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Abstract. Alpine treeline systems are remote and difficult to
access, making them natural candidates for remote sensing
applications. Remote sensing applications are needed at mul-
tiple scales to connect landscape-scale responses to climate
warming to finer-scale spatial patterns, and finally to commu-
nity processes. Reliable, high-resolution tree species identifi-
cation over broad geographic areas is important for connect-
ing patterns to underlying processes, which are driven in part
by species’ tolerances and interactions (e.g., facilitation).
To our knowledge, we are the first to attempt tree species
identification at treeline using satellite imagery. We used
convolutional neural networks (CNNs) trained with high-
resolution WorldView-3 multispectral and panchromatic im-
agery, to distinguish six tree and shrub species found at tree-
line in the southern Rocky Mountains: limber pine (Pinus
flexilis), Engelmann spruce (Picea engelmannii), subalpine
fir (Abies lasiocarpa), quaking aspen (Populus tremuloides),
glandular birch (Betula glandulosa), and willow (Salix spp.).
We delineated 615 polygons in the field with a Trimble ge-
olocator, aiming to capture the high intra- and interspecies
variation found at treeline. We adapted our CNN architec-
ture to accommodate the higher-resolution panchromatic and
lower-resolution multispectral imagery within the same ar-
chitecture, using both datasets at their native spatial reso-
lution. We trained four- and two-class models with aims to
(1) discriminate conifers from each other and from decidu-

ous species, and (2) to discriminate limber pine – a keystone
species of conservation concern – from the other species.
Our models performed moderately well, with overall accu-
racies of 44.1 %, 46.7 %, and 86.2 % for the six-, four-, and
two-class models, respectively (as compared to random mod-
els, which could achieve 28.0 %, 35.1 %, and 80.3 %, respec-
tively). In future work, our models may be easily adapted
to perform object-based classification, which will improve
these accuracies substantially and will lead to cost-effective,
high-resolution tree species classification over a much wider
geographic extent than can be achieved with uncrewed aerial
systems (UAS), including regions that prohibit UAS, such as
in National Parks in the U.S.

1 Introduction

Alpine treeline – the elevational limit of tree occurrence in
mountain ecosystems – is remote, rugged, and often diffi-
cult or dangerous to access. These factors compound data
limitations already prevalent in the field of ecology. Tree-
line systems are notoriously heterogeneous, and factors that
limit treeline elevation exist on many scales (Malanson et al.,
2007). Remote sensing technologies potentially overcome
access limitations and may enable treeline ecologists to in-
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vestigate patterns connected to the underlying processes that
drive treeline ecologies at multiple scales (Garbarino et al.,
2023).

Aerial photography and satellite imagery have been used
for decades to map treeline position across regions, which
has contributed to the identification of the variables that con-
trol treeline position (Wei et al., 2020; Leonelli et al., 2016;
Brown et al., 1994; Allen and Walsh, 1996). More recently,
research has focused on determining where treelines have ad-
vanced to higher elevations and/or densified (Garbarino et al.,
2023; Feuillet et al., 2020), as they are predicted to do with
increasing average global temperatures (Harsch et al., 2009;
Körner, 1998; Holtmeier and Broll, 2005; Brodersen et al.,
2019). So far, remote sensing studies at treeline have been
primarily focused on patterns and the connection to process
is often missing. For example, it is known that some treelines
are advancing while others are not (Harsch et al., 2009) but
the reasons for this remain unknown and may vary by treeline
system (Feuillet et al., 2020).

Bader et al. (2021) presented a useful global framework to
guide hypothesis formation about how community structures
and spatial patterns are driven by underlying ecological pro-
cesses, aiming to identify parallels or commonalities across
geographic regions. They postulated that concerted efforts to
discover and connect these patterns and processes are key to
understanding treeline ecosystems, including complex tree-
line shifts or responses to climate change on multiple scales.
In other words, we require remote sensing applications that
can extrapolate from finer-scale community processes to spa-
tial patterns within treeline communities to larger scale pat-
terns of treeline community distribution (Garbarino et al.,
2023; Bader et al., 2021).

Field research at treeline has demonstrated important how
species-specific tolerances and facilitative interactions may
influence the position of alpine treeline (Brodersen et al.,
2019; McIntire et al., 2016; Resler et al., 2005). For exam-
ple, treelines formed by Nothofagus species in New Zealand
and Hawaii are 200–500 m lower than expected from global
isotherms, and Metrosideros treelines in Hawaii are also sev-
eral hundred meters lower than those dominated by Picea
abies (L.) H. Karst., likely due to species-specific tolerances
(Körner and Paulsen, 2004). Certain conifer species, such as
limber pine (Pinus flexilis E. James) and whitebark pine (Pi-
nus albicaulis Engelm.), both white pines in Family Pinaceae
and Subgenus Strobus, are more drought- and stress-tolerant
at the seedling stage than other conifers in the Rocky Moun-
tains, which may confer an advantage for establishment un-
der harsh treeline conditions (Ulrich et al., 2023; Hankin
and Bisbing, 2021; McCune, 1988; Bansal et al., 2011). In
general, the seedling stage is particularly vulnerable to abi-
otic stressors such as high growing season temperatures and
drought (Cui and Smith, 1991; Germino et al., 2002), and re-
cruitment at treeline tends to occur in pulses associated with
consecutive years of higher moisture and cooler tempera-
tures (Millar et al., 2015; Batllori and Gutiérrez, 2008). Both

limber and whitebark pine are able to establish as seedlings
without facilitative aid, i.e., from nurse objects or from other
conifers, with greater frequency than other forest trees (Sin-
dewald et al., 2020; Resler et al., 2014; Wagner et al., 2018;
Tomback et al., 2016a).

Species-specific facilitative interactions are also impor-
tant for treeline advance in climatically limited systems, and
stress-tolerant species are more likely to act as facilitators
(Callaway, 1998; Resler et al., 2005; Pyatt et al., 2016; Batl-
lori et al., 2009). For example, whitebark pine is known to
serve as a tree island initiator, facilitating the leeward estab-
lishment of other conifers and so conferring greater growth
and survival for leeward trees and seedlings (Tomback et al.,
2016a, b; Pyatt et al., 2016). Clearly, species identification
is an important link between pattern and process in treeline
systems where multiple species are present, and remote iden-
tification of species would be, quite literally, instrumental.

Remote sensing applications for tree species identification
have proliferated with the continuous improvement of spa-
tial, spectral, and radiometric resolutions. These advances
in remote sensing technology have led to an exponential
increase in species identification studies since 1990 (Fass-
nacht et al., 2016; Pu, 2021). To date, one study has at-
tempted species identification at treeline using uncrewed
aerial systems (UAS) (Mishra et al., 2018; Garbarino et al.,
2023). Mishra et al. (2018) succeeded in achieving 73 %
overall accuracy in identifying four tree species across a
∼ 140 m× 80 m region of the Himalayas using multispec-
tral UAS imagery. This success highlights the potential and
effectiveness of high-resolution UAS data for treeline species
identification using an object-based classification approach
with image segmentation. This technique can generate veg-
etation surveys in the Himalayas in a fraction of the time
compared to previous methods, and demonstrates the impor-
tance of continuing the development of UAS methods for
community-level treeline studies. However, work with UAS
requires days in the field and some degree of site access, and
so may not be suitable for locations with extremely rugged
terrain.

Airborne hyperspectral imagery and lidar (or LiDAR –
light/laser imaging, detection, and ranging – an active remote
sensing platform that uses time lags in reflected laser pulses
to measure distances and so map the 3-D surface structure of
sensed objects) have also commonly been used in concert for
tree species identification (Dalponte et al., 2012; Matsuki et
al., 2015; Liu et al., 2017; Shen and Cao, 2017; Voss and Sug-
umaran, 2008), in some cases with classification accuracies
ranging from 76.5 %–93.2 % (Dalponte et al., 2012). How-
ever, the sensors and overflights are relatively costly. Tradi-
tionally, satellite remote sensing is less costly but has lower
spatial resolution. Recently, with the advent of better access
and more affordable imagery from higher resolution imaging
systems, the scientific community has more choices for tree
species research. Airborne multispectral imagery also gen-
erally yields high classification accuracy (85.8 %) (Dalponte
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et al., 2012), suggesting that several approaches with current
technology can support species-level tree identification and
mapping using a high resolution imaging system.

Despite the lower spatial resolution of satellite imagery,
Cross et al. (2019a) accomplished high-accuracy (85.37 %)
discrimination among seven rainforest tree species within the
La Selva Research Center in Costa Rica using high resolu-
tion WorldView-3 (WV-3) imagery (Cross et al., 2019b, a).
In this work, a field spectroradiometer was used to determine
the foliage spectral reflectance curves (light reflectance) of
individual tree species. The curves measured in the field were
then compared with the spectral reflectance curves observed
in the WV-3 imagery, after atmospheric correction, as a spec-
tral groundtruth (Cross et al., 2019a). Two spectral vegeta-
tion indices specific to WV-3 bands were developed (Cross
et al., 2019b) and used for object-based classification of a
segmented image. Prior to this work, applications of WV-3
imagery for species identification had mixed success and the
imagery was often used in combination with machine learn-
ing or airborne lidar (Immitzer et al., 2012; Li et al., 2015;
Majid et al., 2016; Wang et al., 2016; Rahman et al., 2018).

