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S1 Convolutional Neural Network (CNN) Methods

CNNs are a form of deep learning model that are useful for gridded data. The models are spatially aware and can detect
patterns in images or other gridded data on multiple scales. CNNs are a popular method for classification of remote sensing

imagery. A more detailed overview of CNNs can be found in section 2.5 of the methods section in the main manuscript.

S1.1 How the CNN Learns through Backpropagation

Before training, the weights and biases are randomly initialized. As the CNN learns, weights are adjusted through a process
called gradient descent with backpropagation (Goodfellow and Bengio and Courville, 2016a). The end goal is to minimize
the model's error, estimated with a loss function. (Often neural networks are trained with maximum likelihood, using the

negative log-likelihood or cross-entropy between the training and observation distributions (Goodfellow and Bengio and

)

Courville, 2016a). See Appendix B for a discussion of specific loss functions.) For each weight w, the adjustment is —a P

where a is the learning rate; J is the loss; and aa_\i is the partial derivative of the loss with respect to w. The learning rate must
be positive and is typically a small number (< 1). This adjustment is called “gradient descent,” as it adjusts w in the

o . . . o a .
direction opposite the loss gradient with respect to w. If w is in the output (deepest) layer, —‘i can be computed directly.

L a . . .
However, if w is in a shallower layer £, then # cannot be computed directly, because the dependence of / on w is mediated

by the weights in all layers between £ and the output. Thus, for weights not in the output layer, one must apply the chain rule
for differentiation. So, one must calculate the partial derivative of the loss with respect to each weight wy,,,, in the deepest
layer, the partial derivative of each wg,.p, With respect to each weight in the second-deepest layer, and so on, until reaching
layer L. All of these partial derivatives are multiplied together to calculate the contribution of w in layer £ to the loss. So,
backpropagation is a combination of gradient descent with the chain rule, where weights and biases are learned
simultaneously across all convolutional and dense layers. This process is repeated for every data sample in a training batch,
and the changes to the weights and biases—determined by gradient descent with backpropagation—are averaged across all

of the data samples.

Each partial derivative value may be very small, so if the network is deep enough, requiring the multiplication of many small
numbers, the contribution of a weight to the overall loss can become so small (“vanishingly” small) that the computer cannot
record it (e.g., x>°) (Dubey and Jain, 2019). This is known as the vanishing gradient problem. If the computer cannot
calculate and store the relative contribution of each weight to the loss, it does not have a gradient with which it could apply
the gradient descent rule, and so it is not able to determine how the weights must be adjusted. The vanishing gradient

problem was thus an early, major barrier to the construction of deeper networks. Fortunately, ML researchers have found
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strategies to solve the vanishing gradient problem since the original development of CNNs in the 1980s (Fukushima and
Miyake, 1982), including batch normalization and the rectified linear unit (ReLU) activation function (described in detail in
section S1.3). Advances in computer processing and memory technology were also, of course, instrumental in enabling

wider use of CNNs and other deep learning methods (Krizhevsky and Sutskever and Hinton, 2017).

S1.2 The Importance of Activation Functions and Batch Normalization

Each convolutional filter performs a linear operation (specifically the sum of K, * K * Ci, products plus a bias value), and
any series of linear operations is itself linear. Thus, a CNN with only convolutional layers could learn only linear
relationships (Lagerquist, 2020). Activation functions introduce an elementwise non-linear transform after convolution,
allowing CNNs to learn non-linear relationships (Dubey and Jain, 2019; Goodfellow and Bengio and Courville, 2016a). This
function does not need to be in a specific form, as long as the CNN has some process by which it can learn non-linear
relationships (Lagerquist and Mcgovern and Gagne Ii, 2019), so the activation function is typically simple for computational
efficiency. Many activation functions, such as the sigmoid and hyperbolic tangent (tanh), confine the output to a range of
values, such as [0, 1] or [-1, 1], respectively. If the values are squashed close to 0, however, this can contribute to the
vanishing gradient problem (Maas, 2013; Dubey and Jain, 2019). Thus, the NN is more likely to get "stuck" in a suboptimal
local minimum, rather than finding the global minimum.! In the early 2000s, rectifier nonlinearities were found to
outperform sigmoid and tanh activation functions and to improve with model depth, without encountering vanishing

gradients (Glorot and Bordes and Bengio, 2011; Maas, 2013).

'These are minima in a W-dimensional space, where W is the total number of weights + biases in the NN.
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Now a commonly used activation function, the rectified linear unit (ReLU) preserves positive feature values but reduces the
magnitude of negative values. Strict ReLU is defined as x' = max(0, x), where x is the input element and x' is the output.
Thus, strict ReLU removes negative feature values completely by zeroing them out. Leaky ReLU, on the other hand, is
defined as x' = max(a * x, x), where a is the slope parameter, ranging from (0, 1). Thus, leaky ReLU reduces the magnitude
of negative feature values without zeroing them completely (Nair and Hinton, 2010). Importantly, ReLU is still a
differentiable function, allowing for gradient-based optimization through backpropagation (Dubey and Jain, 2019;
Goodfellow and Bengio and Courville, 2016a). ReLU reduces the risk of a vanishing gradient by preserving the magnitude
of the positive values; as long as the ReLU is activated above 0, its partial derivative is 1 and it doesn’t contribute to a
vanishingly small gradient during the multiplication of many partial derivatives (Maas, 2013). The Strict ReLU activation
function sets negative values to exactly 0 and was appealing early on because of its similarity to biological neural activation
functions (Glorot and Bordes and Bengio, 2011; Goodfellow and Bengio and Courville, 2016a). (Early NN developers were
greatly inspired by the neuroscience literature, though the models we have today are not thought to be direct approximations
of biological neural networks (Goodfellow and Bengio and Courville, 2016a).) Unfortunately, neurons with weights set to 0
by strict ReLU can cease to be updated and become "dead neurons", where no learning occurs (Maas, 2013). Leaky ReLU
solves the problem of dead neurons while preserving the performance advantages of ReLU (Maas, 2013; Dubey and Jain,

2019).

To further reduce the possibility of vanishing gradients, one can use batch normalization. During batch normalization,
feature map elements are transformed to z-scores from a standard normal distribution, with mean of 0.0 and standard
deviation of 1.0 (Lagerquist, 2020). Normalization helps prevent vanishing gradients by counteracting internal covariate shift
toward saturation values at the limits/asymptotes of activation functions that can happen with the use of sigmoid and tanh
activation functions (Ioffe and Szegedy, 2015). By eliminating the vanishing gradient problem—preventing the model from
getting stuck in local minima—batch normalization allows for higher learning rates and increases the speed of model
convergence (loffe and Szegedy, 2015). Batch normalization also puts all features in a map on the same scale, preventing the
over-emphasis of features due solely to their original scale (e.g., elevation in meters vs. radiance in W m™ sr! pm™"). Lastly,
batch normalization can act as a form of regularization; by reparameterizing the model, it introduces noise to the weights and

biases (Goodfellow and Bengio and Courville, 2016b).

