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Abstract. CO2 emissions from peatlands exhibit substantial
spatiotemporal variability, presenting challenges for identi-
fying the underlying drivers and for accurately quantifying
and modeling CO2 fluxes. Here, we integrated field measure-
ments with Unmanned Aerial Vehicle (UAV)-based multi-
sensor remote sensing to investigate soil respiration across
a temperate peatland landscape. Our research addressed two
key questions: (1) How do environmental factors control the
spatiotemporal distribution of soil respiration across com-
plex landscapes? (2) How do spatial and temporal peaks (i.e.,
hot spots and hot moments) of biogeochemical processes in-
fluence landscape-level CO2 fluxes? We find that dynamic
variables (i.e., soil temperature and moisture) play signifi-
cant roles in shaping CO2 flux variations, contributing 43 %
to seasonal variability and 29 % to spatial variance, followed
by semi-dynamic variables (i.e., Normalized Difference Veg-
etation Index (NDVI) and root biomass) (19 % and 24 %).
Relatively static variables (i.e., soil organic carbon stock and
carbon to nitrogen ratio) have a minimal influence on sea-
sonal variation (2 %) but contribute more to spatial variance
(10 %). Additionally, predicting time series of CO2 fluxes is
feasible by using key environmental variables (test set: co-
efficient of determination (R2)= 0.74, Root Mean Square
Error (RMSE)= 0.57 µmolm−2 s−1, Kling-Gupta Efficiency
(KGE)= 0.77), while UAV remote sensing is an effective
tool for mapping daily daytime soil respiration (test set:R2

=

0.75, RMSE= 0.56 µmolm−2 s−1, KGE= 0.83). By the in-
tegration of in-situ high-resolution time-lapse monitoring
and spatial mapping, we find that despite occurring in 10 %

of the year, hot moments (i.e., periods of time which have
a disproportional high (> 90th percentile) CO2 fluxes com-
pared to the surrounding) contribute 28 %–31 % of the an-
nual CO2 fluxes. Meanwhile, hot spots (i.e., locations which
CO2 fluxes higher than 90th percentile) – representing 10 %
of the area – account for about 20 % of CO2 fluxes across
the landscape. Our study demonstrates that integrating UAV-
based remote sensing with field surveys improves the under-
standing of soil respiration mechanisms across timescales in
complex landscapes. This will provide insights into carbon
dynamics and supporting peatland conservation and climate
change mitigation efforts.

1 Introduction

Peatlands are globally distributed ecosystems that cover an
area of 6.75 million km2 and store 942.09±312 Gt of carbon
(Widyastuti et al., 2025). However, rising concerns exist over
peatlands shifting from carbon sinks to carbon sources due to
the impact of climate change (Dorrepaal et al., 2009; Huang
et al., 2021; Hopple et al., 2020), land use/cover conversion
(Leifeld et al., 2019; Deshmukh et al., 2021; Prananto et al.,
2020), and other disturbances (Wilkinson et al., 2023; Turet-
sky et al., 2015). In Europe, it has been reported that nearly
half of the peatlands are suffering degradation, primarily due
to drainage for agricultural or forestry activities (Leifeld et
al., 2019; UNEP, 2022). As a consequence, European peat-
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lands currently emit up to 580 Mt CO2 eq. per year across
the continent (UNEP, 2022). Given the critical role of the
peatland ecosystem in the terrestrial carbon cycle, it is there-
fore important to understand the mechanisms driving carbon
fluxes and their responses to climate change and human dis-
turbances.

Soil respiration, a key ecological process that releases CO2
from peatlands into the atmosphere, is influenced by a com-
bination of biotic and abiotic factors. Among abiotic con-
trols, soil temperature and moisture play a crucial role in
driving microbial activity and root respiration, influencing
CO2 fluxes across daily to annual scales(Evans et al., 2021;
Fang and Moncrieff, 2001; Hoyt et al., 2019; Juszczak et
al., 2013; Swails et al., 2022). Water table fluctuations alter
oxygen availability and distribution within the soil profile,
directly affecting microbial processes and carbon emissions
(Evans et al., 2021; Hoyt et al., 2019). Atmospheric pressure
affects the transport of gases between the soil surface and
the atmosphere, thereby modulating the CO2 fluxes (Lai et
al., 2012; Ryan and Law, 2005). Vegetation, as a key biotic
factor, influences the spatiotemporal variations of soil respi-
ration through phenology, structure, and community (Acosta
et al., 2017; Wang et al., 2021). In addition, soil organic mat-
ter provides essential substrates for microbial activity, with
previous studies suggesting that the quality of organic mate-
rial, rather than its quantity, primarily regulates CO2 fluxes in
peatlands (Hoyos-Santillan et al., 2016; Leifeld et al., 2012).

CO2 emissions from peatlands are highly variable over
space and time, presenting challenges to accurately quan-
tify and model carbon fluxes. This may be partially because
peatlands are characterized by a unique microtopography,
including features such as hummocks and hollows (Moore
et al., 2019). These small-scale variations create differences
in hydrology, temperature, biogeochemistry, and vegetation
(Harris and Baird, 2019), leading to substantial spatial dif-
ferences in the factors that control CO2 fluxes and the for-
mation of “hot spots” with elevated CO2 emissions (Kelly et
al., 2021; Becker et al., 2008; McClain et al., 2003; Frei et
al., 2012; Kim and Verma, 1992). In addition, peatlands ex-
hibit a high sensitivity to meteorological variability, which
can trigger periods of disproportionately high CO2 fluxes –
often referred to as “hot moments” – in response to transient
environmental changes, such as sudden shifts in tempera-
ture, atmospheric pressure, rainfall events, or fluctuations in
the water table (Anthony and Silver, 2023; Fernandez-Bou et
al., 2020). High CO2 emissions occur from discrete areas in
space (hot spots) and over short periods (hot moments), and
may disproportionately contribute to the overall fluxes (An-
thony and Silver, 2023; Fernandez-Bou et al., 2020). Most
studies have examined the mechanisms and contributions of
hot spots and hot moments of other greenhouse gases (N2O,
CH4) in agricultural and forestry ecosystems (Krichels and
Yang, 2019; Anthony and Silver, 2021; Kannenberg et al.,
2020; Leon et al., 2014; Fernandez-Bou et al., 2020). How-
ever, research on CO2 emission hot spots and hot moments in

peatlands remains limited (Anthony and Silver, 2023), even
though both CO2 and CH4 originate from organic matter de-
composition under different redox conditions.

Identifying and quantifying hot spots and hot moments in
peatlands is challenging, requiring large-scale, continuous,
long-term observations. Currently, most studies on peatland
soil respiration rely on point measurements taken at intervals
of half a month to one month, primarily during daytime (e.g.,
Wright et al., 2013; Bubier et al., 2003; Kim and Verma,
1992; Danevčič et al., 2010). This spatiotemporal limitation
constrains the effective understanding of hot spots and hot
moments. Some studies attempted to extrapolate point data
using land-use maps (van Giersbergen et al., 2024; Webster
et al., 2008; McNamara et al., 2008), but uncertainties in
landscape-scale fluxes increase as the number of measure-
ment locations decreases (Arias-Navarro et al., 2017; Wan-
gari et al., 2022; Gachibu Wangari et al., 2023). While au-
tomated chamber systems improve temporal resolution and
help capture hot moments (Hoyt et al., 2019; Anthony and
Silver, 2023), they are typically limited to a few sampling
points, and scaling up is constrained by significant resource
demands. Eddy covariance towers can continuously measure
net ecosystem exchange over large areas (Rey-Sanchez et
al., 2022; Abdalla et al., 2014), but they are less effective
in capturing the spatial heterogeneity of peatlands (Lees et
al., 2018). These limitations highlight the need for spatially
robust, high-resolution methods that can characterize CO2
fluxes across heterogeneous landscapes.

Several studies have integrated satellite-based remote
sensing datasets with on-site chamber measurements to
model landscape-scale CO2 fluxes (e.g., Junttila et al., 2021;
Gachibu Wangari et al., 2023; Lees et al., 2018; Azevedo et
al., 2021). Remote sensing datasets on topography and veg-
etation parameters serve as proxies for soil moisture, veg-
etation cover, and nutrient availability, enabling large-scale
CO2 emission estimates within peatlands (Lees et al., 2018).
However, this approach is somewhat limited by coarse spa-
tial (10 m to 1 km) and temporal (1 to 16 d) resolutions,
which may overlook hot spots and hot moments, leading
to potential over- or underestimations of CO2 fluxes in het-
erogeneous (e.g., complexity in topography, diverse vege-
tation types, varying thermal-hydrological conditions) peat-
lands (Kelly et al., 2021; Simpson, 2023). This shortcom-
ing might be overcome by using unmanned aerial vehicles
(UAVs) equipped with different kinds of sensors such as
Red-Green-Blue (RGB), multispectral, thermal infrared, and
Light Detection and Ranging (LiDAR). UAVs offer flexi-
ble deployment and capture high-resolution spatiotemporal
data (1 cm to 1 m, minutes to months) (Minasny et al., 2019)
which makes them particularly suitable for monitoring com-
plex peatland dynamics and detecting hot spots and hot mo-
ments. Thus far, UAVs have proven to be reliable tools for
peatland applications, including vegetation mapping (Steen-
voorden et al., 2023), topographic reconstruction (Harris and
Baird, 2019), peat depth and carbon storage estimation (Li
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et al., 2024), ground-water and surface water interactions
(Moore et al., 2024), and moisture monitoring (Henrion et
al., 2025). In a recent study, Kelly et al. (2021) utilized
UAV-derived land surface temperature to estimate ecosys-
tem respiration of a hemi-boreal fen in southern Sweden,
and some studies (e.g., Pajula and Purre, 2021; Walcker et
al., 2025) employed UAV-based multispectral vegetation in-
dices to map ecosystem CO2 flux at high resolution. These
recent studies demonstrated the great potential of UAVs for
linking CO2 fluxes with environmental factors at a very high
resolution, although they mainly focused on data from a sin-
gle sensor. Few studies have explored the fusion of UAV-
derived data from multiple sensors for mapping soil respi-
ration across peatland landscapes.

