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S1. UAV campaigns 1 

The UAV flight missions were carried out between 10 h 00 and 14 h 00, at a frequency of every two 2 

weeks in summer and monthly interval in other seasons. The flight patterns and altitudes used for UAV 3 

missions were similar to our previous work (Li et al., 2024). The RGB images were captured at a flight 4 

height of 100 m. The side and frontal overlap ratios were set to 70 % and 80 %, respectively, resulting 5 

in a spatial resolution of 2.05 cm. The multispectral and thermal infrared flights were conducted at above 6 

take-off point altitude of 90 m and a speed of 7.1 m/s simultaneously using a dual gimbal connector. 7 

Both side and frontal overlap ratios were set to 80 %. In this case, the spatial resolutions of the 8 

multispectral and thermal infrared images are approximately 6 cm and 12 cm, respectively. A MicaSense 9 

calibrated reference panel with known reflectance values was used immediately to calibrate the 10 

multispectral camera before and after each flight. The TeAX thermal infrared camera combines FLIR 11 

Tau2 cores and ThermalCapture hardware that allows the user to store raw infrared video streams directly 12 

on a local USB memory stick, together with additional information like position and time from GPS. In 13 

addition, TeAX technology makes heated shutters provide evenly a uniform temperature across the 14 

shutter and maintains this temperature throughout the duration of its operation. During the flight mission, 15 

the emissivity setting of the thermal infrared camera was set to 100 %. To further correct the differences 16 

between the true surface temperature of the ground and that measured by the sensor due to emissivity 17 

effect, two homemade thermal calibration panels (50 cm x 100 cm, one hot and one cold that fills with 18 

ice packs, Figure S2a) were used on the ground with a known temperature to adjust any offsets in the 19 

thermal images and to understand the temperature changes throughout the duration of the flight. To 20 

enhance the LiDAR signal penetration, we chose the triple-echo mode with a sampling frequency of 160 21 

kHz, maintaining a flight height of 50 m above the take-off point at a speed of 6 m/s. During the flight 22 

mission, the ground sampling distances varied between 1.16 cm and 2.18 cm per pixel. The IMU 23 

calibration procedures were conducted automatically at the beginning, during the mission, and after flight 24 

routes to ensure inertial navigation accuracy.  25 

The RGB and LiDAR flights were conducted in RTK positioning mode using a D-RTK 2 base station 26 

(DJI, Shenzhen, China). The base station was set up at a known point and was used to provide real-time 27 

positional corrections throughout the flight. For the multispectral and thermal infrared cameras, nine 28 

ground control points (GCPs) were used (50 cm × 50 cm targets). The GCPs were made of white 29 
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laminated board stuck with aluminum foil in the diagonal area and were distributed across the study site 30 

during the flight mission. Their position was measured using an Emlid Reach RS2 GPS device, utilizing 31 

a post-processing RTK solution with the Belgian WALCORS network.  32 

 33 

  34 
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 35 

Figure S1. Dates of UAV flight missions, CO2 flux measurements using the LI8100A system, and CO2 flux 36 

measurements using the eosFD probes. 37 

 38 

 39 

 40 
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 42 

Figure S2. Experimental setup for thermal infrared data collection and an example thermal image showing the hot 43 
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and cold reference panels on 19 July 2023 (a). Comparison between thermometer-measured and camera-measured 44 

panel temperatures across different dates (b). Estimated daily mean soil temperature (at 10 cm depth) against 45 

observations using linear mixed-effects model (c) and (d). The corresponding RMSE and R2 values for the train and 46 

test datasets are annotated on the plot. 47 

 48 

 49 

 50 
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 51 

 52 

Figure S3. Mean hourly CO2 flux, air temperature (Air temp.), soil temperature (Soil temp.), and VWC across 53 

different slope positions. The CO2 data (unit: μmol m-2 s-1) was based on measurements from the eosFD probes. Soil 54 

temperature (unit: °C) and VWC (cm3 cm-3) were monitored at a depth of 10 cm using the Teros12 sensors. The air 55 
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temperature (unit: °C) was monitored at ~1.4 m above ground. The dot indicates the mean value, and the grey line 56 

