≈

1− xw

ctDwa
Fw (22a)

∂xo

∂l
≈

1
ct
CFw ≈

xo

ctDwa
Fw, (22b)

where we have substituted the terms A and C using
Eqs. (20a) and (20b). For the second equalities in Eqs. (22a)–
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Figure 1. Multicomponent fluxes in a system composed of water vapour (w), oxygen (o), and carbon dioxide (c) diffusing in stagnant nitrogen
(n). The mole fraction at the sub-stomatal cavity and the atmosphere are expressed by the subscripts i and a, respectively. (a) Direction of
the fluxes of the four compounds as investigated in our study, with the dominant role by the water vapor molar flux. (b) Decomposition of
O2-flux into a Stefan flow component and a diffusive molar flux component. The dashed lines indicate that the Stefan flow and diffusive
flux are much larger than the O2 flux as shown by the theory. L is the length and r the radius of the cylindrical symmetric stomatal pore,
respectively. The O2 flux is prescribed based on observations of the CO2 flux at leaf level. More details on the geometry can be found at
Fig. B1.

(22b) we have made the further approximations in Eq. (20a):
(1) xc is typically much smaller than xo and xw, and (2)
Dwn ≈Dow ≈Dwa, where Dwa is the molecular diffusivity
of air (Table A1).

Equation (22a) reproduces the same Fickian relationship
between the H2O flux and H2O gradient that was obtained
previously for the binary case of H2O diffusing in stagnant
air (Eq. 15 with α = w). In contrast, Eq. (22b) implies that
the O2 gradient is proportional to the H2O flux, and not the
O2 flux.

4.2 Diffusive and molar flows

As shown by Fig. 1b is interesting to calculate the contri-
bution of the Stefan flow and diffusive molar flux to the
flux. Using Eqs. (7), (11) and (12) we can quantify the Ste-
fan flow and diffusive components of the molar flux densi-
ties for a given species α. In the quaternary system, since
Fc+Fo = Fn = 0 – recall that we assume Fc =−Fo –, the
total molar flux density of the mixture (Ft) (Eq. 7) is therefore
equal to the water flux density, i.e. Ft = Fw. From Eqs. (11)
and (12), therefore:

sα = xαFw (23)

and

fα = Fα − xαFw (24)

These relationships between the stomatal-scale flux densi-
ties sα , fα and Fα (mol m−2 pore s−1) also apply to the leaf-

scale flux densities. Here we use the following conversions as
follows simply by multiplying both sides of Eqs. (23)–(24)
by asρs: sleaf

α = asρssα , f leaf
α = asρsfα and F leaf

α = asρsFα
(mol m−2 leaf s−1), where as (m2 pore) is the cross-sectional
area of the stomatal aperture and ρs (number of stomata m−2

leaf) is stomatal leaf density.
This allows us to gauge the relative importance of the Ste-

fan and diffusive components at leaf scales using representa-
tive values of F leaf

α . Table 1 gives values of sleaf
α and f leaf

α for
H2O, O2 and CO2. Also shown are the corresponding scaled
gradients asρs∂xα/∂l calculated by multiplying both sides of
Eqs. (18a)–(18c) by asρs and substituting F leaf

α into the right-
hand sides of Eqs. (18a)–(18c).

As shown in Eq. (22a) the gradient of H2O is also depen-
dent of the mole fraction of water. Under very dry condi-
tions, for instance air masses characterized by mole fractions
H2O= 10−3 equal to the specific humidity of 1.6 gw kg−1

air ,
the scalar gradient is −9.46 m−1 compared to the con-
trol value of −9.37−1 m−1 as shown in Table 1. These
results stress the already-noted importance of Stefan flow
for O2 transport relative to Stefan flow for H2O and CO2.
For H2O, characterized by a positive value (i.e. stomata
to atmosphere) Stefan flow (100 mol m−2 leaf s−1) is domi-
nated by an even larger diffusive flow in the same direction
(9900 mol m−2 leaf s−1). For CO2, the positive Stefan flow
(4 mol m−2 leaf s−1) is offset by diffusion in the opposite di-
rection (−14 mol m−2 leaf s−1), but yet relevant. For O2 the
diffusive and Stefan components are individually two orders
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Table 1. Stefan flow (sleaf
α ) and diffusive molar flux density (f leaf

