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Abstract. The escalating global demand for gold has fuelled
the rapid expansion of artisanal and small-scale gold min-
ing (ASGM), which has become the largest source of mer-
cury (Hg) emissions worldwide. Here we synthesize current
research on the pervasive contamination of agricultural sys-
tems by ASGM-derived Hg, identifying the key environmen-
tal pathways and subsequent risks to food security. Within
these systems, Hg undergoes complex biogeochemical trans-
formations, with the methylation of inorganic Hg into its
highly neurotoxic form, methylmercury (MeHg), being a
critical process. This is particularly pronounced in rice paddy
systems, where microbial activity and favourable redox con-
ditions facilitate Hg methylation, resulting in the bioaccu-
mulation of MeHg in rice grains — a staple food for billions.
However, this synthesis reveals that atmospheric uptake is
important to total Hg loadings in rice, and more so in tis-
sues of crops grown in unsaturated soils. Indeed, we stress
the importance of assessing all potential uptake pathways of
Hg in agricultural systems: foliar assimilation from air, up-
take from soils/water (particularly MeHg in rice), direct de-
position to surfaces, and consumption of contaminated crop
tissues (by both humans and livestock/poultry), to delineate
the source and ratios of the different pools of Hg within
crops and their consumers. A common shortcoming in past
studies of ASGM-derived Hg in agricultural systems is that
they have commonly overlooked one or more of these uptake
pathways. These findings underscore a significant threat to
global food chains and human health through the consump-
tion of Hg contaminated produce. Mitigating these risks re-
quires an improved understanding of the quantity of emis-

sions/releases from ASGM, input pathways, and Hg biogeo-
chemical cycling and fate in agricultural landscapes, paving
the way for targeted interventions and sustainable manage-
ment strategies to protect vulnerable communities. We sug-
gest that these goals can be achieved through strategic inter-
national and interdisciplinary collaborations, novel and ac-
cessible technologies, and care for the dissemination of sci-
entific information to impacted communities.

1 Introduction

As a transition metal with distinctive physicochemical prop-
erties, including unique relativistic effects, high surface ten-
sion, and liquid state at ambient temperature and pressure,
mercury (Hg) is a unique and environmentally significant el-
ement (Norrby, 1991; Jasinski, 1995; Fitzgerald and Lam-
borg, 2005). These unique properties have captivated many
civilizations throughout history, with Hg being used across a
range of applications including paint pigmentation, medici-
nal, and spiritual ceremonies (Bagley et al., 1987; Hardy et
al., 1995; Jiang et al., 2006). Use of Hg continues into the
modern era particularly in industrial, mining, and medical
applications (Finster et al., 2015; Munthe et al., 2019). Hg’s
recognition as a global pollutant relates to its environmental
persistence, long-range transport capabilities, and negative
impacts on human and environmental health (i.e., neurotoxi-
city) (Durnford et al., 2010; Driscoll et al., 2013; Fitzgerald
et al., 2007).
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While all forms of Hg are toxic and we are yet to dis-
cover a biological function of the element in the Eukarya do-
main at least (Peralta-Videa et al., 2009; Cozzolino et al.,
2016; Grégoire and Poulain, 2016), methyl-Hg (MeHg) is
the most toxic and bioaccumulative form and the source of
the majority of Hg’s impacts on human and environmental
health (Clarkson et al., 2003; Bjgrklund et al., 2017). The ef-
fects of Hg (and particularly MeHg) exposure on children,
both in utero and after birth, are of particular concern due to
Hg’s primary toxicological action being neurological, caus-
ing abnormalities during foetal development, neurodevelop-
mental delays during childhood, with connections to autism
and other mental disabilities (Schettler, 2001; Bose-O’Reilly
et al., 2010; Kern et al., 2016; dos Santos-Lima et al., 2020).
There are also links between Hg exposure and adverse ef-
fects on cardiovascular, gastrointestinal, renal (kidneys), and
pulmonary systems (Ha et al., 2017; Basu et al., 2023).

In 2013, a global treaty on Hg, the Minamata Convention,
was brought into effect and signed by 128 nations (UNEP,
2013), with the primary goal of reducing the impacts of Hg
on human and environmental health. The texts and annexes
of the Minamata Convention lay out the scientific and policy
means to achieve these goals including a focus on decreasing
levels of Hg emitted to the atmosphere and released to land,
water and oceans, from activities such as artisanal and small-
scale gold mining (ASGM) by promoting more sustainable
gold mining practices and controlling the supply and trade of
Hg (UNEP, 2013).

1.1 The biogeochemical cycle of mercury

Hg can exist in various oxidation states in the environment.
This includes Hg(0) (elemental or metallic), divalent or mer-
curic, and Hg(I) (monovalent/mercurous), although the latter
is uncommon and highly unstable in the environment and is
rather a short-lived intermediary between Hg(0) and divalent
Hg (Schuster, 1991; Schroeder and Munthe, 1998). Hg(0)
dominates the atmosphere, inorganic divalent Hg (IHg(IT)!)
is the predominant form in water, soil, and sediments, and
MeHg (organic divalent Hg) is the dominant form in biota
(Guzzi and La Porta, 2008; Ullrich et al., 2001; Fitzgerald
et al., 2007). IHg(II) compounds are numerous and exhibit
distinct physicochemical properties (i.e., HgCl, is highly
soluble, while HgS, or cinnabar, is practically insoluble)
that govern their behaviour and cycling in the environment
(Schroeder and Munthe, 1998; Ulrich et al., 2001; Clark-
son and Magos, 2006; Park and Zheng, 2012; Barkay and
Wagner-Dobler, 2005). While Hg is found in a wide range
of minerals, the most abundant Hg-containing minerals are
cinnabar («¢-HgS) and metacinnabar (8-HgS) (Noller, 2014).

IWe use the notation IHg(I) throughout to differentiate inor-
ganic and organic divalent Hg (MeHg). We choose this approach
over the use of [Hg, as “IHg” also includes Hg(0), which has dis-
tinct physicochemical properties and behaviour from all other Hg
species.
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The global distribution of Hg is achieved primarily
through the atmosphere as Hg(0) (Lindberg et al., 2007;
Gworek et al., 2020), driven by its high volatility and low
solubility (Henry’s law constant: 2.3 x 1078 Pa~!; Anders-
son et al., 2008; Gaffney and Marley, 2014), which results in
along atmospheric lifetime of &~ 4—-18 months (Holmes et al.,
2010; Horowitz et al., 2017; Saiz-Lopez et al., 2018). Long-
range transport via river systems also contributes, although
it is less important than the atmospheric transport pathway
(Ariya et al., 2015; Dastoor et al., 2022). Removal from the
atmosphere occurs via dry deposition of Hg(0) (dominant
pathway in terrestrial systems; see Sect. 3 below) or oxida-
tion to gas- or particulate-phase IHg(II) and subsequent wet
and dry deposition of these less volatile forms (Ariya et al.,
2015; Zhou et al., 2021; Dastoor et al., 2025). These depo-
sitional processes to terrestrial and aquatic systems represent
exchanges (negative fluxes), and the reverse processes (in-
cluding reduction of IHg(II) back to Hg(0) and subsequent
volatilization; positive fluxes) can also occur (Outridge et
al., 2018; Dastoor et al., 2025). It is only through burial in
sedimentary materials (ocean sediments, lake sediments, and
subsurface soils) that Hg is removed from the active biogeo-
chemical cycle (Fitzgerald and Lamborg, 2005; Outridge et
al., 2018).

IHg(II) compounds deposited, produced in situ from
Hg(0) oxidation, emitted directly as IHg(II) to air from
some industrial source, or released directly into aquatic en-
vironments such as wetlands, rivers, and lakes can undergo
microbially mediated (both enzymatic and non-enzymatic)
processes that catalyse the transfer of methyl groups from
donors like methylcobalamin to IHg(II) species, forming
MeHg compounds (Ullrich et al., 2001). Methylation typi-
cally occurs under anoxic conditions in saturated sediments
and soils, but some recent studies suggest that methylation
could also proceed under oxic conditions in certain scenarios
(Gallorini and Loizeau, 2021; Wang et al., 2021b). Repre-
sentatives of sulphur-reducing bacteria, iron-reducing bac-
teria, methanogens, diverse firmicutes, and other ferment-
ing bacteria have been identified to predominantly mediate
this process in the environment (Compeau and Bartha, 1985;
Lei et al., 2023). The produced MeHg readily binds to or-
ganic matter (OM; in sediments/particles), can be taken up by
consumers, bioaccumulated, and then biomagnified up food
webs (Ariya et al., 2015). MeHg can also be demethylated
biotically and abiotically (Kritee et al., 2007; Barkay and
Gu, 2021). Biotic demethylation has been posited to proceeds
via two pathways: (i) reductive or mer-dependent demethy-
lation (taxonomically widely distributed, and common in
more contaminated environments) and (ii) oxidative or mer-
independent demethylation (less well understood) (Barkay
and Gu, 2021). Abiotic demethylation occurs via direct or
indirect photolysis (Barkay and Gu, 2021).