Here we describe what may be the first to attempt to re-
motely identify plant species in a treeline system using satel-
lite imagery (Garbarino et al., 2023). We aimed to discrimi-
nate six alpine treeline tree and shrub species in the southern
Rocky Mountains, using a pixel-based convolutional neural
network (CNN) classification of high-resolution WV-3 satel-
lite imagery. CNNs are a type of deep learning model com-
monly used for image recognition tasks. They are effective
at detecting patterns in imagery (or other gridded data) at
multiple scales (Goodfellow et al., 2016d; Dubey and Jain,
2019). The focus of our work was to discriminate limber pine
– a keystone species of conservation concern – from other
species (Schoettle et al., 2019). Limber pine populations are
threatened by the spread of white pine blister rust, a disease
caused by the non-native, invasive fungal pathogen, Cronar-
tium ribicola J.C. Fisch.; limber pine has already been listed
as endangered in Alberta, Canada (Jones et al., 2014; Schoet-
tle et al., 2022). Limber pine is expected to migrate to higher
elevations as climate changes (Monahan et al., 2013), but its
current treeline distribution is unknown.

2 Methods

2.1 Satellite Imagery Acquisition and Treeline
Community Composition

We purchased WV-3 panchromatic and multispectral im-
agery collected in July 2020 from Maxar, covering two tree-
line study areas in Rocky Mountain National Park (RMNP),
Colorado, USA (Fig. 1). We chose the study areas for their
proximity to trail access within the imagery; the Longs Peak
study site (0.72 km2, ranging from 3250–3620 m elevation)
was a 4–6 km hike from the Longs Peak Trailhead and the

Battle Mountain study site (1.37 km2, ranging from 3250–
3560 m elevation) was a 6–8 km hike from the Storm Pass
Trailhead. Field work was limited to early mornings before
afternoon convection developed into storms with lightning
hazards, except for the rare clear day. Access was therefore
important for obtaining adequate data for training and val-
idation. RMNP includes a broad geographic area of tree-
line with many trails allowing for reasonable treeline access.
The imagery was collected on 21 July 2020, with 0 % cloud
cover and an off-nadir angle of 16.8°. WV-3 data include
a panchromatic (black-and-white) band with 31 cm spatial
resolution and eight multispectral bands with 1.24 m reso-
lution: coastal blue (400–450 nm), blue (450–510 nm), green
(510–580 nm), yellow (585–625 nm), red (630–690 nm), red
edge (705–745 nm), near-infrared 1 (N-IR1, 770–895 nm),
and near-infrared 2 (N-IR2, 860–1040 nm). The panchro-
matic band pools spectral information from across the vis-
ible and near-infrared regions (450–800 nm) to yield a black-
and-white image with higher spatial resolution than the mul-
tispectral bands.

Limber pine is a dominant conifer at treeline in both study
areas (Sindewald et al., 2020). The Longs Peak treeline study
area communities include dense willow (Salix glauca L.,
Salix brachycarpa Nutt., and hybrids), Engelmann spruce
(Picea engelmannii Engelm.), subalpine fir (Abies lasiocarpa
(Hook.) Nutt.), glandular birch (Betula glandulosa Michx.),
and quaking aspen (Populus tremuloides Tidestr.). The Battle
Mountain treeline study area communities are predominately
composed of limber pine with Engelmann spruce, subalpine
fir, willow, and glandular birch as minor components.

2.2 Orthorectification and Atmospheric Correction

We collected ground control points (GCPs) at trail junctions
and switchbacks, using a Trimble Geo7x Centimeter edition
geolocator with a Zephyr 2 antenna mounted on a 1 m carbon
fiber pole. GCPs are high-accuracy (5–10 cm) positions of
select landscape features visible in satellite imagery. We doc-
umented each GCP collection with photos from several an-
gles, indicating the precise location of the point (see Fig. A2),
as well as image chips (see Fig. A3) with the position marked
from Google Earth Pro (Fig. A3).

Maxar performed rigorous orthorectification to correct for
distortions due to terrain; they did this using the nearest
neighbor resampling method (preserving the original data
values) with the GCP positions and documentation we pro-
vided. We requested the nearest neighbor resampling method
specifically, to preserve the original reflectance values, as
opposed to any method that would substitute the original
values with a statistical summary or interpolated value. Cu-
bic convolution resampling is commonly used because it re-
sults in a smoother image, but it alters the data values, ef-
fectively introducing noise into the data. “Pansharpening”
is a similarly inappropriate technique for any analysis that
relies on data precision; pansharpening artificially improves
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Figure 1. Locations of study areas and WV-3 imagery within RMNP and Colorado. The boundary of Colorado can be seen in blue in the top
right inset map. The RMNP boundary is in pale green in the left map; the town of Estes Park is marked for reference. The study areas (Battle
Mountain and Longs Peak) are purple polygons visible over the WV-3 imagery extent, displayed in RGB (Red= red band, Green= green
band, Blue= blue band) in both the map on the left and the enlarged inset map on the right.

the spatial resolution of datasets by modelling statistical re-
lationships between coarser-resolution multispectral imagery
with finer-resolution panchromatic imagery and interpolating
likely values. The result may aid in visual interpretation for
humans, but no new real information is being provided to a
CNN. Each larger multispectral pixel is a mixture of spec-
tral signatures of objects at the finer resolution; moving to
the finer resolution makes assumptions about the relationship
between the two datasets that introduce error and distortions
into the data. The coarser-resolution multispectral data may
not have enough information for realistic assumptions to be
made, and it is likely this approach would inflate the sample
size without adding new information. It is possible that more
recent deep-learning-based methods of pansharpening could
achieve high enough spectral fidelity to justify the step, but
we chose to use the data in their native resolutions and ad-
just our CNN architecture to accommodate the several spa-
tial resolutions. This way, we are still allowing the CNN to

learn from the higher-resolution panchromatic data without
inflating the sample size of our multispectral data.

Maxar also applied the atmospheric compensation
(ACOMP) correction to the imagery, which uses cloud,
aerosol, water vapor, ice, and snow (CAVIS) band data col-
lected at the same instance as the multispectral data to iden-
tify and correct for atmospheric influences (Pacifici, 2016).

2.3 Field Collections of Polygons Delineating Species
Patches

In both study areas combined, we delineated 615 polygons of
contiguous, single-species tree/shrub patches in the field that
included a total of 165 limber pine, 129 Engelmann spruce,
84 subalpine fir, 71 willow, 141 glandular birch, and 25 aspen
(a minor component of the treeline community) (Table 1).
The species selected for classification are abundant at these
treeline sites and are representative of dominant tree and
shrub species at treeline in RMNP. Two shrub species that
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are also abundant were excluded because they form smaller
patches at treeline with areas below the image resolution (less
than 1.2 m): common juniper (Juniperus communis L.) and
shrubby cinquefoil (Dasiphora fruticosa (L.) Rydb.). A large
sample size is necessary to capture the intraspecies variation
at treeline in plant condition caused by differences in frost
desiccation, wind damage, or water availability, which in-
fluences the near-infrared wavelengths in particular (Curran,
1989; Campbell and Wynne, 2011).

We delineated species polygons over five field seasons
(2019–2023) to obtain the largest sample size possible in the
time available. Our haphazard selection (vs. strict random-
ization) of species patches that met our criteria was also in-
tended to enable us to obtain as many samples as possible.
Species patches were delineated if they were (1) greater than
approximately 1 m in area and (2) purely a single species
with no contamination from co-occurring species. Ideally,
patches were selected which were separated from other tree
and shrub species by alpine tundra or rock, but this was not
always possible. If patches were bordered by other species
or if two pure species patches adjoined, we paused collec-
tion to walk to the opposing side of the patch before re-
suming collection, creating a straight line to indicate greater
caution during the later labelling process to ensure training
pixels were selected which did not contain any of the adja-
cent species. We walked the perimeter of each polygon with
a Trimble GeoXT or a Geo7x, using differential correction
enabled to obtain achieve sub-meter accuracy (typically 10–
60 cm at treeline).

Each polygon contained one or more individuals of one
given species; apart from limber pine, all of these species
may spread clonally at treeline, making discrimination of in-
dividual trees or shrubs impossible without a genetic anal-
ysis. Limber pine has multi-stemmed growth forms at tree-
line, but multiple stems may comprise different individu-
als originating from a single Clark’s nutcracker (Nucifraga
columbiana (Wilson, A, 1811)) cache of limber pine seeds,
presenting the same difficulties (Tomback and Linhart, 1990;
Linhart and Tomback, 1985).

We imported the polygon data to ENVI (version 4.8, Ex-
elis Visual Information Solutions, Boulder, CO) and selected
multispectral WV-3 pixels that fell entirely within the bounds
of each of the polygons. We examined both the panchro-
matic and multispectral imagery to identify systematic off-
sets between the polygons and vegetation patches in the im-
agery. A slight offset of approximately 0.5 m was identified,
which reduced the number of viable polygons and pixels for
inclusion. We used the shapes of the vegetation patches in
the panchromatic imagery and the shapes of the polygons to
identify the correct locations of polygons in the imagery and
select only pixels that fell within the field-delineated vege-
tation patches with high confidence. A single operator per-
formed all pixel labelling, and that operator was most often
the person in the field delineating patches. The multispec-
tral and panchromatic images were orthorectified together;

the pixels aligned across bands and sensors – 4× 4 panchro-
matic pixels align precisely with one multispectral pixel. We
then exported the reflectance data from each region of inter-
est as CSV files.

2.4 Topographic Data

We obtained a 10 m digital elevation model (DEM) from
the U.S. Geological Survey EROS Data Center. These raster
data are generated by the National Mapping Program from
cartographic information and are freely available from the
National Map Data Delivery website (https://www.usgs.
gov/the-national-map-data-delivery, last access: 25 January
2022). We interpolated the DEM to the resolution of the mul-
tispectral data, using a cubic spline resampling method.