α ) components of the leaf-scale H2O, O2 and CO2 molar flux densities
(F leaf
α ), calculated by multiplying both sides of Eqs. (23) and (24) by asρs and substituting typical values of F leaf

α = asρsFα , where as
(m2 pore) is stomatal aperture, ρs (number of stomata m−2 leaf) is stomatal leaf density and Fα is the stomatal-scale flux density. Also
shown are the scaled mole fraction gradients asρs∂xα/∂l calculated from Eqs. (18a)–(18c) (multiplied through by asρs) using typical values
of F leaf

α and the parameter values in Table A1. We use the following mole fractions for H2O= 1×10−2, O2= 0.21 and CO2= 4×10−4. For
this value of H2O, it corresponds to a specific humidity equal to 16.1 gw kg−1

air (representative high atmospheric humid conditions like the
tropical forest).

Molar flux density, Stefan flow, Diffusive flux density, Scaler gradient,
F leaf
α = asρsFα sleaf

α = asρssα f leaf
α = asρsfα asρs(∂xα/∂l)

(µmol m−2 leaf s−1) (µmol m−2 leaf s−1) (µmol m−2 leaf s−1) (m−1)

H2O (w) 104 100 9900 −9.37
O2 (o) 10 2100 −2090 1.94
CO2 (c) −10 4 −14 0.016

of magnitude larger than the prescribed Fo but are almost
equal in magnitude and opposite in direction to each other.

Another consequence of the relative importance of Stefan
flow in O2 transport is that, unlike H2O and CO2, the flux of
O2 does not necessarily follow the opposite direction of its
mole fraction gradient. Specifically, both Fw and Fc are op-
posite in sign to their respective mole fraction gradients, i.e.
following qualitatively the Fickian law relationship between
the flux and the gradient. This means that water vapour and
CO2 are transported “downhill”, from regions of high to low
mole fractions, although deviating from Fick’s law due to the
influence of the fluxes of other species.

This is not the case for O2. As shown in Eq. (22b), the
O2 gradient is directly proportional to, and in the same direc-
tion as, the O2 Stefan flow rate, so = xoFw. This represents
a clear departure from classical Fickian diffusion, where flux
and gradient are expected to have opposite direction. We ex-
plore the conditions for uphill O2 transport more generally in
Sect. 4.4.

4.3 Relationship between internal O2 mole fraction
and relative humidity

From the gradient-flux relationships given by Eqs. (22a)–
(22b) (which are based on the realistic approximations Fw�

Fo, xc� xo and xw, and Dwn ≈Dow ≈Dwa), it follows that
the gradients in O2 and H2O satisfy the relationship

1
xo

∂xo

∂l
= −

1
1− xw

∂xw

∂l
. (25)

By integrating Eq. (25 from l = 0 (internal stomata) to l =
L (atmosphere, see Fig. B1), it follows that

xoi

xoa
≈

1− xwi

1− xwa
≈

1− η qs

1− η qs RH
, (26)

where xoi and xoa are, respectively, the internal and atmo-
spheric O2 mole fractions, xwi and xwa being the correspond-
ing H2O mole fractions. In the second equality we have ex-

pressed the latter in terms of the atmospheric saturated spe-
cific humidity (qs), the atmospheric relative humidity RH
(assuming RH= 1 internally), and the air-to-water molecular
weight ratio (η = 1.61 kga kg−1

w ) to convert from mole frac-
tions to relative humidity in expression (26).

From the expression (26) we infer that from normal atmo-
spheric values of relative humidity (RH< 1), it follows from
Eq. (26) that the internal O2 mole fraction is smaller than
its atmospheric value. Figure 2 shows the predicted ratio of
internal to atmospheric O2 mole fractions as a function of
relative humidity. For all the values of RH, the mole fraction
in the sub-stomatal cavity is lower than the one of the at-
mosphere. The lowest internal O2 mole fraction occurs when
RH= 0 (largest water demand by the atmosphere), when the
predicted internal O2 fraction is approximately 3 % lower
than its atmospheric value. The predicted internal and atmo-
spheric O2 mole fraction equalise at RH= 1. However, when
RH= 1 (lowest water demand) the assumption Fw� Fo that
underlies Eq. (26) is no longer valid. As a result, the sim-
ple relationship of Eq. (26) breaks down, and Eq. (22b) must
be replaced by the exact expression given by Eq. (19b), i.e.
including the term DFo; since the coefficient D is negative
(Eq. 20d). The effect of including this term is to decrease the
O2 gradient (i.e. increase the ratio xoi/xoa) so that the inter-
nal and atmospheric O2 mole fractions equalize at a value of
RH slightly less than 1 (data not shown).