In this study, we integrate multi-sensor UAV-based remote
sensing with traditional field surveys to investigate soil res-
piration across a temperate peatland bog landscape, located
in the Belgian Hautes Fagnes, which represents an important
ecosystem for studying peatland carbon fluxes due to its sen-
sitivity to climate change and hydrological dynamics. Our
research addresses two key questions:

1. What controls the nature and strength of the relation-
ship between soil respiration and environmental fac-
tors – such as thermal-hydrological conditions, vegeta-
tion, carbon stock and quality – across complex peat-
land landscapes and across spatiotemporal scales? To
address this, we first identify the factors driving sea-
sonal and spatial variations in soil respiration and then
assess the potential for linking environmental factors to
CO2 flux at high spatiotemporal resolutions.

2. How do spatial and temporal peaks (i.e., hot spots and
hot moments) of biogeochemical processes influence
landscape-level carbon fluxes? For this purpose, we an-
alyze the locations and timing of hot spots and hot mo-
ments, and assess their contributions to overall CO2 flux
budgets.

2 Materials and methods

2.1 Study site

The Belgian Hautes Fagnes plateau, part of the Stavelot-Venn
Massif, is located in eastern Belgium (Fig. 1a). This elevated
landscape experiences a humid climate, with mean annual
air temperature and precipitation being approximately 6.7 °C
and 1439.4 mm (period: 1971–2000), respectively (Mormal
and Tricot, 2004). The peatlands in this region cover an
area of 37.50 km2, which primarily consist of raised bogs
formed since the Late Pleistocene and grown under both
oceanic and continental influences (Frankard et al., 1998;
Goemaere et al., 2016). Our study site (50.49° N, 6.05° E;
∼ 0.30 km2) is located in the upper valley of the Hoëgne
River peatland bog region (Fig. 1a). This ombrotrophic bog

is mainly fed by precipitation and covers an area of ap-
proximately 32 ha. The landscape exhibits complex struc-
tures, characterized by distinct SE-NW oriented topographic
units (i.e., summit, topslope, shoulder, backslope, and foot-
slope), along with diverse microtopographic features, spa-
tiotemporal varying thermal-hydrological conditions, differ-
ences in peat thickness and carbon storage, and a range of
vegetation types (Sougnez and Vanacker, 2011; Henrion et
al., 2024; Li et al., 2024). More specifically, the summit is
a low-relief, southeast-facing plateau at 675–680 m eleva-
tion, which transitions downslope into the topslope and con-
cave shoulder slope positions (Fig. 1a). The northwest-facing
backslope is relatively steeper (average slope grade: 4.98°;
elevation range: 645–670 m) compared to these upper units,
while the footslope lies in the northwestern hillslope adjacent
to Hoëgne River. The peat thickness varies spatially from
0.20 to 2.10 m across the landscape, with deeper deposits in
the footslope and shallower peat at the topslope (Henrion et
al., 2024; Li et al., 2024). The estimated soil organic car-
bon (SOC) stocks (i.e., top 1 m layer) range from 176.13 to
856.57 t ha−1, with significantly higher storage at the sum-
mit, shoulder, and footslope (Li et al., 2024). Due to the
pronounced topographic gradients and microtopography, the
landscape exhibits great spatiotemporal variability in root-
zone soil volumetric water content (range: 0.1–1 cm3 cm−3)
and water table dynamics (range:−80–5 cm) (Henrion et al.,
2025). The study site was drained and planted with spruces
in 1914 and 1918, while the plantations were progressively
cleared between 2000 and 2016. Since 2017, the site has been
under restoration and now primarily covered by Vaccinium
myrtillus, Molinia caerulea, Juncus acutus, and native hard-
wood species (e.g., Betula pubescens and Quercus robur), as
shown in Fig. 1b. An observation station of the Royal Meteo-
rological Institute of Belgium (Mont Rigi, 50.51° N, 6.07° E)
situated 3.07 km northeast of the study site, records rainfall
and atmospheric pressure data every 10 min.

2.2 CO2 flux measurement campaigns

Soil surface CO2 flux measurements were conducted at five
slope positions along the middle part of the site (Fig. 1a). A
portable infrared gas analyzer with an automated closed dy-
namic chamber (LI-8100A system, LI-COR, United States;
accuracy: ±1.5 %) was used to monitor CO2 fluxes at 33
sites biweekly from December 2022 to March 2024 (Fig. S1).
The dominant vegetation type of each slope position was
recorded. Next, six collars (20 cm diameter) were installed
randomly at each position, spaced 1–5 m apart, to capture
small-scale spatial variability. Given the high variability in
soil water content at the shoulder position (Henrion et al.,
2025), six collars were installed in drier areas (i.e., Shoul-
der dry) and another three in wetter areas (i.e., Shoulder
wet). All vegetation within the collars was removed. During
each campaign, monitoring was conducted between 09:00 LT
and 16:00. At each site, the CO2 flux (µmolm−2 s−1) in
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Figure 1. Maps showing the field-sampling locations (a) and land
cover types (b) in the study area. Details on the land cover map are
provided in our previous work (Li et al., 2024).

the chamber was measured for 2.5 min per observation. Si-
multaneously, soil surface temperature (0–10 cm) and volu-
metric water content (VWC) during each CO2 measurement
were recorded using a T-handled type-E thermocouple sen-
sor (8100-201, LI-COR, United States; accuracy: ±0.5 %)
and a portable five-rod, 0.06 m long frequency domain reflec-
tometry (FDR) probe system (ML2x, Delta-T, United King-
dom; accuracy:±1 %), respectively. However, CO2 measure-
ments were not always possible due to technical issues and
bad weather conditions, resulting in a total of 666 valid mea-
surements. In addition, a pair of soil CO2 forced diffusion
probes (eosFD, EOSense, United States; accuracy:±40 ppm)
were installed near LI-8100A collars from 24 April 2024 to
8 November 2024 (Fig. S1). These probes, consisting of a
soil node and a reference node, are based on a membrane-
based steady-state approach and can measure CO2 flux ev-

ery 5 min (Risk et al., 2011). During this period, the probes
continuously monitored CO2 flux at different slope positions
(Fig. S1), resulting in a total of 39 476 valid flux measure-
ments.

2.3 Temperature, soil moisture, and water table
monitoring

The temporal evolution of soil temperature and moisture
along the middle part was monitored using Teros12 sen-
sors (Meter Group, München, Germany; accuracy: ±0.01–
0.02 m3 m−3 for moisture and±0.5 °C for temperature), with
two replicates per slope position, spaced 5 m apart (Fig. 1a)
(Henrion et al., 2025). These sensors recorded data at a depth
of 10 cm from 14 October 2022 to 28 October 2024, every
10 min. Between the two replicates of each slope position,
a station positioned ∼ 1.4 m above the ground recorded air
temperature every 10 min. Additionally, ten soil temperature
data loggers (EL-USB-1-PRO, Lascar, United Kingdom; ac-
curacy: ±0.2 °C) were installed primarily along two evenly
spaced transects parallel to the main slope, at a depth of
10 cm (Fig. 1a). These loggers recorded soil temperatures at
the same frequency as Teros12 sensors from 21 March 2023
to 8 November 2024. Besides, five Levelogger 5 pressure
sensors (Solinst, Georgetown, Canada; accuracy: ±0.1 %)
were placed in PVC pipes to capture pressure at the same to-
pographic positions as the Teros12 sensors (Fig. 1a), which
was then used to interpret groundwater-level dynamics (Hen-
rion et al., 2025). These probes also recorded at 10 min inter-
vals, from June 2023 through October 2024.