S1.3 Regularization Methods: How to Prevent Overfitting

With thousands of parameters in each convolutional and dense layer, CNNs quickly run the risk of overfitting the model to
the data, preventing the model from generalizing well to new data (Goodfellow and Bengio and Courville, 2016¢). To reduce
this problem, ML developers use regularization methods, which encourage a simpler model by penalizing the model for
being complex or by rewarding simplicity. The core idea of regularization is to improve the model’s generalizability and

parsimony without reducing its training error (Goodfellow and Bengio and Courville, 2016a). Three forms of regularization
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used in the present work are the addition of penalties to the loss function (commonly L; and L), data augmentation, and
dropout. Note that all three regularization methods are used only during training. At inference time (when applying a trained
model to out-of-bag or validation data), all regularization methods are turned off—including, importantly, dropout and data

augmentation.

The L; and L, penalties are known as the lasso and ridge penalties, respectively (Goodfellow and Bengio and Courville,
2016b). These penalties are added to the loss function (thus increasing the loss). The L; penalty, shown in Eq. S1, is the sum
of absolute coefficient values, it is called the lasso penalty because it pushes model parameters to become exactly 0, thus

reducing the effective number of parameters and drawing a “lasso” around the non-zero parameters that are kept.

M
L= |5
j=1

S1
where M is the total number of parameters in the convolutional or dense layer, and B; is the value of the jth parameter. The
L, penalty, shown in Eq. S2, is the sum of the squared parameters, and pushes the weights to become small but not exactly

Z€ro.

S2
Data augmentation is another method of regularization aimed to prevent overfitting (Krizhevsky and Sutskever and Hinton,
2017). Data augmentation is the practice of artificially inflating the dataset by adding small amounts of noise to the data to
generate multiple samples from each original sample. Data augmentation changes only the predictor values; the changes are
assumed to be small enough that they do not change the target value (in our case, the species label). The fake data samples
are noisy enough to force the NN to apply real learning to recognize the signal through added variability, but not so noisy as
to change the correct classification (Goodfellow and Bengio and Courville, 2016b). It is important to emphasize that data
augmentation does not fix issues introduced by having a non-representative dataset; as with any type of statistical model or
representation, the model is only generalizable to the limits of the original sampling framework. However, the fake data
force the ML model to cope with noise, which neural networks are not naturally robust to without this kind of regularization

technique (Goodfellow and Bengio and Courville, 2016b).

Dropout can also be thought of as a regularization method that adds noise, though to the weights rather than to the input data.
In traditional dense neural net layers, retaining activity in all neurons typically leads to overfitting (Krizhevsky and
Sutskever and Hinton, 2017). However, if the output of each hidden neuron has a 50% chance of being set to 0, roughly half

of the neurons will be randomly removed from the neural net. The NN must then learn with a sparser network, which
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incidentally is faster to train. When training a CNN with dropout, each time a mini batch of data is input to the CNN, a
different set of neurons is dropped out. Thus, the CNN has to adjust model weights without relying on every neuron each
time. This effectively turns one CNN into an ensemble of CNNs, which generalizes better to new data (Goodfellow and
Bengio and Courville, 2016b). At inference time (when applying the trained model to new data), all neurons are used; none
are dropped out. Dropout is a form of bootstrap aggregation (or bagging—a method of training many NNs to create a model
ensemble that is more generalizable) that is less computationally expensive, and more effective at reducing generalization
error, than an ensemble of separately trained NNs. The tradeoff is that dropout requires a large model to implement and, if
the dataset is very large, dropout doesn’t reduce generalization error very much. While dropout is less expensive than a
literal ensemble, it still comes with the added cost of a larger model. If the dataset is large, dropout may not be worthwhile

(Goodfellow and Bengio and Courville, 2016b).

S1.4 Hyperparameter Experiments

CNNs have many hyperparameters: model settings that must be pre-determined by the user and cannot be adjusted during
training. Hyperparameters are decision points that can have a profound influence on model performance. Some
hyperparameters can be chosen based on prior experimental work, if they have been found to be less influential or to work
robustly across model applications. An example of this is the slope parameter of the leaky ReLU activation function. As long
as some non-linearity is introduced to the model, the precise degree by which the negative values are attenuated does not
matter (Lagerquist and Mcgovern and Gagne Ii, 2019). Pre-determining some hyperparameters or reducing the domain of
tested values for each experimental hyperparameter is one way in which limited computing resources can be allocated
strategically.

We performed three hyperparameter experiments to strategically narrow the number of combinations of hyperparameters to
test: two early experiments and a later experiment, reported in greater detail in this manuscript. The first early experiment
involved data-augmentation settings. As noted in the previous section, extensive empirical and theoretical work has shown
that well-designed data augmentation improves model robustness/generalization by exposing the model to plausible input
variations, thereby reducing overfitting to spurious features or noise (Krizhevsky and Sutskever and Hinton, 2017; Perez and
Wang, 2017). We tuned the data augmentation hyperparameters first by performing a grid search over noise level = {0.1, 0.2,
0.3, 0.4, 0.5}; and number of augmentations = {2, 3,4, 5, 6, 7, 8, 9, 10}. We determined that the optimal hyperparameters
settings are 0.2 and 8, the values reported in the manuscript. In this experiment, performance on the unaugmented validation
data was more sensitive to noise level than to the number of augmentations. With a smaller noise level (0.1), performance on
the validation data deteriorated, suggesting that 0.1 is not quite enough noise to prevent the model from overfitting to
spurious features. With a larger noise level (0.3-0.5), performance on the validation data again deteriorated, suggesting that
0.3-0.5 is too much noise, overwhelming useful patterns in the data. Note that, whenever we do data augmentation, Gaussian
noise is applied to the normalized predictors (in z-score units) rather than the unnormalized predictors (in physical units).

Thus, a Gaussian noise level of 0.2 has an equivalent effect on all predictor variables.
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The other early hyperparameter experiment involved regularization settings, in which we experimented with the optimal
values for L, weight, dropout rate, and the number of dense layers. Specifically, we performed a grid search over L, weight =
{107, 10%3, 10, 1033, 10-}; dropout rate = {0.500, 0.575, 0.650, 0.725, 0.800}; and number of dense layers = {3, 4, 5, 6,
7}. We trained a separate model for all 5 x 5 x 5 = 125 combinations of these three hyperparameters. We made the following
conclusions from this early experiment:

e  The optimal number of dense layers was 3 or 4, while values of 5-7 led to overfitting. Since 3 and 4 are on the edge
of the search space, for the experiment in the manuscript, we decided to experiment more widely, also training
models with 1-2 dense layers.

e The optimal dropout rate was 0.575 or 0.650.

e  The optimal L, weight was 10> or 107

While the effective sample size remains limited, our data-augmentation strategy contributes meaningful diversity to the
training data that complements regularization techniques. The combination of data augmentation and regularization enhances
model robustness/performance in a way not achievable by regularization alone. Based on these results, we proceeded with

the third hyperparameter as described in section 2.5.3 of the manuscript.