4.4 Uphill vs downhill O2 transport: three regimes

In the previous sections, we have discussed the dominant role
of the H2O flux with respect the O2transport. Here, we exam-
ine more generally the conditions under which O2 transport
(Fo) and/or its diffusive component (fo) occurs “uphill”, i.e.
against the O2 mole fraction gradient, due to the dominant
drag-force effect of water-driven Stefan flow. For Fo > 0 (i.e.
O2 transport in the direction stoma to atmosphere), uphill O2
transport occurs when ∂xo/∂l > 0. From the exact expres-
sion for the O2 gradient given by Eq. (19b), this occurs when
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Figure 2. The ratio of the internal oxygen to the atmospheric oxy-
gen mole fraction as a function of the relative humidity calcu-
lated using Eq. (26), and a saturation specific humidity of qs =

19.6 · 10−3 kgw kg−1
a calculates at the temperature 298.15 K.

CFw+DFo > 0. The expression reads:

Fw

Fo
>
−D

C
=
xw

xo
+
Dow

Don

1− xo− xw− xc

xo

+
Dow

Doc

xo+ xc

xo
=

1
xo
(1+R) (27)

where in the last expression R is defined by

R =

(
Dow

Don
− 1

)
(1− xo− xw− xc)

+

(
Dow

Doc
− 1

)
(xo+ xc) . (28)

Since Dow >Don and Dow >Doc (Table 1) it follows that
R > 0. With the assumed values of Fw, Fo and parameter
values in Table 1, the condition Eq. (27) is comfortably sat-
isfied, the left- and right-hand sides being 100 and ≈ 5.5 re-
spectively. This condition will be violated when transpiration
is sufficiently small compared to O2 transport (e.g. when RH
is close to 1).

From Eq. (24) with α = 0, the diffusive O2 flux density is
negative (fo < 0) whenever

Fw

Fo
>

1
xo
. (29)

Thus, as the ratio of water to oxygen flux densities
(Fw/Fo) increases, we can identify three oxygen transport
regimes (Table 2), distinguished by the relative orientation of
the O2 gradient (∂xo/∂l), O2 flux density (Fo) and diffusive
O2 flux density (fo).

Table 2 outlines three regimes for water vapour and oxy-
gen transport, defined by the direction of their respective

mole fraction gradients. These regimes are characterised as
uphill – where O2 is transported from the stomata to the at-
mosphere despite an opposing mole fraction gradient – and
downhill, where the flux and gradient are in opposite direc-
tions, consistent with classical Fickian diffusion. As noted
above, due to the typically large value of the flux ratio
(Fw/Fo), and since (1+R)/xo ≈ 5.5, the O2 transport be-
tween the stoma and the atmosphere typically falls within
regime 3, resulting in uphill transport of O2 (Fo) in the di-
rection from low to high O2 mole fraction, as already seen
in Table 2. In this regime, the molar flux density of H2O
drags O2 molecules from the stoma to the atmosphere, driven
by the O2 Stefan flow so = xoFw. This drag effect leads to
lower O2 mole fraction in the stoma than in the atmosphere
(xoi < xoa), and a negative diffusive O2 molar flux density
(fo) (i.e. from the atmosphere to the stomata) that counter-
balances but does not completely offset positive Stefan flow
(Table 2) since we prescribe that the O2 flux is from the stoma
into the atmosphere. As Fw/Fo decreases into regime 2, the
O2 gradient changes sign but the diffusive flux fo remains
negative (i.e. Stefan flow is still important), resulting in up-
hill diffusion from low to high O2 mole fractions; this reflects
the non-Fickian character of the flux-gradient relationships
in general. At very low values of Fw/Fo (regime 1), Stefan
flow becomes very small, fo changes sign, and O2 transport
is dominated by positive diffusion from the stoma to the at-
mosphere. It is important to note that the characterization of
these three regimes does not account for the roles of pho-
torespiration or dark respiration, and potential sources of O2
within the sub-stomatal cavity are omitted from the analysis.
Similarly, transport processes driven by thermal differences
between the stomata and the atmosphere (thermodiffusion)
are omitted.

