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Abstract. Treelines are sensitive indicators of global change,
as their position, composition and pattern directly respond
to ecological and anthropogenic factors. Treelines world-
wide exhibit a great variability even within single landscapes,
which limits the reliability and generalizability of locally
measured patterns. Advancing methods to accurately map
fine-scale treeline spatial patterns over large extents is cru-
cial to overcome this limitation. Innovative approaches inte-
grating remote sensing with uncrewed aerial vehicles (UAV)
and deep learning offer a promising way to bridge the gap
between field-based observations of fine-scale patterns and
their large-scale implications, ultimately informing and sup-
porting practices for the conservation of forest ecosystems in
the face of ongoing and future ecological challenges. In this
study, we combined field data and UAV-based remote sensing
with a deep learning model to retrieve individual tree-scale
information across 90 ha in 10 study sites in the Italian Alps.
Using the proposed methodology, we were able to correctly
detect individual tree crowns of conifers taller than 50 cm
with a detection rate of 70 % and an F1 score of 0.76. Accu-
racy increased with tree height, reaching 86 % for trees taller
than 2 m. Canopy delineation was robust overall (Intersection
over Union, IoU = 0.76) and excellent for tall trees (IoU =
0.85). Tree position and height estimates achieved RMSEs of
59 cm and 92 cm, respectively.

Our results demonstrated that the proposed methodology
effectively detects, delineates, georeferences, and measures
the height of most trees across diverse Alpine treeline eco-
tones. The proposed methodology enables the analysis of
fine-scale patterns in order to achieve an interpretation of

underlying ecological processes over large ecotonal extents.
The inclusion of heterogeneous study areas facilitates the
transferability of the segmentation model to other mountain
regions and offers a benchmark for developing a global net-
work of fine-scale mapped treeline spatial patterns, bearing a
great potential in monitoring the effects of global change on
ecotone dynamics.

1 Introduction

The elevational treeline is the transition zone from the upper-
most closed montane forest (timberline) to the highest scat-
tered trees (tree species line) (Holtmeier et al., 2003), and
one of the most studied ecotones. Since the late 19th cen-
tury, scientific studies largely focused on the diversity and
complexity of factors affecting the ecotone spatial and tem-
poral patterns at different scales (Hansson et al., 2021; Holt-
meier, 2009). It is well known that temperature plays a cru-
cial role in treeline positioning and dynamics from regional
to global scales (Dirnböck et al., 2003; Gehrig-Fasel et al.,
2007; Harsch et al., 2009; Körner and Paulsen, 2004), but is
not the only driving factor. Many other studies have empha-
sised the significant role of other factors in treeline formation
(Mienna et al., 2024), including water availability (Barros et
al., 2017; Williams et al., 2013), site topography (Leonelli et
al., 2016; Marquis et al., 2021; Müller et al., 2016), biotic
drivers (Brown and Vellend, 2014; Cairns et al., 2007), and
anthropogenic pressure (Gehrig-Fasel et al., 2007; Malandra
et al., 2019; Vitali et al., 2019).
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Global change can trigger large-scale vegetation dynamics
affecting the provision of ecosystem services - such as car-
bon sequestration (Hansson et al., 2021; Zierl and Bugmann,
2007). Climate alteration can induce upward migration of
species, threatening a loss of habitat and biodiversity of high
alpine communities (Kyriazopoulos et al., 2017). This sen-
sitivity to climatic and anthropogenic factors makes high-
elevation ecotones key indicators of global change (Dirn-
böck et al., 2011; Greenwood and Jump, 2014). Monitoring
changes at elevational treelines is therefore of utmost im-
portance to follow how forests are responding and to fore-
cast how they will respond to a changing environment (Chan
et al., 2024; Hansson et al., 2023; Mottl et al., 2021) and
ultimately to guide the definition of appropriate conserva-
tion strategies. However, understanding vegetation changes
in response to the complex interplay of these drivers requires
studying highly heterogeneous systems across broad spatial
and temporal gradients (Holtmeier and Broll, 2007, 2017).

An open question in many areas of ecology is how to infer
processes from observed patterns. Tree maps act as a foun-
dation towards this goal. In forest ecosystems, tree spatial
distributions retain critical signatures of historical dynamics
and can be used to derive insights into underlying ecological
processes (Grimm et al., 2005; McIntire and Fajardo, 2009;
Salazar Villegas et al., 2023). For instance, tree distribution
can reveal species-specific coping strategies under stressful
conditions, such as the ones found in the elevational treeline
ecotones, where positive facilitative interactions may prevail
(Callaway, 1995, 1998; Smith et al., 2003). Tree spatial pat-
terns may reflect the result of intra- and interspecific interac-
tions, encompassing both facilitative and competitive associ-
ations (Getzin et al., 2006; Salazar Villegas et al., 2023). As-
sessing these spatial association patterns among species can
help to disentangle the mechanisms shaping treeline struc-
ture and dynamics. In this context, the great spatial hetero-
geneity observed in high-elevation ecotones provides a great
opportunity to investigate pattern-process relationships. Such
a high heterogeneity between treeline ecotones can be better
tracked by mapping multiple sites with large spatial extents,
allowing for a generalization of underlying processes.

Field surveys remain the traditional methods used at tree-
lines to observe patterns and link them to ecological pro-
cesses. They involve measuring several tree parameters (e.g.
stem DBH, height, position, health conditions) within small
study areas like plots or transects (Mainali et al., 2020; Van
Bogaert et al., 2011; Vitali et al., 2017, 2019). This approach
provides high-resolution, high-quality data applicable to a
broad array of ecological investigations. However, its time-
intensive nature, coupled with the limited spatial extent and
discontinuous distribution of plots or transects, may reduce
the representativeness of the broader landscape.