Study of the Hg biochemical cycle has advanced signifi-
cantly in the past two decades since the development of cold-
vapour introduction methods for multi-collector, inductively-
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coupled plasma, mass spectrometers (MCICPMS) that has
facilitated high precision measurement and analyses of nat-
ural abundance Hg stable isotopes in samples spanning a
broad range of environmental matrices (Bergquist and Blum,
2009). There are seven stable isotopes of Hg and significant
mass-dependent (MDF; defined by & notation) and mass-
independent fractionation (MIF; defined by A notation) have
been observed across a broad range of natural and anthro-
pogenically driven processes and reactions (Bergquist and
Blum, 2009; Sun et al., 2019; Tsui et al., 2020). Tracking Hg
sources and processes with stable isotopes analyses across
time and space transcends conventional concentration analy-
ses by providing unique insights into the intricate behaviour
and transformations of Hg across diverse ecosystems at local,
regional and global scales (Bergquist and Blum, 2009; Sun
et al., 2019; Tsui et al., 2020). Studies applying Hg spikes
of enriched tracer isotopes (typically in lab or heavily con-
trolled field mesocosm experiments) have been frequently
used within the literature and are largely based on the same
theoretical principles used in natural abundance stable iso-
tope analyses but can exploit less robust/precise instrumen-
tation (i.e., quadrupole ICPMS) due to the applied artificial
isotope enrichments (Hintelmann et al., 2000; Strickman and
Mitchell, 2017).

1.2 Sources of mercury to the environment

It is important to distinguish primary emissions of Hg (pre-
dominantly to air) that augment the mass of Hg within the
active biogeochemical cycle from reemissions that represent
positive fluxes of Hg from terrestrial and aquatic matrices
(i.e., vegetation, soils, water bodies) to air, but do not alter
the actively cycling mass of Hg. Reemissions more appro-
priately characterize processes such as biomass burning (in-
cluding wildfires) and land use change that drive Hg back to
the atmosphere as exchange process (be they anthropogeni-
cally driven or not) rather than emissions sources (Outridge
et al., 2018; Dastoor et al., 2025). Hence, the focus of this
section will be on the primary sources of Hg emissions.
Natural primary emissions of Hg (geogenic activities and
weathering of Hg-containing rocks) are estimated at 76—
300 Mgyr~! and make up a minor component of total annual
emissions from primary sources (Streets et al., 2019, and ref-
erences therein). The most recent inventories of primary an-
thropogenic emissions of Hg to air are from 2015 by Streets
et al. (2019) and Munthe et al. (2019); these sources esti-
mate annual emissions to be 2390 (442 %/—19 %) Mgyr~!
and 2220 (427 %/—10 %) Mgyr~!, respectively. In addition,
Munthe et al. (2019), estimated 583 Mg yr~! (nonspecific un-
certainty; described as large for this estimate) of Hg are re-

leased to aquatic systems?.

2Note the estimate of primary releases of Hg to aquatic systems
does not include releases from ASGM activities as the lack of infor-
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Changing anthropogenic sources

Historically, the combustion of fossil fuels (particularly coal)
has been considered the largest anthropogenic source of mer-
cury emissions globally (Pacyna et al., 2006, 2010; Pirrone
et al., 2010; Streets et al., 2011). The high temperatures
achieved during fossil fuel combustion liberate any residual
Hg and release it as Hg(0), which typically undergoes partial
oxidation after combustion to gaseous and particulate-bound
divalent Hg forms (Carpi, 1997; Pacyna et al., 2006). More
recent assessments indicate that ASGM (defined in Sect. 2)
is now the largest global source of anthropogenically derived
Hg (Streets et al., 2019; Munthe et al., 2019; Yoshimura et
al., 2021). Munthe et al. (2019) estimate the total ASGM
emissions of Hg to air to be 838 £ 163 Mgyr~! (37.7% of
total global Hg emissions to air) and total ASGM releases
of Hg to water and land to be 1221 (+637) Mgyr~'. How-
ever, the authors caution that the ASGM estimate represents
a highly uncertain, “special” case scenario due to the chal-
lenges in estimating emissions/releases from a sector with
such large knowledge gaps (Munthe et al., 2019); therefore,
even these large uncertainty ranges may be underestimates.
Most ASGM Hg emissions estimates rely on a bottom-up ap-
proach based on gold production and emission factors rather
than actual Hg use (Pfeiffer and Lacerda, 1988; Seccatore et
al., 2014; Streets et al., 2019; Munthe et al., 2019; Yoshimura
et al., 2021). Moreover, there is large variability not only
between estimates made by different groups, but also be-
tween different regions where ASGM occurs (Seccatore et
al., 2014; Yoshimura et al., 2021). The informal and often il-
legal nature of ASGM activities, which have grown rapidly
in recent decades (Wagner and Hunter, 2020; Bernet Kem-
pers, 2020; see also Sect. 2), present major challenges to Hg
use inventorying (Hilson, 2008; Veiga and Marshall, 2019).

2 ASGM: a “special sector”

Hentschel et al. (2002) of the International Institute for Envi-
ronment and Development (IIED) define artisanal and small-
scale mining as “mining by individuals, groups, families or
cooperatives with minimal or no mechanisation, often in the
informal (illegal) sector of the market”. However, the IIED
(and many other organizations and researchers) stress that a
formal definition is still lacking, and an increasing degree
of mechanization and larger scale operations are defined un-
der artisanal and small-scale mining in many jurisdictions
(Hentschel et al., 2002). This review focusses on gold min-
ing (ASGM) alone due to the unique use of Hg in the gold
extraction process.

ASGM encompasses a wide range of techniques used
to extract gold and activities range from legal and regu-
lated to informal to illegal activities (Veiga et al., 2006)

mation and knowledge regarding these releases is, as yet, too large
to produce a reliable estimate.
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and it contributes ~ 20 %-30% of the world’s gold pro-
duction (Swain et al., 2007; Telmer and Veiga, 2009). Es-
timates suggest &~ 20 million individuals (including & 3 mil-
lion women and children) across > 70 countries (mainly in
Africa, Asia, and South and Central America) are directly en-
gaged in ASGM (Seccatore et al., 2014; UNEP, 2017, Veiga
and Gunson, 2020). Participant numbers increase to at least
100 million when people indirectly dependent upon ASGM
for their livelihood are also considered (Telmer and Veiga,
2009; Veiga and Baker, 2004). The (near) exponential growth
of the ASGM sector in recent years can be attributed to soar-
ing gold prices, and the ease of entry into the sector and
selling gold (Veiga and Hinton, 2002; Adranyi et al., 2023).
For example, the world gold spot price has increased by an
order of magnitude from ~USD9000kg™! in 2000 to ~
USD 125000 kg_1 as of 2025 (World Gold Council, 2025).
For many miners, particularly those in rural communities in
the Global South, employment and survival serve as primary
motivators and ASGM offers substantial financial rewards
during peak periods (Teschner, 2014; Wilson et al., 2015;
Tschakert, 2009). However, Adranyi et al. (2023) argue that
these benefits come at significant social costs, which include
impacts on alternative livelihoods (i.e., loss of income for
farmers as ASGM encroaches on agricultural areas, which
turns many individuals to ASGM).

The profitability of ASGM, legislative restrictions on the
sector, and its proclivity to be practiced in remote areas with
less police/military presence combine to foster an environ-
ment conducive to criminal activities led by local gangs, do-
mestic and transnational organized crime syndicates, and il-
legal armed groups (Diaz et al., 2020; Schwartz et al., 2021).
Bugmann et al. (2022) explain how industry forces are ex-
ploiting market opportunities and coercing individuals into
mining labour. Nevertheless, neither the (il)legality nor the
awareness of ASGM’s impacts on human and environmental
health (albeit often limited awareness; Osei et al., 2022) have
had much impact on the popularity of ASGM or the use of
Hg in the gold extraction and refinement processes (Veiga et
al., 2006; Veiga and Gunson, 2020; Thomas et al., 2019). The
allure of substantial financial gains, the scarcity of viable al-
ternatives, and the lack of incentives for sustainable practices
all contribute to the complexity of reform within this sector
(Veiga and Gunson, 2020; Telmer and Veiga, 2009).