S2 Hyperparameter Experiment Results

Each subsection below shows the results from one hyperparameter experiment, used to determine the best six-class, four-

class, or two-class model.

S2.1 Six-Class Model Hyperparameter Results

Figure 5 of the main body shows top-1 accuracy for every hyperparameter combination in the six-class experiment. Figures

S1-S7 are analogous, showing results for the other seven evaluation metrics.
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Figure S1: Hyperparameter experiment results for the six-class classification, evaluated by top-2 accuracy. Formatting is
175  described in the caption of Figure 5 in the main body.
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Figure S2: Hyperparameter experiment results for the six-class classification, evaluated by top-3 accuracy. Formatting is
described in the caption of Figure 5 in the main body.
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Figure S3: Hyperparameter experiment results for the six-class classification, evaluated by the Gerrity score. Formatting is
described in the caption of Figure 5 in the main body.
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Figure S4: Hyperparameter experiment results for the six-class classification, evaluated by the PIFL-first Gerrity score.
Formatting is described in the caption of Figure 5 in the main body.
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190  Figure S5: Hyperparameter experiment results for the six-class classification, evaluated by the Heidke score. Formatting is
described in the caption of Figure 5 in the main body.
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Figure S6: Hyperparameter experiment results for the six-class classification, evaluated by the Peirce score. Formatting is
195  described in the caption of Figure 5 in the main body.
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Figure S7: Hyperparameter experiment results for the six-class classification, evaluated by cross-entropy. Formatting is described
in the caption of Figure 5 in the main body.
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S2.2 Four-Class Model Hyperparameter Results

Figures S8-S15 show results for the four-class hyperparameter experiment.
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205 Figure S8: Hyperparameter experiment results for the four-class classification, evaluated by top-1 accuracy. Formatting is
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Figure S9: Hyperparameter experiment results for the four-class classification, evaluated by top-2 accuracy. Formatting is
210  described in the caption of Figure 5 in the main body.
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Figure S10: Hyperparameter experiment results for the four-class classification, evaluated by top-3 accuracy. Formatting is
described in the caption of Figure 5 in the main body.
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215 Figure S11: Hyperparameter experiment results for the four-class classification, evaluated by the Gerrity score. Formatting is
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Figure S12: Hyperparameter experiment results for the four-class classification, evaluated by the PIFL-first Gerrity score.
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Figure S13: Hyperparameter experiment results for the four-class classification, evaluated by the Heidke score. Formatting is
described in the caption of Figure 5 in the main body.
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Figure S14: Hyperparameter experiment results for the four-class classification, evaluated by the Peirce score. Formatting is
225  described in the caption of Figure 5 in the main body.
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Figure S15: Hyperparameter experiment results for the four-class classification, evaluated by cross-entropy. Formatting is
described in the caption of Figure 5 in the main body.
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S2.3 Two-Class Model Hyperparameter Results

230  Figures S16-S21 show results for the two-class hyperparameter experiment.

Loss function = cross-entropy without class weights Loss function = cross-entro

with class weights Loss function = Gerrity score without class weights

0.88

0.88 0.88
4 4 4
0.87 0.87 0.87
o o o
Q Q Q
23 0.86 23 0.86 23 0.86
Q Q Q
" w (%)
5] ] 5
9 0.85 3 0.85 3 0.85
kS ‘s G
2 - o
[ [ QJ
€2 £2 £2
£ 0.84 E 0.84 £ 0.84
=2 - —
0.83 0.83 0.83
1 1 1
0.82 0.82 0.82

n
©

5

n
©

=) o
— —
=) =
n n

6
.650, 107%

6

S =} <}
Dropout rate and L, weight Dropout rate and L; weight Dropout rate and L, weight

Loss function = Gerrity score with class weights Loss function = Gerrity score without class weights Loss function = Gerrity score with class weights

with PIFL first with PIFL first

10.88
4 0.88 0.88
0.87
0.87 0.87
Q
[ wn wn
23 0.86 9 ]
= 23 0.86 23 0.86
@ ) &
2 [ (]
3 0.85 e g
5 3 0.85 3 0.85
] G bS]
Qo — L
£2 0.84 g, g,
z £ 0.84 £ 0.84
= =z
0.83
0.83 0.83
5 0.82
- 1 1
0.82 0.82
3 If)‘ )
o 3 .
=1 1) o
o — —
A I i
8 2 2
= . © ©
Dropout rate and L, weight =) S
Dropout rate and L, weight Dropout rate and L, weight

Figure S16: Hyperparameter experiment results for the two-class classification, evaluated by top-1 accuracy. Formatting is
described in the caption of Figure 5 in the main body.

22



Loss function = cross-entropy without class weights Loss function = cross-entro

with class weights Loss function = Gerrity score without class weights

0.6 0.6 0.6
4 4 4
0.55 0.55 0.55
1 fo- 2
o o o
53 0.5 53 0.5 53 0.5
v L Q
w w v
T T 3
° 0.45 © 0.45 o© 0.45
Y= Y Y=
o (=] o
@ @ o]
o ] o _|
£2 0.4 g2 0.4 g2 0.4
= = 3
= = =
0.35 0.35 0.35
5 0.3 1 0.3 L 0.3

5

n
©

650, 107

o
—
=
n

650, 10765

6

<} <} S
Dropout rate and L, weight Dropout rate and L, weight Dropout rate and L, weight
Loss function = Gerrity score with class weights Loss function = Gerrity score without class weights Loss function = Gerrity score with class weights

with PIFL first with PIFL first

0.6
4 0.6 0.6
0.55
0.55 0.55
E
[ n w
&3 [ 9 0.5 0 05
= 23 . =3 .
2 [V [
S 0.45 = -
s ] 0.45 3 0.45
5 G ‘G
Q e N
£2 0.4 é " é .
= £ 0.4 £ 0.4
— 4
0.35
0.35 0.35
hE
0.3
0.3 0.3
3 - :
H_ o o
o — —
wn - -
o o (=]
S 3 3
Dropout rate and L, weight o o
235 Dropout rate and L, weight Dropout rate and L, weight

