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Abstract. Spatially accurate information on plant species
is essential for monitoring in forestry, agriculture and na-
ture conservation. Unoccupied aerial vehicle (UAV)-based
remote sensing combined with supervised deep learning seg-
mentation methods can provide accurate segmentation of
plant species. However, labeling training data for super-
vised deep learning methods in vegetation monitoring is a
resource-intensive task. Citizen science photographs anno-
tated with species recognition apps could solve this chal-
lenge. However, citizen science photographs only have weak
species classification labels and no segmentation masks,
which are required to train state-of-the-art segmentation
methods for fine-grained species recognition. Here, we ex-
plore the potential of an automated workflow that inte-
grates the Segment Anything Model (SAM) with Gradient-
weighted Class Activation Mapping (Grad-CAM) to auto-
matically generate segmentation masks from citizen science
plant photographs. We evaluated the workflow by using the
generated masks to train CNN-based segmentation models
to segment 10 broadleaf tree species in UAV images. Our re-
sults demonstrate that segmentation models can be trained
directly using citizen science-sourced plant photographs, au-
tomating mask generation without the need for extensive
manual labeling. Despite the inherent complexity of seg-
menting broadleaf tree species, the model achieved an over-

all acceptable performance for several species. In the context
of monitoring vegetation dynamics across space and time,
this study highlights the potential of integrating foundation
models with citizen science data and remote sensing into au-
tomated vegetation mapping workflows, providing a scalable
and cost-effective solution for biodiversity monitoring.

1 Introduction

Many environmental monitoring applications rely on spa-
tially explicit, timely, and accurate data on the presence of
plant species for tasks such as biodiversity mapping, moni-
toring endangered or invasive species in conservation efforts,
weed detection in precision agriculture, and assessing tree
species composition in forest management.

Remote sensing images from drones, also known as un-
occupied aerial vehicles (UAVs), have emerged as an effec-
tive source of information for detecting plant species (Sun
et al., 2021; Maes and Steppe, 2019; Lopatin et al., 2019;
Curnick et al., 2021; Wagner, 2021; Müllerová et al., 2023;
Bouguettaya et al., 2022; Fassnacht et al., 2016). Through
mosaicing aerial images, UAVs enable the creation of geo-
referenced orthoimages that cover relatively large areas with
very high spatial resolution in the centimeter to millimeter
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range. The spatial detail in such imagery can reveal dis-
tinct morphological features for plant species identification
(Kattenborn et al., 2019). These features include leaf shapes,
flower structures, branching patterns, and canopy structure
(Schiefer et al., 2020b).

Supervised deep learning methods, particularly convolu-
tional neural networks (CNNs), can successfully be used
to exploit these spatial patterns for automated plant species
identification (Kattenborn et al., 2019; Schiefer et al., 2020b;
Brodrick et al., 2019). The integration of deep learning-based
pattern recognition with the high spatial resolution achiev-
able by UAVs transforms even simple RGB cameras into ef-
fective tools for vegetation monitoring. Particularly, CNNs
for semantic segmentations enable an assignment of each
pixel of a UAV orthoimage to a plant species, enabling the
mapping of the spatial distribution of plant species in un-
precedented detail (Kattenborn et al., 2021b; Hoeser and
Kuenzer, 2020)

Supervised deep learning methods, which require labeled
training data, hold great potential for plant species mapping.
Despite their potential, a key challenge of making super-
vised deep learning methods operational for plant species
mapping is the need for large amounts of training data (Kat-
tenborn et al., 2021b; Galuszynski et al., 2022). Especially
when neighboring plant species look similar, a large amount
of training data is needed to allow the model to learn the
subtle differences between these species (Kattenborn et al.,
2021b; Schiefer et al., 2020b). Traditionally, such training
data have been derived from field surveys or manual anno-
tation of UAV imagery, both of which are labor-intensive
and time-consuming processes (Leitão et al., 2018; Katten-
born et al., 2021a). One alternative source of training data
is crowd-sourced plant photos from citizen science species
identification platforms, such as iNaturalist and Pl@ntNet
(Boone and Basille, 2019; Di Cecco et al., 2021; Joly et al.,
2016; Affouard et al., 2017; Soltani et al., 2022, 2024). These
citizen science platforms generated millions of photos of
vascular plants annotated with species labels, representing a
valuable resource for training computer vision models (Joly
et al., 2016; Van Horn et al., 2018). iNaturalist allows users to
identify plant species manually or with assistance from an in-
tegrated AI-based model, after which community consensus
determines the reliability of each label, assigning “research-
grade” status when at least two-thirds of users agree on the
identification. Similarly, Pl@ntNet, with over 12 million ob-
servations, uses a comparable approach by combining auto-
mated species suggestions with community-based validation
(Joly et al., 2016). Both platforms contribute their validated
data to the Global Biodiversity Information Facility (GBIF),
an international repository for open-access biodiversity in-
formation (GBIF, 2019).