2.4 Soil sampling and laboratory analysis

After completing all gas sampling campaigns, 33 disturbed
soil samples (0–10 cm depth) were collected within LI8100A
collars at the five slope positions between 30 July and
15 October 2024. An Emlid Reach RS 2 GPS device with
centimeter-level precision was used to record the sampling
site locations, using a PPK solution with the Belgian WAL-
CORS network, resulting in a mean lateral positioning error
of 1.84 cm across all sites. The samples were stored in a re-
frigerator until laboratory analysis. A subset of the samples
was oven-dried at 80 °C for 24 h (Dettmann et al., 2021), then
crushed and ground into a fine powder for soil organic carbon
(SOC) and total nitrogen content (TN) analysis (928 Series,
LEGO, United States). Roots and litter were removed us-
ing tweezers during the pre-processing procedure. We tested
the presence of inorganic carbon of each sample by adding
one drop of 10 % HCl but found that no inorganic carbon
was present in the samples. A subset of fresh samples was
used for root biomass analysis. The fresh soil samples were
weighed and placed in a 1 mm sieve, then rinsed with wa-
ter to collect the roots. The washed roots were dried in an
oven at 80 °C for 48 h and then weighed to calculate their dry
biomass.
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2.5 UAV data acquisition

During the CO2 flux monitoring period, we conducted reg-
ular UAV flights across the study area to collect high-
resolution spatial data (Fig. S1). A DJI Matrice 300 RTK
was equipped with four different sensors: (i) a Red-Green-
Blue (RGB) camera (DJI Zenmuse P1 camera, 35 mm and
45 MP), (ii) a multispectral camera (MicaSense RedEdge-
M camera with five discrete spectral bands: blue (475 nm),
green (560 nm), red (668 nm), rededge (717 nm), and near-
infrared (842 nm), along with a downwelling light sensor),
(iii) a LiDAR scanner (DJI Zenmuse L1, integrated with a
20 MP camera with a 1 in CMOS sensor) and (iv) a thermal
infrared camera (TeAX, featuring FLIR Tau2 cores and Ther-
malCapture hardware). All the UAV flight missions were car-
ried out around noon (10:00–14:00) and the details of UAV
campaigns were presented in Supplement (Sect. S1). Due to
the variable weather conditions in the research field, UAV
campaigns were not always feasible. In total, one RGB and
one LiDAR dataset collected on 7 June 2023, were used
in this study and ten multispectral and ten thermal infrared
datasets collected between 13 April 2023 and 13 May 2024
(Fig. S1).

2.6 UAV imagery processing

The raw multispectral images were processed in the Pix4D
mapper software (Pix4D S.A., Lausanne, Switzerland) to
generate reflectance maps (resolution: 6 cm) of the five spec-
tral bands of the study area. We calculated the Normalized
Difference Vegetation Index (NDVI) across the 10 maps
from the monitoring period (Table 1). The RGB photos were
processed in DJI Terra V4.0.10 (SZ DJI Technology Co.,
Ltd., Shenzhen, China) to generate an orthomosaic image
with a resolution of 1.26 cm. The raw LiDAR data was pro-
cessed in DJI Terra to provide a Digital Terrain Model (DTM;
.tif file) with a resolution of 15 cm. We then calculated the
terrain wetness index (TWI) in SAGA GIS 9.2.0 using the
formula presented in Table 1. The variables derived from the
different types of images and their calculation formula were
summarized in Table 1.

The raw thermal infrared video streams were converted
into RJPG images using ThermoViewer version 3.0.26
(TeAX, Arnsberg, Germany). Subsequently, the thermal im-
ages were processed with the Pix4D mapper to generate land
surface temperature (LST) maps (resolution: 12 cm). To cal-
ibrate the LST of each date (Fig. 2a), we first applied linear
regressions of temperature obtained by camera and tempera-
ture of 2 targets on the ground (Sect. S1, Fig. S2a) to create
a correction formula (Fig. S2b). Next, we mapped the spa-
tial variations of surface emissivity using the classification-
based approach (Snyder et al., 1998; Li et al., 2013), based
on land cover data from our previous work (Fig. 1b; Li et
al., 2024) and emissivity values of each class from literature
(Snyder et al., 1998). Finally, we converted the LST to ther-

mal radiance using Planck’s law, applied an emissivity-based
correction, and then converted the radiance back to obtain
calibrated LST.

2.7 Daily soil temperature mapping

The linear mixed-effects model was utilized to predict
the spatial distribution of daily mean soil temperature
(10 cm depth) across the landscape from 1 May 2023 to
30 April 2024. This is because mixed models integrate both
fixed and random effects, which provide a robust framework
for analyzing data with non-independent structures (Pinheiro
and Bates, 2000). Daily mean air temperature, Normalized
Difference Vegetation Index (NDVI) and calibrated Land
Surface Temperature (LST) were considered as fixed-effect
predictors and monitoring sites were included as random
effects. The model was performed in RStudio (v4.1.2) us-
ing the lmer function of the lme4 package (https://CRAN.
R-project.org/package=lme4, last access: 2 September 2025)
and was defined as:

yij = β0+β1xij + . . .+βpxij + b0j + b1jzij + . . .+ εij (1)

Where:

– yij is the dependent variable (i.e., soil temperature at
10 cm, unit: °C) for observations i in group j .

– β0, β1, . . . , βp are fixed-effect coefficients.

– xij indicates fixed-effect predictors (independent vari-
ables).

– b0j , b1j , . . . are random-effect coefficients associated
with group j , which account for variability across
groups.

– zij indicates predictors associated with random effects.

– εij is the residual error term.

Soil temperature data were collected from both Teros 12 sen-
sors and data loggers, as described in Sect. 2.3. Air temper-
ature measurements were obtained from five stations posi-
tioned at different slope locations. The NDVI and calibrated
LST estimates were extracted from maps by retrieving values
at the 20 soil temperature sensor sites (Fig. 1a). These sites
were included as random effects in the model to account for
repeated measurements at the same locations throughout the
monitoring period. For mapping purposes, daily air temper-
ature was statistically downscaled by incorporating the re-
lationship between daily air temperature and elevation, fol-
lowed by downscaling using a Digital Terrain Model (DTM)
derived from LiDAR data (Fig. 2a). The daily NDVI and LST
maps were generated by linearly interpolating the month-
ly/biweekly maps derived from UAVs. The workflow of soil
temperature mapping is illustrated in Fig. 2a.
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Table 1. Orthorectified image, topographical, vegetation index, and land surface temperature maps derived from RGB, LiDAR, multispectral
and thermal images.

Index Definition Unit Data source

RGB orthomosaic Orthorectified image mosaicked from
RGB image collection

/ RGB

DTM Digital Terrain Model, the elevation m LiDAR

TWI Terrain wetness index: ln (As/tan(b)),
where As is the specific contributing
area and b is the slope angle (i.e., the
rate of change in elevation) in radians.

/ LiDAR

NDVI Normalized Difference Vegetation
Index: (near infrared− red) / (near
infrared+ red)

/ Multispectral

LST Land Surface Temperature °C Thermal infrared

2.8 Generation of corrected daily TWI

We generated corrected daily TWI maps to approximate
the spatial distribution of daily soil volumetric water con-
tent (VWC) by incorporating both long-term site character-
istics and daily precipitation effects (Fig. 2a). First, we cal-
culated the mean VWC for each site over the period from
1 May 2023 to 30 April 2024. Then, we extracted each site’s
TWI values from a TWI map generated using the formula in
Table 1. Next, we performed a linear regression with mean
VWC as the response and TWI as the predictor:

Baseline=MeanVWC= b+ a ·TWI (2)

The “Baseline” represents the soil moisture level at long-
term. A baseline map was then created using this regression
model. Daily deviations (anomalies) from the baseline were
defined as:

Anomalyt = VWCt −Baseline (3)

Considering the memory and lag effects in soil moisture dy-
namics, we assumed that the anomaly on any day is influ-
enced by the previous day’s anomaly and precipitation:

Anomalyt = c ·Anomalyt−1− d ·Precipitationt−1 (4)

Finally, we generated a “corrected TWI” map for each day
by adding the dynamically updated anomaly to the baseline
map:

Corrected TWIt map= Baseline map+Anomalyt (5)

This approach allows the daily corrected TWI maps to cap-
ture both the inherent spatial variability (as determined by
TWI) and the dynamic influence of rainfall, thereby serving
as a proxy for the spatial distribution of soil moisture.

2.9 Statistical analysis

All data analyses were conducted in RStudio (v4.1.2). All
timestamps in this study were converted to Coordinated Uni-
versal Time (UTC) to ensure consistency across datasets.
Group differences were assessed by the Kruskal-Wallis test,
a non-parametric alternative to the one-way analysis of vari-
ance, and suitable for non-normally distributed data (Dunn,
1964). When the Kruskal-Wallis test detected a significant
overall effect (p < 0.05), Dunn’s post-hoc test was per-
formed to determine which groups differed significantly
from each other. Pearson correlation analysis was performed
using the corrplot package (Murdoch and Chow, 1996). The
linear mixed-effects models used to identify factors control-
ling spatial- temporal variations of CO2 flux, as well as time
series simulation and mapping are introduced below.

