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S1 Convolutional Neural Network (CNN) Methods 

CNNs are a form of deep learning model that are useful for gridded data. The models are spatially aware and can detect 

patterns in images or other gridded data on multiple scales. CNNs are a popular method for classification of remote sensing 

imagery. A more detailed overview of CNNs can be found in section 2.5 of the methods section in the main manuscript.  

S1.1 How the CNN Learns through Backpropagation 5 

Before training, the weights and biases are randomly initialized. As the CNN learns, weights are adjusted through a process 

called gradient descent with backpropagation (Goodfellow and Bengio and Courville, 2016a). The end goal is to minimize 

the model's error, estimated with a loss function. (Often neural networks are trained with maximum likelihood, using the 

negative log-likelihood or cross-entropy between the training and observation distributions (Goodfellow and Bengio and 

Courville, 2016a). See Appendix B for a discussion of specific loss functions.) For each weight 𝑤, the adjustment is −𝛼
𝜕𝐽

𝜕𝑤
, 10 

where 𝛼 is the learning rate; 𝐽 is the loss; and 
𝜕𝐽

𝜕𝑤
 is the partial derivative of the loss with respect to 𝑤.  The learning rate must 

be positive and is typically a small number (≪ 1). This adjustment is called “gradient descent,” as it adjusts 𝑤  in the 

direction opposite the loss gradient with respect to 𝑤. If 𝑤 is in the output (deepest) layer, 
𝜕𝐽

𝜕𝑤
 can be computed directly. 

However, if 𝑤 is in a shallower layer ℒ, then 
𝜕𝐽

𝜕𝑤
 cannot be computed directly, because the dependence of 𝐽 on 𝑤 is mediated 

by the weights in all layers between ℒ and the output. Thus, for weights not in the output layer, one must apply the chain rule 15 

for differentiation. So, one must calculate the partial derivative of the loss with respect to each weight 𝑤𝑑𝑒𝑒𝑝 in the deepest 

layer, the partial derivative of each 𝑤𝑑𝑒𝑒𝑝 with respect to each weight in the second-deepest layer, and so on, until reaching 

layer ℒ. All of these partial derivatives are multiplied together to calculate the contribution of  𝑤 in layer ℒ to the loss. So, 

backpropagation is a combination of gradient descent with the chain rule, where weights and biases are learned 

simultaneously across all convolutional and dense layers. This process is repeated for every data sample in a training batch, 20 

and the changes to the weights and biases—determined by gradient descent with backpropagation—are averaged across all 

of the data samples.  

 

Each partial derivative value may be very small, so if the network is deep enough, requiring the multiplication of many small 

numbers, the contribution of a weight to the overall loss can become so small (“vanishingly” small) that the computer cannot 25 

record it (e.g., x-30) (Dubey and Jain, 2019). This is known as the vanishing gradient problem. If the computer cannot 

calculate and store the relative contribution of each weight to the loss, it does not have a gradient with which it could apply 

the gradient descent rule, and so it is not able to determine how the weights must be adjusted. The vanishing gradient 

problem was thus an early, major barrier to the construction of deeper networks. Fortunately, ML researchers have found 
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strategies to solve the vanishing gradient problem since the original development of CNNs in the 1980s (Fukushima and 30 

Miyake, 1982), including batch normalization and the rectified linear unit (ReLU) activation function (described in detail in 

section S1.3). Advances in computer processing and memory technology were also, of course, instrumental in enabling 

wider use of CNNs and other deep learning methods (Krizhevsky and Sutskever and Hinton, 2017).  

S1.2 The Importance of Activation Functions and Batch Normalization 

Each convolutional filter performs a linear operation (specifically the sum of Kw * Kh * Cin products plus a bias value), and 35 

any series of linear operations is itself linear. Thus, a CNN with only convolutional layers could learn only linear 

relationships (Lagerquist, 2020). Activation functions introduce an elementwise non-linear transform after convolution, 

allowing CNNs to learn non-linear relationships (Dubey and Jain, 2019; Goodfellow and Bengio and Courville, 2016a). This 

function does not need to be in a specific form, as long as the CNN has some process by which it can learn non-linear 

relationships (Lagerquist and Mcgovern and Gagne Ii, 2019), so the activation function is typically simple for computational 40 

efficiency. Many activation functions, such as the sigmoid and hyperbolic tangent (tanh), confine the output to a range of 

values, such as [0, 1] or [-1, 1], respectively. If the values are squashed close to 0, however, this can contribute to the 

vanishing gradient problem (Maas, 2013; Dubey and Jain, 2019). Thus, the NN is more likely to get "stuck" in a suboptimal 

local minimum, rather than finding the global minimum.1 In the early 2000s, rectifier nonlinearities were found to 

outperform sigmoid and tanh activation functions and to improve with model depth, without encountering vanishing 45 

gradients (Glorot and Bordes and Bengio, 2011; Maas, 2013).  

 

 

 

 50 

 

1These are minima in a W-dimensional space, where W is the total number of weights + biases in the NN. 
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Now a commonly used activation function, the rectified linear unit (ReLU) preserves positive feature values but reduces the 

magnitude of negative values. Strict ReLU is defined as x' = max(0, x), where x is the input element and x' is the output. 55 

Thus, strict ReLU removes negative feature values completely by zeroing them out. Leaky ReLU, on the other hand, is 

defined as x' = max(α * x, x), where α is the slope parameter, ranging from (0, 1). Thus, leaky ReLU reduces the magnitude 

of negative feature values without zeroing them completely (Nair and Hinton, 2010). Importantly, ReLU is still a 

differentiable function, allowing for gradient-based optimization through backpropagation (Dubey and Jain, 2019; 

Goodfellow and Bengio and Courville, 2016a). ReLU reduces the risk of a vanishing gradient by preserving the magnitude 60 

of the positive values; as long as the ReLU is activated above 0, its partial derivative is 1 and it doesn’t contribute to a 

vanishingly small gradient during the multiplication of many partial derivatives (Maas, 2013). The Strict ReLU activation 

function sets negative values to exactly 0 and was appealing early on because of its similarity to biological neural activation 

functions (Glorot and Bordes and Bengio, 2011; Goodfellow and Bengio and Courville, 2016a). (Early NN developers were 

greatly inspired by the neuroscience literature, though the models we have today are not thought to be direct approximations 65 

of biological neural networks (Goodfellow and Bengio and Courville, 2016a).) Unfortunately, neurons with weights set to 0 

by strict ReLU can cease to be updated and become "dead neurons", where no learning occurs (Maas, 2013). Leaky ReLU 

solves the problem of dead neurons while preserving the performance advantages of ReLU (Maas, 2013; Dubey and Jain, 

2019). 

