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S1. Stream metabolic calculations: model specifications and performance. 

Data preparation 

To ensure that temporal patterns of environmental variables were accurate and realistic, we removed noise 

and outliers using the loess R package. Specifically, we applied a locally estimated scatterplot smoothing 15 

(LOESS) model with a span parameter of 0.03 to dissolved oxygen (DO), water temperature (T), light 

intensity (PAR), water depth (h), and oxygen saturation (DO.sat) variables, effectively smoothing 

fluctuations and replacing outliers. To address data gaps in the DO time series, we applied imputation using 

the miceRanger R package. This was done for 6 storm events for which some parts of the DO record were 

missing. The imputation was applied only to the missing days. In total, 48 days of DO data were imputed 20 

across the following events: event 5 (5 days), event 11 (6 days), event 24 (11 days), event 34 (11 days), 

event 35 (9 days), and event 41 (6 days). The process involved generating 5 imputations over 5 iterations 

to ensure accurate reconstruction of missing data while preserving variability.  

Model description and specifications  

We estimated stream metabolism using the single-station open-channel method described by Odum (1956). 25 

Daily fluxes of the normalized gas transfer coefficient (K600, in d⁻¹), gross primary production (GPP), and 

ecosystem respiration (ER) (in g O₂ m⁻² d⁻¹) were calculated by fitting a Bayesian model to DO dynamics 

using the streamMetabolizer R package (Appling et al., 2018). In particular, we used the model 

b_Kb_oipi_tr_plrckm.stan, which incorporates both observational and process errors. In the model, K600 

and GPP were assumed to vary linearly with discharge (Q) and light intensity (van de Bogert et al., 2007), 30 

respectively, while ER was constant over 24 hours. Model fitting involved running four parallel Markov 

Chain Monte Carlo (MCMC) chains on four cores. Each chain included 1500 warmup iterations, followed 

by 2000 saved steps. 

The model was fitted for each 24-hour window starting at 23:00 on the preceding day. Prior probability 

distributions for GPP and ER were set based on previously reported values (0.5 ± 10 and -5 ± 10 g O2 m-35 

2d-1 for GPP and ER, respectively) (Acuña et al., 2004; Bernal et al., 2022).  Prior probability distributions 

for K600 were strongly constrained based on a deterministic, hand-pooled K600 derived from the relationship 

between binned Q and K600 estimates obtained from 11 propane additions using a mixed tracer injection 

method (Jin et al., 2012, Fig. S1). This approach involves fitting a relationship between daily K600 and mean 

daily Q as a series of linearly connected nodes at fixed intervals of natural log units, covering the observed 40 

Q range. For our model, the interval between nodes (n) was set at 0.2 natural log units. Constraining K600 

based on empirical values minimized potential equifinality problems (Appling et al., 2018, Fig. S2) and 

overall improved the goodness of fit of the model. Further details on model parameters and specifications 

can be found in Table S2.  

 45 
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Diagnosis of model outputs 

Modelled metabolism estimates were subjected to a thorough quality control process to identify impossible 

values, adequate model convergence, and a good fit between modelled and observed DO dynamics (Table 

S2). First, we removed days with biologically impossible values (i.e., negative GPP or positive ER) as well 50 

as days with unrealistic high ER (i.e., ER < -40 g O2 m-2d-1) and K600 values (i.e., K600 > 100 d-1). Further, 

model convergence was evaluated using the 𝑅̂-hat statistic and the number of effective samples (n_eff). 

The 𝑅̂-hat statistic measures consistency across MCMC chains, with values = 1 indicating good 

convergence and values >1 suggesting low convergence (Appling et al., 2018b). Days with 𝑅̂-hat > 1.2 for 