2.9.1 Models to explain spatiotemporal variations in
CO2 flux

We also utilized linear mixed-effects modeling framework
(i.e., as shown in Sect. 2.7) to assess the impacts of both static
and dynamic environmental factors on the spatial and sea-
sonal variability of CO2 fluxes. Unlike the soil temperature
model, the natural logarithm of CO2 flux observations was
utilized as a response. The CO2 fluxes data are often charac-
terized by extreme values and right-skewed distribution, and
a lognormal assumption for CO2 fluxes could better account
for the influences of extreme values on the overall distribu-
tion (Wutzler et al., 2020). The fixed-effect predictors were
categorized into three groups:

– Static variables: SOC stock, and the ratio of SOC con-
tent to nitrogen content (C/N ratio).

– Semi-dynamic variables: root biomass and NDVI.
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Figure 2. Workflow diagram of daily daytime CO2 flux spatial mapping (a) and hourly CO2 flux temporal modeling (b).

– Dynamic variables: soil temperature and soil moisture
at 0–10 cm depth, as well as water table and atmospheric
pressure (the latter two variables are shown in the Sup-
plement).

Estimates for NDVI were extracted from the NDVI maps
by retrieving the value of the 33 CO2 flux observation sites
and the SOC stock values were extracted from the a local
high resolution (0.15 m) SOC stock map (Li et al., 2024).
The sites were included as random effects in the seasonal
pattern model to account for repeated measurements at the
same locations during the monitoring period, whereas slope

positions were treated as random effects in the spatial pattern
model.

2.9.2 Modelling hourly CO2 flux

The mixed-effects model was utilized to simulate the time
series of CO2 fluxes at different slope positions (Fig. 2b).
Here, the slope position was included as random variable,
and the natural logarithm of CO2 flux (hourly) was set as
a response. We utilized CO2 fluxes data measured by both
the LI8100A system and eosFD probes. Specifically, we ran-
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domly selected a number of 30 observations from the eosFD
probes at each slope position to reduce data redundancy from
high-frequency sampling. Afterwards, we applied weighting
to adjust the remaining imbalance in data density between
the high-frequency eosFD monitoring and low-frequency
LI8100A measurements, ensuring both data sources con-
tributed proportionally to the model. The independent vari-
ables included hourly soil temperature (10 cm depth), volu-
metric soil moisture (VWC, 10 cm depth), and air tempera-
ture (1.4 m height), considering their importance in explain-
ing the seasonal and diurnal patterns of CO2 flux. We made
simulations of the time series of hourly CO2 flux for different
slope positions from 1 May 2023 to 30 April 2024. Further-
more, we identified CO2 emission hot moments based on the
description in Sect. 2.9.4.

2.9.3 Mapping daily daytime CO2 flux

The linear mixed-effects model was utilized to map the spa-
tial distribution of daily daytime CO2 fluxes across the land-
scape, with daily soil temperature (10 cm depth), corrected
daily TWI, and SOC stock being considered as fixed-effect
variables and gas sampling sites being included as random
variables (Fig. 2a). We predicted the daily daytime CO2 flux
of the landscape from 1 May 2023 to 30 April 2024. Addi-
tionally, we calculated the mean daily soil CO2 flux maps for
each season and the entire year. Based on these predictions,
we identified hot spots for each day by the methods described
below.

2.9.4 Quantifying hot moments and hot spots of CO2
flux

In previous studies, percentiles have been used as thresholds
for identifying heat waves (e.g., Meehl and Tebaldi, 2004:
97.5th percentile), soil heat extremes (e.g., García-García et
al., 2023: 90th percentile), hot spots of N2O emissions (e.g.,
Mason et al., 2017: median plus three times the interquartile
range), and hot spots of CO2 emissions (e.g., Gachibu Wan-
gari et al., 2023: median plus the interquartile range). In this
study, we tested different methods and selected the 90th per-
centile as the threshold of both hot moments and hot spots
to balance capturing extreme CO2 emissions while maintain-
ing a sufficient sample size. To capture the hot moments, we
calculated a threshold for each slope position separately us-
ing its own dataset (Fig. 2b). For hot spots, we determined a
daily threshold based on each map (Fig. 2a).

2.10 Model performance evaluation

Independent variable coefficients, Intraclass Correlation Co-
efficient (ICC), coefficients of determination (marginal R2

and conditional R2), Root Mean Square Error (RMSE), and
Akaike Information Criterion (AIC) were extracted using the
modelsummary package after running each model described
in Sect. 2.7 and 2.9.1. The ICC quantifies the proportion of

variance explained by a grouping (random) factor in multi-
level data; values close to 1 indicate high similarity within
groups, while values near 0 suggest that grouping conveys
little to no information (Nakagawa et al., 2017; Shrout and
Fleiss, 1979). The marginal R2 represents the variance ex-
plained by fixed effects alone, and the conditional R2 rep-
resents the variance explained by both fixed and random ef-
fects (Pinheiro and Bates, 2000). The Kling-Gupta Efficiency
(KGE) between observations and predictions was also calcu-
lated, with values closer to 1 indicating good model perfor-
mance (Gupta et al., 2009). The relative importance of each
predictor was obtained using the glmm.hp package (Lai et al.,
2023, 2022). To assess multicollinearity in regression analy-
sis, the car package was used to calculate the variance infla-
tion factor (VIF) (Fox and Monette, 1992).

For modelling daily soil temperature (i.e., Sect. 2.7) and
daily/hourly CO2 flux (i.e., Sect. 2.9.2 and 2.9.3), we di-
vided the corresponding dataset into a training set (70 %)
and a test set (30 %) usingK-means clustering, following the
methodology of our previous work (Li et al., 2024), to min-
imize biases that could arise from random sampling (Hair et
al., 2010). The models were trained on the training set, and
the simulation accuracy was validated using the test dataset.
The coefficient of determination (R2), RMSE and KGE were
used to assess the quality of all model fits. The daily soil tem-
perature model yielded R2, RMSE, and KGE values of 0.89,
1.33 °C, and 0.94, respectively (Fig. S2c, d). Detailed results
on model coefficients and performance are summarised in
Table S1.

3 Results

3.1 Peat soil surface and subsurface properties

Table 2 presents an overview of soil surface and subsur-
face properties at different slope positions. The air tempera-
ture above ground ∼ 1.4 m shows great temporal variability,
ranging from −8.76 to 24.79 °C within one year. Soil tem-
peratures have smaller temporal variations (0.75–17.48 °C),
while the mean daily soil temperature (± one standard devia-
tion (SD)) at the topslope (8.86±3.69 °C) is relatively lower
than at other positions. Soil volumetric water content (VWC)
across the landscape also exhibits significant spatial hetero-
geneity. The backslope has the highest mean daily VWC
(0.94± 0.04 cm3 cm−3), followed by the footslope (0.86±
0.06 cm3 cm−3), shoulder wet (0.85± 0.01 cm3 cm−3), and
summit (0.82± 0.04 cm3 cm−3). The water table at the top-
slope showed large fluctuations throughout the year (range:
−77.41–0.38 cm; mean±SD:−21.76±25.17 cm), as shown
in Table 2. In contrast, the water table at the shoulder wet
slope position remained close to the surface and relatively
stable within one year (range: −20.21–4.17 cm; mean±SD:
−2.17± 5.62 cm). No significant differences in dry root
biomass were observed among the various slope positions,
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which may be attributed to substantial small-scale varia-
tions within each position, particularly at the shoulder, where
the biomass ranged from 0.70 to 8.46 g per 100 g soil. The
SOC content values for summit and shoulder wet areas are
47.38± 2.06 g per 100 g and 47.00± 1.41 g per 100 g, re-
spectively. The SOC content in the shoulder and backslope
positions is similar, approximately 42 g per 100 g, while the
carbon content in the footslope and topslope positions is
comparatively lower. In addition, the TN content at the top-
slope (1.61± 0.48 g per 100 g) is significantly lower than
at other positions (p < 0.05). The C/N ratio at the foots-
lope (17.41± 1.57) was significantly lower than at the sum-
mit, topslope, and backslope (p < 0.05), while no significant
differences in C/N ratios were observed among the other
places.

3.2 Spatiotemporal patterns of CO2 flux

During the monitoring period, the CO2 emissions show large
spatial and seasonal variations across the landscape. The CO2
fluxes at the footslope (1.25± 1.00 µmolm−2 s−1) and back-
slope (1.11± 1.03 µmolm−2 s−1) were significantly lower
than that of other slope positions (p < 0.05) (Fig. 3a). Fur-
thermore, significant differences were observed when group-
ing the data into three vegetation covers: CO2 emissions
from Vaccinium myrtillus were lower than those from Jun-
cus acutus, with mean±SD values of 1.59±1.43 and 2.33±
2.36 µmolm−2 s−1, respectively (Fig. 3b) (p < 0.05). How-
ever, the CO2 fluxes under Molinia caerulea displayed large
variations (0.02–20.1 µmolm−2 s−1), and no significant dif-
ferences were found compared to the other two vegetation
types. The CO2 flux data indicated large CO2 emissions from
June to September (3.65± 2.68 µmolm−2 s−1), which can
be 8.11 times higher than that from winter and early spring
(0.45±0.40 µmolm−2 s−1) (Fig. 3c). CO2 emissions in May
and October were at a moderate level.