 70 

To further reduce the possibility of vanishing gradients, one can use batch normalization. During batch normalization, 

feature map elements are transformed to z-scores from a standard normal distribution, with mean of 0.0 and standard 

deviation of 1.0 (Lagerquist, 2020). Normalization helps prevent vanishing gradients by counteracting internal covariate shift 

toward saturation values at the limits/asymptotes of activation functions that can happen with the use of sigmoid and tanh 

activation functions (Ioffe and Szegedy, 2015). By eliminating the vanishing gradient problem—preventing the model from 75 

getting stuck in local minima—batch normalization allows for higher learning rates and increases the speed of model 

convergence (Ioffe and Szegedy, 2015). Batch normalization also puts all features in a map on the same scale, preventing the 

over-emphasis of features due solely to their original scale (e.g., elevation in meters vs. radiance in W m-2 sr-1 μm-1). Lastly, 

batch normalization can act as a form of regularization; by reparameterizing the model, it introduces noise to the weights and 

biases (Goodfellow and Bengio and Courville, 2016b). 80 

S1.3 Regularization Methods: How to Prevent Overfitting 

With thousands of parameters in each convolutional and dense layer, CNNs quickly run the risk of overfitting the model to 

the data, preventing the model from generalizing well to new data (Goodfellow and Bengio and Courville, 2016c). To reduce 

this problem, ML developers use regularization methods, which encourage a simpler model by penalizing the model for 

being complex or by rewarding simplicity. The core idea of regularization is to improve the model’s generalizability and 85 

parsimony without reducing its training error (Goodfellow and Bengio and Courville, 2016a). Three forms of regularization 
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used in the present work are the addition of penalties to the loss function (commonly L1 and L2), data augmentation, and 

dropout. Note that all three regularization methods are used only during training. At inference time (when applying a trained 

model to out-of-bag or validation data), all regularization methods are turned off—including, importantly, dropout and data 

augmentation. 90 

 

The L1 and L2 penalties are known as the lasso and ridge penalties, respectively (Goodfellow and Bengio and Courville, 

2016b). These penalties are added to the loss function (thus increasing the loss). The L1 penalty, shown in Eq. S1, is the sum 

of absolute coefficient values, it is called the lasso penalty because it pushes model parameters to become exactly 0, thus 

reducing the effective number of parameters and drawing a “lasso” around the non-zero parameters that are kept. 95 

𝐿1 = ∑|𝐵𝑗|

𝑀

𝑗=1

 

S1 

where M is the total number of parameters in the convolutional or dense layer, and Bj is the value of the jth parameter. The 

L2 penalty, shown in Eq. S2, is the sum of the squared parameters, and pushes the weights to become small but not exactly 

zero. 100 

𝐿2 = ∑ 𝐵𝑗
2

𝑀

𝑗=1

 

S2 

Data augmentation is another method of regularization aimed to prevent overfitting (Krizhevsky and Sutskever and Hinton, 

2017). Data augmentation is the practice of artificially inflating the dataset by adding small amounts of noise to the data to 

generate multiple samples from each original sample. Data augmentation changes only the predictor values; the changes are 105 

assumed to be small enough that they do not change the target value (in our case, the species label). The fake data samples 

are noisy enough to force the NN to apply real learning to recognize the signal through added variability, but not so noisy as 

to change the correct classification (Goodfellow and Bengio and Courville, 2016b). It is important to emphasize that data 

augmentation does not fix issues introduced by having a non-representative dataset; as with any type of statistical model or 

representation, the model is only generalizable to the limits of the original sampling framework. However, the fake data 110 

force the ML model to cope with noise, which neural networks are not naturally robust to without this kind of regularization 

technique (Goodfellow and Bengio and Courville, 2016b).  

 

Dropout can also be thought of as a regularization method that adds noise, though to the weights rather than to the input data. 

In traditional dense neural net layers, retaining activity in all neurons typically leads to overfitting (Krizhevsky and 115 

Sutskever and Hinton, 2017). However, if the output of each hidden neuron has a 50% chance of being set to 0, roughly half 

of the neurons will be randomly removed from the neural net. The NN must then learn with a sparser network, which 
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incidentally is faster to train. When training a CNN with dropout, each time a mini batch of data is input to the CNN, a 

different set of neurons is dropped out. Thus, the CNN has to adjust model weights without relying on every neuron each 

time. This effectively turns one CNN into an ensemble of CNNs, which generalizes better to new data (Goodfellow and 120 

Bengio and Courville, 2016b). At inference time (when applying the trained model to new data), all neurons are used; none 

are dropped out. Dropout is a form of bootstrap aggregation (or bagging—a method of training many NNs to create a model 

ensemble that is more generalizable) that is less computationally expensive, and more effective at reducing generalization 

error, than an ensemble of separately trained NNs. The tradeoff is that dropout requires a large model to implement and, if 

the dataset is very large, dropout doesn’t reduce generalization error very much. While dropout is less expensive than a 125 

literal ensemble, it still comes with the added cost of a larger model. If the dataset is large, dropout may not be worthwhile 

(Goodfellow and Bengio and Courville, 2016b). 