5 Discussion

Our research extends the studies of Jarman (1974) and von
Caemmerer and Farquhar (1981), which examined the trans-
port of a ternary gas mixture comprising air, water vapour,
and carbon dioxide. Here, air is composed by combining O2
and N2. Jarman (1974) also briefly considered the CO2-H2O-
O2-N2 quaternary system considered in our study, but only
with the aim of verifying the insignificant effect of O2 trans-
port on internal CO2 mole fraction. For completeness, in Ap-
pendix D we demonstrate that our equations for the quater-
nary system (Eqs. 18a–18c) reduce to these ternary formula-
tions.

Following Jarman (1974), in Appendix E we evaluated the
percentage corrections to the O2 gradient due to Stefan mo-
lar flow, using a ternary system (CO2, H2 and air, the latter
compost by O2 and N2) as the reference system (cf. Sect. 3).
As shown in Table E1, our results are consistent with those
in Table 1 and confirm the key role of the H2O molar flux
density in determining the O2 gradient.
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Table 2. Three O2 transport regimes distinguished by the relative orientations of the O2 gradient (∂xo/∂l), O2 flux density (Fo, assumed
positive), and diffusive O2 flux density (fo), as determined by the value of the flux ratio (Fw/Fo) according to Eqs. (27)–(28) and (29).
Positive values of ∂xo/∂l indicate that the internal O2 mole fraction is less than atmospheric O2 mole fraction. Positive fo or Fo show that
flux direction is from stoma to the atmosphere.

Regime Sign of ∂xo
∂l

Sign of f0;
Direction relative to gradient

Sign of F0;
Direction relative to gradient

1: Fw
Fo
< 1
xo

negative positive: stomata→ atmosphere
Downhill

positive: stomata→ atmosphere
Downhill

2: 1
xo
<
Fw
Fo
< 1
xo
(1+R) negative negative: atmosphere→ stomata

Uphill
positive: stomata→ atmosphere
Downhill

3: Fw
Fo
> 1
xo
(1+R) positive negative: atmosphere→ stomata

Downhill
positive: stomata→ atmosphere
Uphill

Although previous studies have recognized that transport
of O2 is distinguished by its higher mole fraction and that
Stefan flow could be relevant across scales from the canopy
to the atmospheric boundary layer (Kowalski et al., 2021),
our analysis of the fundamental molar balance equation
demonstrates that the primary effects of Stefan flow emerge
at the stomatal scale. To this end Appendix C shows a non-
dimensional analysis of the governing equation of O2 calcu-
lating the O2-transport under representative Reynolds num-
bers measured in a greenhouse and at the top of a rainfor-
est canopy. Connecting to previous studies of O2 transport,
Kowalski (2025) has proposed a simple model for the ef-
fects of water vapour flow on O2 transport which assumes,
a priori and without rigorous physical foundation, that the
sub-stomatal O2 pressure deficit (relative to the atmosphere)
is equal to the atmospheric O2 mole fraction multiplied by
the water vapour pressure surplus in the sub-stomatal cavity.
Since partial pressure is proportional to mole fraction, this
assumption implies the relationship.

xoa− xoi = xoa(xwi− xwa), (30)

Interestingly, Eq. (26) of our study is equivalent to the re-
lationship

xoa− xoi =
xoa

1− xwa
(xwi− xwa), (31)

which, because xwa� 1, is practically identical to Eq. (30).
However, in contrast to Eq. (30), our result (Eq. 31) has
been derived from the fundamental physics of multicompo-
nent diffusion (Stefan-Maxwell equations), and is itself an
approximation (which assumes in particular that Fw� Fo).
Our underlying theory not only provides a physical justifica-
tion for Eq. (29), but also a rigorous framework for calculat-
ing corrections to it under a wider range of conditions.

Our study does not yet address the physiological connec-
tion between sources and sinks of O2 and CO2 driven by pho-
tosynthesis, photorespiration and dark respiration. A logical
next step would be to couple our theoretical expressions for

the non-Fickian relationship between gradients and fluxes to
biochemical models of photosynthetic CO2 fixation (e.g. Far-
quhar, 1982) and O2 transport dynamics during photosyn-
thesis and photorespiration. Traditional models often over-
simplify photorespiration and dark respiration by neglecting
the dynamic interactions between different gases, key pro-
cesses in the transport stomata-atmosphere.