At this point, remote sensing (RS) techniques come into
play. Although RS application in treeline studies dates back
to the 1980s (Holmgren and Thuresson, 1998), it is only over
the last two decades that RS has been widely adopted in tree-

line ecology (Garbarino et al., 2023). The choice of the right
RS tool depends on the spatial and temporal scale required to
address a given research question. For instance, while satel-
lite imagery can provide suitable data over large forest areas
and long time periods (Garbarino et al., 2020; Nguyen et al.,
2024), most optical sensors lack the spatial resolution neces-
sary for individual tree mapping (Bennett et al., 2024; Mor-
ley et al., 2018; Simard et al., 2011). The limitations of field
surveys (limited spatial and temporal extent) and satellite-
based data (high spatial and temporal extent but low reso-
lution) can be overcome by using Uncrewed Aerial Vehicle
(UAV) platforms (Fromm et al., 2019; Qin et al., 2022; Xie
et al., 2024). Their growing availability and ease of deploy-
ment make UAVs increasingly valuable for applications such
as detailed tree mapping. In addition to wall-to-wall mapping
of relatively large and heterogeneous areas, UAVs survey en-
ables the analysis of fine-scale drivers and the extraction of
single-tree attributes and features (Nasiri et al., 2021; Pana-
giotidis et al., 2017; Shimizu et al., 2022; Xiang et al., 2024).
The combination of field sampling and high-resolution RS
data could be a winning venue to increase the spatial extent
of case studies while retaining the fine-scale level of details
typical of the traditional approaches.

Single-tree mapping approaches are crucial in treeline
ecology, as they provide insights into the underlying ecologi-
cal processes shaping treeline pattern and structure. Seedling
establishment – a key driver of plant community dynamics
– heavily depends on the presence and availability of mi-
crosites that provide suitable conditions for growth and sur-
vival (Frei et al., 2018). Multiple local factors such as to-
pography, vegetation, and herbivory influence tree recruit-
ment and thus mediate treeline dynamics (Elliott and Kipf-
mueller, 2010; Lett and Dorrepaal, 2018; Ramírez et al.,
2024). Neighbouring vegetation can either hinder or enhance
tree recruitment through competitive or facilitation associa-
tions (Getzin et al., 2006; Getzin et al., 2006; Salazar Ville-
gas et al., 2023; Smith et al., 2003). Whether these interac-
tions result in a positive or negative feedback depends on the
fine-scale interplay between biotic and abiotic factors. The
resulting spatial patterns at the individual tree-scale provide
a valuable perspective to both infer past processes and pre-
dict future trajectories. Accurate high-resolution single-tree
maps are essential tools to capture these fine-scale patterns
and investigate such tree–tree interactions.

Convolutional Neural Networks (CNNs) combined with
very-high-resolution images are a reliable and versatile tool
for single-tree scale analyses, enabling the accurate identifi-
cation and representation of different plant species and com-
munities as well as the detection of individual trees (Braga et
al., 2020; Fricker et al., 2019; Fromm et al., 2019; Kattenborn
et al., 2021). The latter can be achieved through instance seg-
mentation algorithms that enable the detection of individual
objects on the input images, allowing to distinguish and sep-
arate individual interwoven tree canopies (Ball et al., 2023;
Braga et al., 2020).
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The distinctive species composition, stratified horizontal
and vertical structure, and complex terrain characteristics
of treeline ecotones confer a unique ecological identity to
these environments. Therefore, a framework for fine-scale
tree mapping at treeline ecotones based on low-cost UAV im-
agery is needed. In this regard, the present study tests the fol-
lowing hypotheses: (i) the integration of UAV derived very
high-resolution RGB imagery with CNNs models achieves
high performances in single-tree detection rates and (ii) tree
attributes estimation, and (iii) the trained model exhibits suf-
ficient generalizability to perform reliably on heterogeneous
datasets. Moreover, we expect (iv) the proposed workflow to
achieve very good detection rates for tall trees and poorer
ones for small trees without a critical drop in model per-
formances and (v) to achieve comparable detection perfor-
mances on all sites despite the high heterogeneity present in
the dataset.

2 Materials and Methods

2.1 Study Area

We selected ten study sites across the Italian Alps (Fig. 1)
spanning a broad longitudinal gradient representative of the
Western, Central, and Eastern Italian Alps. This selection
ensured a balanced dataset encompassing highly heteroge-
neous climatic, topographical, soil, and vegetational condi-
tions (Appendix A). Introducing such heterogeneity allowed
us to test the transferability of the protocol to several treeline
conditions. The selected treelines present elevations ranging
between 2100 and 2400 m a.s.l., and variable slope aspects
due to the differing orientations of the valleys. Above the
closed forest there are both mesic and xeric regions and fea-
ture patches of grasslands, sparsely vegetated areas, screes,
and surfaces shaped by gravitational events such as rill and
gullies. All the selected landscapes experienced centuries of
human land-use practices under varying intensities of man-
agement pressure. In general, land abandonment is more
marked in the Western sector of the study area (Bätzing et al.,
1996). Across all sites, the annual range of air temperature
ranges between 2.8 and 3.1 °C, while the mean annual pre-
cipitation varies from 800 to 1800 mm. Reflecting the typical
species composition of the subalpine belt in the Alps, in all
the studied treelines the dominant treeline-forming species
are European larch (Larix decidua Mill.) and Swiss stone
pine (Pinus cembra L.). Other species present include Nor-
way spruce (Picea abies (L.) H.Karst.), dwarf mountain pine
(Pinus mugo Turra), mountain pine (Pinus uncinata Miller),
Scots pine (Pinus sylvestris L.), as well as few broadleaf
species such as green alder (Alnus viridis (Ehrh.) K. Koch)
and silver birch (Betula pendula Roth). Further details on the
study sites are provided in Table 1.