While citizen science datasets such as iNaturalist and
Pl@ntNet provide valuable species-level labels, they fall
short in delivering the pixel-level annotations, called seg-
mentation masks, required to fully exploit high-resolution

UAV imagery (Soltani et al., 2022). These simple labels can
indicate whether a species is present in an image, but they of-
fer no information about where the species occurs within it.
This lack of spatial localization severely limits their useful-
ness for UAV-based applications, where the primary interest
is not if a species is present in an image but to map where
species are located in a landscape. To realize the full poten-
tial of deep learning for species mapping in UAV imagery we
need training data with precise pixel-level masks.

An additional challenge of citizen science imagery lies in
its heterogeneity in scene conditions and geometry (Soltani
et al., 2022). In particular, the backgrounds are often highly
variable, ranging from sky and vegetation to mountains and
diverse landscapes, which may limit the transferability of im-
age features to the drone perspective.

To address these limitations, we present a novel workflow
that transforms weakly labeled, crowd-sourced plant pho-
tographs into high-quality segmentation masks (Fig. 1). Our
approach leverages the Segment Anything Model (SAM), a
state-of-the-art foundation model designed for generic seg-
mentation tasks (Kirillov et al., 2023), in combination with
Gradient-weighted Class Activation Mapping (Grad-CAM)
(Selvaraju et al., 2017). First, we train a computer vision
model for a simple species classification of the citizen sci-
ence photographs. Based on these classifications, Grad-CAM
highlights image regions that contribute most to species clas-
sification, which we use to guide point-based prompts for
SAM to generate accurate segmentation masks. This enables
an automated mask creation from images with only species-
level labels, eliminating the need for manual pixel-wise an-
notation. Lastly, we enhance the transferability of these citi-
zen science-based training data and its image features to the
drone scale by exchanging the textures of the background
class with common background samples from drone imagery.

We demonstrate the potential of this approach in a work-
flow that generates segmentation masks from iNaturalist and
Pl@ntNet photos, making them directly suitable for training
CNN-based encoder-decoder segmentation models for plant
species segmentation. We then apply these models to UAV
orthoimagery for high-resolution, large-scale plant species
segmentation (Kattenborn et al., 2021b; Bayraktar et al.,
2020; Brandt et al., 2020). To evaluate this workflow, we
test it on a UAV dataset from the MyDiv experimental site
in Bad Lauchstädt, Germany, which includes ten deciduous
tree species (Ferlian et al., 2018). Our results demonstrate
the potential of combining weakly labeled citizen science
data with foundation models (SAM) to scale training data
generation for semantic segmentation, significantly reduc-
ing manual effort and enabling broader application in remote
sensing-based plant species mapping.
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Figure 1. Schematic workflow of the mask generation for UAV-
related segmentation tasks. Heatmaps are generated using the Grad-
CAM approach on the species classification model. The resulting
heatmaps are used to extract sample points for the SAM foundation
model, which generates segmentation masks. These segmentation
masks are then used to replace the background with a background
corresponding to the UAV imagery. These modified citizen science
photos and segmentation masks are then used to create segmenta-
tion models which are applied to UAV orthoimages.

2 Methods

2.1 Data acquisition and pre-processing

2.1.1 Study site and drone data acquisition

This study was conducted at the MyDiv site, which is lo-
cated at the Bad Lauchstädt Experimental Research Sta-
tion of the Helmholtz Centre for Environmental Research –
UFZ in Bad Lauchstädt, Saxony-Anhalt, Germany (latitude
51°23′ N, longitude 11°53′ E). The MyDiv site comprises 20
monoculture plots of ten tree species (two per species). The
species comprise Acer pseudoplatanus, Aesculus hippocas-
tanum, Betula pendula, Carpinus betulus, Fagus sylvatica,
Fraxinus excelsior, Prunus avium, Quercus petraea, Sor-
bus aucuparia, and Tilia platyphyllos (Ferlian et al., 2018).
Each plot measures 11× 11 m and contains 140 individuals

planted in a uniform grid with 1 m spacing, resulting in a total
of 2800 trees across the experimental area (Fig. 2).

We generated a high-resolution, georeferenced orthomo-
saic of the MyDiv experimental site using UAV-based RGB
imagery acquired during the peak growing season in July
2022 (Fig. 2). To obtain the imagery, we conducted UAV
flights at 16 meters altitude using a DJI Mavic 2 Pro drone
and DroneDeploy flight planning software (v5.0, USA), ap-
plying 90 % forward and 70 % side image overlap. The re-
sulting imagery had a ground sampling distance of approxi-
mately 0.22 cm per pixel. We processed the image set using
Metashape (v1.7.6, Agisoft LLC, Russia) to produce the final
orthomosaic.