2.5 Convolutional Neural Network (CNN) Modelling
Methods

We chose to use CNNs to leverage spatial patterns in species
distributions. While treeline sites are notoriously heteroge-
neous, variations in topography and existing vegetation are
known to shape snow distribution, which in turn shapes fu-
ture distribution of plant species due to variation in water
availability during the growing season (Hiemstra et al., 2002;
Malanson et al., 2007; Zheng et al., 2016). Furthermore,
species like Engelmann spruce and subalpine fir tend to co-
occur due to similar site preferences and facilitative interac-
tions (Burns and Honkala, 1990; Hessl and Baker, 1997; Gill
et al., 2015). All these tendencies translate to spatial patterns
detectible in satellite imagery, and CNNs are built to detect
patterns in gridded data.

In this section, we describe the methods we used to train
the CNN models. Section 2.5.1. introduces CNNs for un-
familiar readers. Section 2.5.2 contains an overview of the
CNN model architecture, including an adaptation to allow
training on the higher resolution panchromatic imagery be-
fore concatenating those data with the multispectral imagery
and DEM. Section 2.5.3 provides an overview of the hyper-
parameter experiment, used to determine the optimal combi-
nations of fixed hyperparameters for the best model perfor-
mance. In ML models, parameters are the trainable weights
and biases within the models, and hyperparameters are val-
ues the user pre-defines that guide the training process and
do not change during training. Section 2.5.4 describes the
explainable artificial intelligence (XAI) methods used to de-
termine which predictors were most important for model per-
formance.

While we describe the CNN architecture first (in
Sect. 2.5.2) to explain how the CNN works and is built, the
specific architecture was determined in part by the results of
several hyperparameter experiments (Fig. 2). The first two
hyperparameter experiments are described in Sect. S1.3 and
S1.4 of the Supplement, and the final hyperparameter exper-
iment is described in detail in Sect. 2.5.3.

https://doi.org/10.5194/bg-22-6509-2025 Biogeosciences, 22, 6509–6543, 2025
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Table 1. Class frequencies (proportion of total pixels) for the CNN models. Frequencies are out of 615 polygons and 5631 pixels, respectively.
CNNs use a pixel-based classification approach (sample unit= the pixel, not the plant). Table summaries are of labelled region of interest
polygons as opposed to the raw, field-delineated polygons; not all field-delineated polygons were useful. The areal summaries are for region
of interest polygons.

Species Polygons Pixels Area summaries (m2)

Min Median Mean Max

Subalpine fir – Abies lasiocarpa (ABLA) 0.137 (84) 0.280 (1577) 1.4 15.1 27.0 189.0
Limber pine – Pinus flexilis (PIFL) 0.268 (165) 0.197 (1109) 1.4 5.8 9.8 133.0
Engelmann spruce – Picea engelmannii (PIEN) 0.210 (129) 0.172 (969) 1.4 5.8 10.8 79.3
Willow – Salix sp. (Salix) 0.115 (71) 0.135 (760) 1.4 2.9 6.1 63.4
Quaking aspen – Populus tremuloides (POTR) 0.041 (25) 0.028 (158) 1.4 8.7 9.0 31.7

Total= 615 Total= 5631

Figure 2. Workflow overview diagram. The first three steps (green) outline how the image data were prepared as image chips prior to CNN
model development (see Sect. 2.3 and example inputs in Figs. 7 and 8). In steps four and five, we trained models with varying levels of data
augmentation and regularization (see Sect. S1.3 and S1.4 of the Supplement). We used five-fold cross-validation for every variation of each
hyperparameter experiment. In steps five and six we experimented with different numbers of dense layers (see Sects. S1.4 and 2.5.3) and
in step six we also experimented with six different loss functions. Following the hyperparameter experiments (purple), we proceeded with
selecting the best-performing models based on six evaluation metrics (see Sect. 2.5.3). We then ran permutation tests with the top-performing
models – an explainable artificial intelligence (XAI) method – to assess variable importance (see Sect. 2.5.4).

2.5.1 Introduction to CNNs

CNNs are a form of neural network that can be spatially
aware, detecting patterns in gridded data on multiple spatial
scales, and are often used for image recognition tasks (Good-
fellow et al., 2016d; Dubey and Jain, 2019). A CNN is struc-
tured as a series of convolutional blocks, each containing one
or more convolutional layers and ending with a pooling layer
(Dubey and Jain, 2019). Each convolutional layer contains
many convolutional filters, or “kernels”, containing learned

parameters (weights and biases). During convolution, the in-
put channels (or data layers, e.g., the multispectral WV-3
data contain eight channels) are multiplied by a 3-D convo-
lutional filter, typically with dimensions of 3 pixels× 3 pix-
els× number of input channels. The products of this multi-
plication are summed to create one pixel in the output feature
map (Goodfellow et al., 2016a). The filter slides over the spa-
tial grid of the input imagery; at each position in this grid, it
generates one pixel of the output feature map. To produce the
desired number of feature maps (M), a convolutional layer
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contains M filters. Classic image-processing also uses con-
volutional filters, but the weights are pre-determined. For ex-
ample, there are known, 3× 3-pixel kernels that achieve blur-
ring, sharpening, edge detection, etc. A strength of CNNs
is that these weights are learned rather than pre-determined.
The CNN uses multiple different filters to learn different pat-
terns in the data (detecting edges, textures, parts of objects,
whole objects, etc.), which generate multiple feature maps
that are sent to the next convolutional layer. (The number
of feature maps generated is a fixed hyperparameter set by
the user). The resulting feature maps (matrices containing
the results of the convolutions) can be thought of as patterns
found across all data channels. CNNs may be thought of as
“a feature-detector (the convolution and pooling layers) at-
tached to a traditional neural network”, which learns from
these detected features and transforms them into predictions
(Lagerquist, 2020).

Parameters in a CNN consist of weights and biases in the
convolutional filters. A single convolutional filter contains
one bias and Kh ·Kw ·Cin weights, where Kh is the height
of the filter in pixels; Kw is the width in pixels; and Cin is
the number of input channels. Thus, a single convolutional
layer contains Cout biases and Kh ·Kw ·Cin ·Cout weights,
where Cout is the number of filters or output feature maps.
The model is trained in a series of epochs; in each epoch, the
CNN learns from a series of many batches of training sam-
ples. In the first epoch, all the weights and biases start from
a random initial seed. The first batch of data is input to the
CNN, and the loss function is calculated. The loss function
is an error metric used to “tell” the ML model how right or
wrong it is in its predictions – a feedback mechanism. Af-
ter the model learns from the training samples in an epoch,
the weights and biases are adjusted through backpropagation
(explained in detail in Sect. S1.1), using rules of gradient de-
scent to minimize the loss function (the measure of model
error).

Another batch of data is fed to the CNN, the loss func-
tion is calculated, and backpropagation is repeated. This pro-
cess repeats for B training batches each containing N data
samples, where B and N (both positive integers) are hyper-
parameters. At the end of the epoch, the validation loss is
computed, using data in the validation fold. This in turn re-
peats for P epochs or stops early once the loss function for
the validation fold (also known as out-of-bag error) has not
decreased in the last Q epochs, where P and Q (both positive
integers) are hyperparameters. The process of training a ma-
chine learning (ML) model with small batches (minibatches)
of randomly selected training data is known as stochastic
gradient descent, and is the most common algorithm used
for training by contemporary ML developers to create deep
learning models (Goodfellow et al., 2016c, b; Li et al., 2014).

Most of the methods we use are standard in the ML lit-
erature, but we recognize our audience may include treeline
ecologists for whom these methods are new. We provided
further explanations of CNN methods – and their importance

– for interested readers in Supplement Sect. S1, including
loss functions (Sect. S1.1 and Appendix B), backpropagation
(Sect. S1.1), ReLU activation (Sect. S1.2), batch normaliza-
tion (Sect. S1.2), data augmentation (Sect. S1.3), and dropout
(S1.3).

2.5.2 CNN Model Architecture

We trained all CNN models using Keras (version 3.10.0)
application programming interface for TensorFlow (version
2.19.0) in Python (version 3.11.5). We used all eight mul-
tispectral WV-3 bands, the panchromatic band, and the in-
terpolated DEM as the CNN inputs, yielding a total of 10
channels. A CNN model is a pixel-based classification ap-
proach, with a variable number of pixels within each tree or
shrub polygon. Before modelling, the data were subset into
160× 160 m image chips, each centered on one training pixel
– one point within one tree or shrub polygon. This initial sub-
setting process streamlined the dataset, reducing the RAM
and time required to run the model.

The pixel dimensions of each image chip varied by the
spatial resolution of the data: 513× 513 pixels for the
panchromatic imagery (31 cm resolution), and 129× 129
pixels for the multispectral imagery and the interpolated
DEM (1.24 m resolution). We adapted the model architecture
to accommodate this discrepancy, to leverage the informa-
tion in the higher-resolution panchromatic imagery, while en-
suring that all 10 data channels could be processed together
within the CNN. The first two convolutional blocks in the
CNN processed only panchromatic imagery (at 31 cm reso-
lution). Each convolutional block consisted of two convolu-
tional layers (with a 3-by-3 convolutional filter), followed by
2-by-2 pooling, which reduces the spatial resolution by half.
Hence, in two convolutional blocks, the 513× 513 panchro-
matic data were downsampled via max pooling to 257× 257
(62 cm resolution) and then to 129× 129 (1.24 m resolution),
matching the resolution of the multispectral and interpolated
DEM data (Fig. 3). Max pooling helps with edge detec-
tion and allows the model to learn patterns on larger spa-
tial scales. Using our classification problem as an example,
the CNN could first learn size and shape patterns for species
morphologies, associated with the spectral data, and, after
pooling, could learn that certain species are found near other
species or landscape features at coarser scales (such as rivers,
or places of low or high prominence in the DEM). For a more
detailed description of each convolutional block, please see
Appendix C.