2.2 Sampling design and data collection

We selected ten treeline ecotones above 2000 m a.s.l. along
an east-west gradient across the Italian Alps, with a min-
imum distance of 25 km between sites. Site selection was
stratified by administrative region with only fully accessi-
ble locations included, and edaphic treelines were explicitly
avoided. In these ecotones, we placed ten 9 ha square plots
(300 m× 300 m) with a side aligned parallel to the steep-
est slope of the mountainside so that the forestline occurred
in the lower third of the plot. We defined forestline as the
continuous line separating the closed forest (canopy cover
> 10 %) from the semi-open and open areas (canopy cover
< 10 %) (FAO, 2000). The canopy cover was assessed based
on the pan-European Tree Cover Density (TCD) layer pro-
vided by Copernicus (https://land.copernicus.eu/en, last ac-
cess: 18 September 2024).

Data collection included UAV and field surveys in summer
2021. We used a DJI Phantom 4 pro V2 quadcopter equipped
with a RGB camera featuring a 2.54 cm CMOS sensor with
20 MP. Each UAV survey consisted of three flight paths: two
of them with the camera in the nadiral position (one aligned
along the contour lines and the other perpendicular), and one
with an oblique camera perspective of 60° off-nadir, granting
a more complete view of trees and terrain features.

To mitigate spatial resolution loss in the lower portion of
the plot due to the slope steepness, each set of three flights
was repeated two times. The first three flights covered the
top half of the study area and were performed by deploying
the drone from either the top-right or top-left corner of the
study plot. The second set of three flights covered the bottom
half of the plot and was performed by deploying the UAV
from a point located on either the right or left side of the
plot at approximately 150 m from the plot bottom (half the
side length of the study plot). Flight height was fixed at 30 m
above the highest point of the 300× 300 m plot for the first
set and above the middle of the study site for the second.

All the flights were performed on sunny, windless days
to minimise shadowing from clouds and image distortions
due to UAV irregular motion. To assess how different pheno-
logical stages and light conditions affect canopy detection,
we performed UAV flights in Avic and Rion during the late
vegetative period and late afternoon, respectively (Table 1).
Images were captured with 80 % frontal and lateral over-
laps to ensure high-quality structure-from-motion outputs.
Prior to the UAV flights, 12 ground control points (GCPs)
marked with bull’s eye targets were placed within the flight
area. Their positions were recorded using Trimble R2 and
Reach RS2 GNSS (Global Navigation Satellite Systems) an-
tennas, providing both sub-metric horizontal and vertical po-
sitioning accuracies with a 10 min static occupation time.
GCP positions were post-processed for a final georeferenc-
ing correction. The acquired RGB aerial images were pro-
cessed using Agisoft Metashape Pro software version 1.5.1.
A Structure-from-Motion procedure was employed to gener-
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Figure 1. Geographic location of (a) the Alpine Convention Perimeter in Europe and (b) the ten study sites (brown diamonds) along with
their names across the Alps. Detail in the UAV-derived orthomosaic of the study site (c) Devero and (d) same site overlayed with the canopy
height model (CHM). (e) Further details of the study area Devero and (f) its CHM. For further details see Sect. 2.2

Table 1. Details of the study sites including date of the survey, their latitude and longitude (WGS84), average elevation (m a.s.l.), aspect,
dominant tree species, mean annual temperature (°C) and total annual precipitation (mm). Climate variables were derived from Chelsa
Climate database (Brun et al., 2022), while position, elevation, and species from the field surveys.

Study site date Latitude Longitude Elevation Aspect Species Annual range of Annual precipitation
(dd/mm/yyyy) (°) (°) (m a.s.l.) air temperature (°C) (mm)

Genevris 26/07/2021 45.030 6.897 2379 W L. decidua, P. cembra 2.96 1263
Chianale 29/06/2021 44.646 6.975 2283 N L. decidua, P. cembra 2.82 829
Rion 22/09/2021 45.830 7.262 2290 S-SE L. decidua, P. abies 2.92 1759
Avic 06/10/2021 45.697 7.593 2184 SE L. decidua, P. abies, P. uncinata 2.91 1115
Devero 14/06/2021 46.316 8.294 2186 NW L. decidua 2.92 1631
Livigno 22/07/2021 46.516 10.142 2322 NW L. decidua, P. cembra, P. mugo 3.07 1067
Valfurva 21/07/2021 46.454 10.461 2371 E L. decidua, P. abies, P. cembra 3.11 894
Senales 07/07/2021 46.727 10.898 2319 S L. decidua, P. cembra, P. abies 3.03 923
Bocche 06/07/2021 46.338 11.744 2245 SW P. cembra, L. decidua, P. abies 3.03 1225
Becco 28/09/2021 46.471 12.118 2190 N-NE P. cembra, L. decidua, P. abies 3.00 1449

ate 3D point clouds, from which we derived digital surface
models (DSMs), and orthomosaics with 5 cm spatial resolu-
tion. The classification of ground and non-ground points in
the point clouds was based on a threshold of 10 cm height
of DSMs points: points lower than 10 cm were considered
ground and used to produce the DTM. Canopy height models

(CHMs) were then produced by subtracting the DTM from
the DSM.

In the field, we recorded the position, height, and species
of 50 randomly selected individual trees per study site, scat-
tered across the plot. We used a sampling height threshold
of 25 cm. In this study, we defined individual trees as indi-
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vidual tree crowns clearly separable from the other adjacent
crowns. Due to its low abundance and specific growth form
characteristics (Table 1), the dwarf mountain pine was not
considered as a tree in our analyses. Tree height was mea-
sured using a TruPulse 200b (Crisel srl) or a measuring tape
for smaller individuals. Tree positions were recorded using
the same GNSS antennas described above, with a 3 to 5 min
occupation time. The final ground-truth dataset included a
total of 500 georeferenced trees across the ten sites.

The entire workflow of the study, from data acquisition to
final analyses, is reported in Fig. 2.