Figure S17: Hyperparameter experiment results for the two-class classification, evaluated by the Gerrity score. Formatting is
described in the caption of Figure 5 in the main body.
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Figure S18: Hyperparameter experiment results for the two-class classification, evaluated by the PIFL-first Gerrity score.
240 Formatting is described in the caption of Figure 5 in the main body.
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Figure S19: Hyperparameter experiment results for the two-class classification, evaluated by the Heidke score. Formatting is
described in the caption of Figure 5 in the main body.
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245  Figure S20: Hyperparameter experiment results for the two-class classification, evaluated by the Peirce score. Formatting is
described in the caption of Figure 5 in the main body.
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Figure S21: Hyperparameter experiment results for the two-class classification, evaluated by cross-entropy. Formatting is
250  described in the caption of Figure 5 in the main body.
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255

S3 Training Diagrams for Selected Models

Over training epochs, model performance improved for the selected loss function ( the class-weighted Gerrity score) and
improved in terms of top-1, top-2, and top-3 accuracy. While the models consistently performed better with the training data
(solid lines in the below figures) than the validation data (dashed lines), the models do converge for the validation data.
Without regularization (data augmentation, L2 regularization, and dropout), the validation curves do not converge in this

way. However, these models may still suffer somewhat from overfitting and would be improved with additional data.
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260 Figure S22. Learning curves for the six-class CNN model. Each panel shows the evolution of one performance metric over
the 100 training epochs. Dashed (solid) lines represent the validation (training) data. Note that, because Keras expects the
loss function to be negatively oriented (such that lower is better), the loss function here is actually the negative class-

weighted Gerrity score.
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Figure S23. Learning curves for the four-class CNN model. Formatting is explained in the caption of Figure S22. Again,
note that because Keras expects the loss function to be negatively oriented, the loss function here is actually

the negative default Gerrity score.
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Figure S24. Learning curves for the two-class CNN model. Formatting is explained in the caption of Figure S22.

S4 Spectral Reflectance Curves for Six Species Across WV-3 Bands

The XAI permutation tests were useful for determining what the CNN models were relying on when learning relationships in
the data to make skillful predictions. However, we found that examining the spectral reflectance curves of the six species
was also helpful for understanding whether limitations in the WV-3 data were due to spatial or spectral resolution. We used
the terra package (version 1.8.5) in R (version 4.4.2) to extract radiance values for all eight bands within each species
polygon. We calculated the mean for each polygon, then used the boot package (version 1.3-31) to calculate the mean
radiance for each species (across all polygons—the mean of means) with bootstrapped 95% confidence intervals. We used
ggplot2 (version 3.5.1) to generate figures comparing all species reflectance curves on a single plot (Figure S25) and

pairwise comparisons of species reflectance curves (Figures S26-S40).

Significant differences between species are difficult to discern when species curves are plotted together (Figure S25), but it
is apparent that the coniferous species (subalpine fir - ABLA, Engelmann spruce - PIEN, and limber pine - PIFL) diverge
from the deciduous species (glandular birch — BEGL and aspen — POTR) in the N-IR1 and N-IR2 bands, except for willow
(Salix spp.), another deciduous species which overlaps with PIEN.
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Figure S25. Spectral reflectance curves for all six species across the eight WV-3 bands. Each line shows mean radiance for a
different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m sr! pm-'.
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290 ABLA and BEGL diverged significantly in the blue, red, N-IR1, and N-IR2 bands (Figure S26).
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Figure S26. Spectral reflectance curves for subalpine fir (ABLA) and glandular birch (BEGL) across the eight WV-3 bands. Each
line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are
in Wm?2sr! pm.
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ABLA and PIEN diverge significantly in the coastal blue, blue, green, yellow, red, and red edge bands (Figure S27).
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Figure S27. Spectral reflectance curves for subalpine fir (ABLA) and Engelmann spruce (PIEN) across the eight WV-3 bands.
Each line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance
300 arein W m?sr! pm.
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ABLA and PIFL diverge significantly in the coastal blue, blue, green, yellow, and red bands (Figure S28).
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Figure S28. Spectral reflectance curves for subalpine fir (ABLA) and limber pine (PIFL) across the eight WV-3 bands. Each line
305 shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W
m2sr! pml,
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ABLA and POTR diverge significantly in the red edge, N-IR1, and NIR-2 bands (Figure S29).
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310 Figure S29. Spectral reflectance curves for subalpine fir (ABLA) and aspen (POTR) across the eight WV-3 bands. Each line shows
mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m2 sr’!
pml,
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ABLA and Salix diverge significantly (if only slightly) in the coastal blue, blue, and red bands (Figure 30).
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Figure S30. Spectral reflectance curves for subalpine fir (ABLA) and willow (Salix) across the eight WV-3 bands. Each line shows
mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m2 sr’!
pm.
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320 BEGL and PIEN diverge significantly in the green, yellow, red edge, N-IR1, and N-IR2 bands (Figure S31).
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Figure S31. Spectral reflectance curves for glandular birch (BEGL) and Engelmann spruce (PIEN) across the eight WV-3 bands.
Each line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance
arein W m? sr! pm-'.
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BEGL and PIFL diverge significantly across the full spectrum (Figure S32).
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Figure S32. Spectral reflectance curves for glandular birch (BEGL) and limber pine (PIFL) across the eight WV-3 bands. Each
line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are
330 in Wm?sr! pm’.
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BEGL and POTR may diverge slightly in the red edge band but are not distinguishable anywhere else along the spectrum

(Figure S33).
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335 Figure S33. Spectral reflectance curves for glandular birch (BEGL) and aspen (POTR) across the eight WV-3 bands. Each line
shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W
m?2sr! pml,
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BEGL and Salix diverge significantly only in the red edge, N-IR1, and N-IR2 bands (Figure S34).
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Figure S34. Spectral reflectance curves for glandular birch (BEGL) and willow (Salix) across the eight WV-3 bands. Each line
shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W
m?2 sr! pml,
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345 PIEN and PIFL diverge significantly in the red, red edge, N-IR1, and N-IR2 bands (Figure S35).
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Figure S35. Spectral reflectance curves for Engelmann spruce (PIEN) and limber pine (PIFL) across the eight WV-3 bands. Each
line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are
in Wm?2sr! pm.
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PIEN and POTR diverge significantly in every WV-3 band except for the costal band (Figure S36).