At the daily scale, the soil respiration displayed a clear di-
urnal trend from April to August (Fig. S3), particularly at
the footslope (Fig. S3a), backslope (Fig. S3b), and shoulder
(Fig. S3c, d) slope positions, with higher CO2 emissions ob-
served in the late afternoon (14:00–18:00) and lower emis-
sions in the morning (04:00–08:00). In contrast, the diur-
nal trend of CO2 flux at the topslope (Fig. S3e) and summit
(Fig. S3f) in autumn was less pronounced. Figure 4a presents
examples of time series data for CO2 fluxes and environmen-
tal factors at the footslope, topslope, and summit from Au-
gust to October 2024. In August, clear diurnal patterns with
variation magnitudes of 2–3 µmolm−2 s−1, and reduced CO2
emissions following precipitation events on 13 August and
17 August were observed at the footslope (Fig. 4a, b). Since
the middle of September, the diurnal variation was less than
1 µmolm−2 s−1 and there was no obvious pattern in daily
changes (Fig. 4a, c).

3.3 Factors contributing to spatiotemporal variability

Three types of environmental factors explain 64 % of the ob-
served seasonal variance in CO2 emissions, with contribu-
tions of 33 % from soil temperature, 10 % from VWC, 19 %
from vegetation (i.e., NDVI, root biomass), 2 % from rel-
atively static factors (i.e., SOC stock, C/N ratio), and 6 %
from random effects (i.e., 33 sampling sites) (Table 3). This
suggests that long-term stable environmental factors have
minimal direct influence on seasonal CO2 flux patterns. In-
terestingly, the contribution of these relatively stable factors
is nearly 6 times higher in explaining overall spatial varia-
tions, although soil temperature is still the dominant factor
(Table 3). The low ICC values in both spatial and seasonal
models highlight significant small-scale heterogeneity in soil
respiration. Water table contributed 10 % of seasonal varia-
tion and atmospheric pressure was not important (1 %), as
shown in Table S2 of the Supplement. The relationships be-
tween each environmental factor and CO2 fluxes are shown
in Fig. S4.

3.4 Continuous hourly time series of CO2 flux and hot
moments

Three dynamic variables (i.e., soil temp., VWC, air temp.)
were taken into account to predict the time series of hourly
CO2 flux at different slope positions. These input variables
were selected due to their influential roles in explaining
the diurnal (Figs. S3, 4) and seasonal (Table 3) fluctua-
tions of CO2 emissions. As shown in Table 4, the tempo-
ral model yielded a robust performance in both training and
testing dataset, achieving R2, RMSE, and KGE values of
0.86,0.39 µmolm−2 s−1, 0.90, and 0.74, 0.57 µmolm−2 s−1,
0.77, respectively.

The modelled CO2 emissions at all slope positions dis-
play a clear seasonal trend, with higher CO2 fluxes from
June to September and lower estimates in other months,
in line with the observed fluxes shown in brown dots
(Fig. 5d–i). The total CO2 fluxes (Table 5) at the sum-
mit (19.50 t ha−1) and the shoulder (dry: 19.47 t ha−1, wet:
16.31 t ha−1) slope positions were higher than that of tops-
lope (14.45 t ha−1), followed by footslope (13.94 t ha−1) and
backslope (11.54 t ha−1), consistent with the spatial patterns
of our observations (Fig. 3a). Most hot moments occurred
from June to September 2023, whereas few hot moments
were observed from late July to the early August (Fig. 5d–i).
Although these hot moments of different slope positions only
accounted for 10 % across the year, they could contribute
28 %–31 % to the annual total CO2 emissions (Table 5).

3.5 Daily daytime CO2 flux maps and hot spots

A linear mixed-effects model was utilized to map daily day-
time CO2 flux from 1 May 2023 to 30 April 2024, incor-
porating soil temperature, corrected TWI, and SOC stock
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Table 2. Summary of the mean daily air temperature (Air temp.), soil temperature (Soil temp.), soil volumetric water content (VWC), and
water table in one year at different slope positions. Soil subsurface properties at 10 cm depth, i.e, dry root biomass, soil organic carbon (SOC)
content, total nitrogen (TN) content, and C/N ratio, at different slope positions.

Slope positions Footslope Backslope Shoulder wet Shoulder dry Topslope Summit

Vegetation Molinia caerulea Vaccinium myrtillus Juncus acutus Molinia caerulea Vaccinium myrtillus Molinia caerulea

Air temp. 9.04± 6.79a 9.70± 6.77a 9.74± 6.73a NA 9.66± 6.80a 9.25± 6.89a

(°C) (−8.76, 23.75) (−7.68, 24.79) (−7.77, 24.60) (−7.83, 24.66) (−8.44, 24.52)

Soil temp. 9.67± 4.62a 9.55± 4.27ab 9.65± 4.27a 8.89± 4.15bc 8.86± 3.69c 9.18± 4.07abc

(°C) (1.29, 17.48) (1.40, 16.98) (1.62, 16.74) (0.75, 15.52) (1.55, 15.18) (1.82, 16.00)

VWC 0.86± 0.06b 0.94± 0.04a 0.85± 0.01c NA 0.68± 0.08e 0.82± 0.04d

(cm3 cm−3) (0.68, 0.91) (0.81, 0.98) (0.83, 0.87) (0.44, 0.73) (0.70, 0.85)

Water table −27.15± 8.31e
−21.07± 7.51b

−2.17± 5.62a N.A. −21.76± 25.17d
−20.18± 11.80c

(cm) (−49.14, −18.53) (−35.91, −9.68) (−20.21, 4.17) (−77.41, 0.38) (−49.23, −9.20)

root biomass 1.43± 1.11a 0.97± 0.87a 4.02± 2.10a 2.97± 3.00a 0.98± 0.99a 0.69± 0.27a

(g per 100 g) (0.20, 3.37) (0.27, 2.65) (1.98, 6.17) (0.70, 8.46) (0.18, 2.84) (0.31, 0.96)

SOC content 38.48± 1.71b 42.36± 2.46ab 47.00± 1.41a 42.53± 2.51ab 32.26± 10.81b 47.38± 2.06a

(g per 100 g) (36.55, 40.80) (37.60, 44.30) (45.95, 48.60) (39.75, 45.95) (13.5, 42.1) (43.95, 49.15)

TN content 2.22± 0.13a 2.02± 0.11ab 2.35± 0.17a 2.04± 0.24ab 1.61± 0.48b 2.13± 0.14a

(g per 100 g) (2.03, 2.37) (1.89, 2.16) (2.16, 2.47) (1.71, 2.36) (0.75, 2.19) (1.99, 2.34)

C/N 17.41± 1.57b 20.98± 1.42a 20.03± 1.26ab 20.98± 1.95a 19.76± 2.01ab 22.32± 1.79a

ratio (15.59, 20.1) (19.23, 22.70) (18.81, 21.32) (18.6, 24.06) (18.08, 23.36) (20.21, 24.51)
Note: The air temperature was monitored at a height of ∼ 1.4 m above the ground. The soil temperature and VWC were monitored at a depth of 10 cm by Teros12 sensors. The results are
presented as the mean± one standard deviation (SD) and values in brackets indicate the minimum and maximum values. The Kruskal-Wallis and Dunn’s tests were conducted within each
class with different superscript letters (a–e) indicating significant differences (p < 0.05). NA: not available.

Table 3. Coefficients and relative contributions of three types of input variables (static, semi-dynamic, dynamic) of mixed linear regression
models for modelling CO2 flux. Random effects were evaluated by ICC and model performance was evaluated by Marginal R2, Conditional
R2, AIC, RMSE, and KGE.

Input variables Seasonal patterns Spatial patterns

Fixed effects: coefficient (contribution) Static SOC stock (t ha−1) 0.003 (1 %) −0.003 (0.06 %)
C/N ratio 0.05 (1 %) 0.07* (10 %)

Semi dynamic root biomass (g per 100 g) 0.06 (0.36 %) 0.09* (12 %)
NDVI 0.90*** (18 %) −3.35** (12 %)

Dynamic Soil temp. (°C) 0.12*** (33 %) 0.39*** (18 %)
VWC (cm3 cm−3) −0.77*** (10 %) −1.37** (11 %)

Random effects ICC (contribution) 0.18 (6 %) 0.06 (3 %)

Model performance Marginal R2 0.64 0.63
Conditional R2 0.70 0.66
AIC 1386.00 50.10
RMSE 0.64 0.25
KGE 0.78 0.78

Note: Significance level: *** p < 0.001, ** p < 0.01, * p < 0.05. All CO2 fluxes (unit: µmol m−2 s−1), soil temperature, and VWC data for spatial and seasonal
patterns were from the LI8100 A system. To investigate the factors controlling spatial variations of CO2 flux, we calculated the mean values of CO2 flux, NDVI, soil
temperature, and VWC of each site during the monitoring time.

as predictors due to their significant role in explaining the
spatial-seasonal variability of CO2 flux and their availability
as spatial data. The mapping model yielded robust perfor-
mance metrics (Table 4), with R2, RMSE, and KGE values
of 0.81, 0.49 µmol m−2 s−1, and 0.85 in the training dataset,

and 0.75, 0.56 µmolm−2 s−1, and 0.83 in the test dataset, re-
spectively.