Using the generated orthoimage, we created an indepen-
dent test data of the target species, which served for testing
the models trained on the citizen science data. This inde-
pendent test data was generated in an earlier study (Soltani
et al., 2024) by manually delineating the canopies of the
tree species in the UAV orthoimages using QGIS (version
3.32.3). Given the laborious effort to create such reference
masks at high quality, we created diagonal transects for each
plot measuring 20 m in length and 2 m in width, instead of
annotating the entire plot.

2.1.2 Citizen science data

To compile the tree species training dataset, we queried
citizen science plant observations from the iNaturalist and
Pl@ntNet via the Global Biodiversity Information Facil-
ity (GBIF) database using the scientific names of the tar-
get tree species. We retrieved iNaturalist data using the R
package rinat (version 0.1.8), which provides an application
programming interface (API) for iNaturalist. We acquired
Pl@ntNet data directly from GBIF as tabulated observation
records through an R pipeline that downloads the plant pho-
tographs using the provided URLs. We restricted the iNatu-
ralist dataset to photographs taken between May and Septem-
ber to avoid photographs in leaf-off conditions, improving
their comparability with the UAV orthoimages. Given that
plant photographs within the Pl@ntNet dataset are initially
focused on the green parts of the plants such as leaves, it
was unnecessary to perform any date-based filtering on the
Pl@ntNet data.

The number of photographs available for each species
varied across our two datasets. We were able to down-
load between 893 and 10 000 photographs per species
(mean= 7957) from the iNaturalist platform. Likewise, the
Pl@ntNet platform provided between 221 and 3304 pho-
tographs per species (mean= 2238). Complete details re-
garding the number of downloaded photos per species are
provided in Table A1 in the Appendix.

We preprocessed all photos to ensure a uniform shape by
cropping each image to a rectangular shape based on the
shorter side and resampling them to 512× 512 pixels. The
RGB values were normalized within the range [0, 1].
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Figure 2. Overview of the MyDiv experimental site, highlighting six monoculture plots in close-up. The site is located at 51.3916° N,
11.8857° E.

2.2 Segmentation mask creation

Various ongoing efforts are being made for automated seg-
mentation of objects in images, with Meta’s Segment Any-
thing Model (SAM) being one of the most widely used (Kir-
illov et al., 2023). SAM segments objects based on boxes or
points as inputs.

We automated the process of generating input points for
the SAM model by utilizing the feature attribution method
Grad-CAM (Selvaraju et al., 2017). Grad-CAM attributes a
decision of an existing model to the pixels of an input image
in the form of a heatmap. This heatmap thus indicates which
areas were important for identifying a class. The citizen sci-
ence photographs with their simple species labels allowed us
to train image classification models for the target tree species
to predict if one of the tree species is somewhere in the pho-
tograph. Using Grad-CAM, we located the pixels that were
important for the model to reveal the approximate location of
the species within the image. Then, we sampled points from
these image regions as input for the segmentation mask gen-
eration using SAM. Thereby, SAM was directly applied to
the raw citizen science photographs.

For training the image classification model, we used the
EfficientNet-V2 Large architecture (Tan and Le, 2021). The
final classifier layer was adjusted to correspond to the num-
ber of tree species plus an additional class for the back-
ground. The default fully connected layer was substituted
with a linear layer comprising eleven output units, which
map to each distinct plant species or background class. To
achieve a balanced dataset for training, we selected 4000
photographs per class. For those species with fewer avail-
able photographs, we duplicated the existing photographs. A
data augmentation was applied to all photographs to increase
generalization and to minimize the redundancy of duplicated
photographs. The data augmentation included random hori-

zontal and vertical flips, color jitter, random cropping, and
random erasing with a probability of 20 %.

We explored a range of hyperparameters. Specifically, we
tested learning rates from 0.00001 to 0.1 and batch sizes
between 5 and 20. Additionally, we evaluated various opti-
mizers (Adam, SGD, AdamW), momentum parameters for
SGD (0.4 to 0.99), weight decay for regularization (1× 10−2

to 1× 10−5), dropout rates (0.1 to 0.5), and multiple dense
layer configurations. We also compared different loss func-
tions, including Cross-Entropy Loss and Focal Loss. Initial
experiments showed that the AdamW optimizer with mod-
erate weight decay (1× 10−4) and no dropout, combined
with the dynamic OneCycleLR learning rate scheduler, with
a maximum learning rate of 0.01 (Smith, 2018), consistently
yielded the most stable and superior convergence.

The optimal hyperparameters identified were a learning
rate of 0.001 and a batch size of 16. The final model imple-
mentation utilized the PyTorch framework and was trained
on a high-performance GPU system (NVIDIA A6000 with
48 GB RAM). We partitioned the reference dataset into train-
ing (80 %) and validation sets (20 %).