Our theoretical findings – particularly the influence of
H2O molar flux density on internal O2 mole fraction – sug-
gest that incorporating a more physically realistic representa-
tion of O2 dynamics could improve the coupling with models
of photosynthetic processes, leading to more accurate esti-
mates of O2 transport’s impact on photosynthetic efficiency.
A better understanding of these processes could refine the
predictions of photosynthesis under varying environmental
conditions (Zhang et al., 2024), where photorespiration crit-
ically limits carbon assimilation. In a similar vein, it will be
convenient to study the relationship between the O2 flux den-
sity with respect to the CO2 flux relationship. In our study, we
assume on stoichiometric grounds that the O2 flux density
is equal and opposite to the CO2 molar flux density. How-
ever, we do not have observational evidence that this occurs
at the leaf level. Besides the Stefan (molar) flow, additional
processes such as thermodiffusion (Curtiss and Hirschfelder,
1949; Griffani et al., 2024) may also contribute to gas trans-
port, particularly in the presence of leaf–air temperature gra-
dients. In the present work, we did not account for these ther-
mal effects, but they may become relevant for leaves exposed
to strong radiation loads or under fluctuating microclimatic
conditions, such as cloud passages or sunflecks (van Diepen
et al., 2025). An open question therefore remains regarding
the relative importance of thermodiffusion in comparison to
Stefan flow and molecular diffusion. To this end, a future aim
is to represent O2 biophysical processes independently from
CO2 at all relevant atmospheric scales.

One key prediction in our study – that the internal stom-
atal O2 mole fraction is typically lower than the atmospheric
O2 mole fraction (Eq. 26, Fig. 2) – offers an opportunity to
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experimentally test the underlying multicomponent diffusion
theory on which it is based. Such a test would require the pre-
cise measurement of internal O2 mole fraction under stagnant
or low Reynolds number atmospheric conditions and without
photosynthesis. Figure 2 suggests that such measurements
would be best carried out under a wide range of relative hu-
midity, and expecting the larger gradient values under low
relative humidity values. Experimental deviations from the
predictions shown in Fig. 2 would also be of value, because
they would signal missing physics not included in our cur-
rent approach – which assumes the ideal gas approximation
and isothermal conditions –; crucially, the underlying theory
of the Stefan-Maxwell equations provides a rigorous ther-
modynamic framework for including such extensions (e.g. to
non-ideal gases and thermal forces).

6 Conclusions

Oxygen transport between the sub-stomatal cavity and the
atmosphere exhibits two key characteristics that require par-
ticular consideration: (i) the relatively high mole fraction of
oxygen compared to other primary components of the pho-
tosynthesis system, and (ii) the significant influence of the
water molar flux density (transpiration) on oxygen transport.
The Stefan-Maxwell equations provided a rigorous physical
framework for examining those characteristics quantitatively.
Based on these equations, our findings emphasize the inter-
play between fluxes, gradients, and diffusivity coefficients
within the quaternary N2-O2-H2O-CO2 system, and provide
new insights into the dynamics of oxygen stomatal gas ex-
change. The main conclusions are:

1. The water vapour molar flux density generates a drag
force that drives the movement of oxygen from the
stomatal interior to the atmosphere. The large water-
driven Stefan or molar flow of oxygen is almost (but not
exactly) counterbalanced by a diffusive O2 flux from the
atmosphere to the stomatal interior.

2. We identify three distinct regimes of O2 transport de-
pending on the ratio of water to oxygen molar flux den-
sities. These regimes are distinguished by the relative
orientations of the O2 molar flux density, the diffusive
component, and gradient in O2 mole fraction between
the sub-stomatal cavity and the atmosphere. Under typ-
ical conditions, oxygen moves uphill from stoma to the
atmosphere from low to high O2 mole fraction, whereas
the diffusive component of O2 transport moves from the
atmosphere to the stomata (downhill).

3. For this typical regime, we derived a simple analytical
expression for the ratio of the internal to atmospheric
O2 mole fractions as a function of relative humidity,
which explicitly accounts for the drag effect of water-
driven Stefan flow. This expression offers the possibil-
ity to interpret and explain experiments measuring si-
multaneous O2 mole fractions in the stomata and the at-
mosphere, grounded in underlying multicomponent dif-
fusion theory. If future experiments indeed, measure a
lower stomatal internal oxygen mole fraction compared
to the atmosphere, our results would offer a robust phys-
ical explanation.