After two convolutional blocks, once the panchromatic
data were pooled down to the resolution of the multispec-
tral imagery and the interpolated DEM, those channels were
concatenated (“Concat” in Fig. 3). Seventeen channels (one
raw DEM channel, eight raw multispectral channels, and
eight feature maps based on the one panchromatic channel)
were fed into the next convolutional block. Then, after five
more convolutional blocks (each halving the spatial resolu-
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Figure 3. CNN architecture for the six-class model, incorporating panchromatic, multispectral, and DEM inputs at different spatial resolu-
tions. Each convolutional block is represented by a green box labeled “Conv” (actually two series of convolution and activation, followed
by batch normalization) and an orange half-oval labeled “Max-pool”. After two convolutional blocks with only the panchromatic data, the
multispectral and interpolated DEM data were concatenated with the feature maps from the convolutional blocks (“Concat”). At the end, the
feature maps (64 of them, each with 5× 5 pixels) were flattened (all of the values in all of the feature maps are appended to a 1-D vector,
3200 values long) and followed by one classic NN dense layer (or “fully connected layer”), yielding a vector of six probabilities, one for
each class. At each step, the dimensions of the image patch are indicated in pixels, as well as the number of feature maps. For example, the
first Conv step yielded four feature maps of 513× 513 pixels.

tion while increasing the number of feature maps), the last
feature maps were flattened (re-organized into a 1-D vec-
tor) and fed into a dense layer, or “fully connected layer”. A
traditional (spatially agnostic) NN contains only dense lay-
ers, which are vectors of values connected to every adja-
cent value, including all the values in the next (and previous)
dense layer(s).

Following the dense layer, we used the softmax activa-
tion function to force outputs to range from 0–1 with a sum
of 1 (interpretable as probabilities representing all possi-
ble events/classes in the sample space) (Goodfellow et al.,
2016d). The non-terminal dense layers included a dropout
rate of 0.650, and every convolutional and dense layer used
an L2 regularization strength of 10−6.5. Dropout and L2 reg-
ularization are both regularization methods that help prevent
the CNN from overfitting to the training data (see Sect. S1.3
for details). These were fixed hyperparameters, determined
to be the best settings via the hyperparameter experiment de-
scribed in Sect. 2.5.2.

The total number of training samples was 5631. We vali-
dated the models using five-fold cross-validation, so for each
model, we used four-fifths of our data for training and the re-
maining fifth of the data for validation. We split the training
and validation by individual – for a given organism, either
(1) all of the pixels for that organism were in the training
set or (2) all of the pixels were in the validation set. After
creating the folds, we performed data augmentation (Good-
fellow et al., 2016a), turning each original training sample
into eight augmented samples. To do this, we first normal-
ized the data, transforming the data from physical values (x)
to z-scores (z) based on the mean and standard deviation of
each training fold. Data should be separated into training and
validation folds before normalization, because otherwise we
would be leaking information about the full data distribution
from the validation data into the training data. To create an
augmented data sample, we add Gaussian noise to the predic-
tors in the original sample, with a mean of 0.0 and standard
deviation of 0.2. (The parameters of the Gaussian distribution
from which we drew the noise were fixed hyperparameters.)

Thus, the final sample size for the training dataset was 45 048
image chips (5631× 8 augmented samples).

During each epoch, the model was trained with all 45 048
data samples in batches of 64 samples each (703 total
batches). Each model was trained for 100 epochs, with a
command to stop training early if the loss function did not
improve for 15 epochs. We trained all CNN models with the
Adam optimizer, using all the Keras defaults, including an
initial learning rate of 0.001. The Adam optimizer updates
the learning rate after every epoch and adjusts learning rates
separately for every model parameter (every weight or bias)
(Goodfellow et al., 2016b; Kingma and Ba, 2014). We deter-
mined the optimal loss function for our classification prob-
lem through the hyperparameter experiments (described in
the next Sect. 2.5.2.).

We trained three CNN models, each with a different num-
ber of classes. Classification becomes more difficult with
each additional class. We pooled classes with fewer data to
see whether that would improve model performance, partic-
ularly for distinguishing limber pine from the other species
with higher accuracy. In addition to the six-class model, we
trained a four-class model to separate the three conifers (lim-
ber pine, Engelmann spruce, and subalpine fir) from each
other and from the deciduous plants (glandular birch, wil-
low, and aspen), the latter grouped together in one class as
“Other”. Lastly, because managers may find it useful to dis-
criminate limber pine from other treeline species, we trained
a two-class model with limber pine and the other species
grouped as “Other”. The CNN architecture for the four- and
two-class models was the same as the six-class model, except
for the output layer. The output layer produces one probabil-
ity per class, so its output vector varied in length from two to
six (Figs. C1 and C2).

2.5.3 Hyperparameter Experiments and Model
Selection

We ran hyperparameter experiments separately for the six-,
four-, and two-class models (see Supplement Sect. S1.5
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for detailed information on what each hyperparameter does
within a CNN). Hyperparameters have a strong influence on
model performance, so it was important to test a subset of
hyperparameter combinations to identify the best versions
of the six-, four-, and two-class models. The same four ex-
perimental hyperparameters were used for all three experi-
ments: the number of dense layers at the end of the model,
the dropout rate (used for non-terminal dense layers, i.e.,
all dense layers except the output layer that provides the fi-
nal probabilistic predictions), the L2 regularization strength
(used for all convolutional and dense layers), and the loss
function. Table 2 summarizes the values tested for each hy-
perparameter for each of the three models. The candidate val-
ues tested in the experiment for each hyperparameter were
chosen for their usefulness in training skillful CNN mod-
els in past work (Lagerquist et al., 2019, 2020, 2021). We
also tested a wider range of values for (1) the number of
dense layers, (2) dropout rate, and L2 weight (see Supple-
ment Sect. S1.4).

As part of the hyperparameter experiment, we trained the
models with two loss functions: cross entropy and the Gerrity
score. Cross-entropy is widely used for classification prob-
lems; it comes from the field of information theory and de-
scribes the bits required to distinguish two distributions (i.e.,
the distribution of predictions from the distribution of ob-
servations) (Lagerquist, 2020). The class frequencies in our
dataset were quite unbalanced (Table 1), so we also tested the
Gerrity score, which rewards “risky” predictions. That is, in
a problem with unbalanced classes, the Gerrity score rewards
correct predictions of a lower-frequency class (which are
harder) more strongly than correct predictions of a higher-
frequency class (which are easier) (Gerrity, 1992). Equations
for these metrics can be found in Appendix B and in other
published works (Lagerquist et al., 2019; Lagerquist, 2020).

The Gerrity score depends on how classes are ordered nu-
merically. For example, in a six-class problem, the Gerrity
score rewards correct predictions of “class 1” more strongly
than correct predictions of “class 6”, even if both classes
have equal frequency. Thus, by default, we ordered classes
from least to most frequent (using the pixel-based class fre-
quencies in Table 1). We also tested the Gerrity score with
two modifications. One was the class-weighted Gerrity score,
where each data sample in the loss function was weighted by
ln 1

f
or ln50, whichever was lower, where f is the frequency

of the correct class. Class-weighting makes the Gerrity score
reward risky predictions even more. The second modification
was the limber-pine-first (PIFL-first) Gerrity score, where the
aforementioned list was reordered to make limber pine “class
1”. The PIFL-first Gerrity score gives higher rewards for cor-
rect predictions of limber pine. The Gerrity score varies be-
tween −1 and 1. A higher score is better, and as long as it is
above 0, the model is performing better than a random model
(Lagerquist et al., 2019).

In the six-class experiment, the total number of hyperpa-
rameter combinations was 96, representing all possible com-

binations of four numbers of dense layers, two dropout rates,
two L2 regularization strengths, and six loss functions (Ta-
ble 2). For every hyperparameter combination (hyperparam-
eter model) we performed five-fold cross-validation, thus
training five sub-models; we refer to each set of five cross-
validated sub-models as one model (Fig. 4). This yielded a
total of 480 sub-models for the six-class experiment (96× 5)
and 120 sub-models for each of the smaller experiments
(24× 5). To evaluate the performance of each hyperparam-
eter model, we used predictions only on out-of-bag samples.
For each model, every data sample was out-of-bag, appearing
in the validation fold rather than one of the training folds only
once. Given that our dataset contained 5631 samples, the re-
sults for each hyperparameter model were therefore based on
5631 out-of-bag predictions.

We considered eight evaluation metrics: (1) top-1 ac-
curacy, (2) top-2 accuracy, (3) top-3 accuracy, (4) cross-
entropy, (5) Heidke score, (6) Peirce score, (7) Gerrity score,
and (8) PIFL-first Gerrity score. Top-k accuracy is the frac-
tion of data samples for which the correct class is in the k

highest probabilities output by the model; for example, top-2
accuracy is the fraction of data samples for which the cor-
rect class is one of the two classes predicted with the highest
probability. Top-1 accuracy is usually just called “accuracy”,
i.e., the fraction of samples for which the correct class re-
ceives the highest probability from the model. Further dis-
cussion of all metrics, including mathematical and concep-
tual definitions, can be found in Appendix B. We ranked each
model in terms of each evaluation metric out of the total num-
ber of models attempted in the experiment. For the six-class
experiment, these rankings were out of 96; for the smaller
experiments, these rankings were out of 24. Then, for each
model, we averaged its rankings over all eight metrics. The
model with the best average ranking was chosen as the best
model.