2.3 Deep learning modelling

To perform tree detection and segmentation we used a
pre-trained deep learning (DL) model based on the Mask
R-CNN algorithm implemented in the “Detectron2” li-
brary from Meta AI and available at https://github.com/
facebookresearch/detectron2 (last access: 16 July 2024).
Mask R-CNN is a DL framework which performs instance
segmentation by combining semantic segmentation and ob-
ject detection (Kattenborn et al., 2021). Its framework in-
volves the generation of region of interest proposals by a
deep fully convolutional network, and then there is a clas-
sification of the object of interest within each generated re-
gion proposal. Our methodology consisted of the following
steps: (i) cropping the RGB orthomosaic of each study site
into adjacent tiles of 512× 512 pixels; (ii) systematically se-
lecting 10 tiles per each study site to create the reference
dataset; (iii) semi-automatic classification of tree crowns;
(iv) hyperparameter tuning and model calibration using a
dataset randomly split into training, validation, and testing
subsets; (v) performance evaluation; (vi) separate validation
and evaluation of model transferability through spatial cross-
validation. Each of the steps is furtherly explained in the fol-
lowing sections. We selected tiles of 512× 512 pixels (equiv-
alent to 25.6× 25.6 m at 5 cm spatial resolution) as this size
resulted in models with higher detection rates and accuracy
across all sites compared to smaller tiles of 128× 128 and
256× 256 pixels.

2.3.1 Training, validation, and test data

We here used only 5 % of the total amount of tiles for train-
ing, with the purpose of testing the limits of using a low
number of training images on a pre-trained DL model. To
build a strong reference dataset we fine-tuned the model
using a Meta AI Segment Anything for the creation of
individual validation polygons samples (https://github.com/
facebookresearch/segment-anything, last access: 8 Septem-
ber 2025). Annotations were carried out by visual interpre-
tation of RGB images, resulting in non-overlapping binary
masks. To minimise operator biases photo interpretation was
conducted by a single operator. The semi-automatically de-
lineated validation polygons were used to evaluate the model

performances in delineating tree crowns (see Sect. 2.3.3). At
the end of the process, we obtained a dataset with a total
of 1016 individual canopies of different coniferous species
(larch trees n= 885, pine trees n= 131). All the segmented
validation polygons were classified and labelled as “trees”
regardless of the species due to the similar spectral informa-
tion.

To generate the training, validation and test datasets, the
reference dataset of 100 tiles (512× 512) was split into 70 %
of images for training, 20 % for validation, and 10 % for test-
ing. The split in the three datasets was performed by system-
atically sampling the 512-pixel tiles in the reference dataset.
The tiles were sampled diagonally in order to cover a larger
surface of the study area and to minimise spatial autocorrela-
tion. Finally, we assessed the performance of the model using
the test dataset, consisting of tiles with which the model was
not familiar. The model trained in this way was used to per-
form predictions on the rest of the tiles to generate tree maps.
However, this type of dataset partitioning does not guarantee
model transferability since images from all sites are included
in each phase of training, validation, and testing. Hence,
we performed a separate spatial cross validation to evaluate
model generalizability. A k-fold spatial cross-validation was
performed using training and validation datasets partitioned
according to their geographic distribution. The dataset was
partitioned into ten folds based on study sites. In each itera-
tion, images from nine sites were used for training, while the
remaining site’s images were reserved exclusively for testing.
This procedure was repeated across ten iterations, such that
each site served as the test set once, thereby ensuring a leave-
one-site-out cross-validation scheme. The outputs of the ten
iterations through the entire dataset were finally averaged to
achieve a mean F1 score, precision, recall, and average pre-
cision (AP) value.

2.3.2 Model development and hyper-parameter
configuration

During training we used the Adam optimizer with a learn-
ing rate of 0.00025, 128 ROIs per image, 1500 epochs, and a
batch size of 30. We used the R101-FPN configuration as
it offers a good balance between training speed and seg-
mentation accuracy (https://github.com/facebookresearch/
detectron2/blob/main/MODEL_ZOO.md, last access: 16
July 2024). To prevent overfitting, we monitored the vali-
dation loss in the F1-score every 100 iterations and imple-
mented early stopping if the F1-score declined for more than
five evaluations. The model was trained with data augmenta-
tion consisting in random resizing and rotation of the input
images.

We predicted tree crowns contours using the tiling process
developed by Ball et al. (2023), which consists of creating
a buffer around each tile to avoid splitting crowns located at
the edges of the tiles. The overlapping crowns resulting from
this operation were then filtered by removing those with the
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Figure 2. Overview of the workflow adopted to conduct tree-scale analyses at the alpine treeline ecotone. Each box depicts a different
methodological step of the study.

lowest confidence value assigned during the prediction. Clas-
sified maps were then post-processed to reduce noise and
correct evident misclassifications. Crowns remaining after
this cleaning process were considered valid tree detections.
Model evaluation was computed prior to the cleaning process
for all the evaluation metrics except detection rate (DET %)
and IoU, which were calculated after the post-processing (see
Sect. 2.4 for details).

2.3.3 Model performance assessment

To assess the performances of the DL model, we selected
four evaluation metrics commonly used in individual tree de-
tection studies (Beloiu et al., 2023; Dersch et al., 2023; Di-
etenberger et al., 2023; Xie et al., 2024): (i) precision (1),
recall (2), F1 score (3), and average precision (4). The F1
score, a measure of test accuracy, is the weighted average of
precision and recall; values closer to one indicate higher clas-
sification accuracy. The average precision is computed as the
area under the precision-recall curve. It evaluates the quality
of the classifier in retrieving the relevant instances.

To evaluate model transferability, we corroborated the re-
sults with a spatial cross-validation procedure. Metrics (1)–
(4) were computed after each cross-validation fold and the
results were averaged to achieve a mean estimate.