S1.4 Hyperparameter Experiments 

CNNs have many hyperparameters: model settings that must be pre-determined by the user and cannot be adjusted during 

training. Hyperparameters are decision points that can have a profound influence on model performance. Some 130 

hyperparameters can be chosen based on prior experimental work, if they have been found to be less influential or to work 

robustly across model applications. An example of this is the slope parameter of the leaky ReLU activation function. As long 

as some non-linearity is introduced to the model, the precise degree by which the negative values are attenuated does not 

matter (Lagerquist and Mcgovern and Gagne Ii, 2019). Pre-determining some hyperparameters or reducing the domain of 

tested values for each experimental hyperparameter is one way in which limited computing resources can be allocated 135 

strategically.  

We performed three hyperparameter experiments to strategically narrow the number of combinations of hyperparameters to 

test: two early experiments and a later experiment, reported in greater detail in this manuscript. The first early experiment 

involved data-augmentation settings. As noted in the previous section, extensive empirical and theoretical work has shown 

that well-designed data augmentation improves model robustness/generalization by exposing the model to plausible input 140 

variations, thereby reducing overfitting to spurious features or noise (Krizhevsky and Sutskever and Hinton, 2017; Perez and 

Wang, 2017). We tuned the data augmentation hyperparameters first by performing a grid search over noise level = {0.1, 0.2, 

0.3, 0.4, 0.5}; and number of augmentations = {2, 3, 4, 5, 6, 7, 8, 9, 10}. We determined that the optimal hyperparameters 

settings are 0.2 and 8, the values reported in the manuscript. In this experiment, performance on the unaugmented validation 

data was more sensitive to noise level than to the number of augmentations. With a smaller noise level (0.1), performance on 145 

the validation data deteriorated, suggesting that 0.1 is not quite enough noise to prevent the model from overfitting to 

spurious features. With a larger noise level (0.3-0.5), performance on the validation data again deteriorated, suggesting that 

0.3-0.5 is too much noise, overwhelming useful patterns in the data. Note that, whenever we do data augmentation, Gaussian 

noise is applied to the normalized predictors (in z-score units) rather than the unnormalized predictors (in physical units). 

Thus, a Gaussian noise level of 0.2 has an equivalent effect on all predictor variables.  150 
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The other early hyperparameter experiment involved regularization settings, in which we experimented with the optimal 

values for L2 weight, dropout rate, and the number of dense layers. Specifically, we performed a grid search over L2 weight = 

{10-7, 10-6.5, 10-6, 10-5.5, 10-5}; dropout rate = {0.500, 0.575, 0.650, 0.725, 0.800}; and number of dense layers = {3, 4, 5, 6, 

7}. We trained a separate model for all 5 x 5 x 5 = 125 combinations of these three hyperparameters. We made the following 155 

conclusions from this early experiment: 

• The optimal number of dense layers was 3 or 4, while values of 5-7 led to overfitting.  Since 3 and 4 are on the edge 

of the search space, for the experiment in the manuscript, we decided to experiment more widely, also training 

models with 1-2 dense layers. 

• The optimal dropout rate was 0.575 or 0.650. 160 

• The optimal L2 weight was 10-6.5 or 10-6. 

 

While the effective sample size remains limited, our data-augmentation strategy contributes meaningful diversity to the 

training data that complements regularization techniques. The combination of data augmentation and regularization enhances 

model robustness/performance in a way not achievable by regularization alone. Based on these results, we proceeded with 165 

the third hyperparameter as described in section 2.5.3 of the manuscript. 

S2 Hyperparameter Experiment Results 

Each subsection below shows the results from one hyperparameter experiment, used to determine the best six-class, four-

class, or two-class model. 

S2.1 Six-Class Model Hyperparameter Results 170 

Figure 5 of the main body shows top-1 accuracy for every hyperparameter combination in the six-class experiment. Figures 

S1-S7 are analogous, showing results for the other seven evaluation metrics. 
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Figure S1: Hyperparameter experiment results for the six-class classification, evaluated by top-2 accuracy. Formatting is 

described in the caption of Figure 5 in the main body. 175 
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Figure S2: Hyperparameter experiment results for the six-class classification, evaluated by top-3 accuracy. Formatting is 

described in the caption of Figure 5 in the main body. 
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 180 

Figure S3: Hyperparameter experiment results for the six-class classification, evaluated by the Gerrity score. Formatting is 

described in the caption of Figure 5 in the main body. 
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 185 

Figure S4: Hyperparameter experiment results for the six-class classification, evaluated by the PIFL-first Gerrity score. 

Formatting is described in the caption of Figure 5 in the main body. 
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Figure S5: Hyperparameter experiment results for the six-class classification, evaluated by the Heidke score. Formatting is 190 
described in the caption of Figure 5 in the main body. 
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Figure S6: Hyperparameter experiment results for the six-class classification, evaluated by the Peirce score. Formatting is 

described in the caption of Figure 5 in the main body. 195 
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Figure S7: Hyperparameter experiment results for the six-class classification, evaluated by cross-entropy. Formatting is described 

in the caption of Figure 5 in the main body. 

 200 
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S2.2 Four-Class Model Hyperparameter Results 

Figures S8-S15 show results for the four-class hyperparameter experiment. 

 

Figure S8: Hyperparameter experiment results for the four-class classification, evaluated by top-1 accuracy. Formatting is 205 
described in the caption of Figure 5 in the main body. 
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Figure S9: Hyperparameter experiment results for the four-class classification, evaluated by top-2 accuracy. Formatting is 

described in the caption of Figure 5 in the main body. 210 
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Figure S10: Hyperparameter experiment results for the four-class classification, evaluated by top-3 accuracy. Formatting is 

described in the caption of Figure 5 in the main body. 
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Figure S11: Hyperparameter experiment results for the four-class classification, evaluated by the Gerrity score. Formatting is 215 
described in the caption of Figure 5 in the main body. 
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Figure S12: Hyperparameter experiment results for the four-class classification, evaluated by the PIFL-first Gerrity score. 