2.5.4 Permutation Tests

Permutation tests are a form of XAI (McGovern et al., 2019),
methods that enable interpretation of ML model results in
terms of the predictors used. The permutation test comes in
four varieties: the single-pass forward, multi-pass forward,
single-pass backward, and multi-pass backward. The per-
mutation tests successively permute (shuffle) or de-permute
(clean) the values of predictor variables and quantifying the
impact that has on model performance. For data with corre-
lated predictors, each variety of the test gives different re-
sults (McGovern et al., 2019). Our image data contain both
spatial autocorrelation, where nearby pixels are correlated
with each other, and spectral correlation, where nearby wave-
length bands in the multispectral imagery are correlated with
each other. These problems always arise in image data, mean-
ing that methods assuming mutual independence cannot be
used. It is important to examine all four varieties of the test
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Table 2. Experimental hyperparameter values tested for the six-, four-, and two-class models.

Hyperparameter Six-class model Four-class model Two-class model

Number of dense layers 1,2,3,4 1,2,3,4 1,2,3,4

Dropout rate 0.575, 0.650 0.650 0.650

L2 regularization strength 10−6.5, 10−6 10−6.5 10−6.5

Loss function (1) Gerrity score with class-weighting and PIFL first, (2) Gerrity score with no
(all six loss functions were class-weighting and PIFL first, (3) Gerrity score with class weighting and default order,
tried for all three models) (4) Gerrity score with no class weighting and default order, (5) cross-entropy,

and (6) class-weighted cross-entropy

Figure 4. Schematic for the six-class hyperparameter experiment. The two- and four-class experiments follow the same methodology, except
with 24 hyperparameter sets (hence, 24 models) instead of 96. Each row corresponds to one model; the black ellipsis (dots) represent the
3rd through 95th models; each green box represents an object (hyperparameter set, model, set of error metrics or rankings); and each orange
arrow/box represents a procedure. The purple braces indicate that models are being compared with each other – i.e., they indicate a procedure
that cannot be done independently for each model. The last procedure – implied but not shown – is choosing the model with the best “Model
ranking”, averaged over all eight error metrics.

and determine which results are consistent to draw robust
conclusions.

In the permutation test, permuting a predictor variable
refers to shuffling the values of that variable across all data
samples (in our case, across all out-of-bag samples), breaking
the relationship between the predictor and the target variable
(in our case, the species class). In the single-pass forward
test, only one predictor variable is permuted at a time, leav-
ing the other variables unchanged. After permuting one pre-
dictor variable, the model performance on the clean dataset
is compared to performance on the dataset with that variable
permuted. If model performance drops significantly with the
predictor permuted, then that predictor is considered very im-
portant. In the multi-pass forward test, the single-pass for-
ward test is carried out iteratively. Step 1 begins with a

clean dataset and determines the most important variable,
x1st, which is then permuted for the duration of the test. Step
2 begins with the output from step 1 (a dataset with x1st
permuted and all other variables unchanged) and determines
the second-most important variable, x2nd, which is then per-
muted for the remainder of the test. This continues until all
predictor variables are permuted. In the single-pass backward
test, we begin with a completely randomized dataset, where
all predictor variables are permuted. Then only one predic-
tor variable is cleaned up (restored to the correct order) at
a time, leaving the other variables permuted. After cleaning
up one predictor variable, we measure how much this im-
proves model performance compared to the completely ran-
domized dataset. If the model performance improves signifi-
cantly when the predictor is cleaned up, then that predictor is
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considered very important. In the multi-pass backward test,
the single-pass backward test is carried out iteratively. Step 1
begins with a completely randomized dataset and determines
the most important variable, x1st, which is then cleaned up
for the duration of the test. Step 2 begins with the output
from step 1 (a dataset with x∗1st cleaned up and all other vari-
ables still permuted) and determines the second-most impor-
tant variable, x2nd, which is then cleaned up for the remain-
der of the test. This continues until all the predictor variables
have been cleaned.

3 Results

3.1 Hyperparameter Experiment Results

The hyperparameters for each of the selected models (six-
class, four-class, and two-class) are shown in Table 3. Fig-
ure 5 shows the top-1 accuracy for all models in the six-class
experiment. The selected model (circle) had accuracies of
0.44, 0.70, and 0.83 (top-1, top-2, and top-3, respectively),
whereas the model with the highest top-1 accuracy (star) had
accuracies of 0.45, 0.67, and 0.81. The selected model per-
formed much better on the Gerrity score (0.38 vs. 0.30), com-
parably on the Heidke and Peirce scores (0.31 and 0.32 vs.
0.32 and 0.32), and only marginally worse on the PIFL-first
Gerrity score (0.45 vs. 0.49). The selected model was the
best model out of 96 models based on the average of all eight
metrics.

The selected four-class model was the best out of 24 eval-
uated, with the second-highest ranking for each top-k accu-
racy, as well as high rankings for the remaining metrics (Ta-
ble 3). The selected two-class model was again the best bal-
ance out of 24 evaluated; it was the top-performing model
based on the Gerrity, PIFL-weighted Gerrity, Heidke, and
Peirce scores, and was the 3rd best model based on top-1
accuracy (Table 3). Strangely, across the board, models that
performed well based on the cross-entropy metric performed
poorly based on the other 7 metrics. See Supplement Sect. S2
for the remaining hyperparameter experiment result figures
(Figs. S1–S21).

3.2 Six-Class Model Results

The six-class model performance was good considering the
complexity of the task and the spatial and spectral resolu-
tion of the data, with a top-1 (overall) accuracy of 44.1 %
and a top-2 accuracy of 70.0 % (Table 3). By comparison, a
trivial model would have a top-1 accuracy of 28.0 % and a
top-2 accuracy of 47.6 %. For a trivial model, the predicted
probability of class k is always the frequency of class k in
the data. In other words, a trivial model’s predictions are
the same for every data sample. For the six-class problem,
a trivial model would always predict 28.0 % probability of
subalpine fir, 18.9 % probability of glandular bitch, etc. (Ta-
ble 1).

Using the class-weighted Gerrity score was effective, lead-
ing to higher overall model performance and for the cor-
rect identification of minority classes, though the model
performed best at distinguishing the two highest-frequency
classes: subalpine fir and limber pine (Fig. 6). Figure 6 shows
the classes which the model correctly identified with the
greatest frequency, as well as the species it most often tended
to confuse.

Limber pine was most often confused with willow and
Engelmann spruce in the six-class model (Fig. 6), likely be-
cause of the model’s reliance on the panchromatic band (see
Figs. 8b, d, and S39). While limber pine does not grow as true
krummholz at treeline (Holtmeier, 2009), it is stunted and
flagged and resembles willow or other shrubs in the panchro-
matic imagery. Figure 7 shows an example of a “best hit”
identification of limber pine from the six-class model, which
correctly predicted limber pine with 100 % probability. The
example is representative of the dispersed pattern and small
size of limber pine at treeline. See Supplement Sect. S5.1 for
other best hits.

Subalpine fir was most often confused with glandular
birch, once again likely due to reliance on textural informa-
tion in the panchromatic band (Figs. 9b, d, and S43 in Sup-
plement Sect. S4); both species form large patches on the
landscape that appear similar without additional structural in-
formation, such as height. Engelmann spruce was the least
distinguishable after aspen, which was a lower-frequency
class and has a similar growth pattern (in the panchromatic
imagery) to both glandular birch and subalpine fir. Engel-
man spruce and subalpine fir tend to co-occur (with the same
elevational distribution) (Sindewald et al., 2020; see also
Figs. S44, and S45). Their mean spectral radiance curves
appear to be statistically distinguishable in the coastal blue,
blue, green, yellow, red, and red edge bands (Fig. S27), but
the CNN relied less on these bands (Fig. 8). An example of
a worst-case confusion between Engelmann spruce and sub-
alpine fir can be seen in Fig. 8. Although the panchromatic
band was very important for model performance (Fig. 9b and
d), likely due to its high spatial resolution, it was not enough
to distinguish the treeline forms of these species by their mor-
phology or spatial distribution on the landscape.

Based on the results of the permutation tests, elevation was
the most important predictor for model performance (Fig. 9a,
b, and d), which makes sense biologically. Willow species
thrive in riparian areas, and at the Longs Peak site they
are typically found along creeks or in topographic depres-
sions where snow gathers (Fig. S47). Similarly, glandular
birch, subalpine fir, and Engelmann spruce grow more abun-
dantly in areas where late-lying snowpack provides moisture
through the start of the growing season (Figs. S43 and S44)
(Burns and Honkala, 1990; Hessl and Baker, 1997; Gill et
al., 2015). Limber pine, by contrast, is a drought- and stress-
tolerant conifer that often occupies on convex sites or wind-
swept ridges where snow is blown clear (McCune, 1988;
Ulrich et al., 2023; Steele, 1990). The spatial distribution
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Figure 5. Hyperparameter experiment results for the six-class classification, evaluated by top-1 accuracy. Each grid cell of the figure shows
results from a single CNN model (one set of hyperparameters), including results from all five sub-models. In the case of every data sample,
the prediction came from a CNN that was not trained on that data sample. The color indicates the top-1 accuracy of the model. The models
are organized by their hyperparameter values. The circle indicates the model that was selected from the set. The star indicates the model with
the highest top-1 accuracy.

of species samples and the spatial accuracy of model pre-
dictions can be seen in Appendix D. In figure D1a, we see
that willow, in particular, clusters near a riparian area of the
Longs Peak study area. However, the models did not exclu-
sively predict species where they are most often found. While
the models appear to be relying on elevation to make use of
spatial patterns in species distributions, the models are not
exclusively relying on topographic data (Figs. D1 and D2).