Our theoretical results establish a baseline for developing
a general multicomponent theory of stomatal gas exchange,
which can also be extended to other carbon tracers, such
as stable isotopologues. By incorporating isotopic variants
of CO2 (e.g., 13CO2, C18OO), the framework can help dis-
entangle the relative contributions of different biochemical
and physical processes – such as diffusion, carboxylation,
and photorespiration – to overall gas exchange. This exten-
sion opens new avenues for interpreting isotopic measure-
ments in both laboratory and field settings, providing a phys-
ically sounded representation of the transport of carbon trac-
ers across scales and more comprehensive understanding of
leaf-level carbon and oxygen dynamics under varying envi-
ronmental conditions.

Appendix A: List of variables, symbols, values and units

Table A1 presents the definitions of the variables used in
this study, including their symbols, units, and characteristic
values applied in the calculations. The calculations are per-
formed at the stomatal level, with units of [mol s−1], while
the input variables are based on representative observations
taken at the leaf level, where the units are [mol m−2 s−1] (Jar-
man, 1974; Vilà-Guerau de Arellano et al., 2020). Leaf-level
values are downscaled to the stomatal level by dividing them
by the leaf stomatal density, which represents the number of
stomata per unit area of leaf. “water” is referring to water
vapour.
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Table A1. Definitions of the variables, symbols, characteristic values, and units used in the study. Molecular diffusivities are calculated at
293 K using the expression proposed by Reid et al. (1987).

Variable Symbol Value Units

Molecular weight of dry air M 2.89 ×10−3 kg mol−1

Density of dry air ρa 1.204 ×10−3 kg m−3

Mole density of species mixture ct=ρa/M 41.58 mol m−3

Mole fraction of species α cα – mol m−3

Mole fraction of species α xα – mol mol−1

Mole fraction atmospheric of CO2 xc 4× 10−4 mol mol−1

Mole fraction of atmospheric O2 xoa 21× 10−2 mol mol−1

Mole fraction of internal O2 xoi calculated mol mol−1

Mole fraction water vapour xw 1× 10−2 mol mol−1

Internal specific humidity qi – kgw kg−1
a

Atmospheric humidity atmosphere qa – kgw kg−1
a

Saturated specific humidity qsat – kgw kg−1
a

Relative humidity of the atmosphere RH calculated –
molar flux density of species α (leaf) Fα - µmol m−2 s−1

Diffusive molar flux density fα calculated µmol m−2 s−1

Stefan flow (convective like molar flux density) of species α sα = cα u calculated µmol m−2 s−1

Molar flux density of water Fw observation µmol m−2 s−1

Molar flux density of CO2 Fc observation µmol m−2 s−1

Molar flux density of O2 Fo inferred Fc µmol m−2 s−1

Molar flux density of N2 Fn 0 µmol m−2 s−1

Binary diffusivity of species α and β Dαβ – m2 s−1

Molecular diffusivity water to oxygen1 Dow 2.58×10−5 m2 s−1

Molecular diffusivity nitrogen to water1 Dwn 2.53×10−5 m2 s−1

Molecular diffusivity nitrogen to oxygen1 Don 2.02×10−5 m2 s−1

Molecular diffusivity water to carbon1 Dwc 2.05×10−5 m2 s−1

Molecular diffusivity oxygen to carbon1 Doc 1.59×10−5 m2 s−1

Molecular diffusivity carbon to nitrogen1 Dcn 1.59×10−5 m2 s−1

Mole-averaged velocity u – m s−1

Mole velocity of tracer α uα – m s−1

One-dimensional direction length l – m
Representative length scale stomata-atmosphere L calculated m

1 All the molecular diffusivities are calculated Reid et al. (1987).

Appendix B: Geometry and scaling of one-dimensional
gas exchange between stomata and the atmosphere

Figure B1 shows the one-dimensional representation of the
stomata and the atmosphere in which the Stefan-Maxwell
equations are applied. The transport of all the species is
through the stomatal pore that connects between the sub-
stomatal cavity and the atmosphere. This geometry and as-
sumptions are similar to the binary and quaternary mixtures
(see Fig. 1).
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Figure B1. Sketch of the geometry of the stomata and atmosphere
systems where the oxygen exchange takes place. The spatial one-
dimensionality is represented by the coordinate l and the charac-
teristic length scale L. Based on observations, we assume that this
length scale is larger than the radius of the stomatal pore r , but it is
not a theoretical requirement.