Formatting is described in the caption of Figure 5 in the main body. 
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 220 

Figure S13: Hyperparameter experiment results for the four-class classification, evaluated by the Heidke score. Formatting is 

described in the caption of Figure 5 in the main body. 
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Figure S14: Hyperparameter experiment results for the four-class classification, evaluated by the Peirce score. Formatting is 

described in the caption of Figure 5 in the main body. 225 
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Figure S15: Hyperparameter experiment results for the four-class classification, evaluated by cross-entropy. Formatting is 

described in the caption of Figure 5 in the main body. 
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S2.3 Two-Class Model Hyperparameter Results 

Figures S16-S21 show results for the two-class hyperparameter experiment. 230 

 

 

Figure S16: Hyperparameter experiment results for the two-class classification, evaluated by top-1 accuracy. Formatting is 

described in the caption of Figure 5 in the main body. 
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 235 

Figure S17: Hyperparameter experiment results for the two-class classification, evaluated by the Gerrity score. Formatting is 

described in the caption of Figure 5 in the main body. 
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Figure S18: Hyperparameter experiment results for the two-class classification, evaluated by the PIFL-first Gerrity score. 

Formatting is described in the caption of Figure 5 in the main body. 240 
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Figure S19: Hyperparameter experiment results for the two-class classification, evaluated by the Heidke score. Formatting is 

described in the caption of Figure 5 in the main body. 
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Figure S20: Hyperparameter experiment results for the two-class classification, evaluated by the Peirce score. Formatting is 245 
described in the caption of Figure 5 in the main body. 
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Figure S21: Hyperparameter experiment results for the two-class classification, evaluated by cross-entropy. Formatting is 

described in the caption of Figure 5 in the main body. 250 
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S3 Training Diagrams for Selected Models 

Over training epochs, model performance improved for the selected loss function ( the class-weighted Gerrity score) and 

improved in terms of top-1, top-2, and top-3 accuracy. While the models consistently performed better with the training data 

(solid lines in the below figures) than the validation data (dashed lines), the models do converge for the validation data. 255 

Without regularization (data augmentation, L2 regularization, and dropout), the validation curves do not converge in this 

way. However, these models may still suffer somewhat from overfitting and would be improved with additional data.  
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Figure S22. Learning curves for the six-class CNN model. Each panel shows the evolution of one performance metric over 260 

the 100 training epochs.  Dashed (solid) lines represent the validation (training) data.  Note that, because Keras expects the 

loss function to be negatively oriented (such that lower is better), the loss function here is actually the negative class-

weighted Gerrity score. 
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 265 

Figure S23. Learning curves for the four-class CNN model. Formatting is explained in the caption of Figure S22.  Again, 

note that because Keras expects the loss function to be negatively oriented, the loss function here is actually 

the negative default Gerrity score. 
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 270 

Figure S24. Learning curves for the two-class CNN model. Formatting is explained in the caption of Figure S22. 

S4 Spectral Reflectance Curves for Six Species Across WV-3 Bands 

The XAI permutation tests were useful for determining what the CNN models were relying on when learning relationships in 

the data to make skillful predictions. However, we found that examining the spectral reflectance curves of the six species 

was also helpful for understanding whether limitations in the WV-3 data were due to spatial or spectral resolution. We used 275 

the terra package (version 1.8.5) in R (version 4.4.2) to extract radiance values for all eight bands within each species 

polygon. We calculated the mean for each polygon, then used the boot package (version 1.3-31) to calculate the mean 

radiance for each species (across all polygons—the mean of means) with bootstrapped 95% confidence intervals. We used 

ggplot2 (version 3.5.1) to generate figures comparing all species reflectance curves on a single plot (Figure S25) and 

pairwise comparisons of species reflectance curves (Figures S26-S40).  280 

 

Significant differences between species are difficult to discern when species curves are plotted together (Figure S25), but it 

is apparent that the coniferous species (subalpine fir - ABLA, Engelmann spruce - PIEN, and limber pine - PIFL) diverge 

from the deciduous species (glandular birch – BEGL and aspen – POTR) in the N-IR1 and N-IR2 bands, except for willow 

(Salix spp.), another deciduous species which overlaps with PIEN.  285 
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Figure S25. Spectral reflectance curves for all six species across the eight WV-3 bands. Each line shows mean radiance for a 

different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m-2 sr-1 μm-1. 
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ABLA and BEGL diverged significantly in the blue, red, N-IR1, and N-IR2 bands (Figure S26).  290 

 

Figure S26. Spectral reflectance curves for subalpine fir (ABLA) and glandular birch (BEGL) across the eight WV-3 bands. Each 

line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are 

in W m-2 sr-1 μm-1. 

  295 
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ABLA and PIEN diverge significantly in the coastal blue, blue, green, yellow, red, and red edge bands (Figure S27).  

 

Figure S27. Spectral reflectance curves for subalpine fir (ABLA) and Engelmann spruce (PIEN) across the eight WV-3 bands. 

Each line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance 

are in W m-2 sr-1 μm-1. 300 
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ABLA and PIFL diverge significantly in the coastal blue, blue, green, yellow, and red bands (Figure S28).  

 

Figure S28. Spectral reflectance curves for subalpine fir (ABLA) and limber pine (PIFL) across the eight WV-3 bands. Each line 

shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W 305 
m-2 sr-1 μm-1. 
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ABLA and POTR diverge significantly in the red edge, N-IR1, and NIR-2 bands (Figure S29).  

 

Figure S29. Spectral reflectance curves for subalpine fir (ABLA) and aspen (POTR) across the eight WV-3 bands. Each line shows 310 
mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m-2 sr-1 

μm-1. 
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ABLA and Salix diverge significantly (if only slightly) in the coastal blue, blue, and red bands (Figure 30). 

 315 

Figure S30. Spectral reflectance curves for subalpine fir (ABLA) and willow (Salix) across the eight WV-3 bands. Each line shows 

mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m-2 sr-1 

μm-1. 
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BEGL and PIEN diverge significantly in the green, yellow, red edge, N-IR1, and N-IR2 bands (Figure S31).  320 

 

Figure S31. Spectral reflectance curves for glandular birch (BEGL) and Engelmann spruce (PIEN) across the eight WV-3 bands. 