Several multispectral WV-3 bands were also important for
model performance, as evidenced by the multi-pass forward
and backward tests (Fig. 9b and d), including red, green, yel-
low, coastal, blue, and near-IR2. The visible bands emerged
as important predictors for distinguishing aspen from the
other species in the six-class model (Fig. S46). While the
multispectral bands were clearly important, they did have as
strong an influence on model performance as did elevation or
the panchromatic band, indicating the six-class CNN model
did not rely on those data as heavily (Fig. 9).

3.3 Four-Class Model Results

The four-class model performed slightly better than the six-
class model overall, with top-1 and top-2 accuracies of
46.7 % and 76.7 %, respectively (Table 3). A trivial model
could at most have top-1 and top-2 accuracies of 35.1 % and
63.1 %, respectively. The model was best at correctly iden-
tifying subalpine fir, with the predicted species being cor-
rect 60.4 % of the time (Fig. 10). The model did least well at
correctly identifying limber pine (39.3 %), confusing it with
the deciduous species pooled into the “Other” class. Engel-
mann spruce was the lowest frequency class in the four-class
dataset (17.2 % of the samples), and since the top model was
trained with the default Gerrity loss and not the PIFL-first
Gerrity loss, the model was most penalized for incorrect clas-
sification of Engelmann spruce. The result was that the four-
class model was almost twice as effective at identifying En-
gelmann spruce as the six-class model (50 % vs. 26.8 %).
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Table 3. Hyperparameters and model performance metrics for the top-performing models. The rank of the selected model with respect to
each performance metric is indicated in parentheses. Ranks are out of 96 for the six-class model and out of 24 for the four- and two-class
models. All metrics are positively oriented (higher is better) except for cross-entropy, which is negatively oriented. n/a: not applicable.

Hyperparameter Six-class model Four-class model Two-class model

Number of dense layers 1 1 1
Dropout rate 0.65 0.65 0.65
L2 weight 10−6.5 10−6.5 10−6.5

Loss function Class-weighted Gerrity score Default Gerrity score Default Gerrity score

Performance Metric Six-class model Four-class model Two-class model
Top-1 accuracy (rank) 0.441 (3rd) 0.467 (2nd) 0.862 (3rd)
Top-2 accuracy (rank) 0.700 (3rd) 0.767 (2nd) n/a
Top-3 accuracy (rank) 0.831 (4th) 0.922 (2nd) n/a
Gerrity score (rank) 0.379 (4th) 0.254 (3rd) 0.591 (1st)
PIFL-weighted Gerrity score (rank) 0.450 (7th) 0.318 (4th) 0.591 (1st)
Heidke score (rank) 0.314 (3rd) 0.247 (3rd) 0.576 (1st)
Pierce score (rank) 0.320 (2nd) 0.240 (5th) 0.591 (1st)
Cross-entropy (rank) 4.264 (86th) 5.749 (22nd) 2.980 (21st)

Figure 6. Column-normalized confusion matrix for the six-class model. Classes include subalpine fir (ABLA), glandular birch (BEGL),
Engelmann spruce (PIEN), limber pine (PIFL), aspen (POTR), and willow (Salix).

The permutation tests were consistent in showing the im-
portance of the panchromatic data to four-class model per-
formance (Fig. 11a, b, and d). As discussed above, the high
spatial resolution of the panchromatic data likely allowed the
CNN to distinguish growth forms and patterns of species oc-
currence and co-occurrence on the landscape (Figs. D3 and
D4). The panchromatic band emerged as the most important

predictor for all four classes (Figs. S48–S51). Multispectral
bands red, green, blue, and yellow also emerged as signifi-
cant predictors (Fig. 11b and d), particularly for correct iden-
tification of ABLA, PIEN, and Other (Figs. S48, S49, and
S50).
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Figure 7. An example of a “best hit” classification of PIFL from the six-class model, where the model correctly predicted PIFL with 100 %
probability. This example (image chip or patch) is from the Battle Mountain study site. All eight multispectral bands, the panchromatic band,
and the DEM are shown. The red star in the center of each image patch is the pixel being classified. Units of radiance are W m−2 sr−1 µm−1.

3.4 Two-Class Model Results

The two-class model had the highest top-1 accuracy at
86.2 %, though much of this skill is attributable to its cor-
rect prediction of the majority class (“Other”); a trivial model
would have a top-1 accuracy of 80.3 %, which is the fre-
quency of Other. The model correctly identified limber pine
64.0 % of the time (Fig. 12), which is still an improvement
over the success rates for the six-class (56.5 %) and four-class
(39.3 %) models.

With the goal of distinguishing limber pine from other
treeline species, the panchromatic band emerged as the most
important predictor by far – nearly half the model skill de-
pended on the higher spatial resolution panchromatic band

(Fig. 13a, b, and d). The red, yellow, green, and blue bands
were also important for discriminating limber pine from
other species. Limber pine tends to form low-density stands,
with individuals spaced almost evenly across the landscape
(Figs. 6, D5, and D6). Unlike subalpine fir and Engelmann
spruce, limber pine also does not form large, sprawling
krummholz mats or grow in large patches like glandular
birch, willow, and aspen. The relatively lower spatial reso-
lution of the multispectral WV-3 bands may have limited the
usefulness of these data for distinguishing limber pine, al-
though several bands were still significant predictors in the
permutation tests for limber pine (Fig. S52).
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Figure 8. An example of a “worst confusion” classification of PIEN as ABLA from the six-class model, where the model incorrectly predicted
PIEN as ABLA with 100 % probability. This example (image chip or patch) is from the Longs Peak study site. All eight multispectral bands,
the panchromatic band, and the DEM are shown.

4 Discussion

This study may be the first attempt to use satellite imagery
to identify woody plant species in a treeline ecosystem. Our
goal was to discriminate six alpine treeline tree and shrub
species in the Southern Rocky Mountains, using a pixel-
based Convolutional Neural Network (CNN) classification of
high-resolution Worldview-3 (WV-3) satellite imagery. We
were particularly interested in identifying limber pine from
other treeline species, especially since it is a species of con-
servation concern and its distribution at treeline in Rocky
Mountain National Park is incompletely known.

4.1 Overview of CNN Model Performance

Overall, our results had mixed success. The six-class model
performed reasonably well given the difficulty of the prob-
lem, with 44.1 % top-1 and 70 % top-2 accuracy – much bet-
ter than a trivial model could achieve (28.0 % and 47.6 %,
respectively). The four-class model did not improve classi-
fication accuracy as much as expected, with 46.7 % top-1
and 76.7 % top-2 accuracy (vs. 35.1 % and 63.1 %, respec-
tively, for a trivial model). The simplified two-class model
achieved a fairly high overall accuracy of 86.2 % (vs. 80.3 %
for a trivial model). The two-class model distinguished lim-
ber pine from other trees and shrubs with 64.0 % accuracy,
which, on its own, may not be useful for more than identi-
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Figure 9. Results from each kind of permutation test to assess predictor importance for the six-class model. Predictors in bold have a
significant effect on model performance when permuted, according to a 95 % confidence interval over 100 random perturbations of the
given predictor. Within each panel, predictor importance decreases from top to bottom, so the most important predictors are at the top. Our
evaluation metric for this permutation test is the Gerrity score.

fying regions of treeline where high-probability limber pine
pixels tend to cluster. However, the model did notably well
(92.1 %) at identifying pixels that are not limber pine.

4.2 Predictor Importance

The panchromatic band was the most important predictor
based on the results of the XAI permutation tests, both for
overall model performance in all three models, and for iden-
tifying limber pine specifically. This makes sense both bi-
ologically and in terms of the model structure. The models

were trained on the panchromatic imagery for two convo-
lutional blocks before the multispectral and elevation data
were introduced to the model; this architectural design al-
lowed us to make use of the higher resolution panchromatic
data to detect fine-scale spatial patterns, and it likely also re-
inforced the mathematical influence of these data in the fi-
nal model predictions. Treeline species often have distinc-
tive physiological growth responses to stressors (e.g., high
winds and heavy snowpack), and their krummholz growth
forms vary in their spatial patterns. Limber pine frequently
occurs as a solitary tree on the landscape, occupying very
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Figure 10. Column-normalized confusion matrix for the four-class model. Classes include subalpine fir (ABLA), Engelmann spruce (PIEN),
limber pine (PIFL), and other classes pooled as “Other”.

few pixels and surrounded by alpine tundra (Sindewald et al.,
2020). Other species are more likely to form larger patches
through vegetative layering and are also more likely to co-
occur on the landscape. The CNN models still relied heav-
ily on the panchromatic data for these species, but they also
made greater use of the multispectral imagery for discrimi-
nation among these species.

Elevation was the second most important predictor for
six-class model performance after the panchromatic band.
When discerning among six species classes, the CNN clearly
picked up on topographic patterns in species distribution on
the landscape. The species of willow classified here (Salix
glauca L., Salix brachycarpa Nutt., and hybrids) are most
abundant near creeks in the Longs Peak study area, with as-
pen not much farther away (Cooper, 1908). This may gen-
eralize when the model is applied at a broader geographic
scale; willow and aspen tend to be found in regions with more
moisture (Baker, 1989; Coladonato, 1993; Uchytil, 1992;
Howard, 1996). Engelmann spruce and subalpine fir tend to
be found further from creeks, but in topographic depressions
with late-lying snowpack (Burns and Honkala, 1990; Hessl
and Baker, 1997; Gill et al., 2015). Glandular birch and lim-
ber pine are more often found on slopes, and limber pine
occupies windswept ridges with early snowmelt (McCune,
1988; Ulrich et al., 2023; Steele, 1990; Cooper, 1908).