Appendix C: Non-dimensional O2 governing equation
including Stefan flow effects

A key question in our analysis is to determine when a mul-
ticomponent diffusion representation is necessary to accu-
rately describe oxygen transport. To address this, we con-
sider the one-dimensional molar balance equation for O2 and
non-dimensionalize it using characteristic length and veloc-
ity scales. For the binary system of O2 diffusing in stagnant
N2 (Sect. 3), Eq. (13) becomes:

∂xo

∂t
= −

∂(xou)

∂l
+
∂

∂l

(
Dno

(
dxo

dl

))
+ ro. (C1)

in which we use Eq. (17) to represent the diffusive molar flux
density (fo) as a function of the gradient of oxygen

(
dxo
dl

)
.

This equation has units of (molo mol−1
air ) s−1. Note that in

the multicomponent diffusion approach, this equation must
be solved simultaneously with the governing equations for u
(Navier-Stokes equation) and for the mole fraction of water
vapour xw.

If Eq. (C1) is made non-dimensional using the characteris-
tic length L and velocity U inertial scales, the molecular dif-
fusion term will be divided by the Reynolds number, defined
as the ratio of inertial acceleration to the molecular diffusion
(νa) and it reads Re = LU/νa; and the Schmidt number, de-
fined as the ratio of momentum diffusivity (kinematic vis-
cosity) to mass diffusivity (Sc = νa/Dno) (Vilà-Guerau de
Arellano et al., 2004). To derive this non-dimensional equa-

tion, we introduce the following non-dimensional variables:
t̃ = (U/L)t , ũ = u/U , and l̃ = l/L. Substituting these non-
dimensional variables into Eq. (C1) and dividing the equation
by the factor (L/U), we obtain the non-dimensional equation
for oxygen. The final non-dimensional equation for oxygen
is:

∂xo

∂t̃
= −

∂(xoũ)

∂ l̃
+
∂

∂l̃

(
(ReSc)−1

(
dxo

dl̃

))
+ r̃o, (C2)

where the source term is r̃o = ro(L/U). The diffusive term
(second term on the right-hand side) is now expressed as a
function of the Reynolds number, defined as the ratio of in-
ertial acceleration (Re = LU/νa), and the Schmidt number,
defined as the ratio of momentum diffusivity (kinematic vis-
cosity) to mass diffusivity (Sc = νa/Dno). Additionally, the
source/sink term is made dimensionless by introducing a rep-
resentative source/sink scale.

Using typical values for the flow velocity near the leaf
surface (ranging from 0.05 to 0.15 m s−1 taken by under
greenhouse conditions (Kimura et al., 2020), the length scale
(order millimeters) and a kinematic viscosity of air 1.5×
10−5 m2 s−1, we obtain Reynolds numbers on the order of
1 to 100. For larger leaves (0.1 m) and more realistic wind
conditions – see, for instance, values of 1 m s−1 taken at the
canopy top in the Amazonian rain forest (González-Armas
et al., 2025) – the Reynolds number is 6666. These green-
house and forest Reynolds number values indicate that the
flow remains laminar around the leaf surface. As a result, we
need to retain the molecular diffusion term (2nd right-hand
side term) in the governing equation for O2, and describe
this O2 transport process using a multidiffusion component
as described here.

Appendix D: Equivalence ternary and quaternary
systems

In this Appendix, we study the equivalence between the
equations derived for the quaternary system (18a), (18b) and
(18c), and the ternary-system equations derived by Jarman
(1974) and further applied by von Caemmerer and Farquhar
(1981). We start by rewriting the gradients of water and car-
bon dioxide as a function of the molar flux densities. The
general expression for water vapour is as follows:

∂xw

∂l
=

1
ct

[
− (

xo

Dow
+

xn

Dwn
+

xc

Dwc
)Fw+

xw

Dow
Fo

+
xw

Dwn
Fn+

xw

Dwc
Fc

]
(D1)

and the gradient for carbon dioxide reads:

∂xc

∂l
=

1
ct

[
− (

xo

Dow
+

xn

Dwn
+
xw

Dwc
)Fc+

xc

Doc
Fo

+
xc

Dcn
Fn+

xc

Dwc
Fw

]
(D2)
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To connect and compare with expressions B9 and B10 at
(von Caemmerer and Farquhar, 1981) we need to introduce
the following assumptions: (1) in the ternary system used
by Jarman (1974); von Caemmerer and Farquhar (1981), the
fluxes Fo and Fn are grouped in a flux of air Fa. There is
a mole fraction gradient of air across the stomata. However,
they assume there net flux of air is zero, i.e. Fa = 0 at the
interface by Jarman (1974); von Caemmerer and Farquhar
(1981). (2) the mole fraction of oxygen and nitrogen are
added xo+ xn = xa , (3) the diffusion coefficients are related
as follow:Dow =Dnw andDoc=Dnc, and (4) we approximate
the partial derivatives of xo, xw and l with increments 1.