We used the final model with the lowest validation loss
to generate Grad-CAM heatmaps. After several tests, we
found that the original Grad-CAM implementation revealed
meaningful outputs and had high computational efficiency
(Selvaraju et al., 2017). The heatmap values ranged from 0
to 1, with higher values indicating greater importance for
a given species’ identification. To enhance the precision of
input point selection, we applied a contour-based sampling
method that restricted point placement to regions with an ac-
tivation probability threshold > 0.6. After multiple tests, we
found that placing two input points per contour yielded op-
timal segmentation performance. The sampled points were
used as input for SAM, which subsequently automatically
generated segmentation masks for the citizen science plant
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photographs. All four steps described in this paragraph are
illustrated in the workflow figure, which progresses from the
“Heatmap via Grad-CAM” row to the final “Segmentation
masks via SAM” row (Fig. 1).

2.3 Harmonizing citizen science photographs with UAV
images

We performed several preprocessing steps to improve the
consistency between the perspective of the citizen science
photographs and UAV orthoimagery. A significant challenge
in using citizen science plant photographs is that they often
include understory vegetation and background elements (e.g.
sky, mountains). The latter are typically not visible in UAV
imagery, as they predominantly capture the upper canopy
structure. These background elements during training can in-
troduce unwanted variance and increase the complexity of
the segmentation model, potentially leading to misclassifica-
tion and reduced performance.

To simulate the top-down canopy perspective for the cit-
izen science photographs, we replaced the backgrounds in
the crowd-sourced photographs with background images de-
rived from the UAV orthomosaic. We used the masks de-
rived with Grad-CAM and SAM to automatically substitute
the background of the citizen science photos across the en-
tire dataset. This approach preserved the shape and structure
of the target species in the foregrounds, while ensuring that
the backgrounds matched the visual characteristics captured
in the UAV orthoimage. For the background class, we manu-
ally extracted a total of 1879 high-resolution close-up images
from the UAV orthoimage, including exposed soil, herba-
ceous vegetation, and leaf litter ensuring comprehensive cov-
erage of various background types in the study area.

Another preprocessing step involved zoom-outs of the
original plant photographs. Citizen science photographs of-
ten include close-ups of plants and their leaves. To align such
photographs with the often more distant UAV image acqui-
sition geometry, the entire citizen science training dataset
was augmented through zoom-out operations. Specifically,
we duplicated each photograph and zoomed out the plant
foreground by 60 %. This approach ensures that our train-
ing dataset includes both the original and zoomed-out pho-
tographs. The value of 60 % was set heuristically, since an
effective resolution of the citizen science photos is not avail-
able.

A common limitation of our automated workflow for mask
generation was that it occasionally failed to detect the entire
plant within a photograph, instead detecting only small frag-
ments of the foreground plant (e.g., a single branch or leaf).
To exclude these incomplete masks and their correspond-
ing photographs, we filtered out all masks when the detected
plant in the foreground was less than 30 % of the total pho-
tograph area. This threshold was empirically determined as a
balance between retaining meaningful samples and removing
erroneous data.

Citizen science photographs exhibit substantial variability
in acquisition perspectives and settings compared to UAV
imagery. UAV images typically capture tree canopies from
a consistent bird’s eye view at uniform distances, whereas
citizen science photographs are very heterogeneous, includ-
ing close-up views of leaves, horizontal shots of trunks, or
landscape views. Previous works demonstrated that exclud-
ing photos based on acquisition distance, such as too close
to plants, far away showing landscapes, or photos mainly
showing tree trunks, improves the precision of species seg-
mentation in UAV orthoimage (Soltani et al., 2022, 2024).
To enhance the quality of training data, we applied filters
based on acquisition distance and the presence of tree trunks.
Since the metadata for these attributes is not available on cit-
izen science platforms, we developed a CNN-based regres-
sion model to predict acquisition distances in meters and a
separate CNN-based classification model to detect the pres-
ence of the trunks. The models were developed in our pre-
vious study on tree species, and we used them in the current
study without any additional fine-tuning. Estimating acquisi-
tion distance from photographs using a CNN-based regres-
sion model was first introduced in our previous work Soltani
et al. (2022). The model achieved an R2

= 0.7 on indepen-
dent test data. This accuracy indicates reliable performance
in predicting acquisition distances from crowd-sourced pho-
tographs. An example of the model’s predictions and the re-
sulting distance-based filtering is provided in the appendix
(Fig. A2).