Consistent with our observations, the modelled soil res-
piration also displayed substantial spatiotemporal hetero-
geneity (Fig. 6a–d). More specifically, the mean CO2 fluxes
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Figure 3. Boxplot of CO2 flux (µmolm−2 s−1) across different slope positions (a), vegetation types (b), and sampling dates (c), using data
from the LI8100 A system recorded between 13 February 2023 and 13 March 2024. (a) CO2 flux data of each box were from all dates, and
Shoulder (w) and Shoulder (d) indicate shoulder wet and shoulder dry areas, respectively. (b) CO2 flux data of each box were from all dates,
and Myrtillus, Molinia and Juncus indicate Vaccinium myrtillus, Molinia caerulea and Juncus acutus, respectively. (c) CO2 flux data of each
box were from all slope positions. The edges of each box represent the first quartile (Q1) and third quartile (Q3), while the line inside the
box indicates the median CO2 flux. Whiskers extend from the box to the smallest and largest values within 1.5 times the interquartile range,
and points outside the whiskers are considered extreme values. The Kruskal-Wallis and Dunn’s tests were performed within slope positions
and vegetation types, with different letters indicating significant differences among groups (p < 0.05).

Table 4. Model performance for simulating time series of hourly
CO2 flux (µmolm−2 s−1) and mapping daily daytime CO2 flux
(µmolm−2 s−1) across the landscape.

Models Training dataset Testing dataset

RMSE R2 KGE RMSE R2 KGE

Temporal model 0.39 0.86 0.90 0.57 0.74 0.77
Spatial model 0.49 0.81 0.85 0.56 0.75 0.83

Note: Temporal model used the natural logarithm of CO2 flux data from LI8100 A and
eosFD probes, whereas spatial model used the natural logarithm of CO2 flux data only from
LI8100 A.

ranged from 0.09 to 8.23 µmolm−2 s−1 in spring (Fig. 6a),
0.31 to 33.83 µmolm−2 s−1 in summer (Fig. 6b), 0.15
to 16.88 µmolm−2 s−1 in autumn (Fig. 6c), and 0.03 to
2.47 µmolm−2 s−1 in winter (Fig. 6d). Many modelled mean
CO2 fluxes at the footslope and backslope (elevation <

660 m) remained below 2 µmolm−2 s−1 (Fig. 6e). In contrast,
the modelled CO2 emissions remained higher throughout the
year at the shoulder (660 m≤ elevation≤ 670 m) and east
of summit (elevation> 675 m) with high vegetation cover
(Fig. 1b). About 10 % of the area were identified as hot spots,
with a high frequency of hot spots occurring in these re-
gions, while the locations of sporadic hot spots varied over
time (Fig. 6f). Overall, the landscape emitted approximately
12.41 t ha−1 CO2 to the atmosphere during the simulation pe-
riod, with 20.41±0.61 % of the CO2 fluxes coming from the
hot spots.
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Table 5. Summary of modelled mean±SD CO2 fluxes, thresholds for identifying hot moments, total CO2 flux, and the contribution of hot
moments to total flux at different slope positions.

Slope position Footslope Backslope Shoulder wet Shoulder dry Topslope Summit

Mean±SD CO2 flux (µmolm−2 s−1) 1.00± 0.91 0.83± 0.73 1.21± 0.99 1.44± 1.22 1.04± 0.86 1.41± 1.22
Total CO2 flux (t ha−1) 13.94 11.54 16.31 19.47 14.45 19.50
Threshold (µmolm−2 s−1) 2.22 1.80 2.55 3.07 2.19 3.04
Contribution of hot moments 30.74 % 30.31 % 28.99 % 28.41 % 28.91 % 29.93 %

Figure 4.

4 Discussion

4.1 Drivers of spatiotemporal heterogeneity in CO2
emission

Consistent with prior temperate peatland studies (Juszczak et
al., 2013; Wilson et al., 2015; Danevčič et al., 2010; Swails
et al., 2022), our results indicate that seasonal variations in
soil CO2 flux across the landscape are highly related to soil

temperature, which could account for 33 % of the seasonal
variability (Table 3). This relationship is likely due to the
influence of temperature on microbial activity, as well as
the distinct seasonal patterns in temperature observed in our
study (Fig. 5c), which in turn drive corresponding fluctua-
tions in soil respiration throughout the year (Fig. 3c). More-
over, spatial heterogeneity in soil temperature further shaped
landscape-scale CO2 emission patterns (Table 3). For in-
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Figure 4.

stance, the south-facing summit slopes, which receive more
solar radiation in the daytime, consistently show higher CO2
fluxes (Fig. 3a). Conversely, the north-facing footslope and
backslope, situated on the windward side, experience lower
temperatures, resulting in generally lower soil respiration
rates throughout the observation period (Fig. 3a). At the daily
scale, clear soil temperature oscillations were observed in the
surface peat, while these diurnal cycles were damped and de-
layed with depth, with temperature peaks typically occurring
at night and valleys around midday (Figs. 4, S3). In contrast,
the diurnal pattern of soil respiration during growing season
(i.e., April to August; Figs. 4, S3) was more closely aligned
with air temperature, highlighting the important role of air
temperature in regulating short-term variations in soil respi-
ration.

Soil water content influences oxygen availability and nu-
trients transport within the peat profile, thereby regulating
microbial decomposition, plant root activity, and ultimately
CO2 production (Hatala et al., 2012; Knox et al., 2015; Zou

et al., 2022; Huang et al., 2021; Deshmukh et al., 2021).
Previous studies reported nonlinear relationships between
soil moisture and soil respiration (Kechavarzi et al., 2010;
Marwanto and Agus, 2014; Wood et al., 2013), as both ex-
cessively dry and overly saturated conditions can limit mi-
crobial decomposition. In our study case, we observed a
negative correlation between soil volumetric water content
(VWC) and CO2 fluxes (Table 3, Fig. S4), with VWC ex-
plaining approximately 10 % of the spatial and seasonal vari-
ability in soil respiration (Table 3). This may partially explain
the slightly higher CO2 fluxes in drier shoulder positions
compared to wetter areas (Fig. 3a). Numerous studies have
demonstrated that water table levels play a crucial role on soil
respiration (Berglund and Berglund, 2011; Evans et al., 2021;
Hoyt et al., 2019; Knox et al., 2015). For example, Knox et
al. (2015) demonstrated that a declining water table caused
by drainage increases oxygen penetration into the peat, re-
sulting in higher CO2 flux compared to restored peatlands.
Our study also observed negative correlations between the

https://doi.org/10.5194/bg-22-6369-2025 Biogeosciences, 22, 6369–6392, 2025



6382 Y. Li et al.: Hot spots, hot moments, and spatiotemporal drivers of soil CO2 flux in temperate peatlands

Figure 4. Examples showing time series data of air pressure (kPa), precipitation (mm), soil volumetric water content (VWC, cm3 cm−3),
water table (cm), soil temperature (Soil temp., °C), air temperature (Air temp., °C), and CO2 flux (µmolm−2 s−1, measured by eosFD
probes) from 1 August 2024 to 31 October 2024 (a), from 8 August 2024 to 15 August 2024 at the footslope (b), and from 8 October 2024 to
15 October 2024 at the topslope slope position (c). The black vertical dashed lines in panel (a) indicate the two periods shown in panels (b)
and (c). The red vertical dashed lines in panels (b) and (c) indicate the precipitation events.

water table and CO2 fluxes (Figs. 4a, S4), whereas the water
table accounted for only 10 % of CO2 flux seasonal varia-
tions (Table S2). This relatively modest contribution may be
attributed to (i) the limited number of observation sites (i.e.,
5 sites along the hillslope), (ii) short duration of water ta-
ble monitoring that matched the CO2 flux measurement pe-
riods, and (iii) the generally low water table throughout the
year (Table 2), particularly at the footslope, backslope, and
summit, where maximum water tables remained > 9 cm be-
low the ground. This maintained aerobic layers that support
soil respiration, thereby reducing the influence of water ta-
ble fluctuations on CO2 fluxes. Increasing spatial coverage
and temporal resolution of water table observations across
the landscape would likely improve our ability to examine
its influence on CO2 emissions.