Each line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance 

are in W m-2 sr-1 μm-1. 

  325 
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BEGL and PIFL diverge significantly across the full spectrum (Figure S32).  

 

Figure S32. Spectral reflectance curves for glandular birch (BEGL) and limber pine (PIFL) across the eight WV-3 bands. Each 

line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are 

in W m-2 sr-1 μm-1. 330 

  



40 

 

BEGL and POTR may diverge slightly in the red edge band but are not distinguishable anywhere else along the spectrum 

(Figure S33).  

 

Figure S33. Spectral reflectance curves for glandular birch (BEGL) and aspen (POTR) across the eight WV-3 bands. Each line 335 
shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W 

m-2 sr-1 μm-1. 
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BEGL and Salix diverge significantly only in the red edge, N-IR1, and N-IR2 bands (Figure S34).  

 340 

Figure S34. Spectral reflectance curves for glandular birch (BEGL) and willow (Salix) across the eight WV-3 bands. Each line 

shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W 

m-2 sr-1 μm-1. 
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PIEN and PIFL diverge significantly in the red, red edge, N-IR1, and N-IR2 bands (Figure S35).  345 

 

Figure S35. Spectral reflectance curves for Engelmann spruce (PIEN) and limber pine (PIFL) across the eight WV-3 bands. Each 

line shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are 

in W m-2 sr-1 μm-1. 

  350 
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PIEN and POTR diverge significantly in every WV-3 band except for the costal band (Figure S36).  

 

Figure S36. Spectral reflectance curves for Engelmann spruce (PIEN) and aspen (POTR) across the eight WV-3 bands. Each line 

shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W 

m-2 sr-1 μm-1. 355 
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PIEN and Salix do not diverge significantly in any of the WV-3 bands (Figure 37).  

 

Figure S37. Spectral reflectance curves for Engelmann spruce (PIEN) and willow (Salix) across the eight WV-3 bands. Each line 

shows mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W 360 
m-2 sr-1 μm-1. 
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PIFL and POTR diverge significantly in every WV-3 band except for the coastal band (Figure S38).  

 

Figure S38. Spectral reflectance curves for limber pine (PIFL) and aspen (POTR) across the eight WV-3 bands. Each line shows 365 
mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m-2 sr-1 

μm-1. 
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PIFL and Salix diverge significantly only in the N-IR1 and N-IR2 bands (Figure S39).  

 370 

Figure S39. Spectral reflectance curves for limber pine (PIFL) and willow (Salix) across the eight WV-3 bands. Each line shows 

mean radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m-2 sr-1 

μm-1. 
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POTR and Salix diverge significantly in the red edge, N-IR1, and N-IR2 bands (Figure S40). 375 

 

Figure S40. Spectral reflectance curves for aspen (POTR) and willow (Salix) across the eight WV-3 bands. Each line shows mean 

radiance for a different species across all polygons, with shaded 95% confidence intervals. Units of radiance are in W m-2 sr-1 μm-1. 

Even with eight-band multispectral data (vs. hyperspectral data), the six species do diverge significantly from one another in 

different regions of the electromagnetic spectrum, except for Engelmann spruce and willow, which overlap in all eight 380 

bands. Table S1 provides a summary of bands where 95% confidence intervals of mean radiance (across species polygons) 

do not overlap, indicating a significant difference between measures of species reflectance in those bands.  
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Table S1. WV-3 bands where pairs of species diverge significantly—where 95% confidence intervals for mean radiance (across 

species polygons) do not overlap. 385 

Species Combinations  WV-3 Bands where Species Diverge Significantly 

ABLA & BEGL Blue, Red, N-IR1, N-IR2 

ABLA & PIEN Coastal blue, Blue, Green, Yellow, Red, Red edge 

ABLA & PIFL Coastal blue, Blue, Green Yellow, Red 

ABLA & POTR Red edge, N-IR1, N-IR2 

ABLA & Salix Coastal blue, Blue, Red 

BEGL & PIEN Green, Yellow, Red edge, N-IR1, N-IR2 

BEGL & PIFL All bands 

BEGL & POTR Red edge 

BEGL & Salix Red edge, N-IR1, N-IR2 

PIEN & PIFL Red, Red edge, N-IR1, N-IR2 

PIEN & POTR Blue, Green, Yellow, Red, Red edge, N-IR1, N-IR2 

PIEN & Salix No bands 

PIFL & POTR Blue, Green, Yellow, Red, Red edge, N-IR1, N-IR2 

PIFL & Salix N-IR1, N-IR2 

POTR & Salix Red edge, N-IR1, N-IR2 

 

S4 Permutation Test Results for Species-Specific Model Performance 

Each subsection below shows the results from a set of permutation tests, used to evaluate predictor importance for accurate 

predictions of specific classes in the six-class, four-class, and two-class models. For permutation tests shown in the main 

body, the Gerrity score was used as the evaluation metric, which is designed for multi-class classification and therefore 390 

considers discrimination among all K classes. To evaluate model performance for each class, we used a metric that considers 

only discrimination between each “one” species and all others: the area under the receiver operating characteristic (ROC) 

curve (Figure S41).  
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Figure S41. ROC curve for the 2-class model (PIFL vs. Other). For this ROC curve, the positive (negative) class is chosen to be 395 
PIFL (Other). Hence, the POD is # 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝑷𝑰𝑭𝑳 # 𝒕𝒐𝒕𝒂𝒍 𝑷𝑰𝑭𝑳⁄ , while the POFD is 

# 𝑶𝒕𝒉𝒆𝒓 𝒇𝒂𝒍𝒔𝒆𝒍𝒚 𝒊𝒅𝒆𝒏𝒕𝒊𝒇𝒊𝒆𝒅 𝒂𝒔 𝑷𝑰𝑭𝑳 # 𝒕𝒐𝒕𝒂𝒍 𝑶𝒕𝒉𝒆𝒓⁄ . Each point in the ROC curve corresponds to a different probability 

threshold p* (labelled at 10% intervals), such that PIFL probabilities ≥ p* are “yes” predictions and PIFL probabilities < p* are 

“no” predictions. For binary (2-class) classification, the Peirce score is POD minus POFD, allowing it to be contoured on the axes 

of the ROC curve. 400 

The ROC curve is designed for binary (yes/no) classification. (Thus, for the two-class model, a ROC curve can be computed 

trivially.) ROC curves plot the relationship between the true positive rate (sensitivity) and the false positive rate (specificity). 