Multispectral bands were consistently identified as impor-
tant predictors, suggesting that the CNN model utilized the
multispectral imagery despite its lower spatial resolution,
compared with the panchromatic imagery. The visible bands
detect variation in concentrations of photosynthetic pigments
in the leaves, which differ among species. The near-infrared
(N-IR) region of the spectrum varies based on cellular struc-
ture, which changes with water content, making N-IR bands
useful for assessing plant health (e.g., the normalized differ-
ence vegetation index or NDVI) (Curran, 1989; Campbell
and Wynne, 2011). Trees vary widely in condition at tree-
line due to varying levels of frost desiccation, wind dam-
age, or water availability (Tranquillini, 1976, 1979). The rel-
atively lower importance of the N-IR bands for discriminat-
ing species at treeline may mean that damage to trees and
shrubs introduces variation across species that almost over-
shadows species-specific responses to these stressors.

However, the lower importance of the N-IR and red edge
bands may also be because the CNN models prioritized the
higher resolution spatial data and spatial patterns of species
distributions in the panchromatic imagery over their spectral
differences. Table S1 of Sect. S3 of the Supplement summa-
rizes the WV-3 bands where pairs of species may be statis-
tically distinguished. Each pair of species differs in at least
one band except for Engelmann spruce and willow, which
overlapped across all eight bands. Interestingly, species pairs
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Figure 11. Results from each variety of the permutation test to assess predictor importance for the four-class model. Formatting is explained
in the caption of Fig. 10.

commonly differed significantly in the near-infrared bands.
The fact that these bands were less important for CNN per-
formance suggests that the models relied on panchromatic
data first and only used the multispectral or DEM data sec-
ond – whenever the panchromatic data were not informa-
tive. In those cases (e.g., cases where species growth forms
were similar), the models made greater use of the DEM and
visible bands. It is possible that the near-infrared bands are
more correlated with the panchromatic band, and so the mod-
els obtained little additional information from the N-IR and
red edge bands. This is plausible given that both the near-
infrared bands and the panchromatic band are responsive to
plant structure.

4.3 Model Generalizability

While our models have been validated through five-fold
cross-validation, we need to test these models on the classi-
fication of geographically distinct treeline communities. Ma-
chine learning models tend to over-fit models, which is why
we employed several regularization methods to reduce the
risk of overfitting and to improve generalizability (see Sup-
plement Sect. S1.4). However, the importance of the ele-
vation data in species classifications, despite its low orig-
inal resolution of 10 m, suggests that these models could
have learned idiosyncratic topographic patterns at the two
study sites (i.e., the “Clever Hans” problem, where ma-
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Figure 12. Column-normalized confusion matrix for the two-class model. Classes include limber pine (PIFL) and other classes pooled as
“Other”.

chine learning models pick up on signals in the data that
are sometimes collinear with more meaningful signals, much
like the popular history horse, Clever Hans, who could re-
spond to emotional anticipation in humans but could not, in
fact, count) (Lapuschkin et al., 2019; Pfungst, 1911). If the
models learned that moisture-sensitive species tend to oc-
cur in topographic depressions, where snow persists into the
spring, they could still generalize well to other treeline loca-
tions. The figures showing spatial model performance (Ap-
pendix D) were encouraging in this respect; we saw no obvi-
ous spatial biases indicating that the models only performed
well for different species when they were located in hotspots
of species occurrence at a given site. On the other hand, if
the models relied on proximity to a creek that ran through
the study site, they may perform less well at treeline sites at
comparable elevations but without a creek. In future work,
we will test these models on a geographically independent
dataset.

4.4 Trade-offs of Computation and Data Acquisition
Costs and Increases in Model Accuracy

The use of combined hyperspectral and lidar data is increas-
ingly considered the gold standard for identifying trees with
remote sensing data, but our work opens the door for more
cost-effective methods for researchers and managers. Ørka
and Hauglin (2016) compared remote sensing data acquisi-

tion costs and found that high-resolution commercial satellite
imagery is much less expensive than airborne aerial imagery
(Ørka and Hauglin, 2016). Cost estimates do not include sub-
sequent computational costs incurred through the analysis of
such datasets, which can also represent a barrier for wider-
scale implementation; not every manager and researcher has
the training or money to make use of supercomputing re-
sources.

WV-3 potentially represents a better balance of cost and
classification accuracy. WV-3 imagery is cheaper than aerial
imagery and provides comparable resolution. The addition
of ACOMP atmospheric correction is important, because
this method uses CAVIS data collected simultaneously with
the multispectral and panchromatic data, yielding highly ac-
curate corrections (Pacifici, 2016). However, as our study
showed, even WV-3 data may have spatial resolution that is
too low for classification of treeline vegetation species.

UAS data may yield better results than WV-3 given their
very high spatial resolution (sub-meter). In fact, Onishi and
Ise (2021) demonstrated that a classification accuracy of
over 90 % for seven species can be achieved using only red-
green-blue (RGB) imagery, classified with a CNN (Onishi
and Ise, 2021). These authors also used an XAI method,
guided Grad-CAM, to determine that the CNN was focusing
on canopy shapes for its classification. Our findings support
theirs: spatial resolution is important for tree species clas-
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Figure 13. Results from each variety of the permutation test to assess predictor importance for the two-class model. Predictors in bold have
a significant effect on model performance when permuted, according to a 95 % confidence interval over 100 random perturbations of the
given predictor. Within each panel, predictor importance decreases from top to bottom, so the most important predictors are at the top. Our
evaluation metric for this permutation test is the Gerrity score.

sification problems. The UAS approach may also be best
for classification problems requiring high temporal resolu-
tion (e.g., monthly). If data collection spans multiple years or
multiple seasons, the UAS approach may be the most cost-
effective. UAS, however, are prohibited on some public lands
in the United States, particularly in national parks and con-
gressionally designated wilderness areas, which include most
treeline areas of conservation interest.

5 Conclusions

To our knowledge, we are the first to use satellite imagery to
distinguish tree and shrub species in alpine treeline ecosys-
tems (Garbarino et al., 2023). Our study approach fills an
important methodological gap, enabling researchers to con-
nect landscape- and local-level treeline patterns and local
treeline processes by leveraging field research on treeline
species. Species-level maps of alpine treeline would enable
researchers to better stratify field sampling efforts to under-
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stand interspecies dynamics, as well as how species toler-
ances influence treeline elevation advance (or lack thereof).

Our models have proven useful for identifying probabil-
ity hotspots for limber pine occurrence at treeline, support-
ing ongoing research and management of this ecologically
important conifer. Our methods are also more cost-effective
than techniques relying on hyperspectral and lidar data col-
lected with aircraft and are applicable to a broader geo-
graphic extent than UAS. Our work may also support the on-
going research and conservation of limber pine in the Rocky
Mountains of the U.S. and Canada (Schoettle et al., 2019).

However, we believe that adapting these models to an
object-based classification approach will improve classifica-
tion accuracies and allow landscape-level species identifica-
tion without the need to train additional models. We antici-
pate that outputs from our CNN models, in the form of pixel-
level probability maps for classified species, may be easily
processed into segmented images of tree and shrub objects
for object-based classification. While beyond the scope of
the present work, segmentation and object-based classifica-
tion will be the necessary next steps to apply these methods
at a landscape scale. Once these methods are developed, we
may be able to use satellite imagery to map limber pine’s
distribution at treeline and monitor the distribution of this
important species as climate changes.

Appendix A: Field Methods

Collecting ground control points (GCPs) with a multispectral
satellite without tasking the satellite (and placing targets) is
quite challenging; we selected GCPs opportunistically, aim-
ing to cover as much of the image as possible. Much of the
image, especially lower in elevation, was forested, and taller
trees obscured ground features. Much of the rest of the image
was tundra, with very few targetable features. We collected
GCPs at the corners of switchbacks and at trail junctions,
always at or above treeline where these features could be
clearly seen in the image. We were able to collect 15 GCPs
(Fig. A1), six of which were in the Battle Mountain study
area and four of which were in the Longs Peak study area.
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Figure A1. Teal points mark the locations of ground control points collected in Rocky Mountain National Park over the WV-3 satellite image,
displayed in RGB. The Battle Mountain and Longs Peak study areas are delineated in purple. Trails are marked with black lines. Please see
Fig. 1 for copyright details.

Figure A2. Lucas Rudasill and Laurel Sindewald collecting a ground control point and descriptive metadata at the corner of a switchback next
to a cairn in RMNP. This photo was included, with the GPS data, descriptive metadata, and image chips, to inform MAXAR orthorectification.
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Figure A3. Example of an image chip from Google Earth Pro with the GCP position marked precisely on the image, corresponding to the
photo documentation in Fig. 26. This image chip was included, with the GPS data, descriptive metadata, and photos, to inform MAXAR
orthorectification. © Google Earth.

Appendix B: Loss Functions and Model Evaluation
Metrics

We used eight metrics for model evaluation: top-1, top-2,
and top-3 accuracies, the Gerrity score, the PIFL-first Ger-
rity score, the Heidke and Peirce scores, and cross-entropy.
Note that evaluation metrics, used to assess the performance
of an already-trained model, are not necessarily the same as
the loss function used for training. Only the Gerrity score,
PIFL-first Gerrity score, and cross-entropy were used as loss
functions in this study. Table B1 summarizes characteristics
of each metric.