600

400

Mean Radiance

200

Coastal blue Blue Green Yellow Red Red edge Near-IR1 Near-IR2
Band

Species E PIEN E POTR

Figure S36. Spectral reflectance curves for Engelmann spruce (PIEN) and aspen (POTR) across the eight WV-3 bands. Each line
shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W
355 m?sr! pm’.
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PIEN and Salix do not diverge significantly in any of the WV-3 bands (Figure 37).
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Figure S37. Spectral reflectance curves for Engelmann spruce (PIEN) and willow (Salix) across the eight WV-3 bands. Each line
360 shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W
m?2 sr! pml,
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PIFL and POTR diverge significantly in every WV-3 band except for the coastal band (Figure S38).
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365 Figure S38. Spectral reflectance curves for limber pine (PIFL) and aspen (POTR) across the eight WV-3 bands. Each line shows
mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m? sr!

pm-l,



PIFL and Salix diverge significantly only in the N-IR1 and N-IR2 bands (Figure S39).
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Figure S39. Spectral reflectance curves for limber pine (PIFL) and willow (Salix) across the eight WV-3 bands. Each line shows
mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m2 sr’!
pm-l,
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POTR and Salix diverge significantly in the red edge, N-IR1, and N-IR2 bands (Figure S40).
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Figure S40. Spectral reflectance curves for aspen (POTR) and willow (Salix) across the eight WV-3 bands. Each line shows mean
radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m sr'! pm'.

Even with eight-band multispectral data (vs. hyperspectral data), the six species do diverge significantly from one another in
different regions of the electromagnetic spectrum, except for Engelmann spruce and willow, which overlap in all eight
bands. Table S1 provides a summary of bands where 95% confidence intervals of mean radiance (across species polygons)

do not overlap, indicating a significant difference between measures of species reflectance in those bands.
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Table S1. WV-3 bands where pairs of species diverge significantly—where 95% confidence intervals for mean radiance (across

species polygons) do not overlap.

Species Combinations

WV-3 Bands where Species Diverge Significantly

ABLA & BEGL Blue, Red, N-IR1, N-IR2

ABLA & PIEN Coastal blue, Blue, Green, Yellow, Red, Red edge
ABLA & PIFL Coastal blue, Blue, Green Yellow, Red

ABLA & POTR Red edge, N-IR1, N-IR2

ABLA & Salix Coastal blue, Blue, Red

BEGL & PIEN Green, Yellow, Red edge, N-IR1, N-IR2

BEGL & PIFL All bands

BEGL & POTR Red edge

BEGL & Salix Red edge, N-IR1, N-IR2

PIEN & PIFL Red, Red edge, N-IR1, N-IR2

PIEN & POTR Blue, Green, Yellow, Red, Red edge, N-IR1, N-IR2
PIEN & Salix No bands

PIFL & POTR Blue, Green, Yellow, Red, Red edge, N-IR1, N-IR2
PIFL & Salix N-IR1, N-IR2

POTR & Salix Red edge, N-IR1, N-IR2

S4 Permutation Test Results for Species-Specific Model Performance

Each subsection below shows the results from a set of permutation tests, used to evaluate predictor importance for accurate
predictions of specific classes in the six-class, four-class, and two-class models. For permutation tests shown in the main
390 body, the Gerrity score was used as the evaluation metric, which is designed for multi-class classification and therefore
considers discrimination among all K classes. To evaluate model performance for each class, we used a metric that considers
only discrimination between each “one” species and all others: the area under the receiver operating characteristic (ROC)

curve (Figure S41).
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Figure S41. ROC curve for the 2-class model (PIFL vs. Other). For this ROC curve, the positive (negative) class is chosen to be
PIFL (Other). Hence, the POD is # correctly identified PIFL/# total PIFL, while the POFD is

# Other falsely identified as PIFL/# total Other. Each point in the ROC curve corresponds to a different probability
threshold p* (labelled at 10% intervals), such that PIFL probabilities > p* are “yes” predictions and PIFL probabilities < p* are
“no” predictions. For binary (2-class) classification, the Peirce score is POD minus POFD, allowing it to be contoured on the axes
of the ROC curve.

The ROC curve is designed for binary (yes/no) classification. (Thus, for the two-class model, a ROC curve can be computed
trivially.) ROC curves plot the relationship between the true positive rate (sensitivity) and the false positive rate (specificity).
The area under the ROC curve (AUC) is a measure of model performance. A random model tends to follow the one-to-one
line across the plot (TPR = FPR for all thresholds), yielding an AUC of 0.5. For a perfect model, TPR = 1.0 and FPR = 0.0
for all thresholds, yielding an AUC of 1.0. A good model approaches this, and so the AUC is high.

For a K-class model with K > 2, the problem must be turned into K "one vs. all" binary problems; then a ROC curve must be
computed for each binary problem. For example, the four-class model discriminates among four species: PIFL, ABLA,

PIEN, and Other. Four ROC curves can be created for this model: one evaluating binary classification for PIFL (where the

49



410

415

420

425

"yes" event is PIFL and the "no" event is all non-PIFL species—ABLA, PIEN, or Other), one for ABLA vs. all, one for
PIEN vs. all, and one for Other vs. all.

More specifically, the ROC curve is designed for deterministic binary classification (a model that outputs "yeses" and "nos"),
but our models output probabilities. To turn these probabilities into "yeses" and "nos," we apply 1001 probability thresholds:
0.000, 0.001, 0.002, ..., 0.999, 1.000. For each threshold p*, probabilities >= p* become "yes" predictions and probabilities <
p* become "no" predictions. The ROC curve plots the true-positive rate (TPR; number of true positives / [number of true
positives + number of false negatives]) vs. the false-positive rate (FPR; number of false positives / [number of false positives
+ number of true negatives]) for every one of these thresholds. The use of multiple thresholds allows for a continuous curve

in TPR/FPR space.

S3.1 Six-Class Model Permutation Tests

Figure 9 of the main body shows results from all four versions of the permutation test (single-pass forward, multi-pass
forward, single-pass backward, and multi-pass backward), for the six-class model, using the Gerrity score to consider
discrimination among all species. Figures S42-S47 are analogous; each figure shows all four versions of the permutation test,
for the six-class model, but now using the AUC metric to consider discrimination of only one species from others. Thus,
results presented in the main body illuminate the most important predictors for differentiating among all classes, while

results presented herein illuminate the most important predictors for discriminating just one class from the others.
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(a) Single-pass forward test (b) Multi-pass forward test

Variable permuted
Variable permuted

0.0 0.1 0.2 0.3 0.4 0.5 06 0.0 0.1 0.2 0.3 0.4 0.5 0.6

AUC for binary classification: AUC for binary classification:
PIFL vs. everything else PIFL vs. everything else
(c) Single-pass backwards test (d) Multi-pass backwards test

Variable cleaned
Variable cleaned

1

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6
AUC for binary classification: AUC for binary classification:
PIFL vs. everything else PIFL vs. everything else

Figure S42. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying limber
pine (PIFL) in the six-class model. Predictors in bold have a significant effect on model performance when permuted, according to