The area under the ROC curve (AUC) is a measure of model performance. A random model tends to follow the one-to-one 

line across the plot (TPR = FPR for all thresholds), yielding an AUC of 0.5. For a perfect model, TPR = 1.0 and FPR = 0.0 

for all thresholds, yielding an AUC of 1.0. A good model approaches this, and so the AUC is high. 405 

 

For a K-class model with K > 2, the problem must be turned into K "one vs. all" binary problems; then a ROC curve must be 

computed for each binary problem. For example, the four-class model discriminates among four species: PIFL, ABLA, 

PIEN, and Other. Four ROC curves can be created for this model: one evaluating binary classification for PIFL (where the 
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"yes" event is PIFL and the "no" event is all non-PIFL species—ABLA, PIEN, or Other), one for ABLA vs. all, one for 410 

PIEN vs. all, and one for Other vs. all.  

 

More specifically, the ROC curve is designed for deterministic binary classification (a model that outputs "yeses" and "nos"), 

but our models output probabilities. To turn these probabilities into "yeses" and "nos," we apply 1001 probability thresholds: 

0.000, 0.001, 0.002, ..., 0.999, 1.000. For each threshold p*, probabilities >= p* become "yes" predictions and probabilities < 415 

p* become "no" predictions. The ROC curve plots the true-positive rate (TPR; number of true positives / [number of true 

positives + number of false negatives]) vs. the false-positive rate (FPR; number of false positives / [number of false positives 

+ number of true negatives]) for every one of these thresholds. The use of multiple thresholds allows for a continuous curve 

in TPR/FPR space. 

S3.1 Six-Class Model Permutation Tests 420 

Figure 9 of the main body shows results from all four versions of the permutation test (single-pass forward, multi-pass 

forward, single-pass backward, and multi-pass backward), for the six-class model, using the Gerrity score to consider 

discrimination among all species. Figures S42-S47 are analogous; each figure shows all four versions of the permutation test, 

for the six-class model, but now using the AUC metric to consider discrimination of only one species from others. Thus, 

results presented in the main body illuminate the most important predictors for differentiating among all classes, while 425 

results presented herein illuminate the most important predictors for discriminating just one class from the others. 
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Figure S42. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying limber 

pine (PIFL) in the six-class model. Predictors in bold have a significant effect on model performance when permuted, according to 

a 95% confidence interval over 100 random perturbations of the given predictor. Within each panel, predictor importance 430 
decreases from top to bottom, so the most important predictors are at the top. Model performance here was evaluated by the area 

under the receiver operating characteristic curve (AUC) with respect to distinguishing limber pine from other species.  
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Figure S43. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying 

subalpine fir (ABLA) in the six-class model. See the caption for Figure S42 for more details. 435 
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Figure S44. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying 

glandular birch (BEGL) in the six-class model. See the caption for Figure S42 for more details. 
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Figure S45. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying 440 
Engelmann spruce (PIEN) in the six-class model. See the caption for Figure S42 for more details. 
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Figure S46. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying aspen 

(POTR) in the six-class model. See the caption for Figure S42 for more details.  
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 445 

Figure S47. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying willow 

(Salix) in the six-class model. See the caption for Figure S42 for more details. 
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S3.2 Four-Class Model Permutation Tests 

Figure 11 of the main body shows results of the permutation test, for the four-class model, using the Gerrity score to 

consider discrimination among all species. Figures S48-S51 are analogous but using the AUC metric to consider 450 

discrimination of only one species from others.  
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Figure S48. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying PIFL 

in the four-class model. See the caption for Figure S42 for more details. 
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 455 

Figure S49. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying ABLA 

in the four-class model. See the caption for Figure S42 for more details. 
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Figure S50. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying PIEN 

in the four-class model. See the caption for Figure S42 for more details. 460 
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Figure S51. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying Other 

(non-conifer species) in the four-class model. See the caption for Figure S42 for more details. 
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S3.3 Two-Class Model Permutation Tests 

Figure 13 of the main body shows results of the permutation test, for the two-class model, using the Gerrity score to consider 465 

discrimination among all species. Figure S52 is analogous but using the AUC metric. 
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Figure S52. Results from each variety of the permutation test to assess predictor importance specific to correctly classifying limber 

pine (PIFL) in the two-class model. See the caption for Figure S42 for more details. 

 470 

 

S5 Best Hits and Worst Confusion Between Two Species 

The following sections provide examples of best hits and worst cases of confusion between two species. Examining cases of 

successes and failures is also a useful approach to understand what the CNN models are relying on for their predictions, as 

well as where they may be struggling. This process may also help with gauging how well the models are likely to generalize 475 

to other areas (in this case other treeline sites). Only examples from the six-class model are shown here, due to space 

constraints. 

 

Figures S52-S62 in section S5.1 provide examples of best hits for each of the species in the six-class model. The figures are 

analogous to Figure 7 of the main manuscript. Figures S63-S75 in section S5.2 provide examples of cases of worst confusion 480 

between pairs of species in the six-class model that were commonly confused (based on the confusion matrix – Figure 6 in 

the main manuscript). These worst confusion figures are analogous to Figure 8 of the main manuscript.  