Table B1. Characteristics of metrics used for model evaluation. n/a: not applicable.

Evaluation Metric Range of Possible Values Optimal Value Special Values

Top-k accuracies 0–1 1 n/a

Default Gerrity score [−1, +1] 1 0 indicates no skill (random model)

Class-weighted Gerrity score [−1, +1] 1 0 indicates no skill (random model)

Heidke score (−∞, 1] 1 0 indicates no skill and <0 means worse
than a random model

Peirce score [−1, 1] 1 0 indicates no skill and <0 means worse
than a random model

Cross-entropy [0,∞) 0 n/a
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Equation (B1) shows how the Gerrity score is calculated,
without additional class-weighting (Gerrity, 1992).

Default GS= 1
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]
,
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1− 1

N

∑k
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1
N
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(B1)

where N is the total number of data samples, K is the num-
ber of classes, i and j index the predictions and observa-
tions, respectively, and nij is the number of data samples with
the ith class predicted and j th class observed. When i = j

(when the prediction matches the observation), s is positive
and higher to reward the correct prediction. When i 6= j , s is
lower or even negative to penalize the incorrect prediction.
sij is in turn determined by the second function in Equa-
tion B1, which determines the weights based on class fre-
quencies to increase the reward when a low-frequency class
is correctly predicted and decrease the penalty when a low-
frequency class prediction is incorrect. In the second func-
tion, which determines the sij weights, ak is the cumulative
observation frequency of the first k classes and is defined in
the third function. n(yr) is the number of data samples where
the rth class is correct.

Table B1 is an example of an s-matrix (a matrix of sij
weights) for the four-class model. The sij weights are larger
for classes that have lower frequencies but also depend
strongly on the order of the classes. For example, PIEN had a
low class frequency (0.172) relative to Other (0.351), so the
sij (PIEN, PIEN) weight was higher than any of the weights
for Other. Because PIEN was the first class indexed for the
Gerrity score, and because sij is calculated based on ak ,
which is the cumulative observation frequency of the first k

classes, the (PIEN, PIEN) weight was greater than the (PIFL,
PIFL) weight, even though PIFL had the almost same class
frequency as PIEN.

Table B2. The s-matrix for the default Gerrity score for the four-
class model. The class frequences were 0.172 for PIEN, 0.197 for
PIFL, 0.280 for ABLA, and 0.351 for Other.

PIEN PIFL ABLA Other

PIEN 2.35 0.42 −0.49 −1.00
PIFL 0.42 0.82 −0.08 −0.60
ABLA −0.49 −0.08 0.44 −0.07
Other −1.00 −0.60 −0.07 0.88

The reverse was true when PIFL was indexed first in the
Gerrity score: PIFL had by far the highest weight, even
though PIFL had only a slightly lower class frequency than
PIEN (Table B3).

Equation (B1) shows the default Gerrity score, which does
not have additional class-weighting. We also added weights

Table B3. The s-matrix for the PIFL-first Gerrity score for the four-
class model. The class frequences were 0.172 for PIEN, 0.197 for
PIFL, 0.280 for ABLA, and 0.351 for Other.

PIFL PIEN ABLA Other

PIFL 2.11 0.42 −0.49 −1.00
PIEN 0.42 0.83 −0.07 −0.59
ABLA −0.49 −0.07 0.46 −0.06
Other −1.00 −0.58 −0.06 0.89

to the equation to prioritize the low-frequency classes even
more heavily. Equation (B2) shows the class-weighted Ger-
rity score, which replaces the first function defined in
Eq. (B1). (The other two functions remain the same.)

Weighted GS=


∑K

i=1
∑K

j=1wj nij sij∑K
i=1
∑K

j=1wj nij

wj = ln
(

min
(

1
fj

,50
)) (B2)

where fj is the observed frequency of the j th class and wj is
the resulting weight. The weighting function we devised lim-
its the degree to which a class can be prioritized by capping
the weight at the natural log of 50.

Cross-entropy is simpler than the Gerrity score. Cross-
entropy quantifies the number of bits required to distinguish
the distribution of model predictions from the distribution of
observations. Cross-entropy is calculated using Eq. (B3), and
its characteristics are listed in Table B1.

ε = −
1
N

N∑
i=1

K∑
k=1

yiklog2 (pik) (B3)

where N is the number of data samples, K is the number
of classes, pik is the model-predicted probability that the ith
sample belongs to the kth class, and yik is a binary indication
of the correct class, which is 1 if the ith example belongs to
the kth class and 0 otherwise.

The Heidke (Heidke, 1926) and Peirce (Peirce, 1884)
scores are similar in that they both measure the proportion of
correct predictions above and beyond those that would be ex-
pected from a random model (Lagerquist et al., 2019). Their
equations differ slightly. The Heidke score can be calculated
with Eq. (B4) and its domain is listed in Table B1.

Heidke score=

1
N

K∑
k=1

nkk −
1

N2

∑K
k=1n(Pk)n(yk)

1− 1
N2

∑K
k−1n(Pk)n(yk)

(B4)

where N is the total number of data samples, K is the total
number of classes,nkkis a correct prediction of class k, n(Pk)

is the number of samples where the kth class is predicted,
and n(yk) is the number of samples where the kth class is
observed. The Peirce score can be calculated with Eq. (B5)
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and shares these term definitions.

Peirce score=
1
N

∑K
k=1nkk −

1
N2
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k=1n(Pk)n(yk)

1− 1
N2

∑K
k=1n(yk)

2
(B5)

Appendix C: Convolutional Neural Network
Architecture Diagrams (Four- and Two-Class Models)

The panchromatic data were input to the first convolu-
tional block, labeled “Conv 513× 513× 4” and “Max pool
257× 257× 4” in Fig. 3. All convolutional blocks in our
CNN contained two convolutional layers, using 3× 3-pixel
convolutional filters or “kernels”. The first convolutional
layer in this block transformed the panchromatic data to
two feature maps, via two learned convolutional filters.
The second convolutional layer in the block then trans-
formed the two feature maps to four feature maps, via
four learned filters. Each convolutional layer was followed
by an activation function, which is a pixel-by-pixel non-
linear transformation. Activation functions are the key
component enabling neural networks to learn non-linear
relationships. Our specific activation function was the leaky
rectified linear unit (ReLU) with a slope parameter of 0.2
(Nair and Hinton, 2010). Furthermore, each activation
function was followed by batch normalization (Ioffe and
Szegedy, 2015), which restores values in the maps to an
approximately standard normal distribution. (The predictor
variables followed a standard normal distribution, ensured
by our z-score transform, but the operations carried out in
a CNN can warp this distribution, which leads to slower
training convergence.) After two convolutional layers
with activation and batch normalization, we used max
pooling to reduce the spatial resolution by half. With max
pooling, the maximum value for each set of four pixels is
retained. The full series of convolution > activation > batch
normalization > convolution > activation > batch normal-
ization > pooling made up one convolutional block (Figs. 3,
C1, and C2). CNN model architecture diagrams for the
four-class and two-class models are shown in Figs. C1 and
C2, respectively.

https://doi.org/10.5194/bg-22-6509-2025 Biogeosciences, 22, 6509–6543, 2025



6534 L. A. Sindewald et al.: Identifying alpine treeline species

Figure C1. CNN architecture for the four-class model, incorporating panchromatic, multispectral, and DEM inputs at different spatial
resolutions. The architecture is the same as the six- and two-class models, but with a different number of probabilities output by the final
dense layer.

Figure C2. CNN architecture for the two-class model, incorporating panchromatic, multispectral, and DEM inputs at different spatial reso-
lutions. The architecture is the same as the six- and four-class models, but with a different number of probabilities output by the final dense
layer.
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Appendix D: Spatial Diagrams of Model Performance

Figure D1. argets and out-of-bag predictions for the 6-class model at the Longs Peak study site. (a) Targets (actual classes) with panchromatic
radiance (W m−2 sr−1 µm−1) plotted in the background. Panchromatic radiance is plotted at quarter resolution (1.24 m instead of 0.31 m),
due to memory limitations. (b) Out-of-bag predictions and actual occurrences of POTR. For each data sample (one data sample= one
polygon pixel, as in Table 1), the yellow-to-red marker shows the modeled probability that the data sample is POTR, while the presence of
a blue marker indicates that the sample is actually POTR. Hence, faint yellow markers (probability ∼= 0) with no blue marker on top can
be considered true negatives; faint yellow markers with a blue marker can be considered false negatives; dark red markers (probability ∼= 1)
with a blue marker can be considered true positives; and dark red markers with no blue markers can be considered false positives. (c) Same
as panel b but for Salix. (d) Same but for PIEN. (e) Same but for BEGL. (f) Same but for PIFL. (g) Same but for ABLA.
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Figure D2. Targets and out-of-bag predictions for the 6-class model at the Battle Mountain study site. Formatting is explained in the caption
of Fig. D1.
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Figure D3. Targets and out-of-bag predictions for the 4-class model at the Longs Peak study site. Formatting is explained in the caption of
Fig. D1.
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Figure D4. Targets and out-of-bag predictions for the 4-class model at the Battle Mountain study site. Formatting is explained in the caption
of Fig. D1.

Figure D5. Targets and out-of-bag predictions for the 2-class model at the Longs Peak study site. Formatting is explained in the caption of
Fig. D1.
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Figure D6. Targets and out-of-bag predictions for the 2-class model at the Battle Mountain study site. Formatting is explained in the caption
of Fig. D1.
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