430 a 95% confidence interval over 100 random perturbations of the given predictor. Within each panel, predictor importance
decreases from top to bottom, so the most important predictors are at the top. Model performance here was evaluated by the area
under the receiver operating characteristic curve (AUC) with respect to distinguishing limber pine from other species.
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Variable permuted
Variable permuted

1 |
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.1 0.2 0.3 0.4 0.5

e
)

AUC for binary classification:
ABLA vs. everything else

(c) Single-pass backwards test
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Figure S43. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying

435  subalpine fir (ABLA) in the six-class model. See the caption for Figure S42 for more details.
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(a) Single-pass forward test

(b) Multi-pass forward test

Variable permuted
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AUC for binary classification:
BEGL vs. everything else

(c) Single-pass backwards test
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Figure S44. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying

0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6

AUC for binary classification:
BEGL vs. everything else

glandular birch (BEGL) in the six-class model. See the caption for Figure S42 for more details.
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(a) Single-pass forward test (b) Multi-pass forward test

Variable permuted
Variable permuted

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
AUC for binary classification: AUC for binary classification:
PIEN vs. everything else PIEN vs. everything else
(c) Single-pass backwards test (d) Multi-pass backwards test
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0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
AUC for binary classification: AUC for binary classification:
PIEN vs. everything else PIEN vs. everything else

440 Figure S45. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying
Engelmann spruce (PIEN) in the six-class model. See the caption for Figure S42 for more details.
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(a) Single-pass forward test (b) Multi-pass forward test

Variable permuted
Variable permuted
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AUC for binary classification: AUC for binary classification:
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(c) Single-pass backwards test (d) Multi-pass backwards test
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0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
AUC for binary classification: AUC for binary classification:
POTR vs. everything else POTR vs. everything else

Figure S46. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying aspen
(POTR) in the six-class model. See the caption for Figure S42 for more details.
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(a) Single-pass forward test (b) Multi-pass forward test

Variable permuted
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AUC for binary classification: AUC for binary classification:
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(c) Single-pass backwards test (d) Multi-pass backwards test
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0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
AUC for binary classification: AUC for binary classification:
445 Salix vs. everything else Salix vs. everything else

Figure S47. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying willow
(Salix) in the six-class model. See the caption for Figure S42 for more details.
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S3.2 Four-Class Model Permutation Tests

Figure 11 of the main body shows results of the permutation test, for the four-class model, using the Gerrity score to
450 consider discrimination among all species. Figures S48-S51 are analogous but using the AUC metric to consider

discrimination of only one species from others.
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Figure S48. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying PIFL
in the four-class model. See the caption for Figure S42 for more details.
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(a) Single-pass forward test
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Figure S49. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying ABLA
in the four-class model. See the caption for Figure S42 for more details.

59



(a) Single-pass forward test

(b) Multi-pass forward test
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Figure S50. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying PIEN
in the four-class model. See the caption for Figure S42 for more details.
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(a) Single-pass forward test

(b) Multi-pass forward test

Variable permuted
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Figure S51. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying Other
(non-conifer species) in the four-class model. See the caption for Figure S42 for more details.
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S3.3 Two-Class Model Permutation Tests

465 Figure 13 of the main body shows results of the permutation test, for the two-class model, using the Gerrity score to consider

discrimination among all species. Figure S52 is analogous but using the AUC metric.

(a) Single-pass forward test (b) Multi-pass forward test

Variable permuted

Variable permuted

00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 038
AUC for binary classification: AUC for binary classification:
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AUC for binary classification: AUC for binary classification:
PIFL vs. everything else PIFL vs. everything else
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480

485

Figure S52. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying limber
pine (PIFL) in the two-class model. See the caption for Figure S42 for more details.

S5 Best Hits and Worst Confusion Between Two Species

The following sections provide examples of best hits and worst cases of confusion between two species. Examining cases of
successes and failures is also a useful approach to understand what the CNN models are relying on for their predictions, as
well as where they may be struggling. This process may also help with gauging how well the models are likely to generalize
to other areas (in this case other treeline sites). Only examples from the six-class model are shown here, due to space

constraints.

Figures S52-S62 in section S5.1 provide examples of best hits for each of the species in the six-class model. The figures are
analogous to Figure 7 of the main manuscript. Figures S63-S75 in section S5.2 provide examples of cases of worst confusion
between pairs of species in the six-class model that were commonly confused (based on the confusion matrix — Figure 6 in

the main manuscript). These worst confusion figures are analogous to Figure 8§ of the main manuscript.

S5.1 Best Hits

Figure S52 is an example of a best hit for limber pine (PIFL). The other example for PIFL is Figure 7 of the main
manuscript. Both examples are cases where limber pine was the majority species in the area, and the community structure is
characteristic of limber pine communities: relatively dispersed, smaller individuals (rather than large, contiguous krummholz

mats).
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Patch ID = "PIFL0210_patch055" ... true class = PIFL ... predicted class = PIFL (100.0% prob)
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Figure S52. An example of a “best hit” classification of PIFL from the six-class model, where the model correctly predicted PIFL

490  with 100% probability. This example (image chip or patch) is from the Longs Peak study site. All eight multispectral bands, the
panchromatic band, and the DEM are shown. The red star in the center of each image patch is the pixel being classified. Units of
radiance are W m sr! pm,
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Figures S53 and S54 are examples of best hits for Engelmann spruce (PIEN). In the first case, the pixel is in an island of
spruce in an otherwise limber-pine-dominated area, which speaks to the model’s skill. In the second case, the pixel was part
495 of a larger krummholz patch amid other large krummholz patches in a higher area of treeline at the Longs Peak study site.
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Coastal blue (400-450 nm) Blue (450-510 nm) Green (510-580 nm) Yellow (585-625 nm)
40.2730
40.2728
=
= 40.2726
(Y]
sk
o 40.2724
kel
2
© 40.2722
-
40.2720
40.2718
Red (630-690 nm) Red edge (705-745 nm) Near-IR2 (860-1040 nm)
T W™ N
! 4 900
2 800
700
(=
©
600 ©
o
500 I
400 @
o
"
300 £
=]
200 =
100
Panchromatic Elevation S o = 19
o ; 2 8 3 3
40.2730 Y ; 5
92130 8 4 4 500 2642
b i - ;
40.2728 40.2728 Longitude (deg E) N 2640
400 5
= = o 2638 (7
;40.2726 % 40.2726 5 2
S o S & 2636 £
o 40.2724 o 40.2724 1 300 s
3 E £ 2634 3
b= i b= ] 2 g
T 40.2722 ) T 40.2722 200{:& 2632;[9_,
©
40.27204 40.2720 = 2630
A : 100
JOER L %3 A 2628
40.2718 i \"'"-W .Atl ; 402718
o n o n o n o n
— o o (=} — o o (=}
[22] (<)) ()] [*=] (23] (<)) (2] [*=]
'} wn wn n n n wn n
0 ") ") ") ") ") ") ")
o o o o o o o o
R CE I
Longitude (deg E) Longitude (deg E)