Using these previous assumptions, we define the conduc-
tance of water vapour in air, carbon dioxide in air, and carbon
dioxide in water vapour as follows:

gaw =
ctDwa

1l
gac =

ctDca

1l
gac =

ctDwc

1l
. (D3)

In applying these assumptions, the equations become the fol-
lowing:

1xw =−

(
xa

gaw
+
xc

gwc

)
Fw+

xw

gwc
Fc, (D4)

and

1xc =−

(
xa

gac
+
xw

gwc

)
Fc+

xc

gwc
Fw. (D5)

These expressions are equivalent to the ones found by Jar-
man (1974) (see expressions of the CO2-gradient at page
932). However, to obtain the final equivalence with Eqs. (B9)
and (B10) at von Caemmerer and Farquhar (1981), we
need to modify the notation. von Caemmerer and Farquhar
(1981) defined water vapour and carbon dioxide gradients
and fluxes in the following way: Fw = 1xw = xwi−xwa and
Fc ≈1xc =−xca+ xci. Following this sign convention, we
obtain:

xwi− xwa =

(
xa

gaw
+
xc

gwc

)
Fw+

xw

gwc
Fc, (D6)

and

xci− xca =−

(
xa

gac
+
xw

gwc

)
Fc−

xc

gwc
Fw. (D7)

The late expressions are identical to Eqs. (B9) and (B10) at
von Caemmerer and Farquhar (1981) probing that the ternary
solutions derived by Jarman (1974) can be retrieved from the
more general fourth-equation systems here derived.

Appendix E: Quaternary versus binary mixture

From Eq. (18b), and after simplifying by assuming the net
flux of nitrogen Fn = 0, we group the various terms as func-
tions of the mole diffusive fluxes Fo, Fw and Fo. This al-
lows us to derive the correction contributions to the single
mole diffusive expression that follows Fick’s law. Rearrang-
ing Eq. (18b), we obtain:

∂xo

∂l
=

1
ct

[
− (

a︷︸︸︷
xn

Don
+

b︷︸︸︷
xw

Dow
+

c︷︸︸︷
xc

Doc
)Fo

+ (

d︷︸︸︷
xo

Dow
)Fw+ (

e︷︸︸︷
xo

Do
)Fc

]
=

1
ct
[−(a+ b+ c)Fo+ dFw+ eFc] (E1)

Following the procedure outlined by Jarman (1974) to cal-
culate the correction terms, we determine the percentage of
the correction factor for the O2-gradient. We take term (a)
as the reference, representing the interaction between oxy-
gen molecules relative to the compound with the larger mole
fraction – in this case, nitrogen. For the remaining terms, we
assume that the correction factors are defined as follows:

C1 = 100
b

a
%= 100

xwDon

xnDow
%C2 = 100

c

a
%

= 100
xcDon

xnDoc
% (E2a)

C3 =−100
d

a
%=−100

xoDon

xnDow

Fw

Fo
%C4

=−100
e

a
%=−100

xcDon

xnDoc

Fc

Fo
% (E2b)

Table E1 shows the correction values using the values of
the molar flux densities and molecular diffusivity coefficients
shown in Table A1. The very large value of the coefficient C3
corroborates the dominance of the Stefan flow.

As shown in Table E1 only C3 is the largest correction
factor that strongly depends on the water vapour molar flux
density. These results corroborate the key role played by the
Stefan flow as shown in Table 1.

Table E1. Correction factors to the O2 molar flux densities based on
Eqs. (E2a) and (E2b) as a function of three different water vapour
molar flux densities. The correction factors are dimensionless and
in %. In bold the larger correction factors.

Fw C1 C2 C3 C4
(µmol m−2 leaf s−1)

1.×104 1.0×100 6.5×10−2
−2.1× 104 6.5×10−2

1.×103 1.0×100 6.5×10−2
−2.1× 103 8.1×10−2

1.×102 1.0×100 6.5×10−2
−2.1× 102 6.5×10−2
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