In addition, tree maps were evaluated in terms of two spa-
tially explicit metrics: detection rate (DET %), and delin-
eation accuracy (Intersection over Union, IoU). DET % is the

ratio between the predicted number of trees and the number
of trees measured in the field (5). It is computed to eval-
uate how many objects were correctly classified out of all
the ground truth data. For the evaluation we used only field-
sampled trees that did not belong to the training and vali-
dation datasets. The IoU is measured as the ratio between
the area of overlap and the area of union of the ground truth
crown and predicted crown (6), providing an estimate of the
segmentation and delineation accuracy. Semi-automatically
delineated validation polygons were used as ground truth for
IoU assessment.

Precision=
TP

TP+FP
=

correctly predicted trees
all trees, predictions

, (1)

Recall=
TP

TP+FN
=

correctly predicted trees
all ground-truthed tree predictions

, (2)

where TP are the true positives instances; FP are the false
positive instances; FN are the false negatives (number of
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ground truth trees that the model did not detect).

F1 score=
precision · recall

precision+recall
2

(3)

AP= n
∑

(Rn−Rn− 1) ·Pn, (4)

where n is the number of thresholds; Rn is the recall at the
nth threshold; Pn is the precision at the nth threshold.

DET%=
number of predicted trees

actual number of trees
, (5)

IoU=
area of overlap
area of union

, (6)

To test our hypothesis on the effect of tree height
on detection, delineation and attributes extraction perfor-
mances trees were grouped into three size classes: small
(height≤ 130 cm), medium (130 cm < height≤ 200 cm), and
tall (height > 200 cm).

Thresholds for smaller and larger trees were chosen
based on broadly accepted definitions of forest regeneration
(130 cm; Dullinger et al., 2005; Wesche et al., 2008) and of
“tree” at the treeline ecotone (200 cm; Holtmeier and Broll,
2017; Wieser et al., 2009), respectively.

Statistical differences in accuracy among these groups
were evaluated using a Wilcoxon test with pairwise com-
parison. To further investigate how small trees impacted the
model performances we conducted a separate analysis ex-
cluding individuals shorter than 50 cm (i.e., considering only
trees with height > 50 cm). In this sense, we selected this
threshold as the crown of these individuals occupied few pix-
els in the orthomosaics and were indistinguishable from the
background.

2.4 Tree attributes assessment

Tree position estimation accuracy was assessed by compar-
ing the field-collected coordinates of each tree with the cen-
troid coordinates of the corresponding predicted crowns. For
height estimation, we compared the value of the CHM at the
predicted centroid with the height measured in the field. The
evaluation metrics chosen for evaluating the accuracy in tree
height and position were root mean square error (RMSE) and
mean absolute error (MAE), both calculated in centimetres.
RMSE is a standard deviation of prediction errors or residu-
als (7). The MAE shows how close the ground truth values
and predicted values are to each other (8). It is obtained as
the average absolute difference between the predicted value
and the real value; hence, it gives an overall estimation of
the error in terms of standard SI (International System) units.
Position accuracy was also evaluated using the Euclidean dis-
tance between the centroid of each predicted crown and the
corresponding stem position as recorded in the field (9). For
tree height estimation accuracy, we also computed the devia-
tion between real and predicted values calculated both in ab-
solute and relative terms. RMSE, MAE, Euclidean distance

and tree height accuracy were computed only for correctly
predicted trees (n= 343) with the exclusion of the trees that
fell within tiles used for training and validation of the neu-
ral network (n= 157). Tree attributes extraction accuracy as-
sessment was performed using the same size classes listed in
Sect. 2.3.3.

RMSE=

√∑n
i=1(xp− xr)

2

n
, (7)

MAE=

∑n
i=1

∣∣xp− xr
∣∣

n
, (8)

Euclidean distance=
√

(Xp−Xr)2 + (Yp−Yr)2 , (9)

where n is the number of observations; xp,yp are the pre-
dicted values; xr,yr are the actual values.

3 Results

3.1 Tree detection rate, delineation performances and
transferability of the protocol

Our methodology allowed us to produce tree maps of the 10
treeline sites that reveal the treeline patterns of the study sites
(Fig. 3). Overall, we mapped 14 737 trees. The Valfurva site
was the densest, with 2990 trees, whereas Rion contained the
fewest, with 499 trees. On average, each site contained 1474
trees. Across all sites, we mapped 7246 small trees, 1364
medium trees, and 6127 tall trees.

Throughout the evaluation process, the DL model
achieved an F1 score of 0.76, precision of 0.92, recall of
0.79, and AP of 0.68. Spatial cross-validation confirmed the
DL model generalizability to yet-unseen data, yielding an F1
score 0.68, precision of 0.90, recall of 0.56, and AP of 0.36
(Appendix B).

According to DET % results, the DL model detected 67 %
of all the trees sampled in the field not included in the train-
ing and validation datasets (Table 2). Detection performance
was lower for small trees, with a mean detection rate of
52 %. As expected, limiting the analysis to trees taller than
50 cm (DET % ab50) led to higher detection rates, resulting
in a DET % = 70, thus confirming that smaller trees have a
strong negative effect on the detection rate. When consider-
ing only tall trees (> 200 cm) we reached a mean detection
rate of 86 %, further demonstrating the effect of size on de-
tection rates. Among the study sites, Genevris was the site in
which the best detection rates were registered (93 % for trees
taller than 50 cm), followed by Valfurva, Devero, Bocche and
Livigno, where the model correctly detected more than 78 %
of all the trees. IoU results also showed a similar pattern,
with tall trees achieving the best performances (IoU= 0.85).
Medium and small trees achieved a mean IoU value of 0.72
and 0.70, respectively. The difference between tall trees’ IoU
and the other two classes’ one was significantly different, as
confirmed by a Wilcoxon test (Fig. 5a).
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Figure 3. Fine-scale stem-mapped treeline ecotones overlapped with the 9 ha orthophoto as a background image (a) Avic, (b) Becco, (c) Boc-
che, (d) Chianale, (e) Devero, (f) Genevris, (g) Livigno, (h) Rion, (i) Senales and (j) Valfurva. Trees belonging to the small, medium, and
tall tree-height classes (Small: ≤ 130 cm; Medium: > 130 cm and <= 200 cm; Tall: > 200 cm) are in orange, pink, and red, respectively.