For an in-depth explanation of the distance estimation, re-
fer to (Soltani et al., 2022). Based on these estimated dis-
tances, we excluded photos with acquisition distances of less
than 0.2 m or greater than 20 m, as well as photos for which
a probability of including a tree trunk was greater than 0.5.
After filtering, 65 024 of the original 112 018 photographs
were retained for tree species segmentation. Figure 3 illus-
trates examples of processed images and highlights their vi-
sual differences compared to UAV orthoimages.

2.4 CNN-based plant species segmentation using an
encoder-decoder architecture

As a segmentation architecture, we chose U-Net (Ron-
neberger et al., 2015), which is the most widely applied seg-
mentation architecture in remote sensing image segmentation
(Kattenborn et al., 2021b). It is implemented as an encoder-
decoder network, where the encoder captures hierarchical
feature representations and the decoder reconstructs spatial
details to generate a dense prediction map. Skip connections
link the corresponding encoder and decoder layers, allow-
ing the model to combine high-level semantic information
with fine-grained spatial details. This architecture produces
semantic segmentation by predicting a class for each input
image pixel.

The U-Net architecture implemented in this study con-
sists of a symmetric encoder–decoder structure organized
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Figure 3. Example citizen science-based photographs derived from iNaturalist and Pl@ntNet as well as tiles of UAV orthoimages (512× 512
pixels) for the ten tree species in the MyDiv experiment.

into four stages. Each stage in the encoder applies two con-
volutional operations with batch normalization and ReLU ac-
tivations, followed by max-pooling to reduce spatial dimen-
sions and extract higher-level features. The decoder reverses
this process through transposed convolutions, progressively

refining spatial resolution. Skip connections link encoder and
decoder levels to retain spatial detail lost during downsam-
pling. The final layer outputs eleven probability maps cor-
responding to ten tree species and one background class. A
softmax function converts the outputs into probabilities, and
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each pixel is assigned the class with the highest probability
(Fig. A1).

After filtering the training data (see Sect. 2.3), the num-
ber of photos per tree species ranged from 2342 to 13 303
samples: Acer pseudoplatanus (6991), Aesculus hippocas-
tanum (7583), Betula pendula (6129), Carpinus betulus
(7849), Fagus sylvatica (6873), Fraxinus excelsior (9094),
Prunus avium (4883), Quercus petraea (6344), Sorbus aucu-
paria (7792), and Tilia platyphyllos (1486), and background
(1879). Similar to the image classification model training,
we sampled 4000 photos per class to avoid any effects of
class imbalance. We applied sampling with replacement for
the classes with fewer photos. To increase the variance of
duplicated photos, we applied data augmentation including
vertical and horizontal flips, random brightness adjustments
with a maximum delta of ±10 % (0.1), and contrast alter-
ations within a range of 90 % to 110 % (0.9 to 1.1) of the orig-
inal training photographs. We partitioned the training pho-
tographs into 80 % training and 20 % validation sets for the
evaluation of the segmentation model.

Similar to the training procedure of the image-
classification model used for mask generation (see Sect. 2.2),
we tested a range of hyperparameters to optimize the seg-
mentation model’s performance. Learning rates in the range
of 10−4–10−3 and batch sizes from 5 to 10 were evaluated.
We compared different optimizers, including Adam, SGD,
and RMSprop, and tested both ReLU and GELU activation
functions. For loss computation, we experimented with a cus-
tomised Focal Tversky loss using different parameter set-
tings. The weight of the background class was ignored dur-
ing training, as it appeared in all citizen science plant pho-
tographs and contributed disproportionately to the pixel dis-
tribution, resulting in strong class imbalance. Ignoring this
class allowed the model to better focus on learning the fea-
tures of the tree species. The Focal Tversky loss adapts the
Tversky index by focusing training on hard-to-classify pix-
els and underrepresented classes, which is particularly ben-
eficial for imbalanced datasets. The final U-Net model was
trained using RMSprop with a learning rate of 10−4, a batch
size of 10, ReLU activation, and the Focal Tversky loss
with α = 0.3, β = 0.7, and γ = 0.75, as this configuration
resulted in high segmentation performance across different
species.

We trained the models with a batch size of 10 over 80
epochs. We trained the segmentation model on citizen sci-
ence plant photographs using a fixed data split, with 80 % of
the data for training and 20 % for validation. The final seg-
mentation model performance was evaluated using indepen-
dent reference data derived from visual interpretation of UAV
orthoimage transects, which were not used during training
(see Sect. 2.1.1).

We evaluated the model performance of the segmentation
model using the F1 score. The F1 score combines both Pre-
cision and Recall into a single measure, balancing false pos-
itives and false negatives (Eq. 1). The formulas used to com-

pute Precision, Recall, and the F1 score are provided below:

Precision=
TP

TP+FP

Recall=
TP

TP+FN

F1 = 2×
Precision×Recall
Precision+Recall

(1)

In addition, we computed a confusion matrix for each class
to reveal systematic confusion between species. We obtained
the confusion matrix based on the predicted and reference
segmentation masks on a per-pixel basis. For each class, we
counted the number of True Positives (TP), False Positives
(FP), False Negatives (FN), and True Negatives (TN).