The ASGM Hg amalgamation process and its impacts

Hg is used to extract gold directly from the entire mined ore
(less efficient: 10-25 g of Hg per gram of gold) or from grav-
ity ore concentrate (gold-enriched heavy fraction; more effi-
cient: 1-3 g of Hg per gram of gold) by exploiting the nat-
ural solid amalgam that forms when gold and Hg(0) come
in contact (Veiga et al., 1995, 2014; Yoshimura et al., 2021).
This process produces the solid Hg-gold amalgam, tailings
(waste), and residual liquid Hg, the latter of which is reused
a few times until it becomes less effective and “dirty” (in-

Biogeosciences, 22, 6695-6726, 2025

D. S. McLagan et al.: Impacts of ASGM-mercury on agricultural systems

efficient), at which point it is typically discarded into the
environment (Telmer and Veiga, 2009). Once the Hg-gold
amalgam is formed (typically =~ 60 % gold by mass), sub-
sequent gold extraction is typically accomplished by roast-
ing of amalgam using rudimentary setups in open air, which
results in volatilization of Hg directly into the atmosphere
while leaving the gold behind (Veiga and Hinton, 2002;
Kiefer et al., 2015; Ogola et al., 2002). This gold contains
~ 2 %-5 % residual Hg (Veiga and Hinton, 2002) and is typ-
ically roasted a second time after purchasing by initial gold
traders (Cordy et al., 2011, 2013; Moody et al., 2020; Veiga
et al., 2014). Although retorts allow near complete recovery
of Hg during amalgam burning, their uptake and widespread
use are limited due to costs, lack of training, and other so-
cial issues (i.e., desire to visually observe the amalgam burn-
ing process) that are well-detailed in literature (Hinton et al.,
2003; Hilson, 2006; Jgnsson et al., 2013).

Alternatives to the Hg amalgamation process do exist.
These include dissolution of Hg with nitric acid (Moreno-
Brush et al., 2020; Cho et al., 2020) or the use of cyanide in
place of Hg (Marshall et al., 2020). Yet these are not popu-
lar methods due to their own inherent social, financial, and
environmental constraints (Telmer and Veiga, 2009; Briiger
et al., 2018). In addition, cyanidation is used in parallel with
Hg amalgamation both to improve gold extraction efficien-
cies and during transition away from Hg amalgamation (Mal-
one et al., 2023; da Silva and Guimaries, 2024). Concurrent
use of these two methods can lead to synergistic environ-
mental and human health impacts as Hg-cyanide complexes
are highly toxic and increase the solubility, and hence mobil-
ity, of Hg in ASGM wastes and tailings (Seney et al., 2020;
da Silva and Guimarées, 2024). Hg amalgamation remains
the preferred method employed by ASGM to extract gold
due to its simplicity, efficiency, low cost, availability, and,
ultimately, a greater confidence and trust in the Hg amalga-
mation process by miners. This latter point is emphasized
by the aptly titled study by Bugmann et al. (2022): “Do-
ing ASGM without mercury is like trying to make omelettes
without eggs”: Understanding the persistence of mercury use
among artisanal gold miners in Burkina Faso.

While emissions of Hg to air from ASGM activities can
undergo long-range transport and contribute to Hg’s global
impacts, much is deposited locally or regionally (Munthe
et al., 2019; Szponar et al., 2025). In addition, most direct
releases of Hg from ASGM to terrestrial and aquatic sys-
tems are localised (Munthe et al., 2019; Moreno-Brush et al.,
2020). Hence, communities living and working in proximity
to ASGM areas are those that suffer the greatest health im-
pacts from this activity including the miners who can experi-
ence both inhalation and direct dermal exposures when han-
dling Hg(0) for gold extraction or burning amalgams (Veiga
and Baker, 2004; Bose-O’Reilly et al., 2010; Taux et al.,
2022).

Another common pathway of exposure is through the in-
gestion of organic Hg (i.e., MeHg) from dietary sources (Za-
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hir et al., 2005). Fish, for instance, are exposed to MeHg both
through their environment (water) and food, with diet ac-
counting for approximately 80 %—90 % of their total intake
(Zahir et al., 2005). This is of particular concern for commu-
nities impacted by ASGM activities whose major source of
protein is fish (Vieira, 2006). Logically, research on dietary
exposures to Hg in ASGM affected areas is dominated by
fish-focussed studies; there are many examples of elevated
concentrations of THg and/or MeHg in fish sampled in close
proximity to ASGM activities (e.g., Barocas et al., 2023;
Castilhos et al., 2015; Bose-O’Reilly et al., 2016; Maurice-
Bourgoin et al., 1999). Nonetheless, fish is not the only food
consumed in regions impacted by ASGM activities.

3 Impacts of ASGM Hg use in agricultural regions

The surface and/or near-surface mining activities that domi-
nate ASGM are major drivers of land-cover change. ASGM
accounts for ~7 % of deforestation in the Global South
(Hosonuma et al., 2012; Timsina et al., 2022). Additionally,
the recovery of forests after mining activities is slower when
compared to other land uses (Timsina et al., 2022). ASGM
increases particle loading to rivers caused by erosion di-
rectly from ASGM activities or indirectly after deforestation
(Swenson et al., 2011; Esdaile and Chalker, 2018; Moreno-
Brush et al., 2020). These issues of mining-driven deforesta-
tion and increased riverine sediment loadings present ma-
jor environmental health issues in their own rights and are
the focus of many other studies and reviews (e.g., Moreno-
Brush et al., 2020; Timsina et al., 2022; Dossou Etui et al.,
2024). In addition, anthropogenically modified land-covers
such as lands used for agriculture are increasingly find-
ing themselves in direct competition for space with ASGM
(Achina-Obeng and Aram, 2022; Adranyi et al., 2023; Yu
et al., 2024; Donkor et al., 2024). In Ghana, Achina-Obeng
and Aram (2022) report that most lands converted from
agriculture to ASGM are obtained from legal sales. How-
ever, contrary reports of ASGM “land-grabbing” also exist
in Ghana and elsewhere (Gilbert and Albert, 2016; Malone
et al., 2021; Adranyi et al., 2024). Indeed, conflicts between
miners and farmers/farming communities (including Indige-
nous Peoples) are frequent (Mestanza-Ramoén et al., 2022;
Adranyi et al., 2024). A common conflict arises from the
land, water and soil degradation inflicted by ASGM that typ-
ically renders previously arable lands to be less productive or
simply infertile post mining (Gilbert and Albert, 2016; Ad-
ranyi et al., 2024).
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In many areas, ASGM and agriculture continue to oper-
ate alongside each other. A number of studies cite ASGM
and Hg amalgam processing occurring directly adjacent to
croplands, and farmers subsidizing their agricultural liveli-
hood as part-time artisanal miners (Krisnayanti et al., 2012;
Mestanza-Ramén et al., 2022; Adranyi et al., 2023, 2024;
Adator et al., 2023). Hence, consumption of crops and live-
stock/poultry contaminated by ASGM-derived Hg presents
an additional and much less explored potential pathway of
human dietary Hg exposure (Xia et al., 2020; Sanga et al.,
2023).

There are three potential pathways of Hg uptake in higher
or vascular plants (the majority of food, feed, and fuel crops
are derived from vascular plants): (1) stomatal assimila-
tion of gas-phase Hg (0) during photosynthetic respiration,
(2) surface sorption to cuticular (foliage) or periderm (stem-
s/bole/edible tissues) surfaces, and (3) uptake from roots
(Zhou et al., 2021; Liu et al., 2022; McLagan et al., 2022a);
these processes are summarized in Fig. 1. Of these three path-
ways, stomatal assimilation is now considered to be the dom-
inant mechanism and reported to be responsible for > 90 %
of all Hg found not only in foliage, but all above ground plant
tissues (Beauford et al., 1977; Graydon et al., 2009; Rutter et
al., 2011a, b; Laacouri et al., 2013; Zhou et al., 2021; Zhou
and Obrist, 2021). Moreover, many crops are also utilized as
feed for livestock and poultry. If these feedstocks are con-
taminated by Hg, there is potential for accumulation in live-
stock/poultry and transfer to humans after meat or animal
by-product consumption. Within this section we will explore
each of these exposure mechanisms as they relate to Hg de-
rived from ASGM and discuss their relevancy and potential
impacts on human health.