S5.1 Best Hits 

Figure S52 is an example of a best hit for limber pine (PIFL). The other example for PIFL is Figure 7 of the main 

manuscript. Both examples are cases where limber pine was the majority species in the area, and the community structure is 485 

characteristic of limber pine communities: relatively dispersed, smaller individuals (rather than large, contiguous krummholz 

mats).  
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Figure S52. An example of a “best hit” classification of PIFL from the six-class model, where the model correctly predicted PIFL 

with 100% probability. This example (image chip or patch) is from the Longs Peak study site. All eight multispectral bands, the 490 
panchromatic band, and the DEM are shown. The red star in the center of each image patch is the pixel being classified. Units of 

radiance are W m-2 sr-1 μm-1. 
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Figures S53 and S54 are examples of best hits for Engelmann spruce (PIEN). In the first case, the pixel is in an island of 

spruce in an otherwise limber-pine-dominated area, which speaks to the model’s skill. In the second case, the pixel was part 

of a larger krummholz patch amid other large krummholz patches in a higher area of treeline at the Longs Peak study site. 495 
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Figure S53. An example of a “best hit” classification of PIEN from the six-class model, where the model correctly predicted PIEN 

with 100% probability. This example (image chip or patch) is from the Battle Mountain study site. Units of radiance are W m-2 sr-1 

μm-1. 

 500 

Figure S54. An example of a “best hit” classification of PIEN from the six-class model, where the model correctly predicted PIEN 

with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 sr-1 μm-

1. 
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Figures S55 and S56 are examples of best hits for subalpine fir (ABLA). In the first case, the pixel is part of a small tree 

island adjacent to the E Longs Peak trail. In the second case, the pixel is part of a very large, mixed tree island in the higher 505 

part of the treeline ecotone at the Longs Peak study site.  
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Figure S55. An example of a “best hit” classification of ABLA from the six-class model, where the model correctly predicted 

ABLA with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 

sr-1 μm-1. 510 

 

Figure S56. An example of a “best hit” classification of ABLA from the six-class model, where the model correctly predicted 

ABLA with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 

sr-1 μm-1. 
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Figures S57 and S58 are examples of best hits for glandular birch (BEGL). In the first case, the pixel is part of a very mixed 515 

community that included limber pine, Engelmann spruce, and subalpine fir. In the second case, the pixel is part of elongated 

islands of glandular birch above a large patch of mixed krummholz species.  
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Figure S57. An example of a “best hit” classification of BEGL from the six-class model, where the model correctly predicted 

BEGL with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 520 
sr-1 μm-1. 

 

Figure S58. An example of a “best hit” classification of BEGL from the six-class model, where the model correctly predicted 

BEGL with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 

sr-1 μm-1. 525 
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Figures S59 and S60 are examples of best hits for quaking aspen (POTR). In both cases, the pixel was a part of dense 

patches of aspen amid a complex community including other species.  

 

Figure S59. An example of a “best hit” classification of POTR from the six-class model, where the model correctly predicted 

POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 530 
sr-1 μm-1. 
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Figure S60. An example of a “best hit” classification of POTR from the six-class model, where the model correctly predicted 

POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 

sr-1 μm-1. 535 

Figures S61 and S62 are examples of best hits for willow (Salix spp.). In both cases, the pixel was part of a mixed 

community of species near a trail.  
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Figure S61. An example of a “best hit” classification of Salix from the six-class model, where the model correctly predicted Salix 

with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 sr-1 μm-540 
1. 
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Figure S62. An example of a “best hit” classification of Salix from the six-class model, where the model correctly predicted Salix 

with 100% probability. This example (image chip or patch) is from the Longs Peak study site. Units of radiance are W m-2 sr-1 μm-

1. 545 
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In all of the best hits cases explored here, the pixels were part of typical community types/situations for each species. 

However, the best hits also included examples of the model succeeding in complex communities—small and large tree 

islands, and cases with denser communities with more mixed species composition. 

S5.2 Worst Confusion 

Figure S63 is an example of worst confusion where limber pine (PIFL) was the observed species and willow (Salix) was the 550 

predicted species. We can see that in both cases, the pixel was in community types that are emblematic of limber pine 

communities—texturally speaking—but that also occasionally contain willow. In these cases, the elevation data would not 

be helpful because while willow is more abundant near streams, it is not exclusively found near streams. The CNN would 

need to make use of the multispectral data, but these species are only distinguishable in the N-IR1 and N-IR2 bands (Table 

S1).  555 
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Figure S63. An example of a “worst confusion” classification of PIFL as Salix from the six-class model, where the model 

incorrectly predicted PIFL as Salix with 100% probability. This example (image chip or patch) is from the Longs Peak study site. 

Units of radiance are W m-2 sr-1 μm-1. 

 560 
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Figures S64 and S65 are examples of worst confusion between PIFL and Engelmann spruce (PIEN). Figure S64 shows a 

case where PIFL was the observed species and PIEN was predicted. The community is dominated by PIFL and emblematic 

of that community type, but there were occasional PIENs in that community.  
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Figure S64. An example of a “worst confusion” classification of PIFL as PIEN from the six-class model, where the model 565 
incorrectly predicted PIFL as PIEN with 100% probability. This example (image chip or patch) is from the Battle Mountain study 

site. Units of radiance are W m-2 sr-1 μm-1. 

Figure S65 shows a case where PIEN was the observed species and PIFL was predicted. The community included larger 

krummholz mats and strings of glandular birch. PIFL was not common in this region of the study area, but the pixel in 

question is part of a smaller mat of krummholz PIEN. 570 
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Figure S65. An example of a “worst confusion” classification of PIEN as PIFL from the six-class model, where the model 

incorrectly predicted PIEN as PIFL with 100% probability. This example (image chip or patch) is from the Longs Peak study site. 

Units of radiance are W m-2 sr-1 μm-1. 
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Figure S66 is an example of worst confusion where glandular birch (BEGL) was the observed species and PIFL was the 575 

predicted species. The pixel is part of larger patches of BEGL but is on the edge of the patch. 