3 Results

Across the ten tree species, the automated mask creation
generated precise segmentation masks. These masks clearly
delineated the target species, accurately capturing leaf con-
tours, edges, and complex and even small morphological fea-
tures such as small twigs, petioles, and branches (Fig. 4).
Even in complex image scenarios and across the heteroge-
neous scene components, such as hands or other species,
the masks consistently indicated the silhouettes of the target
species.

The U-Net segmentation model was first trained using the
automatically derived segmentation masks in 80 epochs. The
best model across these epochs, as selected from a valida-
tion split of the citizen science data, resulted in an F1 of 0.89
across all tree species and the background class. This model
was then applied to the UAV imagery and corresponding
reference data. The evaluation on the UAV-based reference
data yielded varying F1 scores for the different tree species
(Figs. 5 and 6).

At the plot level, high model performance (mean F1> 0.6)
was observed for Acer pseudoplatanus and Tilia platyphyl-
los. This was followed by moderate performance (mean F1
score: 0.35–0.56) for Aesculus hippocastanum, Carpinus be-
tulus, Fagus sylvatica, and Quercus petraea. Low segmenta-
tion performance (mean F1 score< 0.35) was observed for
Sorbus aucuparia, Prunus avium, Fraxinus excelsior, and
Betula pendula.

We observed large differences in the confusion between
species, where some species were rather randomly and some-
times systematically confused with each other. For instance,
we observed many false positives for Prunus avium, which
was in fact Aesculus hippocastanum (25.4 %), Betula pen-
dula (33.4 %), Carpinus betulus (28.7 %), Fagus sylvatica
(31.6 %), and Fraxinus excelsior (21.7 %) (Fig. 5).

Furthermore, Sorbus aucuparia was often confused for
Fraxinus excelsior, with the former incorrectly classified at
a confusion rate of 42.6 % (Fig. 5). Both the model perfor-
mance and the confusion were related to leaf size, where the
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Figure 4. Examples of citizen science plant photographs and their corresponding automatically generated segmentation masks for each of
the ten tree species.

performance of the model declined as the leaf size decreased
in the tree species dataset.

4 Discussion

4.1 Automated mask generation of citizen science
photos using the SAM

Labeling training data for computer vision, particularly for
vegetation monitoring using remote sensing data, remains
a persistent challenge, primarily due to the complexity and
scale of datasets required for such applications (Singh and
Surasinghe, 2024; Gillespie et al., 2024; Bah et al., 2018).
This challenge is more pronounced for segmentation tasks
that require mask labels (Maß and Alirezazadeh, 2025; Illar-
ionova et al., 2022; Kattenborn et al., 2021a). Our proposed
method attempts to address this issue by automating the mask
generation process through the integration of the SAM foun-

dation model with the Grad-CAM technique (Kirillov et al.,
2023; Selvaraju et al., 2017).

In our study, we focussed on using two Grad-CAM-
derived input points as the basis for mask generation. Al-
though this approach proved effective, alternative input
strategies, such as polygonal annotations or directly using
the most activated regions heatmaps, present opportunities
for further exploration. Each method has unique trade-offs
in terms of computational complexity, mask quality, and
suitability for different applications. For example, polygo-
nal annotations might better capture complex shapes, while
thresholded heatmaps could provide more generalized masks
for species with diffuse features. Exploring these strategies
could enhance the adaptability of our methodology to a wider
range of plant species and photographic conditions.

One of our notable findings was the delineation precision
of the automated workflow for mask generation. From the
Grad-CAM-generated input points, SAM was able to fol-
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Figure 5. F1-scores and confusion matrix for segmenting tree species in UAV orthoimagery.

low leaf contours with high precision. Achieving this level
of delineation precision through manual efforts is infeasible,
especially when handling large datasets. Therefore this au-
tomated mask generation addresses one of the most labor-
intensive steps in ecological monitoring (Kattenborn et al.,
2021b; Katal et al., 2022; Maß and Alirezazadeh, 2025). The
capability to automatically and efficiently generate detailed
masks removes barriers to annotating large datasets, paving
the way to leverage large, heterogeneous datasets for remote
sensing applications.

The mask generation approach presented further enabled
to tailor the training data to the remote sensing scene. Here,
we modified the background of the training data with the
background that was observed in UAV imagery. This was
only possible due to the precise segmentation masks cre-
ated using the presented workflow. Previous modeling at-
tempts (results not shown) showed that the presence of vari-
ous image components, such as understory, may complicate a
model transfer to the UAV scale. Instead, removing the orig-

inal background with the UAV-based background greatly im-
proved the model performance. This innovation highlights
that datasets with extreme variance can be tailored to specific
remote sensing applications.