GPP, ER, or K600 were excluded. Additionally, the n_eff quantifies the estimation power of the MCMC 55 

method in terms of its equivalence to a number of independent samples, which should be lower than the 

product of the number of chains run and the number of saved steps (in our case, n_eff < 8000 indicates 

good model performance). Finally, the goodness of fit of modelled vs observed DO curves was assessed 

with three metrics: the coefficient of determination (R2), the residual root mean square error (RMSE) and 

the mean absolute error (MAE). We considered R2 > 0.50, and RMSE and MAE < 0.4 as indicators of a 60 

good fit between measured and predicted DO curves.  
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Figure S1. Mean daily discharge (Q) and gas exchange coefficient (K600). (a) K600estimates from 11 propane tracer 

additions using a mixed tracer injection method (Jin et al., 2012). A logarithmic relationship between Q and K600 

was derived from these measurements. (b) K600 estimates for all days before, during, and after storm events using 

three methods: night-time regression (yellow dots, n = 417), hydraulic geometry following Raymond et al. (2012) 65 

(grey dots, n = 774), and modeled K600 values (black dots) calculated using the Q–K600 relationship derived from 

panel (a). 

 

 

Figure S2. Relationship between daily ecosystem respiration (ER) and final estimates of K600.    70 
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Table S1. Hydrological descriptors of each storm event identified from October 2018 to February 2023. Start 

date, rainfall amount (P), and maximum rainfall intensity (PImax) are indicated for each event, as well as the 

duration of the hydrological event (D), discharge at baseflow conditions before the event (Qprior), maximum 

discharge (Qmax), change in discharge (ΔQ), and the runoff coefficient (RC). Average light inputs (PAR) during 

each event are also included. Events marked with * are those for which metabolic rates were available. 75 