 

Figure S66. An example of a “worst confusion” classification of BEGL as PIFL from the six-class model, where the model 

incorrectly predicted BEGL as PIFL with 100% probability. This example (image chip or patch) is from the Longs Peak study 

site. Units of radiance are W m-2 sr-1 μm-1. 580 
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Figure S67 is an example of worst confusion where subalpine fir (ABLA) was the observed species and PIEN was the 

predicted species. Both ABLA and PIEN are often found in krummholz mats, sometimes very large and often of medium 

size as pictured in Figure S67. They are not easily distinguished in the panchromatic imagery, suggesting the model is not 

making use of the multispectral imagery to distinguish these species (also see permutation test Figures S43 and S45).  

 585 
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Figure S67. An example of a “worst confusion” classification of ABLA as PIEN from the six-class model, where the model 

incorrectly predicted ABLA as PIEN with 100% probability. This example (image chip or patch) is from the Longs Peak study 

site. Units of radiance are W m-2 sr-1 μm-1. 

Figure S68 is an example of worst confusion where ABLA was the observed species and BEGL was the predicted species. 

BEGL does grow in large, elongated clumps on the landscape. ABLA also grows in larger krummholz mats from time to 590 

time. If the model is relying too much on the panchromatic and elevation data, these species would become difficult to 

distinguish.  
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Figure S68. An example of a “worst confusion” classification of ABLA as BEGL from the six-class model, where the model 

incorrectly predicted ABLA as BEGL with 100% probability. This example (image chip or patch) is from the Longs Peak study 595 
site. Units of radiance are W m-2 sr-1 μm-1. 

Figure S69 is an example of worst confusion where ABLA was the observed species and aspen (POTR) was the predicted 

species. The case is difficult to interpret and may simply be attributable to the small sample size for POTR. All of the POTR 
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samples were parts of larger patches of POTR, but the pixel in the example below is part of a smaller island more typical of 

ABLA.  600 

 

Figure S69. An example of a “worst confusion” classification of ABLA as POTR from the six-class model, where the model 

incorrectly predicted ABLA as POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study 

site. Units of radiance are W m-2 sr-1 μm-1. 
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Figures S70 and S71 are examples of worst confusion between PIEN and BEGL. Figure S70 shows a case where PIEN was 605 

the observed species and BEGL was predicted. In this case, the pixel is part of a krummholz PIEN at the Battle Mountain 

site, where PIEN was a minor component. The model may have learned that BEGL is more common at that site, which is 

higher elevation than the Longs Peak site.  
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Figure S70. An example of a “worst confusion” classification of PIEN as BEGL from the six-class model, where the model 610 
incorrectly predicted PIEN as BEGL with 100% probability. This example (image chip or patch) is from the Battle Mountain 

study site. Units of radiance are W m-2 sr-1 μm-1. 

Figure S71 shows a case where BEGL was the observed species and PIEN was predicted. The case is an understandable 

moment of confusion. A smaller patch of BEGL at the longs peak site amid other small krummholz mats of PIEN and ABLA 

might be expected to contain PIEN or ABLA. The textural and elevational information would lead the model astray here. 615 
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Figure S71. An example of a “worst confusion” classification of BEGL as PIEN from the six-class model, where the model 

incorrectly predicted BEGL as PIEN with 100% probability. This example (image chip or patch) is from the Longs Peak study 

site. Units of radiance are W m-2 sr-1 μm-1. 

Figures S72 and S73 are examples of worst confusion between PIEN and Salix. Figure S72 shows a case where PIEN was 620 

the observed species and Salix was predicted. In this case, the pixel is close to other locations where willow was found in 
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abundance at the Longs Peak site (similar elevation), and the community structure is similar. However, the community 

contains mostly Engelmann spruce and subalpine fir in this area.  

 

Figure S72. An example of a “worst confusion” classification of PIEN as Salix from the six-class model, where the model 625 
incorrectly predicted PIEN as Salix with 100% probability. This example (image chip or patch) is from the Longs Peak study site. 

Units of radiance are W m-2 sr-1 μm-1. 
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Figure S73 shows a case where Salix was the observed species and PIEN was predicted. This is a case where an odd willow 

was found amid an area with mostly Engelmann spruce and subalpine fir.  

 630 

Figure S73. An example of a “worst confusion” classification of Salix as PIEN from the six-class model, where the model 

incorrectly predicted Salix as PIEN with 100% probability. This example (image chip or patch) is from the Longs Peak study site. 

Units of radiance are W m-2 sr-1 μm-1. 
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Figure S74 is an example of worst confusion where Salix was the observed species and POTR was the predicted species. 

Both willow and aspen occur in this area, but willow is by far the most abundant, growing densely near a stream at the study 635 

site. However, the elevational and textural information are similar to other aspen examples. 
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Figure S74. An example of a “worst confusion” classification of Salix as POTR from the six-class model, where the model 

incorrectly predicted Salix as POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study site. 

Units of radiance are W m-2 sr-1 μm-1. 640 

Figure S75 is an example of worst confusion where BEGL was the observed species and POTR was the predicted species. 

This is an area where both species were found, and so the elevational and textural information/context are similar. 
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Figure S75. An example of a “worst confusion” classification of BEGL as POTR from the six-class model, where the model 

incorrectly predicted BEGL as POTR with 100% probability. This example (image chip or patch) is from the Longs Peak study 645 
site. Units of radiance are W m-2 sr-1 μm-1. 

In most cases of worst confusion, the pixel and image chip (patch) example were located in areas where the predicted species 

is commonly found, or where the textural and elevational information are similar to places where the predicted species is 

usually found. The cases of worst confusion emphasize the difficulties the model runs into by relying too heavily on the fine-

scale patterns of the panchromatic imagery without the specificity of the multispectral imagery. Given that the multispectral 650 

imagery shows that pairs of species diverge in many bands (see section S3, especially Table S1), we may want to try re-

training the models after resampling the panchromatic imagery. An object-based classification approach might also help 

improve classification accuracy. It’s also possible that the multispectral data have too low a spatial resolution to be very 

useful for tree species classification in this system. 

 655 
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