(error bar) indicates the sd of each hour. The numbers of each subplot title indicate the monitoring period 57 

(Month/day). 58 

 59 

 60 

 61 

Figure S4. Scatter plots showing relationships between log-transformed CO2 flux and environmental variables: SOC 62 

stock (a), C/N ratio (b), root biomass (c), NDVI (d), soil temperature (e), soil VWC (c), water table (g), atmospheric 63 

pressure (h). The CO2 fluxes were measured by the LI 8100A system. 64 

 65 

  66 
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Table S1. Coefficients and relative contributions of three input variables of linear mixed-effects regression models 67 

for modelling soil temperature. Random effects were evaluated by ICC and model performance was evaluated by 68 

Marginal R2, Conditional R2, AIC, RMSE, and KGE. 69 

Note. Significance level: *** p < 0.001, ** p < 0.01, * p < 0.05.  70 

 71 

Table S2. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic) 72 

of mixed linear regression models for modelling seasonal patterns of CO2 flux at five slope positions (i.e., summit, 73 

topslope, shoulder wet, backslope, and footslope). Random effects were evaluated by ICC and model performance 74 

was evaluated by Marginal R2, Conditional R2, AIC, RMSE, and KGE. 75 

Fixed effects: 

Coefficients 

(contributions) 

Air temperature 
0.32*** 

(39.31 %) 

NDVI 
5.76*** 

(22.05 %) 

LST 
0.21*** 

(26.85 %) 

Random effects 
ICC 

(contributions) 

0.21 

(3.00 %) 

Model performance 
Marginal R2 0.88 

Conditional R2 0.91 

 AIC 16977.4 

 RMSE 1.26 

 KGE 0.93 

 
Input variables Model 1 Model 2 Model 3 

Fixed effects: 

coefficient 

(contribution) 

Static SOC stock  

(t ha-1) 

0.004* 

(2 %) 

0.004* 

(2 %) 

0.004* 

(2 %) 

 C/N ratio 0.04 

(2 %) 

0.05 

(2 %) 

0.05 

(2 %) 

Semi 

dynamic 

root biomass  

(g 100g-1) 

0.04 

(0.16 %) 

0.07 

(0.07 %) 

0.07 

(0.08 %) 

NDVI 2.29*** 

(25 %) 

2.18*** 

(22 %) 

2.18*** 

(22 %) 

Dynamic Soil temp.  

(°C) 

0.06*** 

(24 %) 

0.06*** 

(21 %) 

0.06*** 

(21 %) 

VWC  

(cm3 cm-3) 

-1.17*** 

(17 %) 

-0.90*** 

(13 %) 

-0.90*** 

(13 %) 

  Water table  

(cm) 

\ -0.01** 

(10 %) 

-0.01*** 

(10 %) 
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Note. Significance level: *** p < 0.001, ** p < 0.01, * p < 0.05. All CO2 fluxes (unit: μmol m-2 s-1), soil temperature, 76 

and VWC data for spatial and seasonal patterns were from the LI8100 A system. The water table data was from the 77 

Solinst probes at five slope positions and the atmospheric pressure data was from the meteorological station. The 78 

number of observations for modeling is 336. 79 

Reference 80 

Li, Y., Henrion, M., Moore, A., Lambot, S., Opfergelt, S., Vanacker, V., Jonard, F., and Van Oost, K.: 81 

Factors controlling peat soil thickness and carbon storage in temperate peatlands based on UAV high-82 

resolution remote sensing, Geoderma, 449, 117009, https://doi.org/10.1016/j.geoderma.2024.117009, 83 

2024. 84 

 85 

  Atmospheric 

pressure (kPa) 

\ \ -0.002 

(1 %) 

Random 

effects 

ICC 

(contribution) 

0.21 

(7 %) 

0.23 

(6 %) 

0.23 

(6 %) 

Model 

performance 

Marginal R2 0.69 0.70 0.70 

Conditional R2 0.76 0.76 0.76 

AIC 590.00 581.30 583.30 

RMSE 0.52 0.51 0.51 

KGE 0.82 0.82 0.82 
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