Table 2. Single site detection rates and number of total predicted trees (no. pred trees) out of the totality of trees sampled in the field (no. test
trees). DET % all = detection rate on the totality of individuals; DET % small = detection rate on small trees; DET % medium = detection
rate on medium trees; DET % tall= detection rate on tall trees; DET % ab50 = detection rate on individuals taller than 50 cm.

site no. test trees no. pred trees DET %

all small medium tall ab50

Avic 42 14 33 12 56 75 37
Becco 45 31 69 58 69 85 71
Bocche 50 35 70 48 85 93 79
Chianale 51 32 63 43 73 68 63
Devero 40 33 83 71 86 94 83
Genevris 40 37 93 86 100 92 93
Livigno 50 39 78 85 63 89 78
Rion 45 24 53 18 78 93 57
Senales 47 24 51 16 40 83 58
Valfurva 49 40 82 84 76 86 82

Mean / / 67 52 73 86 70

3.2 Tree attributes estimation

The proposed method demonstrated that it was possible to
accurately estimate tree positions and height. Trees’ pre-
dicted position achieved a RMSE of 0.59 m and a MAE of
0.49 m. For most of the predictions, the Euclidean distance
between predicted and reference points was less than one
metre, with the majority of values around 30 cm (Fig. 4b).
Interestingly, position accuracy increased with reducing tree
height, resulting in lower deviation values for the two smaller
classes (medium and small trees) (mean Euclidean dis-
tance value of 0.40 and 0.44 m, respectively; Fig. 5b). The
Wilcoxon test highlighted a significant difference between
the two smaller classes’ results and the one obtained for

tall trees, for which the mean Euclidean distance value was
0.61 m.

In regard to height estimations, despite some outliers, we
observed a strong (R2

= 0.87) linear relationship between
predictions and ground-truths (Fig. 4c). The coefficient of de-
termination, the RMSE of 91.6 cm, and the MAE of 71.8 cm
confirm that the SfM-derived point cloud can be used to
accurately estimate tree heights. Nearly all height predic-
tions deviated by less than one metre from ground truth val-
ues, with the most frequent relative deviation around 20 cm
(Fig. 4d). Prediction accuracy increased with tree height: tall
trees had the lowest mean deviation (0.23 m), followed by
medium (0.47 m) and small trees (0.62 m) (Fig. 5c).
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Figure 4. (a) Instance segmentation output with a comparison of crowns predicted by the model (shaded with orange outline) and validation
polygons (shaded with blue outline) in Genevris study site. The image illustrates how smaller trees were harder to detect by the model, with
some missing segmentations. Frequency and smoothed kernel density distribution of (b) relative deviation for position estimation and (d)
deviation for height estimations with the smoothed, continuous approximation of the kernel-density estimate in orange. (c) Linear regression
model between the field-measured crown heights and estimated heights in metres. The red dashed line represents the 1 : 1 line.

4 Discussion

4.1 Detection performances

We demonstrated that RGB imagery from low-cost UAVs
used in combination with a CNN model can be used for
accurate tree detection across large, heterogeneous areas at
elevational treelines. Previous studies have conducted simi-
lar analyses employing different segmentation strategies in
various forest types. Our model achieved precision and re-
call values that surpass those reported in other studies (Be-
loiu et al., 2023; Dietenberger et al., 2023). The average IoU
across different tree size classes was 0.76, lower than results
from plantation-based studies (Hao et al., 2021), but superior
to those from mixed temperate forests (Dietenberger et al.,
2023). Regarding detection rates and F1 scores, our results
fell within the typical range reported in comparable research
(Table 3).

However, direct comparisons with other studies are chal-
lenging due to substantial differences in forest types, UAV
data acquisition protocols, flight parameters, and the image

classification algorithms employed. While our analysis out-
performed others on certain metrics, it is important to note
that our study was conducted in an environment where indi-
vidual tree detection is facilitated by the reduced presence of
intertwined canopies, unlike in tropical or temperate forests.
Conversely, this advantage was offset by the inclusion of
small trees in our analysis, a factor that negatively impacted
the results and is often excluded in similar studies.

We expected tree height to have a negative influence on
model performance. By categorising trees in different size
classes, we were able to track detection performance, con-
firming that accuracy improves with tree size in almost all
study sites. Across all the study sites, detection was high
for taller trees (86 %) but decreased for smaller ones (52 %),
meeting our expectations. Although small trees detection is
more cumbersome if compared to bigger trees, in some study
sites (Devero, Genevris, Livigno, Valfurva) a considerable
percentage of them was successfully delineated. The substan-
tial difference in small trees detection across different sites
can be linked back to several reasons. As already highlighted
in recent studies, in addition to being inherently more chal-
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Figure 5. Comparison of model performance for three tree-height classes (Small: ≤ 130 cm; Medium: > 130 cm and <= 200 cm; Tall:
> 200 cm) in predicting trees (a) canopy surface and shape, measured as Intersection-over-Union (IoU) between predicted and reference
crown polygons, (b) position deviation, measured as Euclidean distance (m) between predicted and reference tree centroids and, (c) height
relative deviation, measured as absolute difference between predicted and reference height divided by the reference height. Violin plots
width at a given value shows the kernel-density estimate of the distribution; the overlaid boxplot displays the interquartile range with the
median (black line) and mean (dark-red diamonds). Statistical significance (pairwise Wilcoxon tests) is indicated as: NS = not significant;
∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001.