65



Figure S53. An example of a “best hit” classification of PIEN from the six-class model, where the model correctly predicted PIEN
with 100% probability. This example (image chip or patch) is from the Battle Mountain study site. Units of radiance are W m sr’!

pml,
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Figure S54. An example of a “best hit” classification of PIEN from the six-class model, where the model correctly predicted PIEN
with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m sr! pm-
1
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Figures S55 and S56 are examples of best hits for subalpine fir (ABLA). In the first case, the pixel is part of a small tree
505 island adjacent to the E Longs Peak trail. In the second case, the pixel is part of a very large, mixed tree island in the higher
part of the treeline ecotone at the Longs Peak study site.
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Figure S55. An example of a “best hit” classification of ABLA from the six-class model, where the model correctly predicted

ABLA with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m
510  srlpm.
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Figure S56. An example of a “best hit” classification of ABLA from the six-class model, where the model correctly predicted

ABLA with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m
sl pm .
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515 Figures S57 and S58 are examples of best hits for glandular birch (BEGL). In the first case, the pixel is part of a very mixed
community that included limber pine, Engelmann spruce, and subalpine fir. In the second case, the pixel is part of elongated
islands of glandular birch above a large patch of mixed krummholz species.
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Figure S57. An example of a “best hit” classification of BEGL from the six-class model, where the model correctly predicted
520 BEGL with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m
sr'l pml,
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Figure S58. An example of a “best hit” classification of BEGL from the six-class model, where the model correctly predicted
BEGL with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m
525 srlpm’.
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Figures S59 and S60 are examples of best hits for quaking aspen (POTR). In both cases, the pixel was a part of dense
patches of aspen amid a complex community including other species.
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Figure S59. An example of a “best hit” classification of POTR from the six-class model, where the model correctly predicted
530 POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m

sl pm .
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Patch ID = "POTR0220_patch000" ... true class = POTR ... predicted class = POTR (100.0% prob)
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Figure S60. An example of a “best hit” classification of POTR from the six-class model, where the model correctly predicted

POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m
535 srlpm’.

Figures S61 and S62 are examples of best hits for willow (Salix spp.). In both cases, the pixel was part of a mixed

community of species near a trail.
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Patch ID = "Salix0431_patch002" ... true class = Salix ... predicted class = Salix (100.0% prob)

Coastal blue (400-450 nm) Blue (450-510 nm) Green (510-580 nm) Yellow (585-625 nm)
40.2708 B
40.2706
= 40.2704
o
[
T 40.2702
@
3
£ 40.2700
5
40.2698
40.2696
Red (630-690 nm) Red edge (705-745 nm) Near-IR1 (770-895 nm) Near-IR2 (860-1040 nm)
800
[
o
=
©
600 'E
g
400 &
ko)
E
=
200
Panchromatic Elevation S n =
= 0 ~ ~
40.2708 —, 40.2708 2 u.n‘ ﬁ 2555
. S 2 3 5
; ] v B } 2550
40:2706 40:2706 Longitude (deg E)@- 500 °
o
= 40.2704 = 40.2704 s 2545 3
= =z .© @
b & 2 400 8 2540 <
T 40.2702 4 T 40.2702 o E
s P 5 2535 2
B b T g S
£ 402700 | £ 40.2700 0 & 2530
S » 5 S o
I < 2525 W
40.2698 1 40.2698 2008
2520
40.2696 . 40.2696
N 100 2515
o un o o v o
o (2] (<] o (2] (2]
0 ~ ~ o ~ ~
n n wn wn n n
0 n n n n n
o o o o o o
L 5o e
Longitude (deg E) Longitude (deg E)

Figure S61. An example of a “best hit” classification of Salix from the six-class model, where the model correctly predicted Salix
540  with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m? sr! pm-
1
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Patch ID = "Salix0423_patch002" ... true class = Salix ... predicted class = Salix (100.0% prob)
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Figure S62. An example of a “best hit” classification of Salix from the six-class model, where the model correctly predicted Salix
with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m? sr! pm-
545 L
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550

555

In all of the best hits cases explored here, the pixels were part of typical community types/situations for each species.
However, the best hits also included examples of the model succeeding in complex communities—small and large tree

islands, and cases with denser communities with more mixed species composition.

S5.2 Worst Confusion

Figure S63 is an example of worst confusion where limber pine (PIFL) was the observed species and willow (Salix) was the
predicted species. We can see that in both cases, the pixel was in community types that are emblematic of limber pine
communities—texturally speaking—but that also occasionally contain willow. In these cases, the elevation data would not
be helpful because while willow is more abundant near streams, it is not exclusively found near streams. The CNN would
need to make use of the multispectral data, but these species are only distinguishable in the N-IR1 and N-IR2 bands (Table
S1).
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Patch ID = "PIFLO332_patch002" ... true class = PIFL ... predicted class = Salix (100.0% prob)
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Figure S63. An example of a “worst confusion” classification of PIFL as Salix from the six-class model, where the model
incorrectly predicted PIFL as Salix with 100% probability. This example (image chip or patch) is from the Longs Peak study site.
Units of radiance are W m? sr'! pm-'.
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Figures S64 and S65 are examples of worst confusion between PIFL and Engelmann spruce (PIEN). Figure S64 shows a
case where PIFL was the observed species and PIEN was predicted. The community is dominated by PIFL and emblematic
of that community type, but there were occasional PIENs in that community.

Patch ID = "PIFLO180_patch000" ... true class = PIFL ... predicted class = PIEN (100.0% prob)
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Figure S64. An example of a “worst confusion” classification of PIFL as PIEN from the six-class model, where the model
incorrectly predicted PIFL as PIEN with 100% probability. This example (image chip or patch) is from the Battle Mountain study
site. Units of radiance are W m? sr'! pm-'.