3.1 Hg uptake in crops from air: the breathers
3.1.1 Atmospheric Hg uptake in higher plants

Research on the uptake mechanisms of Hg from air to vegeta-
tion is highly contemporary but contains many uncertainties
and knowledge gaps. The surficial sorption pathway of Hg
integration into internal foliar tissue is limited largely due to
the potential for Hg sorbed to the foliar cuticle to be washed
off by precipitation (Rea et al., 2000; Rutter et al., 2011a, b;
Laacouri et al., 2013) or undergo photoreduction to Hg(0)
and subsequently volatilize (Mowat et al., 2011; Laacouri et
al., 2013). Dark/night experiments (when stomata are closed)
have provided mixed results: some studies suggest a nega-
tive flux of Hg(0) to vegetation may occur (Converse et al.,
2010; Fu et al., 2016), while other studies are less conclu-
sive (Fritsche et al., 2008) or indicate strong correlations be-
tween Hg(0) uptake and stomatal conductance rates (higher
uptake when stomata are open; Naharro et al., 2020; Den-
zler et al., 2025). While this suggests that a small fraction of
gas-phase or surficially sorbed Hg(0) could diffuse through
the cuticle and into the internal mesophyll, this diffusion-

Biogeosciences, 22, 6695-6726, 2025
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Estimated uptake (EUR) and translocation
(ETR) rates for Hg species in crops

A. Stomatal assimilation of Hg(0) ‘{\
EUR: Ri: high; Ca: high : \
ETR: Ri: mid, Ca: mid \

B(i). Root uptake of THg(II)
EUR to epidermis:
Ri: mid, Ca: mid :
ETR fo vascular bundle and aerial tissues:
Ri: very low, Ca: very low

B(ii). Root uptake of MeHg
EUR to epidermis:
Ri: high; Ca: low
ETR 1o vascular bundle then aerial tissues:
Ri: mid; Ca: very low

C. Hg(0)/IHg(II) adsorption to periderm
EUR: Ri: /ow; Ca: low
ETR: Ri: very low; Ca: very low

Saturated soil crop: A7 N
e.g Rice (Ri) (Oryza sativa)

Guard cell

V 4
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(closed) £

uber

Cortex

Endosperm
(white rice)

Parenchymatous tissue
(flesh)
| Epidermis/periderm

Vascular bundle
(xylem/phloem)

Epidermis g ) f
Unsaturated soil crop:
e.g. Cassava (Ca) (Manihot esculenta)

Figure 1. Conceptual model summarizing the uptake and translocation processes of different Hg species in both saturated (i.e., rice) and
unsaturated (i.e., cassava) soil crops including estimated qualitative rates based on the reviewed literature in Sect. 3.1 and 3.2. Line colours
are associated with colours of species listed on the left (i.e., Hg(0) is in light blue). We note that plant and plant tissue art was developed
for the purpose of presentation and is based on generic representations; hence, they may differ slightly from reality. Plant and plant tissue
images were developed using ChatGPT (OpenAl), but all other parts of the figure (including labels) were constructed by co-authors.

based process is mechanistically similar to stomatal uptake
and would likely induce a similarly large, negative (favour-
ing lighter isotopes) fractionation of Hg stable isotopes. As
such, the discussion on atmospheric uptake pathways will fo-
cus on the stomatal assimilation mechanism and assume all
Hg within the above ground parts of plants is derived from
this uptake mechanism unless explicitly stated otherwise.
Stomatal assimilation has been directly linked to photo-
synthetic activity (net primary productivity; NPP) and con-
sequently plant growth rates (Jiskra et al., 2018; Fu et al,,
2019; Szponar et al., 2023). As such, stomatal assimilation
by vegetation has been described as a global Hg(0) pump
and accounts for the largest negative flux of Hg from air to
terrestrial systems (Jiskra et al., 2018). Other factors such
as stomatal conductance (itself impacted by atmospheric/me-
teorological/hydrological conditions), stomatal density, pho-
tosynthetic mechanism (i.e., C3 vs. C4), cuticle thickness,
cuticle roughness, plant species, and plant and foliage life
stages also influence Hg(0) uptake (Converse et al., 2010;
Laacouri et al., 2013; Wohlgemuth et al., 2020, 2022; Liu
et al., 2022; Eboigbe et al., 2025). In addition, the rate of
Hg(0) foliar uptake, and consequently the THg concentra-
tion in foliage, is directly proportional to Hg(0) concentra-
tion in air (Navratil et al., 2017; Manceau et al., 2018; Zhou
et al., 2021), which makes the stomatal assimilation method
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particularly relevant in areas with substantial Hg(0) emis-
sions to air, including ASGM regions. Confirmation of the
dominance of the stomatal assimilation pathway and links
to NPP (and other factors) has come largely within the last
1015 years and owes much to advancements in Hg stable
isotope research. Stomatal assimilation favours lighter iso-
topes and results in a MDF and shifts in §202Hg values of be-
tween —1 %o and —3 %o compared to gas-phase Hg(0) (Zhou
et al., 2021, and references therein), which creates an effec-
tive (light isotope) tracer for Hg uptake via this mechanism
in plants.

After uptake of Hg(0) into internal foliar tissue, our un-
derstanding of the processes controlling the internal bio-
geochemical cycling within plants becomes somewhat less
certain. Since foliar THg concentrations increase across the
growing season (Rea et al., 2002; Laacouri et al., 2013;
Wohlgemuth et al., 2020, 2022), Hg(0) must undergo oxida-
tion to IHg(II) (Laacouri et al., 2013; Manceau et al., 2018)
to maintain the high (air) to low (within foliage) Hg(0) con-
centration gradient that drives diffusion of Hg(0) into fo-
liage. Limitations in the interpretive power of Hg speciation
analysis (McLagan et al., 2022b) restrict our knowledge of
the compounds responsible for this oxidation step, particu-
larly at ambient concentrations. Nonetheless, Du and Fang
(1983) linked foliar Hg uptake rates to enzymatic (catalase)
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D. S. McLagan et al.: Impacts of ASGM-mercury on agricultural systems

activity in a high-concentration labelled isotope study, and
studies using X-ray absorption techniques on foliage sam-
ples from plants growing under highly contaminated settings
have identified Hg-thiol complexes and sulphur nanoparti-
cles (Carrasco-Gil et al., 2013; Manceau et al., 2018) within
foliage. We require more knowledge of the biological com-
pounds responsible for oxidation and the resulting IHg(II)
species, particularly as this could provide critical insight into
the use of vegetation in contaminated site remediation such
as at ASGM impacted areas.

As discussed, the stomatal assimilation pathway repre-
sents a net negative flux (Hg accumulation in vegetation)
overall. However, re-release of Hg(0) taken up by this path-
way has been posited to occur via photochemically-driven
reduction of IHg(II) back to Hg(0) and release back out of
the stomata. Using a Hg stable isotope mass balance model,
Yuan et al. (2018) estimated that ~ 30 % of assimilated Hg(0)
is re-released from their studied species.

3.1.2 Translocation of Hg from foliage in higher plants

Assessments of the distribution of Hg across different plant
tissues consistently indicate foliage has the highest THg con-
centrations (Zhou et al., 2017, 2021; Liu et al., 2021b). This
accumulation in foliage (driven by stomatal assimilation) re-
sults in litterfall representing the major flux of Hg to soils
in vegetated ecosystems (&~ 1000-1500 Mgyr~') and these
same estimates have typically also been used for as a proxy
for net Hg assimilation flux into vegetation (Wang et al.,
2016; Jiskra et al., 2018; Zhou et al., 2021). Yet it has been
suggested that the use of litterfall alone likely results in a
substantial underestimation of the net Hg vegetation assim-
ilation flux due to the translocation of Hg from foliage into
other tissues (i.e., branches, stems/boles, roots, seeds, flow-
ers) (Zhou and Obrist, 2021). Indeed, despite bole wood hav-
ing the lowest THg concentrations of any tree tissues (Zhou
etal., 2017, 2021; Liu et al., 2021b), they contain the largest
pool of Hg by mass of any tree tissues due to the much greater
total biomass of bole wood compared to other tissues (Liu et
al., 2021b). Hg storage in bole wood highlights the capacity
of vegetation to translocate assimilated Hg away from fo-
liage.

Phloem, vascular tissue that transports solutes (i.e., nutri-
ents, proteins, and photosynthetic by-products such as sug-
ars) away from the foliage within phloem sap, is suggested
to be responsible for the downward translocation of Hg (Si-
wik et al., 2010; Zhou et al., 2021; Gacnik and Gustin, 2023).
Throughout this downward migration, lateral translocation
of Hg from phloem, through the cambium, and into the hy-
droactive xylem (sapwood) must occur. Evidence for this
process lies in dendrochronological studies that (species/-
genus dependent) effectively archive historical Hg(0) con-
centrations in tree rings (e.g., Siwik et al., 2010; Navrétil et
al., 2017; McLagan et al., 2022a; Gacnik and Gustin, 2023).
Yanai et al. (2020) and Liu et al. (2024) went further and
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demonstrated that this translocation from phloem to xylem
slowly reduces the amount of Hg within the phloem sap by
observing a decrease in THg concentrations in tree rings of
the same age from the canopy to the ground.

Liu et al. (2021b) and McLagan et al. (2022a) analysed
tree bark for Hg stable isotopes, and data were highly neg-
ative in MDF (820>Hg) and similar to xylem samples (tree
rings) and foliage (in the case of Liu et al., 2021b). This in-
dicates foliar uptake, phloem transport, and lateral translo-
cation to periderm or cork (outer bark) is likely an impor-
tant source of Hg in bark (we would expect more positive
MDF associated with direct deposition from air as any such
Hg would not be negatively fractionated during foliar uptake;
Liu et al., 2021b; McLagan et al., 2022a). From our search
there have been no studies in the literature assessing this the-
ory in annual or bi-annual plants, such as agricultural crops.