Table 3. Performances of recent studies focused on tree detection and crown delineation in forest ecosystems using UAV-derived data. DET %
= detection rate on the totality of individuals; IoU = Intersection over Union; AP = Average Precision.

reference forest type sensor crown detection
algorithm

DET % precision recall F1-score IoU AP

Present Work mixed open woodland RGB Faster R-CNN 70 0.92 0.79 0.76 0.76 0.68

Beloiu et al. (2023) mixed temperate forest RGB Faster R-CNN – 0.75 0.78 0.76 – –
Dietenberger et
al. (2023)

mixed temperate forest RGB Region growing – 0.68 0.61 0.64 0.44 –

Weinstein et al. (2019) mixed open woodland RGB, LiDAR RetinaNet 82 – – – – –
Xiang et al. (2024) several forest types LiDAR 3D CNN – – – 0.85 – –
Dersch et al. (2023) coniferous, deciduous,

mixed stands
LiDAR Mask R-CNN – – – 0.86 – –

Jing et al. (2012) mixed forests LiDAR Multi-scale
analysis,
Marker-controlled
watershed
segmentation

69 – – – – –

Ball et al. (2023) tropical forests LiDAR Mask R-CNN – – – 0.64–0.74 – –
Xie et al. (2024) Chinese fir plantation RGB Mask R-CNN – – – – – 0.55
Hao et al. (2021) Chinese fir plantation RGB mask R-CNN – – – 0.85 0.91 –
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lenging to detect in the imagery due to their diminished size,
smaller trees often present altered lighting conditions due to
being partially obscured or completely concealed by taller
ones (Beloiu et al., 2023; Dietenberger et al., 2023; Ham-
raz et al., 2017), thus potentially leading to missed detec-
tions (i.e., false negatives). This problem is exacerbated in
dense clusters (Vauhkonen et al., 2012), common in most
of our study sites. Another critical challenge in tree detec-
tion is the blending of canopies colours with the background,
a factor that largely depends on the tree, shrub, and herba-
ceous species on the site (Diez et al., 2021; Weinstein et al.,
2019). Here, although the problem also affects tall trees, it
was markedly more problematic for smaller ones. All above-
mentioned issues are directly linked to the aerial dataset qual-
ity and features. Due to the high heterogeneity of ecotonal
characteristics present in our study sites, it is possible that
an interplay of all the above-mentioned issues affected de-
tection rates and is thus responsible of the found inter-sites
detection rate discrepancies. Nonetheless, according to our
results, small trees detection using the proposed approach is
feasible and brought to overall satisfying results which con-
tributed to the generation of accurate treeline maps (Fig. 3).

Despite recent advancements in AI tools for object detec-
tion and segmentation, accurate identification of small trees
in RGB images over large and heterogeneous areas is still
cumbersome. Moreover, such improvement would remain
unfeasible without significantly lowering flight height, which
results in increasing extended survey times (Fromm et al.,
2019). Nevertheless, due to the harsh environmental condi-
tions at the treeline ecotone, long-term survival of small trees
is jeopardised by factors such as unsuitable sites for survival
(Davis and Gedalof, 2018; Marquis et al., 2021), failure to
grow in harsh conditions (Crofts and Brown, 2020; Frei et
al., 2018; Müller et al., 2016), and predation (Brown and Vel-
lend, 2014; Cairns et al., 2007). While the precise mapping
of small trees may be of secondary importance compared
to taller, potentially permanent, trees when evaluating sur-
vival rates and seed distribution, small trees are crucial when
investigating the encroachment process. As a consequence,
small tree detection is of utmost importance in treeline ecol-
ogy research and field surveys remain a valid and valuable
approach over small study areas.

With the present work, we investigated how unique tree-
line characteristics influenced model performance. At the
Avic treeline, where European larch is the dominant species,
we tested the leaf-off effect on detection rate. Scarcity of
green needles on the canopies resulted in lower performances
(Table 2). This finding is consistent with previous studies un-
derscoring how leaf-off season surveys are often correlated
with lower detection accuracies (Imangholiloo et al., 2019).

The poor cross validation results from the Rion site high-
light the substantial influence of illumination conditions on
detection performances. As noted by Diez et al. (2021), low
sun angles lead to variations in canopy color and the forma-

tion of long, distorted shadows, which can significantly im-
pair detection accuracy.

These results reveal some of the main limitations of RGB-
based approaches, underscoring the need of applying a stan-
dardised sampling protocol throughout all the study sites to
augment results reliability or provide more input data to in-
crease variability in the training dataset.

With the exception of Rion and Avic, a clear waning trend
in tree detection related to a specific terrain feature of the site
– presence of rocks (Becco), herbaceous species (Chianale)
or others – was not found. These findings suggest that terrain
characteristics had a negligible effect on detection rates, thus
meeting our expectations and supporting the generalizability
and transferability of the approach to treeline environments
with differing features.

4.2 Tree attributes estimation and transferability of the
protocol

The proposed approach has demonstrated the ability to
accurately georeference individual trees (RMSE= 0.59 m;
MAE= 0.49 m) and estimate their height (RMSE= 91.6 cm;
MAE= 71.8 cm); some of the observed deviations may in
fact be attributable to inaccuracies in the ground control data
rather than the UAV images. Despite the high precision of
the GNSS antenna employed, some small georeferencing er-
rors are inevitable (e.g. due to limited sky view, positional
accuracy can be limited). Additionally, during field surveys,
GNSS points coordinates of tree locations are recorded near
the base of the tree rather than directly below the real tree-
top, introducing further spatial errors (Shimizu et al., 2022;
Vauhkonen et al., 2012). Nevertheless, our tree position es-
timations were highly satisfying and comparable with re-
sults obtained in other recent studies employing similar or
more sophisticated equipment in environments with analo-
gous open stands. For instance, Castilla et al. (2020) geo-
referenced coniferous species in a boreal forest using SfM
point clouds achieving an RMSE of 20 cm, while Fernández-
Guisuraga et al. (2018) extracted tree position of conifer-
ous species in a post-fire environment attaining a RMSE
< 30 cm.