 
Event Start date P PImax D Qprior Qmax Δ Q RC PAR  

  dd/mm/yyyy mm mm h-1 days L s-1 L s-1 L s-1 % mol m-2 d-1 

1* 13/10/2018 98.8 21.3 13 10.6 157.2 146.6 4.29 3.41 
± 0.6 

2* 25/10/2018 39.6 6.3 6 20.7 49.4 28.7 4.34 3.83 
± 1.2 

3* 30/10/2018 53.7 9.5 6 40.6 158.6 118 7.94 3.62 
± 0.8 

4* 08/11/2018 23.7 8.7 6 48.5 94.2 45.7 13.7 3.88 
± 0.7 

5 14/11/2018 53.2 15.9 4 50.7 356.4 305.7 11.6 2.1 
± 0.8 

6* 17/11/2018 77.5 12.7 17 164.6 1037 872.4 33.3 4.49 
± 0.5 

7* 19/01/2019 12.4 1.3 5 9.7 11.3 1.6 3.66 7.35 
± 1.3 

8* 09/03/2019 9.6 7.9 23 5.9 7.3 1.4 12.1 11.6 
± 1.4 

9* 03/04/2019 36.8 5.8 17 4.9 7.3 2.4 2.03 7.7 
± 0.8 

10* 01/05/2019 26.1 4.8 12 3.8 5.1 1.3 1.52 9.05 
± 0.7 

11* 12/05/2019 10.6 2.6 10 3.6 4.3 0.7 3.1 6.29 
± 1.0 

12* 21/05/2019 10.6 1.7 14 3 3.6 0.6 3.22 5.02 
± 0.8 

13* 09/06/2019 22.5 3 12 2.1 3.7 1.6 0.99 4.9 
± 0.5 

14 22/10/2019 93.6 31.4 5 0 14.4 14.4 0.22 3.87 
± 1.1 

15 21/11/2019 31.9 7.8 8 4.6 10.1 5.5 1.66 3.3 
± 0.2 

16 01/12/2019 126 15 19 7.5 1374 1367 17.4 2.6 
± 0.2 

17 19/12/2019 14.5 2.4 19 13.5 14.5 1 10.8 2.65 
± 0.1 

18 07/01/2020 15.9 5.9 5 6.1 7.5 1.4 1.74 2.72 
± 0.2 

19 19/01/2020 235 18.8 31 6.4 3508 3501 26.2 5.4 
± 0.4 

20* 15/03/2020 24 6.3 8 3.8 15.6 11.8 2.67 9.28 
± 1.8 

21* 22/03/2020 38.9 8 10 9 46.7 37.7 7.37 6.21 
± 1.1 

22* 31/03/2020 15.4 2.3 13 33.2 80.4 47.2 32.5 14.7 
± 1.8 

23 12/04/2020 48.3 8.4 7 35.2 193.2 158 13 12 
± 2.5 

24* 18/04/2020 185 12.3 21 112 3884 3772 39.4 9.86 
± 1.2 

25* 13/05/2020 37.7 19.2 16 31.9 35.1 3.3 7.96 8.53 
± 0.6 

26* 03/06/2020 29.3 13.8 5 14.7 18.4 3.7 2.38 5.75 
± 0.8 

27* 07/06/2020 50.8 6.3 17 16.9 26.7 9.8 5.09 6.11 
± 0.5 

28* 01/07/2020 34.1 15.7 18 9.9 29.8 19.9 5.52 6.14 
± 0.3 

29* 01/08/2020 29.6 13.2 11 6.1 8.3 2.2 1.88 6.16 
± 0.2 

30* 28/08/2020 72.6 30.1 12 4 9.7 5.7 0.83 4.92 
± 0.5 

31 08/09/2020 32.2 7.9 7 5.4 6.2 0.8 1.08 4.44 
± 0.7 

32 06/10/2020 72.2 25.5 8 4.8 388.9 384.1 7.37 4.06 
± 0.6 

33 13/10/2020 15.4 9.9 7 9.3 15.5 6.2 3.49 3.8 
± 0.5 

34* 23/11/2020 77.4 14.3 25 3.4 71.8 68.4 3.4 3.07 
± 0.1 

35* 17/12/2020 8.6 6.6 11 3.5 7.5 4 5.66 3.05 
± 0.2 

36* 08/01/2021 16.8 2.5 11 3.7 6.3 2.6 2.83 3.4 
± 0.3 
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37* 06/02/2021 24.4 11.8 7 4.2 10.9 6.7 2.05 5.48 
± 0.8 

38* 12/02/2021 34.6 18.6 20 6.9 8.2 1.3 3.51 5.06 
± 0.5 

39* 16/03/2021 26 4.6 21 5.3 8.9 3.6 4.15 11.2 
± 0.6 

40* 09/04/2021 48.9 12.2 17 4.9 9.3 4.4 1.77 8 
± 1.0 

41* 30/04/2021 19.1 8.2 10 4.3 6.6 2.3 2.41 7.59 
± 1.0 

42* 27/10/2021 37 12.6 14 2.3 22.2 19.9 2.52 1.95 
± 0.5 

43* 09/11/2021 51.9 14.1 14 4.8 7.6 2.8 1.26 2.38 
± 0.3 

44* 22/11/2021 44.9 10 32 4.5 68.4 63.9 6.65 3.79 
± 0.2 

45* 11/03/2022 61.4 7 7 2.9 98.5 95.6 6.1 5.46 
± 2.3 

46* 19/03/2022 33.4 6.3 10 60.3 108.2 47.9 13.2 19.9 
± 3.5 

47* 29/03/2022 46.9 7.4 14 25.8 68 42.2 8.18 28.6 
± 2.8 

48* 19/04/2022 62.9 6 27 22.5 259.5 237 15.7 16.2 
± 1.3 

49* 22/05/2022 17.2 6.4 11 6.2 7.3 1.1 3.03 8.81 
± 1.2 

50 15/09/2022 41.7 28.7 8 0 113.2 113.2 4.26 7.06 
± 0.5 

51* 16/11/2022 24.8 16.4 17 0.7 1.3 0.6 0.62 3.58 
± 0.2 

52* 11/12/2022 26.7 6.4 8 1.8 3.7 1.9 0.62 2.8 
± 0.3 

53* 03/02/2023 56.3 8.9 22 3.9 10.4 6.5 1.99 5.2 
± 0.1 
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Table S2. Specifications (specs) of the used model for estimating metabolic rates with StreamMetabolizer. Node 

centers and associated K600 are shown in Figure S1. Other specs not defined here were set as default. 