Belowground tissues have received less attention than
aboveground tissues, but Hg stable isotope data (negative
8202Hg values) from trees and shrubs in a high altitude for-
est in China indicated that 44 %—83 % of Hg in roots is de-
rived from the stomatal assimilation pathway (Wang et al.,
2020). Such data suggest root Hg storage and/or that plants
could potentially detoxify by releasing Hg taken up from air
into soils. Contrary to this, isotope data from wetland plants
(i.e., rice) reflect soil isotope signatures, which is linked to
the uptake of bioaccumulative MeHg that is produced under
anoxic conditions prevalent in wetlands (Yin et al., 2013).
The unique case of rice, particularly in ASGM affected areas,
is considered separately in Sect. 3.2. We will now consider
the impacts of ASGM-derived Hg contamination in crops via
stomatal assimilation.

3.1.3 Hg uptake from air in crops impacted by ASGM
activities

Eboigbe et al. (2025) assessed both air and soil uptake
pathways in cassava (Manihot esculenta), peanut/ground-
nut (Arachis hypogaea), and maize (Zea mays) from a con-
taminated (= 500m upwind) and a background (= 8km
upwind) farm of a ASGM processing site in Nasarawa
State in Nigeria. Foliage was enriched 25-35x in the con-
taminated farm (compared to background), and Hg sta-
ble isotope analyses revealed highly negative MDF val-
ues in foliage (82°2Hg: cassava: —3.83 %o = 0.15 %o, peanut:
—3.77 %0 £ 0.27 %o, maize: —2.51 %o+ 0.15 %0), which are
indicative of the negative fractionation associated with stom-
atal assimilation (Eboigbe et al., 2025). Air-to-foliage en-
richment factors (¢202Hg3: —2.89 %o to —1.57 %o) fell into
the aforementioned measured range observed in other higher
vegetation (Eboigbe et al., 2025). A two endmember Hg sta-

3Epsilon values (i.e., 8202Hg) are indicative of the degree of
fractionation between two samples or sample matrices. For exam-
ple, if 8202Hg values for sample A and sample B are 1.00 %o and
—1.00 %o, respectively, then the £202Hg would be —2.00 %o from A
to B.

Biogeosciences, 22, 6695-6726, 2025
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ble isotope mixing model based on air and soil uptake path-
ways revealed 61 %—100 % of THg in edible tubers/nuts/-
grains and other above ground tissues and 26 %—47 % of
THg in roots were derived from air highlighting the dom-
inance of the atmospheric uptake pathway in these crops.
The fraction of MeHg out of THg was < 1% (%MeHg)
in all measured crop and soil samples (Eboigbe et al.,
2025). While THg and MeHg concentrations in edible parts
were below dietary guidelines, without any data for Nige-
ria, conservative consumption rate estimates were used for
cassava leaves (320 & 116 ugkg™!); suggested consumption
rates from other countries would have surpassed dietary in-
take thresholds (Eboigbe et al., 2025).

Casagrande et al. (2020) examined ASGM-derived Hg in
soy plants (Glycine max) and found THg concentrations in
leaves from plants grown in a ASGM affected area (mean
THg: 109421 pgkg™!) approximately three times higher
than soy foliage in more background sites (THg means:
35-40ugkg™"). This was despite measuring relatively low
soil THg concentrations in both ASGM (95pugkg™') and
non-ASGM areas (68 pgkg™!); and indeed, THg concentra-
tions in other plant tissues (stems, seeds, pods, and roots)
were not elevated in the ASGM affected area (Casagrande
et al., 2020). The authors link these results to atmospheric
Hg uptake and used the data to estimate a Hg deposi-
tion/accumulation rate of this ASGM affected soy farm of
33.6gkm2yr~! (Casagrande et al., 2020). This approach
provides a novel basis for calculating Hg accumulation from
air in both background and Hg contaminated agricultural ar-
eas. Eboigbe et al. (2025) also applied the Hg accumula-
tion approach and calculated fluxes of 1070 &= 88, 98 + 26,
620 + 140 gkm_2 yr~! to cassava, peanuts (groundnuts), and
maize farms, respectively. These estimates include transfer
to other tissues including below ground edible parts, but
Hg storage in foliage makes up the majority of Hg trans-
ferred to crops from air (90 %92 %), which again raises con-
cerns about consumption of edible foliage, such as in cassava
(Eboigbe et al., 2025).

Several other studies have assessed Hg in crops from
ASGM affected areas but did not make atmospheric Hg(0)
measurements due either to logistical challenges or to the
assumption that Hg would derive largely from soil. While
less ideal than paired soil and atmosphere measurements, soil
THg concentrations represent acceptable proxies for general
Hg exposure across Hg(0) contaminated areas, as deposition
from air is a major source of soil Hg, and Hg(0) in air typi-
cally correlates well with soil THg concentrations (Fantozzi
et al., 2013; Xia et al., 2020). However, we acknowledge
that there can be exceptions to this relationship including in
ASGM areas (Gerson et al., 2022); and hence acknowledge
the elevated uncertainty such an assumption creates.

Golow and Adzei (2002) measured THg concentrations up
to ~35 and ~ 18 ugkg™! in cassava leaves and flesh, re-
spectively, at &~ 2-3km from a mining site in Ghana; con-
centrations in tissues and soils decreased with increasing
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distance from the ASGM site. However, these concentra-
tions were low compared to most other studies (Table 1).
Nyanza et al. (2014) observed THg concentrations of cas-
savas up to 167 ugkg ™! in leaves, but only up to 8.3 ugkg ™!
in flesh (little specific information relating to distance from
ASGM was given). Adjorlolo-Gasokpoh et al. (2012) mea-
sured elevated THg concentrations in both cassava leaves (up
to 177 ugkg™") and flesh (up to 185 pgkg™!) near another
ASGM site in Ghana. While leaf THg concentrations were
again reported to decrease with distance from mining sites,
there may have been multiple sources in this study (i.e., for-
mer mines; Adjorlolo-Gasokpoh et al., 2012). A unique as-
pect of the Adjorlolo-Gasokpoh et al. (2012) study was that
they dissected the cassava into flesh and inner and outer peels
of the tuber and data from such tissue dissection could pro-
vide critical information in discerning atmospheric and soil
uptake pathways. Nonetheless, there was little trend with dis-
tance from ASGM site in flesh, inner peel, or outer peel
(Adjorlolo-Gasokpoh et al., 2012), which could be attributed
to variability in the use/emission of Hg and possible un-
known sources. Our own analyses of data from Nyanza et
al. (2014; p =0.111) and Adjorlolo-Gasokpoh et al. (2012;
p =0.136) indicate there was no correlation between THg
concentration in cassava leaves and flesh in these studies,
which is surprising considering that stable isotope data from
Eboigbe et al. (2025) indicated the atmosphere as the source
of Hg in cassava flesh.

Addai-Arhin et al. (2022a) measured higher THg concen-
trations in both the peel (306991 pgkg™") and flesh (100—
345 ugkg™") of cassavas at farms near (specific distance not
given) three ASGM sites in Ghana. MeHg concentrations
were measured in cassava tissues and were < 1 % of THg in
all samples (Addai-Arhin et al., 2022a). In another study by
the same group, Addai-Arhin et al. (2022b) measured both
THg (and MeHg: < 1.1 % of THg in all samples) in plan-
tain (genus: Musa) flesh and peels at the same sites. THg
concentrations in plantains (39-50 ugkg ™! in flesh and 41—
130ugkg™! in peels) were close to an order of magnitude
lower (Addai-Arhin et al., 2022b) than cassava (Addai-Arhin
et al., 2022a) at the equivalent farms, which highlights the
species specificity of Hg uptake in crops. In the 2021 study,
much higher THg concentrations were observed in plantain
flesh (mean: 580 ugkg™") and peels (mean: 275 ugkg™') at
an additional fourth farm (Odumase) adjacent to what is [pre-
sumably] a much larger ASGM operation (Addai-Arhin et
al., 2022b). Interestingly, the soils at Odumase site had lower
THg concentrations than soils at other farms in their study
(Addai-Arhin et al., 2022b); we speculate that the elevated
THg concentration in plantain tissues at the Odumase farms
is caused by greater emissions concentrations of Hg(0) in air
from a potentially newer mine near this farm that may, as
yet, not have impacted the soils as much as has been the case
at other farms (no Hg(0) measurements were taken to assess
this).
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Table 1. Continued.