Atmospheric pressure can influence gas fluxes via pres-
sure pumping (Ryan and Law, 2005), and thus we exam-
ined its influence on CO2 emission. However, when atmo-
spheric pressure was included as a predictor in our model, it
only accounted for 1 % of seasonal variability in CO2 fluxes
(Table S2). Examination of high-frequency time series data
(i.e., hourly CO2 flux from the eosFD probes) showed that
at the daily scale, the diurnal pattern of CO2 fluxes did not
follow atmospheric pressure fluctuation (Fig. 4). At longer
time scales, the two variables displayed only weak correla-
tions. Moreover, we observed that declines in atmospheric
pressure were often followed by precipitation events, which
in turn were associated with decreases in both air tempera-
ture and CO2 flux, or slight CO2 fluxes increases (Fig. 4).
This suggests that atmospheric pressure may indirectly in-
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Figure 5. Time series of hourly precipitation (blue bar) and atmospheric pressure (light green line) (a), hourly mean VWC (blue line) and
water table (red line) (b), hourly mean air temperature (orange line) and soil temperature (black line) (c), modelled hourly CO2 flux (purple
lines) and in-situ measurements (brown dots) at different slope positions (d–i). Precipitation (mm) and atmospheric pressure (kPa) data was
from the nearby meteorological observation station (50.51° N, 6.07° E). The water table (cm) data were derived from the Solinist probes. The
VWC (cm3 cm−3) and soil temperature (°C) were mean values from five slope positions monitored by Teros12 sensors at a depth of 10 cm.
Air temperatures (°C) were mean values from 5 stations at 1.4 m height above ground. Measured CO2 fluxes (µmolm−2 s−1) were from the
LI8100A system.
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Figure 6. Maps of modelled mean daily daytime CO2 flux (µmolm−2 s−1) in four seasons (a, b, c, d), throughout the year (e), and hot
spot frequency (f). To enhance contrast, all maps were visualized with a display stretch based on 2± standard deviations in ArcGIS Pro. The
histograms of pixel values are presented on the top-right corner of each map. The hot spots area proportion and CO2 flux contribution from
the hot spots of each season and across the year are summarized in the corresponding maps.
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fluence soil respiration by affecting precipitation patterns,
rather than exerting a strong direct control. In saturated peat-
lands, falling atmospheric pressure has been shown to trigger
methane (CH4) ebullition by releasing trapped gas bubbles
(Tokida et al., 2007, 2005; Baird et al., 2004), while in our
study site, which is a hillslope where the surface peat remains
aerobic most of the time (Table 2), such bubble formation
and ebullition are likely minimal. Another contributing fac-
tor maybe the limitations of our observations that may have
limited our ability to detect short-lived CO2 flux responses to
atmospheric pressure fluctuations.

Previous studies have shown that vegetation mediates soil
respiration through root respiration, exudates, litter inputs,
and rhizosphere priming effects (Acosta et al., 2017; Wang
et al., 2015a; Walker et al., 2016; Jovani-Sancho et al., 2021;
Bragazza et al., 2013). Root respiration, which is closely
linked to plant photosynthetic activity, contributes directly to
the overall soil CO2 fluxes (Crow and Wieder, 2005). In our
study, the contribution from root biomass becomes more sub-
stantial in the spatial model (i.e., 12 %) than in the seasonal
model (< 1 %, Table 3). This discrepancy is likely because
root biomass was measured only once during the entire CO2
monitoring period, thereby missing its seasonal dynamics.
The monthly/biweekly NDVI is the second-most influential
predictor for CO2 seasonal fluctuations (Table 3), explaining
18 % of variability, as NDVI reveals vegetation phenology
during the monitoring period. Accordingly, positive correla-
tion was observed between CO2 flux and NDVI at the sea-
sonal scale (Table 3, Fig. S4). In the spatial-pattern model,
however, the annual mean NDVI explained 12 % of the spa-
tial variability in CO2 fluxes (Table 3) and the relationship
became negative (r =−0.29, p = 0.11). This shift in cor-
relation may be due to differences in vegetation structure
and composition across the landscape. Slope positions with
higher mean NDVI values (i.e., topslope and backslope) are
mainly covered by dwarf shrubs (i.e., Vaccinium myrtillus),
which exhibit lower CO2 fluxes compared to other vegetation
types (Fig. 3b). The lower CO2 fluxes in dwarf shrub areas
are likely associated with their lower root biomass (Table 2).
Furthermore, it has been shown that dwarf shrubs in northern
peatlands produce high-phenolic litter with higher resistance
to breakdown and introduce more water-soluble phenolics
into the soil compared to Sphagnum moss/herbs (Bragazza et
al., 2013; Wang et al., 2015a), which further constrains mi-
crobial activity and CO2 production. In addition, vegetation
cover may indirectly influence soil respiration by regulating
surface microclimate conditions such as humidity and tem-
perature (Nichols, 1998; Stoy et al., 2012).

As shown in Table 3, the SOC stock and C/N ratio have
limited explanatory power for the seasonal variability of CO2
flux, in line with findings of Danevčič et al. (2010). How-
ever, when analyzing drivers of average soil CO2 flux rate
across the entire monitoring period, the importance of C/N
ratio increased nearly 11 times (Table 3). This likely reflects
how long-term averaging integrates short-term dynamic vari-

ability, thereby amplifying the role of spatial heterogeneity
mediated by the C/N ratio. Prior studies suggesting that the
quality of organic material, rather than its quantity, primar-
ily regulates CO2 fluxes in peatlands (Hoyos-Santillan et al.,
2016; Leifeld et al., 2012). Specifically, the soil C/N ra-
tio is known to regulate microbial community functionality
and respiration intensity (Leifeld et al., 2020; Briones et al.,
2014; Ishikura et al., 2018; Wang et al., 2015b).

4.2 CO2 emission hot moments and hot spots:
identification, implications, and importance

4.2.1 Temporal analysis and hot moments

During past decades, efforts have been made to model CO2
flux over time based on its relationship with environmental
factors such as hydrology, temperature, substrate quality, mi-
crobial community, and vegetation (Hoyt et al., 2019; Junttila
et al., 2021; Schubert et al., 2010; Rowson et al., 2012; Ab-
dalla et al., 2014; Farmer et al., 2011; Anthony and Silver,
2021). In our study, diurnal cycles of CO2 fluxes are closely
related to air temperature (Figs. 4, S3), while soil temper-
ature and moisture are important factors in explaining the
seasonal patterns of CO2 flux (Table 3). Hence, the three
dynamic environment variables were incorporated into the
model to simulate the hourly CO2 flux across the entire mon-
itoring period. Overall, the temporal model demonstrated ro-
bust performance in both the training and testing datasets
(Table 4) and effectively captured seasonal and diurnal trends
at most sites (Fig. 5d–i). However, the modelled peak val-
ues are lower than the observations at shoulder and summit
slope positions (Fig. 5g, f, i), which may be partially due to
the limited number of high-value observations in these ar-
eas. Consequently, the model is more influenced by the more
frequent lower CO2 fluxes, leading to an overall underesti-
mation of the peak. In addition, two types of gas analyzers
were employed to monitor CO2 flux with different sampling
frequency and time: the LI-8100A sensor was used biweekly
or monthly to capture seasonal trends, while eosFD probes
collected data every 5 min to track diurnal fluctuations. The
integration of these datasets for modelling temporal dynam-
ics improved estimation accuracy but might also introduce
uncertainties into the model.

Anthony and Silver (2023) demonstrated that identifying
hot moments of CO2 flux in peatland requires intensive con-
tinuous measurements, while as an alternative, our robust
simulation of hourly CO2 flux enabled the identification of
hot moments in a complex landscape. We found that most of
these hot moments occurred during the summer and early
autumn seasons (Fig. 5d–i), in agreement with our in-situ
observations (Fig. 3c). The frequent high CO2 emissions in
June and July can be attributed to the low precipitation and
water table level, decreased soil moisture, and high temper-
atures (Fig. 5a–c). In water-limited ecosystems or during the
dry season of tropical peatlands, precipitation pulses can trig-
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ger hot moments of CO2 gas emissions, as precipitation regu-
lates soil moisture and infiltrating water physically displaces
CO2 from soil pores (Fernandez-Bou et al., 2020; Leon et
al., 2014; Wright et al., 2013). This occurs when rainwater
rapidly infiltrates dry soil, filling air-filled pores and forc-
ing CO2-rich air out due to hydraulic pressure. In this study,
CO2 fluxes showed both decreases and increases in response
to precipitation events (Fig. 4). The observed decreases may
be attributed to the high water content of the surface peat,
and prolonged and intense rainfall led to lower temperatures,
increased soil moisture, and higher water table (Figs. 4, 5b,
c), thereby suppressing microbial and root respiration. Con-
sequently, a few hot moments were captured during late July
and early August during the heavy rainfall events (Fig. 5).
Following this period, CO2 emissions reached values that ex-
ceeded the “hot moments” threshold in mid-August, aligning
with declining rainfall and rising temperatures (Fig. 5d–i).
The hot moments observed in September are linked to sea-
sonal fluctuations in atmospheric pressure, precipitation, wa-
ter table, and temperature (Fig. 5a–c).