Model specifications Values 

burning_steps 1500 

saved_steps 2000 

n_cores 4 

n_chains 4 

K600_lnQ_nodes_centers vector (Fig. S1) 

K600_lnQ_nodediffs_sdlog 0.01 

K600_lnQ_nodes_meanlog vector (Fig. S1) 

K600_lnQ_nodes_sdlog 0.001 

K600_daily_sigma_sigma 0.01 

GPP_daily_mu 1 

GPP_daily_sigma 10 

ER_daily_mu -5 

ER_daily_sigma 10 

day_start -1 

day_end 23 

  

  80 
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Table S3.  Diagnostics assessing model performance, detailing the total number of days analyzed (including 

storm days and days prior to each storm event) and the number of storm events affected by each diagnostic 

criterion. The table includes the total available data, the number of imputed days using miceRanger, and 

occurrences of both biologically implausible values (i.e., negative GPP or positive ER) and implausible values of 

K600 (K600 > 110 d-1). It also reports instances of unsuccessful model convergence (R̂-hat > 1.2 and n_eff < 8000) 85 

and days with poor model fit (R² < 0.5, RMSE > 0.4). Finally, the number of days that passed all quality checks 

is indicated. The same diagnostics are shown for different ranges of discharge during storm events. 

Quality test  Days 

analyzed 

Number of 

storm 

events 

Discharge Range During Storm Events (L/s) 

0.7–10 10.1–40 40.1–100 >100 

Total data 698 53 347 135 57 26 

Imputed data 48 6 32 0 2 14 

GPP < 0, ER > 0 53 18 8 11 9 14 

K600 > 110 18 8 0 0 0 18 

R̂-hat  > 1.2 48 9 18 10 0 0 

n_eff > 8000  0 0 0 0 0 0 

R2 < 0.50  147 31 56 18 7 19 

RMSE > 0.4 92 26 30 23 7 19 

Passed quality 

check  

542 35 274 106 37 0 

% Success 72% 66% 79% 79% 65% 0% 
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Table S4. Comparison of linear and logarithmic regression model performance comparing hydrological, 

environmental, and biological variables. Each row shows a pair of variables tested as predictors and responses. 90 

For each model type, the Akaike Information Criterion (AIC), p-value, and coefficient of determination (R²) are 

reported. Predictor variables include maximum rainfall intensity (PImax), storm duration (D), runoff coefficient 

(RC), change in discharge (ΔQ), daily discharge (Q), temperature (T), and light (PAR). Response variables 

include gross primary production (GPP), ecosystem respiration (ER), metabolic resistance as the change in 

metabolic rates between the storms and pre-storm conditions (ΔGPP, ΔER), and metabolic resilience as recovery 95 

time (RTGPP, RTER). In bold are the models that were finally selected based on AIC and p-values (p-value < 0.01). 

When the difference in AIC between the two models was less than 2, we considered them equally supported. 

Missing values (--) indicate cases where logarithmic transformation was not possible. 

 

 100 

 

  