Figure S65 shows a case where PIEN was the observed species and PIFL was predicted. The community included larger
krummholz mats and strings of glandular birch. PIFL was not common in this region of the study area, but the pixel in

question is part of a smaller mat of krummholz PIEN.
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Patch ID = "PIEN0125_patch003" ... true class = PIEN ... predicted class = PIFL (100.0% prob)
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Figure S65. An example of a “worst confusion” classification of PIEN as PIFL from the six-class model, where the model
incorrectly predicted PIEN as PIFL with 100% probability. This example (image chip or patch) is from the Longs Peak study site.
Units of radiance are W m? sr'! pm-'.
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575 Figure S66 is an example of worst confusion where glandular birch (BEGL) was the observed species and PIFL was the
predicted species. The pixel is part of larger patches of BEGL but is on the edge of the patch.
Patch ID = "BEGL0536_patch000" ... true class = BEGL ... predicted class = PIFL (100.0% prob)
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Figure S66. An example of a “worst confusion” classification of BEGL as PIFL from the six-class model, where the model
incorrectly predicted BEGL as PIFL with 100% probability. This example (image chip or patch) is from the Longs Peak study
580  site. Units of radiance are W m sr! pm-',
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Figure S67 is an example of worst confusion where subalpine fir (ABLA) was the observed species and PIEN was the
predicted species. Both ABLA and PIEN are often found in krummholz mats, sometimes very large and often of medium
size as pictured in Figure S67. They are not easily distinguished in the panchromatic imagery, suggesting the model is not
making use of the multispectral imagery to distinguish these species (also see permutation test Figures S43 and S45).
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590

Figure S67. An example of a “worst confusion” classification of ABLA as PIEN from the six-class model, where the model
incorrectly predicted ABLA as PIEN with 100% probability. This example (image chip or patch) is from the Longs Peak study
site. Units of radiance are W m? sr'! pm-'.

Figure S68 is an example of worst confusion where ABLA was the observed species and BEGL was the predicted species.
BEGL does grow in large, elongated clumps on the landscape. ABLA also grows in larger krummholz mats from time to
time. If the model is relying too much on the panchromatic and elevation data, these species would become difficult to

distinguish.
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Patch ID = "ABLA0480_patch000" ... true class = ABLA ... predicted class = BEGL (100.0% prob)
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Figure S68. An example of a “worst confusion” classification of ABLA as BEGL from the six-class model, where the model
595 incorrectly predicted ABLA as BEGL with 100% probability. This example (image chip or patch) is from the Longs Peak study
site. Units of radiance are W m sr’! pm-'.

Figure S69 is an example of worst confusion where ABLA was the observed species and aspen (POTR) was the predicted

species. The case is difficult to interpret and may simply be attributable to the small sample size for POTR. All of the POTR
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samples were parts of larger patches of POTR, but the pixel in the example below is part of a smaller island more typical of
600 ABLA.

Patch ID = "ABLA0047_patch036" ... true class = ABLA ... predicted class = POTR (100.0% prob)
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Figure S69. An example of a “worst confusion” classification of ABLA as POTR from the six-class model, where the model
incorrectly predicted ABLA as POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study
site. Units of radiance are W m sr’! pm-'.
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605 Figures S70 and S71 are examples of worst confusion between PIEN and BEGL. Figure S70 shows a case where PIEN was
the observed species and BEGL was predicted. In this case, the pixel is part of a krummholz PIEN at the Battle Mountain
site, where PIEN was a minor component. The model may have learned that BEGL is more common at that site, which is
higher elevation than the Longs Peak site.

Patch ID = "PIEN0106_patch001" ... true class = PIEN ... predicted class = BEGL (100.0% prob)
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Figure S70. An example of a “worst confusion” classification of PIEN as BEGL from the six-class model, where the model
incorrectly predicted PIEN as BEGL with 100% probability. This example (image chip or patch) is from the Battle Mountain
study site. Units of radiance are W m2 sr'! pm.

Figure S71 shows a case where BEGL was the observed species and PIEN was predicted. The case is an understandable
moment of confusion. A smaller patch of BEGL at the longs peak site amid other small krummholz mats of PIEN and ABLA

might be expected to contain PIEN or ABLA. The textural and elevational information would lead the model astray here.
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Figure S71. An example of a “worst confusion” classification of BEGL as PIEN from the six-class model, where the model
incorrectly predicted BEGL as PIEN with 100% probability. This example (image chip or patch) is from the Longs Peak study
site. Units of radiance are W m sr’! pm-'.

Figures S72 and S73 are examples of worst confusion between PIEN and Salix. Figure S72 shows a case where PIEN was

the observed species and Salix was predicted. In this case, the pixel is close to other locations where willow was found in



abundance at the Longs Peak site (similar elevation), and the community structure is similar. However, the community
contains mostly Engelmann spruce and subalpine fir in this area.

Patch ID = "PIENO287_patch002" ... true class = PIEN ... predicted class = Salix (100.0% prob)
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625 TFigure S72. An example of a “worst confusion” classification of PIEN as Salix from the six-class model, where the model
incorrectly predicted PIEN as Salix with 100% probability. This example (image chip or patch) is from the Longs Peak study site.
Units of radiance are W m? sr'! pm-'.
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Figure S73 shows a case where Salix was the observed species and PIEN was predicted. This is a case where an odd willow

was found amid an area with mostly Engelmann spruce and subalpine fir.
Patch ID = "Salix0232_patch001" ... true class = Salix ... predicted class = PIEN (100.0% prob)
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Figure S73. An example of a “worst confusion” classification of Salix as PIEN from the six-class model, where the model
incorrectly predicted Salix as PIEN with 100% probability. This example (image chip or patch) is from the Longs Peak study site.
Units of radiance are W m? sr'! pm-'.
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Figure S74 is an example of worst confusion where Salix was the observed species and POTR was the predicted species.
635 Both willow and aspen occur in this area, but willow is by far the most abundant, growing densely near a stream at the study
site. However, the elevational and textural information are similar to other aspen examples.
Patch ID = "Salix0389_patch014" ... true class = Salix ... predicted class = POTR (100.0% prob)
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Figure S74. An example of a “worst confusion” classification of Salix as POTR from the six-class model, where the model
incorrectly predicted Salix as POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study site.
640  Units of radiance are W m sr! pm-'.

Figure S75 is an example of worst confusion where BEGL was the observed species and POTR was the predicted species.
This is an area where both species were found, and so the elevational and textural information/context are similar.

Patch ID = "BEGL0O064_patch010" ... true class = BEGL ... predicted class = POTR (100.0% prob)
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Figure S75. An example of a “worst confusion” classification of BEGL as POTR from the six-class model, where the model
incorrectly predicted BEGL as POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study
site. Units of radiance are W m? sr'! pm-'.

In most cases of worst confusion, the pixel and image chip (patch) example were located in areas where the predicted species
is commonly found, or where the textural and elevational information are similar to places where the predicted species is
usually found. The cases of worst confusion emphasize the difficulties the model runs into by relying too heavily on the fine-
scale patterns of the panchromatic imagery without the specificity of the multispectral imagery. Given that the multispectral
imagery shows that pairs of species diverge in many bands (see section S3, especially Table S1), we may want to try re-
training the models after resampling the panchromatic imagery. An object-based classification approach might also help
improve classification accuracy. It’s also possible that the multispectral data have too low a spatial resolution to be very

useful for tree species classification in this system.
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