Tree height estimations presented a trend skewed to-
wards underestimation (Fig. 5c), an issue attributable to
the low sharpness of the DSM generated through SfM, as
also evidenced by Panagiotidis et al. (2017) and Wallace et
al. (2016). Airborne laser scanning is the most well-known
tool for DTM modelling due to its better capability in pen-
etrating tree crowns, which often result in highly accurate
estimation of tree features. However, in the present study we
provide evidence that by means of photogrammetric point
clouds it is possible to extract tree height with an accuracy
comparable to that achieved using LiDAR sensors, which are
still moderately expensive, thus limiting the feasibility of re-
peated surveys in many cases. Coops et al. (2013) assessed
tree height over a Swiss treeline ecotone by employing Li-
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DAR sensors with an RMSE of 0.70 m. Studies employing
LiDAR technologies in boreal treelines documented a stan-
dard deviation of 0.11–0.73 m (Næsset and Nelson, 2007)
and of 0.16–0.57 m (Næsset, 2009). Using LiDAR, Wallace
et al. (2012) reported a mean height standard deviation of
0.24 m in a stand with sparse trees – a level of precision that
clearly surpasses our results. However, when compared to
studies using SfM point clouds for tree height estimation,
our results demonstrate higher accuracy. For instance, Wal-
lace et al. (2016) compared LiDAR and SfM-derived point
clouds in a stand with spatially variable canopy cover, find-
ing RMSE values of 0.92 m and 1.30 m, respectively – the
latter being higher than ours. Similarly, Brieger et al. (2019)
estimated tree heights in an open larch forest and reported a
mean RMSE of 1.42 m, further supporting the comparatively
greater accuracy of our photogrammetric approach for tree
height estimation in open stands.

4.3 Limits and perspectives

We adapted an off-the-shelf model for a single-tree detec-
tion task at the treeline ecotone and employed AI-powered
tools to generate training data. The presented procedure en-
abled fast and efficient dataset preparation, ultimately yield-
ing accurate results. Our results show that combining low-
cost UAV and sensors with open-source AI libraries allows
for precise treeline mapping and the extraction of individ-
ual tree attributes across large areas, spanning wide latitu-
dinal gradients and featuring diverse environmental condi-
tions. The speed and accuracy of the analyses are further en-
hanced by the potential use of tree maps to support ecological
studies in these sensitive transition zones. Although previous
studies have investigated forested areas using AI and remote
sensing data, to the best of our knowledge, none have exam-
ined an ecotonal surface as extensive as the one presented
here (90 ha) using a high-resolution (5 cm) remote sensing
approach.

Our detection rates were comparable to, or even exceeded,
those reported in many other DL-based classification stud-
ies in natural forests. Nonetheless, despite the strong perfor-
mance achieved, accurately recognising small individuals in
RGB images remains a major challenge and a key limitation
of RS-based approaches. As highlighted in recent scientific
literature, LiDAR-informed segmentation approaches could
provide a valuable alternative for comprehensive mapping of
individual trees, filling the gap left by our methodology. An-
other crucial feature of great importance for many ecolog-
ical analyses is the species composition of the community.
The use of multi or hyperspectral sensors would solve this is-
sue by enabling the classification of tree species and thus the
analysis of species composition and interactions among indi-
viduals. Alternatively, species-level analyses are also possi-
ble with very-high-resolution RGB images acquired through
low-elevation UAV flights achieving a very fine ground sam-
pling density (∼ 1.6 cm pixel−1 (Egli and Höpke, 2020)), as

they can reveal species-specific crown architecture and mor-
phology.

Due to their dynamic nature, it is of great importance to
study treeline ecotones in long-term monitoring research. For
this task, we envision future research activities to apply the
presented approach to simultaneously map and detect tree
species at the treeline. The final goal is creating a global net-
work of accurately mapped treeline datasets to monitor the
effects of global change on treeline dynamics and explain
the position and pattern of the treeline at different scales.

5 Conclusions

We tested the performance of a Mask R-CNN deep learn-
ing model in capturing single-tree attributes across 10 het-
erogeneous treeline ecotones, using UAV-derived structure-
from-motion point clouds. UAV employment allowed us to
conduct surveys in a more labour and time efficient man-
ner compared to traditional ground-based methods while also
increasing the spatial extent of the study area. Our results
showed that the proposed approach can effectively produce
fine-scale tree maps over 90 ha of treeline ecotones. The
model successfully identified 70 % of trees taller than 50 cm
and 86 % of trees taller than 2 m across the ten study sites in
the Italian Alps. Beyond its success in detecting tree crowns,
the approach also performed well in delineation tasks.

The present work underpins the possibility of using UAVs
to advance treeline research, bridging the gap left by limited-
in-scale and labor-intensive field surveys and less accurate
satellite imagery. The ability to achieve such results with
the low-cost equipment used in this study, combined with
the flexibility of the protocol to site-specific conditions with
minimal data preparation requirements, makes this approach
both accessible to a wide range of scientists and forest man-
agers and reliable. These features showcase the methodology
as a valuable tool for enhanced ecological analyses of tree-
line processes, and several applications in forest assessment,
ecological restoration, and conservation planning
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Appendix A

Figure A1. Detail in the UAV-derived orthomosaic of (a) Avic, (b) Becco, (c) Bocche, (d) Chianale, (e) Devero, (f) Genevris, (g) Livigno,
(h) Rion, (i) Senales and (j) Valfurva.

Appendix B

Table B1. Results of spatial cross-validation analysis.

site F1-score precision recall AP

Avic 0.60 0.83 0.48 0.14
Becco 0.81 0.80 0.87 0.45
Bocche 0.48 1.00 0.35 0.34
Chianale 0.73 0.85 0.40 0.36
Devero 0.63 0.93 0.54 0.27
Genevris 0.76 0.97 0.66 0.45
Livigno 0.78 0.94 0.50 0.58
Rion 0.62 1.00 0.50 0.34
Senales 0.60 0.88 0.49 0.41
Valfurva 0.78 0.76 0.84 0.32

Mean 0.68 0.90 0.56 0.37
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