Reference Region Country Crop Distance Farm Soil  Farm Air  Crop tissue Fraction Notes of interest
type(s) ASGM-to- [THg] [Hg(0)] [THg] MeHg
Farm (km) (mgkg™")  (ngm™)  (ugkg™h) (out of [THg])
Addai-Arhin Ashanti Ghana cassava NA range: 1290-3880 NA Ranges: < 1% across Estimated avg. daily intake was
et al. (2022a) T(flesh): 100-345; all tissues above USEPA guidelines for
T(peel): 306-991 THg, but below for MeHg.
Addai-Arhin ~ Ashanti Ghana plantain NA  range: 1290-3880 NA Ranges: < 1.1% across  Estimated avg. daily intake
et al. (2022b) T(flesh): 33-587 all tissues below USEPA guidelines for
T(peel): 33-292 THg, and MeHg; exception at
Odumase site with THg above
guidelines. Anomalously high
soil [THg].
Arrazy et al. North Indonesia 1. cassava, 0.1-0.7 19+£33 NA 1. F:2000 = 1600 NA Daily Hg intake via vegetable
(2023) Sumatra 2. Katuk 2. F: 4800 £ 5900 consumption in Nauli Village
Province above reference dose.
Atmospheric and soil uptake
pathways suggested.
Marchese et Madre de  Peru assorted NA NA NA 3.8-27 NA THg in range of crops
al. (2024) Dios market purchased in markets of towns
crops near ASGM activities. No
information on distance from
ASGM or Hg in soil or air of
crops.
Egler et al. Pard Brazil Range of ~ < lkm range: 290-3840 NA  F/S: 2600+ 3100 NA Crop tissues in ASGM area
(2006) crops T/N: 210+ 310 ~ 10-20x THg enrichment
R: 410£300 compared to background areas.
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In both studies by Addai-Arhin et al. (2022a, b) human
health assessments were included and based on USEPA
daily consumption guidelines for THg in food (reference
dose: 0.3 ug of Hg per kg of body mass per day; USEPA,
2004) and estimated average daily consumption rates (adults:
0.37kg plantain, 0.6 kg cassava; children: 0.2kg plantain,
0.4kg cassava). The Hg consumption via cassava at all
farms (measured range: 0.98-3.8 pgkg™!d~!; Addai-Arhin
et al., 2022a) exceeded THg intake guidelines, but plan-
tain only exceeded at the most contaminated farm (Odu-
mase; 3.0-3.3pugkg™'d™'; range at other farms: 0.22—
0.28 ugkg~'d~!; Addai-Arhin et al., 2022b). While data are
concerning, this may be partially offset by the low fraction
of highly toxic and bioaccumulative MeHg, all cassava and
plantain samples being below the USEPA daily MeHg con-
sumption guideline (reference dose: 0.1 ugkg™'d~!; mea-
sured: < 0.026 ugkg_1 d~!: USEPA, 2004; Addai-Arhin et
al., 2022a; 2022b). A third study by the Addai-Arhin et al.
(2023) group appears to summarize these two other works,
but it is not considered for further discussion here due to their
focus on cumulative peel and flesh THg concentration data
(sum of THg concentration in peels and flesh), which are not
summative data.

Sanga et al. (2023) measured THg concentrations in ed-
ible crop foliage (cassava, pumpkin: Cucurbita moschata,
Chinese cabbage: Brassica rapa subsp. pekinensis, and
sweet potato: Ipomea batata) in crop soils indicative of
anomalously low Hg contamination, near background lev-
els (11.444.7ugkg™"), but <2km from an ASGM area
in Geita Region of Tanzania. THg concentrations were el-
evated and ranged from 96 & 14 ugkg ™" in Chinese cabbage
to 153 + 128 ugkg~! in cassava leaves.*

A similarly designed study in two villages in North
Sumatra Province, Indonesia, Arrazy et al. (2023), also
measured elevated THg in foliage of cassava (mean:
20004 1600 ugkg™") and katuk (Sauropus androgy-
nus; mean: 4800+ 5900ugkg™!) foliage®; one village
had dietary intakes from these leafy vegetables (0.52—
0.93ugkg='d™!) above reference dose levels. However,
the major difference to the Sanga et al. (2023) study was
the ~ 3 orders of magnitude higher THg concentrations
in crop soils (mean: 19 +33 mgkg™'). The elevated THg
concentrations in crops from both studies were hypothesized
to be at least partly associated with atmospheric uptake,
though no air measurements were taken (Sanga et al.,
2023; Arrazy et al., 2023). Both studies also examined rice,
discussed in Sect. 3.2.2.2.

A recent study in the Madre de Dios Region of Peru, ex-
amined the edible parts of six crops (corn: Z. mays, rice:

4Reporting/method issues could also explain the very high
crop/very low soil Hg concentration anomaly, but we could not
identify any issues from the data provided.

SSeveral other crops were studied, but each had data of only one
sample and were not considered further.
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O. sativa, cassava: M. esculenta, plantain: M. paradisiaca,
potato: Solanum tuberosum, cocona: Solanum sessiliflorum)
in areas deemed to be impacted by mining (Marchese et al.,
2024). Concentration levels in crops from areas listed as “im-
pacted by mining” were lower than in many of the previously
mentioned studies ranging from 3.8 ugkg™! (n = 2) in corn
to 27 ug kg’1 (n =2) (Marchese et al., 2024). Even so, four
of the 27 samples exceeded maximum contaminant levels as
indicated by the US Dept of Agriculture (Marchese et al.,
2024). However, these crop samples were purchased in lo-
cal markets presenting challenges in assessing distance from
farms to mining sites and crop exposure levels to Hg from
either soils or air (Marchese et al., 2024). Again, rice data
from this study are interpreted in Sect. 3.2.2.2.

One other study from South America (Pard State, Brazil)
attempted to correlate THg in both roots and above ground
parts from a range of cultivated crops (grouped as produce)
with soil THg (no assessment of Hg(0) in air) at two ASGM
impacted communities (Egler et al., 2006). The first com-
munity appears to be a village setup around a mine (we
assume farms are very close to mine) and THg concentra-
tions were the highest measured across all studies examining
Hg in crops impacted by ASGM (mean THg concentrations:
260043100, 210310, and 410+300pugkg™" in above
ground parts, edible parts, and roots, respectively, across
all crops). At the second site (= 15km from active ASGM
sites) THg in produce was lower (120£ 110, 10+£ 10, and
260 +250 ugkg ™!, respectively) and only produce roots at
this location were significantly correlated with soil THg,
which again suggests that atmospheric uptake is the domi-
nant uptake mechanism for these crops (Egler et al., 2006).

Hg concentrations in crops have been assessed in several
other studies. However, these papers lack details of sampling
sites/methods and distance from ASGM (i.e., Essumang et
al., 2007), contain unclear or concerning analytical methods
(Essumang et al., 2007; Ahiamadjie et al., 2011), or had po-
tential errors in data reporting (SSenku et al., 2023). There-
fore, these studies are not considered further.

3.2 Hg uptake from roots of saturated soil crops: the
drinkers

While stomatal assimilation of Hg(0) can and does occur in
rice (Oryza sativa L.; Qin et al., 2020; Tang et al., 2021a;
Aslam et al., 2022), rice is exceptional in that it also accu-
mulates significant amounts of Hg from the soil, due to the
availability of MeHg which is formed in the anaerobic paddy
soils (Rothenberg et al., 2014). MeHg represents 40 %—60 %
of the THg burden in rice (Rothenberg et al., 2014), which
contrasts other crops that usually accumulate only 0.05 %-—
1 % MeHg even in contaminated areas (Qiu et al., 2008; Sun
et al., 2020; Eboigbe et al., 2025). Rice is a staple food crop

There appears to be inconsistent use of parts-per notation (pp-
b/ppm). Contact author did not respond to inquiries about the po-
tential data reporting issues.

Biogeosciences, 22, 6695-6726, 2025
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for > 3.5 billion people (Zhao et al., 2020) and, globally, rice
represents 10 % of total MeHg intake (Liu et al., 2019), em-
phasizing the considerable public health concerns posed by
the consumption of MeHg and IHg(II) contaminated rice.

3.2.1 Rice paddies: the (de)methylators

Rice paddies are characterized by cyclical flooding and
drying cycles. These cycles impact redox conditions, the
forms of carbon (C), sulphur (S), iron (Fe), and manganese
(Mn) cycling, and induce strong mineral weathering (Kogel-
Knabner et al.,, 2010). In addition, rice paddies usually
have abundant organic matter from root exudates and the
reincorporation of rice residues. The soil pool of MeHg
is the dominant source of MeHg to the plant, with mul-
tiple studies observing no evidence that in-planta methy-
lation can occur (Aslam et al., 2022; Liu et al., 2021a;
Strickman and Mitchell, 2017). MeHg in soil is governed
by IHg(II) bioavailability and methylation and demethylation
rates, while there are multiple pathways of MeHg and IHg(II)
uptake into the roots and subsequent translocation into the
grain, processes described in detail below.