      Linear model Logarithmic model 

Relationship explored AIC R2 p value AIC R2 p value 

PImax vs GPP 126 0.1 0.035 129 0.1 0.183 

PImax vs ER 232 0.2 0.015 234 0.1 0.034 

D vs GPP 131 0 0.632 130 0 0.424 

D vs ER 236 0.1 0.104 237 0.1 0.157 

RC vs GPP 131 0 0.775 131 0 0.659 

RC vs ER 238 0 0.386 239 0 0.65 

ΔQ vs GPP 130 0 0.312 131 0 0.66 

ΔQ vs ER 237 0.1 0.212 236 0.1 0.143 

Q vs GPP 1405 0 0.025 1409 0 0.803 

Q vs ER 2549 0.2 < 0.001 2586 0.1 <0.001 

T vs GPP 1903 0 0.06 1902 0 0.04 

T vs ER 3554 0.1 <0.001 3552 0.1 <0.001 

PAR vs GPP 128 0.1 0.097 125 0.2 0.017 

PAR vs ER 239 0 0.734 239 0 0.753 

PImax vs ΔGPP 391 0 0.477 391 0 0.539 

PImax vs ΔER 341 0 0.352 342 0 0.862 

D vs ΔGPP 391 0 0.672 391 0 0.526 

D vs ΔER 342 0 0.936 342 0 0.928 

RC vs ΔGPP 391 0 0.663 391 0 0.739 

RC vs ΔER 340 0.1 0.216 339 0.1 0.103 

ΔQ vs ΔGPP 387 0.1 0.034 388 0.1 0.071 

ΔQ vs ΔER 325 0.4 <0.001 325 0.4 <0.001 

PImax vs RTGPP 153 0 0.427 152 0.1 0.184 

PImax vs RTER 150 0 0.864 150 0 0.563 

D vs RTGPP 151 0.1 0.11 151 0.1 0.161 

D vs RTER 148 0 0.246 149 0 0.352 

RC vs RTGPP 153 0 0.38 153 0 0.93 

RC vs RTER 147 0.1 0.132 148 0.1 0.221 

ΔQ vs RTGPP 153 0 0.49 153 0 0.822 

ΔQ vs RTER 126 0.5 <0.001 128 0.5 <0.001 

RTGPP vs ΔGPP 387 0.1 0.046 -- -- -- 

RTER vs ΔER 321 0.5 <0.001 -- -- -- 
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Table S5. Results of the reanalysis of storm days with daily discharge above 100 L s⁻¹ using  StreamMetabolizer 

with constrained K₆₀₀ to 100 d⁻¹. For each date, the table shows daily discharge (Q), model fit metrics (R2, RMSE), 

and daily estimates of gross primary production (GPP, g O₂ m⁻² d⁻¹), ecosystem respiration (ER, g O₂ m⁻² d⁻¹), 105 

and reareation rates (K₆₀₀, d⁻¹). Values in bold indicate days that passed the quality check. Missing values (NA) 

indicate cases where reliable metabolic estimates could not be obtained. 

 

date Q R2 RMSE GPP ER K600 

dd/mm/yyyy L s⁻¹     g O₂ m⁻² d⁻¹ g O₂ m⁻² d⁻¹ d⁻¹ 

15/10/2018 157.2 98.40 6.74 -0.03 -20.34 99.99 

01/11/2018 158.6 6.67 57.93 0.62 -20.44 100.00 

15/11/2018 104 -54.44 69.32 0.19 -20.63 100.00 

16/11/2018 356.4 -186.36 98.23 -1.30 -37.59 100.00 

17/11/2018 218.8 -16.32 61.90 0.53 -33.13 100.00 

18/11/2018 744.1 -16009.87 714.99 -3.95 -67.99 99.86 

19/11/2018 1037 -2748.18 295.03 4.86 -106.70 99.86 

20/11/2018 283.2 80.42 24.05 -1.85 -54.05 100.00 

21/11/2018 154.1 -113.10 80.63 0.84 -42.65 99.99 

14/04/2020 193.2 -223.85 105.56 1.25 -39.60 99.98 

15/04/2020 135 -50.69 71.85 1.45 -38.95 100.00 

16/04/2020 108.8 -222.15 104.70 1.30 -35.49 99.99 

19/04/2020 183.9 -2341.77 284.57 0.50 -34.16 99.97 

20/04/2020 295.5 -15.73 62.04 0.48 -40.08 100.00 

21/04/2020 2319.7 -20530.77 828.47 0.77 -51.19 99.81 

22/04/2020 3883.7 -3218.55 332.92 3.42 -69.40 99.81 

23/04/2020 364.8 -1.19 57.75 0.33 -48.12 100.00 

24/04/2020 227.7 76.31 27.80 0.29 -41.12 99.99 

25/04/2020 169.1 96.06 11.23 0.05 -38.53 99.98 

26/04/2020 136.3 97.90 8.15 0.13 -37.14 100.00 

27/04/2020 115.3 98.25 7.39 0.06 -36.86 100.00 

21/03/2022 108.2 NA NA NA NA NA 

28/04/2020 100.2 93.27 14.41 0.19 -35.51 99.98 

21/04/2022 259.5 64.28 35.16 0.49 -36.35 99.96 

22/04/2022 150.3 95.04 13.34 0.81 -22.13 99.99 

23/04/2022 104 74.67 29.90 0.61 -19.69 99.99 
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