Similar to the findings of Anthony and Silver (2021) and
Kannenberg et al. (2020), these hot moments accounted
for approximately 10 % throughout the year, while they
contributed significantly to the annual total CO2 emissions
(28 %–31 %; Table 3), highlighting the important role of
short-term high-emission events in the overall carbon emis-
sion. Therefore, missing hot moments may lead to significant
underestimates of total peat soil respiration budgets. Despite
continuous automated chamber or eddy covariance measure-
ments that are ideal for capturing hot moments of CO2 emis-
sions (Anthony and Silver, 2023; Hoyt et al., 2019; Anthony
and Silver, 2021), long-term continuous monitoring is still
labor-intensive and cost-prohibitive in many locations within
the complex peatland ecosystems. Given that we observed a
concentration of hot moments in the summer and autumn, we
recommend increasing monitoring frequency during these
seasons for temperate peatlands. This strategy would help
capture carbon emission dynamics more effectively, reduce
uncertainties in annual carbon flux estimates, and provide
more representative peatland CO2 flux data.

4.2.2 Spatial analysis of CO2 fluxes and hot spots

Our mapping of daily daytime CO2 flux across the landscape
yielded a model performance ofR2

= 0.75, KGE= 0.83, and
RMSE= 0.56 µmol m−2 s−1 for the test dataset (Table 4).
This can be attributed to the incorporation of key environ-
mental factors that drive the spatiotemporal heterogeneity of
soil respiration into the model inputs. These factors – includ-
ing soil temperature, corrected TWI, and SOC stock – can
be estimated using high spatiotemporal resolution UAV data.
Previous studies upscaled spatial carbon fluxes using area-
weighted methods, extrapolating point data from CO2 cham-
ber flux measurements to adjacent or larger areas based on
land cover maps (van Giersbergen et al., 2024; Webster et

al., 2008; Leon et al., 2014). However, this approach can lead
to over- or underestimation (Gachibu Wangari et al., 2023;
Leifeld and Menichetti, 2018), because our findings reveal
that even within the same vegetation cover, such as Molinia
caerulea, CO2 emissions exhibit significant spatiotemporal
variability (Fig. 3b). In recent years, spatial upscaling of CO2
fluxes has increasingly relied on satellite-based remote sens-
ing data (e.g., Junttila et al., 2021; Gachibu Wangari et al.,
2023; Zhang et al., 2020; Azevedo et al., 2021; Huang et
al., 2015. While this method covers larger areas, it is often
constrained by coarse temporal and spatial resolutions. The
peatland ecosystem is characterized by great temporal and
spatial heterogeneity at small scales, and ignoring these vari-
ations can introduce significant uncertainties in CO2 emis-
sion estimates. Our study demonstrates that multi-sensor and
multi-date UAV remote sensing has great potential in mod-
eling CO2 fluxes with high resolution (i.e., spatial: 15 cm;
temporal: daily interval), thereby reducing uncertainties in
spatiotemporal predictions of CO2 fluxes.

However, the key environmental variables used for map-
ping soil respiration were estimated by UAV data, which in-
evitably introduce uncertainties into the prediction processes.
For instance, because daily UAV imagery was unavailable,
the predictors (i.e., air temperature, LST, and NDVI) for
modelling the spatiotemporal dynamics of soil temperature
were linearly interpolated between acquisition dates, poten-
tially adding uncertainty to the model results. Moreover,
flight conditions and preprocessing of the raw UAV data
(e.g., georeferencing, resampling, the calibration of LST,
downscaling air temperature) may have further introduced
errors into the soil temperature estimates. The corrected daily
TWI maps were also subject to uncertainty, as they relied
on in-situ soil VWC observations, which were only avail-
able in the middle transect of the landscape. Similarly, un-
certainties in SOC stock mapping arose from the peat thick-
ness estimation and soil sampling strategy, as discussed in
our previous work (Li et al., 2024). Nevertheless, these re-
liable high-resolution CO2 flux maps allowed for the iden-
tification of hot spot areas across the landscape. We found
that most of the hot spots occurred to the west of shoul-
der areas and to the east of the summit which is covered by
dense vegetation (Figs. 1b, 6f). Some sporadic hot spots were
found at the backslope and footslope positions. Spatial vari-
ability in the factors controlling biogeochemical processes,
such as soil temperature, moisture, water table depth, vege-
tation type, and substrate quality, is likely driving these dif-
ferences (Anthony and Silver, 2023; Kuzyakov and Blago-
datskaya, 2015; McNamara et al., 2008). For instance, the
persistent hot spots that occurred at the shoulder might be due
to their relatively drier conditions and higher carbon stocks
compared to other areas (Li et al., 2024). The tree-covered
areas at the summit likely contribute substantial root respi-
ration, which could sustain hot spot formation throughout
the year. Besides, litterfall beneath trees insulates the peat
soil and provides an abundant resource for microbial activity
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even during the non-growing season. While at other places,
such as the footslope and backslope, which are mainly cov-
ered by dwarf shrubs and Molinia caerulea (Fig. 1b) with
pronounced seasonal phenology, they potentially form spo-
radic soil respiration hot spots at specific times of the year.
Furthermore, surface peat beneath relatively short vegetation
can receive higher direct solar radiation in summer, leading
to elevated soil temperatures and the emergence of carbon
emission hot spots.

High-emission events from hot spots play a crucial role in
overall CO2 fluxes (Anthony and Silver, 2023), hence, ne-
glecting these areas could lead to substantial underestima-
tion of peatland carbon emissions. In our study, although
less than 10 % of area was identified as hot spots, their CO2
flux contribution accounted for nearly 20 % across the year
(Fig. 6). However, research specifically focusing on peat-
land CO2 emission hot spots remains limited (Anthony and
Silver, 2023), despite increased exploration of greenhouse
gas emission hot spots in other ecosystems (e.g., agricultural
field (Krichels and Yang, 2019; Rey-Sanchez et al., 2022;
Leifeld et al., 2020); wetland (Rey-Sanchez et al., 2022);
water-limited Mediterranean ecosystem (Leon et al., 2014);
forest (Gachibu Wangari et al., 2023)). Hence, to improve
the accuracy of CO2 spatial budgeting for peatlands, there is
a need for enhanced high-resolution dynamic monitoring of
hot spot areas (Becker et al., 2008). Our study demonstrates
the great potential of UAV technology for peatland hot spot
identification and quantification, offering new insights into
studying soil respiration within heterogeneous ecosystems as
well as optimizing peatland management and CO2 emission
reduction strategies.

5 Conclusion

In this study, we monitored the dynamics of peatland sur-
face and subsurface environments using both field surveys
and multi-sensor UAVs at high spatiotemporal resolution. We
investigated the influence of dynamic and static environmen-
tal factors on soil respiration rates across different scales,
thereby enhancing our understanding of peatland carbon cy-
cling. Additionally, we simulated CO2 flux with high spa-
tiotemporal resolution by integrating field measurements and
UAV data. These reliable modelling allow us to identify and
quantify CO2 emission hot spots and hot moments across the
landscape. To summarize, the main findings of our study are
as follows:

1. Soil respiration rates vary significantly across space and
time, influenced by both dynamic and relatively static
environmental factors at different scales. Temperature
is the primary driver of CO2 flux variations, explaining
33 % CO2 seasonal variability and 18 % spatial variabil-
ity. Soil moisture negatively affects both seasonal and
spatial variations, accounting for 10 %–11 % of the vari-
ance. Water table dynamics also play a role (10 %), but

more observations are needed to explore its influence.
Atmospheric pressure may indirectly influence soil res-
piration by affecting precipitation patterns, rather than
exerting a strong direct control. Semi-dynamic factors
(i.e., NDVI and root biomass) contribute 19 % to sea-
sonal variability and 24 % to spatial variability. While
relative static factors (i.e., the C/N and SOC stock) have
little impact on the seasonal CO2 flux variability, the
contribution of the C/N ratio increases nearly 11 times
for spatial variability.

2. Predicting temporal series of hourly CO2 flux
can be effectively achieved (test set: R2

= 0.74,
RMSE= 0.57 µmolm−2 s−1, KGE= 0.77) by consid-
ering its relationship with key environmental variables
such as air temperature, soil temperature and soil
moisture, all of which are relatively straightforward to
monitor. These reliable time series data provide a foun-
dation for capturing respiration pulses occurring over
short periods, with hot moments primarily occurring in
summer and early autumn.

3. The UAV remote sensing offers great potential in
monitoring and estimating key environmental vari-
ables that control soil respiration across heterogeneous
landscapes. Our model using UAV-derived predictors
yielded robust spatial mapping of soil respiration rates
across heterogeneous landscapes, with RMSE, KGE,
and R2 values of 0.56 µmolm−2 s−1, 0.83, and 0.75 in
the test dataset, respectively. These high-resolution CO2
flux maps enable us to locate hot spots as well as provid-
ing a valuable tool for assessing peatland management
strategies, such as evaluating conditions before and after
restoration.

4. Despite representing 10 % of time within one year,
CO2 fluxes from hot moments contribute 28 %–31 %
to the overall CO2 flux budgets. Approximately 10 %
areas are identified as hot spots, while contributing
20.41± 0.61 % of total CO2 fluxes. The locations of
high-frequency hot spots remain consistent, while the
locations of sporadic hot spots vary over time.
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