Inorganic Hg (IHg(II)) bioavailability

The rapid redox cycling created by fluctuating water condi-
tions in rice paddies can create “Hg species resetting” which
increases the supply of soluble IHg(II) species (bio)available
for methylation (Liu et al., 2021a; Wang et al., 2021a). Logi-
cally, this supply of (bio)available, soluble IHg(Il) increases
in paddies contaminated with Hg from anthropogenic activ-
ities (including ASGM) (Ao et al., 2020; Rothenberg et al.,
2014; Xu et al., 2024). Other factors such as lower pH, ox-
idation of Fe(Il) to Fe(Ill) via radial oxygen loss from rice
roots, and application of N fertilizers, can also free IHg(Il)
from binding sites and increase its bioavailability for methy-
lation (Rothenberg et al., 2014; Tang et al., 2020).

Methylation

Mercury methylators in rice paddies appear to be domi-
nated by iron reducers (Liu et al., 2018; Tang et al., 2021b),
methanogens (Liu et al., 2018; Tang et al., 2021b; Wu et
al., 2020), and (in some cases) sulphur reducers (Wu et al.,
2020). Several aspects of the rice paddy system influence
methylation rates, with marked differences observed across
geographical and contamination gradients (Liu et al., 2021a;
Rothenberg et al., 2012). Methylation is stimulated by the
availability of labile organic carbon, which originates from
root exudates or rice straw debris (Liu et al., 2016; Windham-
Mpyers et al., 2009; Zhu et al., 2015). In addition, the drain-
ing cycle of paddies facilitates oxic regeneration sulphate and
ferric iron, electron acceptors of sulphur- and iron-reducing
bacteria, as well as promoting dissolution of iron oxyhydrox-
ides and thus release of bound IHg(II) (Rothenberg et al.,
2014; Ullrich et al., 2001; Wang et al., 2021a).

Biogeosciences, 22, 6695-6726, 2025

Demethylation

Hg demethylation in rice paddy soil has been seldomly
measured, but most studies report relatively high and con-
sistent demethylation rate constants, suggesting resilience
to different environmental conditions (Liu et al., 2021a;
Windham-Myers et al., 2013; Zhao et al., 2016). The tax-
onomic diversity of Hg demethylators may explain this,
as both mer-dependent and mer-independent demethyla-
tion have been observed in paddy soils, with evidence for
demethylation by representatives of Clostridium spp. (Wang
et al., 2021a), Catenulisporaceae, Frankiaceae, Mycobac-
teriaceae, and Thermomonosporaceae (Liu et al., 2018).
Correlations between MeHg concentrations and methane
emissions from paddies suggest methanogens are impor-
tant demethylators (Huang et al., 2025). Demethylation ap-
pears to be responsive to labile organic carbon (Marvin-
DiPasquale and Oremland, 1998; Marvin-DiPasquale et al.,
2000; Hamelin et al., 2015; Li and Cai, 2012), but less so
than methylation, based on a comparison of methylation and
demethylation in vegetated and devegetated plots of rice pad-
dies, which observed concomitant increases in plant-derived
labile organic carbon, MeHg concentrations, and methylation
rate. Demethylation was not measured, but any increases in
this process had to have been outpaced by the increase in
methylation rate (Windham-Myers et al., 2013).

Uptake and translocation of MeHg, IHg(II), and Hg(0)
through the plant-grain system

The uptake routes of MeHg and THg(II) to rice differ sub-
stantially. MeHg is formed in the soil and then absorbed
through the roots; a fraction of this MeHg is retained by iron
plaque or apoplastic barriers on the root tissue, preventing
complete transfer of MeHg to internal root vascular tissues
and subsequent translocation (these barriers can also prevent
IHg (IT) uptake into internal tissues) (Li et al., 2015; Wang et
al., 2014, 2015; Zhou and Li, 2019). The review by Rothen-
berg et al. (2014) confirmed greater uptake of MeHg in rice
by calculating average bioaccumulation factors from previ-
ously published works of 5.5 for MeHg and 0.32 for IHg(II).
While there is uncertainty around the exact mechanisms driv-
ing translocation, it likely occurs through conductive tissues
such as phloem and xylem (Rothenberg et al., 2015; Hao et
al., 2022; Meng et al., 2010, 2014; Xu et al., 2016).

Within above ground tissues, MeHg can be photolytically
demethylated via reactive oxygen species generated by the
plant itself (Li et al., 2015; Strickman and Mitchell, 2017;
Xu et al., 2016). In-planta demethylation can eliminate up
to 84 % of the MeHg absorbed from the soil by rice (Tang
et al., 2025) which is responsible for a protective effect val-
ued at USD 30.7-84.2 billion per year (Tang et al., 2024).
Translocation of MeHg to the rice grain appears to occur in
complex with cysteine residues and concentrated in the en-
dosperm (the “white” core of the rice grain) (Meng et al.,

https://doi.org/10.5194/bg-22-6695-2025
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2014). Rice grains are referred to throughout as either un-
hulled, once-milled (husk removed, bran not removed; brown
rice) or twice-milled (husk and bran both removed; white
rice).

IHg(II) can also be taken up by plants in similar pathways
described in Sect. 3.1. Sorption of IHg(II) to roots has been
observed in rice (Aslam et al., 2022; Liu et al., 2021a; Strick-
man and Mitchell, 2017), but similar to other crops the root
epidermis likely restricts assimilation of THg(II) into inter-
nal root tissues limiting translocation to other tissues via this
uptake pathway. Similar to MeHg, iron plaque coatings on
rice roots contribute to the root barrier for IHg(Il) via ad-
sorption (Li et al., 2015; Wang et al., 2014, 2015; Zhou and
Li, 2019). Stomatal assimilation of Hg(0), subsequent oxi-
dation, and translocation has been observed as a source of
IHg(II) to the developing rice grain (Aslam et al., 2022; Liu
et al., 2021a; Yin et al., 2013) as well as to the roots them-
selves via reverse translocation (Aslam et al., 2022). It has
also been posited that some IHg(II) could sorb to the outer
layers of the grain (bran and aleurone layer) directly from
the atmosphere (Meng et al., 2014).

3.2.2 Hg in rice impacted by ASGM activities

Globally, Hg contamination of rice in contaminated and un-
contaminated areas has been reviewed by Rothenberg et al.
(2014) and Tang et al. (2020), and in Indonesia by Arrazy et
al. (2024). Our review integrates the ASGM-related body of
this research with newer findings to update our understand-
ing of ASGM impacts on rice. We note the importance of
understanding ASGM-derived Hg contamination of rice due
to the prevalence of ASGM in rice growing areas (i.e., Asia
and Africa), the resulting Hg contamination of air, soils, and
water, and the presence of Hg(0), IHg(Il), and MeHg in these
paddy systems.

Assessment of methylmercury production in ASGM
impacted paddy systems.

Rates of methylation and demethylation have never been
estimated in ASGM environments, and only one study
has measured MeHg levels in paddy soil/sediments. Work-
ing in West Java, Indonesia, Tomiyasu et al. (2020) mea-
sured mean MeHg concentrations of 12.3 +4.8 ugkg™! in
paddy soils & 500 m downstream from an ASGM site com-
pared to 6.5+2.12pgkg™! in reference paddy soils ~
12 km upstream, which seems to indicate minimal differ-
ences in methylation between ASGM and non-ASGM en-
vironments. However, accounting for the THg concentra-
tions in soils (0.43 £0.07 mgkg ™! and 17.4 +22.5mgkg ™!
at the reference and ASGM-impacted paddies, respectively),
%MeHg levels were highest at the reference site (1.6 + >
0.1 %) compared to 0.1 £0.15% at the ASGM impacted
paddy (Tomiyasu et al., 2020). These observations suggest
that differences in the biogeochemical drivers of methyla-
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tion/demethylation could be more important to MeHg con-
centrations than THg concentration in these systems, and that
methylation was low and/or demethylation was high at the
ASGM paddy site. Predominant winds and potential atmo-
spheric uptake of Hg(0) could also be a factor if upstream
paddies were downwind, because the speciation of Hg could
alter bioavailability for methylation, but these details were
not provided.

What do we know about methylmercury accumulation
in rice in ASGM areas?