By automating segmentation mask generation, our pro-
posed methodology also significantly improves the utility of
citizen science data for ecological research. Our approach
enables the exploitation of the huge and rapidly growing
availability of citizen science plant photographs for remote
sensing-based vegetation monitoring. Citizen science plat-
forms such as iNaturalist and Pl@ntNet already include
many of the globe’s vascular plant species, with many species
already being observed hundreds to thousands of times (iNat-
uralist, 2025; Plantnet, 2025). Automatically labeled citizen
science photos as presented in this study can be used as stan-
dalone datasets or augment existing training data. Citizen sci-
ence data further comes with a high variability in image ge-
ometries, acquisition dates, and plant status, making it a rich
and diverse source of training data. However, this diversity
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Figure 6. Tree species segmentation results in UAV images using the encoder-decoder model trained on citizen science plant photographs and
their corresponding masks. A multiclass visualization for each plot, illustrating inter-class confusion, is provided in the appendix (Fig. A3).

can also hamper model performance if imagery is not cu-
rated to match the downstream tasks, which prompted our
removal of extremely close and extremely far images during
training. Incorporating additional task-specific image adjust-
ments, such as spatial re-sampling to the resolution of the
UAV imagery (Martins et al., 2020) should further improve
performance. Lastly, both citizen science data collection and
UAV data acquisition are effective across diverse landscapes
and seasons (Soltani et al., 2024; Katal et al., 2022; Schiller
et al., 2021) and scalable across wide geographies (Gille-
spie et al., 2024; Mosig et al., 2024; Möhring et al., 2025),
raising the exciting possibility of real-time, landscape-level
vegetation monitoring. This further offers the public unique
opportunities to support biodiversity monitoring and conser-
vation by transforming their contributed data into actionable
insights for large-scale environmental applications.

Beyond vegetation monitoring, the presented workflow of
an automated segmentation mask generation holds transfor-

mative potential for a variety of supervised computer vision
tasks across multiple domains. Automating the mask gener-
ation process not only accelerates the annotation workflow
but also significantly improves the scalability and robustness
of deep learning models, enabling them to be trained across
large datasets where manual annotation would be infeasible.

4.2 Filtering of citizen science data for UAV-related
applications

The filtering of citizen science photographs was crucial for
aligning ground-based observations with UAV imagery. This
process involved selecting photos captured during the grow-
ing season (May to September), ensuring appropriate acqui-
sition distances, and excluding images dominated by tree
trunks. Since photos of deciduous trees taken during winter
primarily show leafless branches, filtering photos acquired
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beyond the growing seasons enhanced consistency with the
UAV imagery.

A challenge of the automated segmentation mask genera-
tion was that the dataset was dominated by the background
class. To address this, we filtered out photographs where
more than 30 % of the photos were covered by the back-
ground class. These filtering measures enhanced data qual-
ity, minimized irrelevant inputs, and improved overall model
performance.

4.3 Segmentation performance

Segmenting temperate broadleaf tree species using UAV im-
agery presents a complex challenge due to leaf form simi-
larities between many species (Fig. 3). This complexity was
evident in the confusion patterns observed in this study, par-
ticularly among species such as Sorbus aucuparia and Frax-
inus excelsior. Despite having different leaf arrangements,
these species appear remarkably similar at the current res-
olution of UAV imagery (0.22 cm) in the absence of flow-
ers and fruits for Sorbus aucuparia (Fig. 3). This similar-
ity in leaf shape makes them difficult to visually distinguish,
even in centimetre-scale orthomosaics. Although Fraxinus
excelsior possesses pointy leaves, as visible in citizen sci-
ence photographs, these subtle distinctions are barely visible
in UAV orthoimages, further compounding the classification
challenges. These findings are in line with previous studies
(Schiefer et al., 2020a; Soltani et al., 2024) and highlight
that some species require even higher-resolution UAV data
to capture the subtle morphological details critical for species
differentiation.

The resolution of UAV imagery is critical for accurate seg-
mentation, as it allows for the detection of fine morphologi-
cal features such as leaf shape and branching patterns (Kat-
tenborn et al., 2021a; Schiefer et al., 2020b). In this study,
species with higher model performance, such as Acer pseu-
doplatanus and Tilia platyphyllos, benefited from their large,
distinct leaves, which were more readily detectable in UAV
orthomosaics. However, the presence of other species of the
respective genus with a similar leaf shape, e.g. Acer plana-
tonides or Tilia cordata, that were not present in MyDiv but
may co-occur in real-world forests, may lead to the simi-
lar confusion as between Fraxinus excelsior and Sorbus au-
cuparia. Still, in the present study, the high F1 scores for
Acer pseudoplatanus (mean F1: 0.74) and Tilia platyphyl-
los (mean F1: 0.67) underscore the advantage of pronounced
morphological patterns. However, the model’s performance
declined significantly for species with smaller or morpho-
logically similar leaves, such as Betula pendula and Frax-
inus excelsior. These species demonstrated very low mean
F1 scores, indicating a notable limitation in resolving fine-
scale distinctions. Higher-resolution UAV images finer than
0.22 cm could allow the model to capture species-specific de-
tails that are currently apparent, and subtle differences in leaf
shape and arrangement. These findings align with a previous

study using the MyDiv dataset, where small canopy areas de-
creased segmentation performance (Soltani et al., 2024).

Further model improvements might be possible with in-
creasing availability of citizen science photographs. Here, for
most species we could obtain between 2342 to 13 303 pho-
tographs per species. The increasing size of citizen science
data will provide more diverse representations of species
across different habitats and seasons (Boone and Basille,
2019). Together with filtering such data and further tailor-
ing it to the UAV perspective, incorporating additional and
high-quality citizen science photographs could address cur-
rent limitations related to the underrepresentation of specific
species and enhance the model’s ability to generalize to new
environments.

In addition to data-related improvements, leveraging ad-
vanced segmentation models could address some of the lim-
itations observed in this study. While U-Net has been ef-
fective in segmentation tasks, here, its performance is con-
strained in scenarios with similar morphological features and
complex canopies. More complex architectures or methods,
such as transformer or deeper CNN architectures, which in-
tegrate multi-scale feature extraction and attention mecha-
nisms, offer promising alternatives (Li et al., 2024). We as-
sume that particularly in concert with higher resolution data,
such methods could significantly enhance segmentation ac-
curacy for challenging species like Betula pendula and Frax-
inus excelsior.

5 Conlusion

This study demonstrates the value of citizen science pho-
tographs for remote sensing-based plant species identifica-
tion. We showed that the simple species annotations of cit-
izen science projects can be automatically used to create
segmentation masks with high precision. These segmenta-
tion masks can then be used to train segmentation models
to locate plant species in UAV imagery. Despite the inher-
ent complexity of segmenting broadleaf tree species and their
often similar appearance, the model achieved an overall ac-
ceptable performance for various species. This performance
is enhanced by filtering the citizen science data. Here, we
filtered photographs that are not similar to the UAV perspec-
tive, including photographs that are too close or too far from
the plant or photographs that focus on stems of trees. We also
demonstrated that the citizen science photographs can be fur-
ther tailored to the remote sensing imagery by replacing the
background of the photograph using the automatically gen-
erated segmentation masks with a typical background of the
UAV images. By bridging citizen science with advanced re-
mote sensing and machine learning, this study lays a foun-
dation for inclusive and scalable biodiversity assessments,
supporting efforts to understand and preserve Earth’s ecosys-
tems.
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Appendix A

A1 Segmentation model architecture

Figure A1. U-Net architecture adopted from Soltani et al. (2024) for segmenting tree species in UAV orthoimages (Ronneberger et al., 2015)

A2 Citizen science data availability

Table A1. Number of downloaded photographs for selected tree species from the iNaturalist and Pl@ntNet datasets.

No. Species iNaturalist Pl@ntNet Note

1 Acer pseudoplatanus 10 000 3205
2 Aesculus hippocastanum 9997 1444
3 Betula pendula 10000 1308
4 Carpinus betulus 9999 2633
5 Fagus sylvatica 9999 3304
6 Fraxinus excelsior 10 000 3130
7 Prunus avium 6265 3022
8 Quercus petraea 2419 221

Quercus robur 9993 – Supplement species
9 Sorbus aucuparia 10 000 2730
10 Tilia platyphyllos 893 1449
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A3 Estimation of acquisition distance from
photographs

Figure A2. Examples of citizen science photographs illustrating the predicted camera-to-object acquisition distances, demonstrating the
accuracy and utility of our CNN-based regression model (Soltani et al., 2022). Rows represent increasing predicted distances, ranging from
close-up leaf-level details to entire trees and broader landscape views, highlighting the variability in training data. Individual predicted
distances are indicated below each image.
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Figure A3. Tree species segmentation results in UAV images using the encoder-decoder model trained on citizen science plant photographs
and their corresponding masks. The multiclass predictions are visualized across monoculture plots, enabling inspection of segmentation
outputs and inter-class confusion.

Code and data availability. The code used in this
study is publicly accessible via our GitHub repos-
itory at https://github.com/salimsoltani28/Flora_Mask
(https://doi.org/10.5281/zenodo.17456239, Soltani, 2025).
The data supporting the findings of this research is available on
Zenodo at https://doi.org/10.5281/zenodo.10019552 (Kattenborn
and Soltani, 2023).
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