As for other foodstuffs, the tolerable daily intake rate (the
reference dose) of THg and MeHg in rice are related to the
composition of the entire diet, other MeHg sources, the du-
ration of exposure and the weight of the individual. While
there are concerns that rice should have a separate reference
dose, because it does not offer the same beneficial micronu-
trients as fish (Rothenberg et al., 2014), this work has not
been undertaken. For consistency, we therefore use the same
reference doses for THg and MeHg described in Sect. 3.1.3
(0.3 and 0.1 ugkg='d~! for THg and MeHg, USEPA, 2004)
for studies that discuss estimated dietary intakes and that pre-
sented their intake calculation method. Some authors incor-
porated a wet to dry correction factor to their intake calcula-
tions, which we report, if present, since different correction
factors can affect final values. For studies that did not assess
dietary intake, did not report their calculation method, or did
not distinguish rice from other sources of MeHg, we contex-
tualize the health risk using the Chinese maximum allowable
concentration (MAC) for THg in rice, set at 20 ugkg~' (Zhao
et al., 2019). As there are no MAC values for MeHg in rice,
we apply the same MAC of 20 ugkg ™! for MeHg; if the more
toxic and bioaccumulative MeHg concentrations exceed this
threshold they assuredly present human and environmental
health concerns. For context, the global averages for THg and
MeHg levels in rice from uncontaminated areas are 8.2 and
2.5ugkg™! respectively (Rothenberg et al., 2014).

Information on MeHg in rice grain in ASGM areas is
limited. Findings vary widely, from minimally contaminated
(1-2pugkg™") to levels of high concern (over 100 ugkg™").
These values are within the same order of magnitude as pre-
vious findings of MeHg in rice grains from contaminated
paddies associated with other anthropogenic Hg sources
(1.2-63 pgkg™!, Rothenberg et al., 2014).

Two authors employed a market-basket approach, where
rice grains were purchased in regions around ASGM activ-
ities. In addition to data on other crops (see Sect. 3.1.3),
Marchese et al. (2024) observed similar MeHg and
THg levels in rice grain in mining-impacted (MeHg:
7.9+7.17ugkg™!, THg: 9.1+29ugkg™") compared to
non-mining-impacted areas (MeHg: 8.7 7.5 ugkg ™!, THg:
1524 19.9 ugkg™"). However, it was not possible to link
these market basket samples to contamination in individ-
ual mining-adjacent paddies, as the specific growing loca-
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tion was unknown (Marchese et al., 2024). The same con-
cerns about unknown paddy locations persisted in a study
by Cheng et al. (2013) in Cambodia, who observed mean
MeHg concentrations of 1.54kg™! in market rice bought in
a mining-intensive district compared to means of 1.44 and
2.34 ugkg~! in non-mining districts. %9MeHg was not calcu-
lated for individual samples, but using overall mean THg and
MeHg values, we estimate that the %9MeHg in the ASGM
area was low, at &~ 12 %, and similar to the %MeHg val-
ues from non-mining regions (= 20 %; Cheng et al., 2013).
These studies suggest that the local commercial rice supply
is relatively homogenous between mining- and non-mining
areas, which limits the effectiveness of market basket stud-
ies for determining Hg exposure of vulnerable populations
(miners and local residents) via rice in ASGM regions.

Two authors explored MeHg in rice grains derived from
farms/paddies situated in close proximity to ASGM sites.
Novirsa et al. (2020) found THg concentrations (mean:
48.5ugkg™!; range 13.8-115 ugkg™") in locally grown rice
in active ASGM and farming community (amalgamation “Hg
hotspot” &~ 500 m from rice paddy) in Lebaksitu, Indonesia
that exceeded the Indonesian standard of 30 ugkg~! for Hg
in foodstuffs; of this, 15 %—-82 % (mean: 41 %) was MeHg
(mean: 14 pgkg™"). Rice THg concentrations in a second vil-
lage approximately 2000 m from “Hg hotspot” were lower
(mean: 159 ugkg™'; range 9.1-23.2ugkg™!), as was the
MeHg concentration (mean 9.8; range 6.5-11.7 ugkg~!) but
%MeHg increased (mean: 65 %; range: 51 %—80 %) (Novirsa
et al., 2020). The authors intuitively link the difference
in %MeHg to greater proportional uptake of atmospher-
ically deposited inorganic Hg (we suggest predominantly
via stomatal assimilation of Hg(0)) by rice plants grown
closer to the “Hg hotspot” (Novirsa et al., 2020). These
authors estimated the probable daily intake (which incor-
porates an estimate of bioavailability) of MeHg from rice
and found that intake exceeded the reference dose in the
nearer village (0.139 ugkg(bw)~!d~!, range 0.079-0.199)
while intake in the father village fell below the thresh-
old (0.063 ugkg(bw)~! d~!, range 0.040-0.093). In addition,
they found a significant correlation between hair MeHg lev-
els and exposure via rice, indicating that the contaminated
rice was the source of the residents’ MeHg intake (Novirsa
et al., 2020).

In their companion paper in the same area, Novirsa et al.
(2019) reported very high THg concentrations in soils at the
“Hg hotspot” (32.1 mgkg™!; n = 1). A negative correlation
between THg concentrations and distance from source (three
sites between 0.25 and 1.5km from the hotspot) was also
observed in paddy soils (from 2.26 to 0.47 ugkg™"), paddy
waters (from 301 to 30ngL™!), and rice grains (from 212 to
29 ugkg™") (full details in Table 2) (Novirsa et al., 2019). Yet
they found no relationship between soil or grain THg and wa-
ter THg levels (Novirsa et al., 2019). Interestingly, this paper
identified a positive correlation between soil THg and grain
THg, but the authors did not statistically relate these THg

Biogeosciences, 22, 6695-6726, 2025

measurements to MeHg measurements in their later work,
limiting conclusions that can be made about the relation-
ship between THg and MeHg contamination (Novirsa et al.,

2019).

Elevated MeHg concentrations were measured
in rice grains (mean: 57.74+429ugkg!), husk
(mean: 28.6+253pugkg™!), and foliage (mean:

36.0+24.9ugkg™") from paddy fields directly adja-
cent to a very highly Hg contaminated ASGM cyanidation
tailings pond (mean THg in dried solid-phase tailings:
1.63+1.13gkg™") in Sekotong area on Lombok Island
(Krisnayanti et al., 2012). THg was not measured in rice
grains, and MeHg was not measured in the tailings ponds,
making it difficult to compare estimates of methylation in
soil to MeHg accumulation in grain (Krisnayanti et al.,
2012). Nonetheless, the measured mean MeHg concen-
tration in rice grains far exceeded the Chinese MAC of
20ugkg™! (Krisnayanti et al., 2012). The very high MeHg
concentrations observed in these two studies highlight the
elevated health risk associated with consumption of rice
grown in areas impacted by ASGM activities.

What do we know about total mercury accumulation in
rice in ASGM areas?

Given that MeHg is routinely detected in rice samples
when sufficiently sensitive measurement techniques are used
(Rothenberg et al., 2014), it is likely that MeHg contamina-
tion of rice grains in ASGM areas is widespread. To help
aid with comparison between studies, we have included esti-
mates of MeHg concentrations for all studies that have only
assessed THg in rice (those discussed in this section) by mul-
tiplying the THg concentrations by the mean %MeHg in rice
across both villages (53 % 4 12 %) from Novirsa et al. (2020)
in Table 2. We emphasize that these estimates have a high un-
certainty.

Concentrations of THg in rice grain have been assessed
in ASGM areas of South America, Southeast Asia, and
Africa, presented in Table 2. From the studies reviewed here,
THg concentrations in rice in ASGM areas range from 1.0-
1810 ugkg™". This range exceeds that previously found by
Rothenberg et al. (2014), who surveyed Hg in rice in con-
trol (mean 8.2 ugkg~!, range 1.0-45pugkg™") and contam-
inated areas (mean 65 ugkg™!; range 2.3-510 ugkg™") im-
pacted by Hg use in e-waste, cement production, and other
industrial and mining activities, including some earlier stud-
ies on Hg in rice in ASGM areas. The literature summarized
below excludes studies covered in the Methylmercury sec-
tion (3.2.2.2.1), which includes the only work from South
America (Marchese et al., 2024). In addition, several studies
were excluded due to issues with quality control reporting
or inconsistencies in data tabulation in text (Hindersah et al.,
2018; Ramlan et al., 2022; Saragih et al., 2021; Ssenku et al.,
2023).
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Table 2. Continued.
Reference Research  Region Country Rice Dist. Sub-site Farm Soil Farm Soil Rice Grain Rice Grain 9%MeHg Notes of interest
type preparation ~ ASGM description [THg] [MeHg] [THg] [MeHg] (out of
type to-site (mgkg ™) (ngke™)  (ngkg™) (ngkg™))  [THg)
(km)
Giron et al. field Masbate  Philippines unhulled 0.5-1 ASGM mining 6.888-7.812 NA Unhulled: Unhulled: NA Mean values only
(2017) study Island and once district 117 1x 62%* reported, no estimates
milled milled: 1x milled: of variance/uncertainty
133 71%
~37 non-ASGM 0.013-0.074 NA Unhulled: Unhulled: NA
district 1.6 1x 0.8%
milled: 1x milled:
13.1 6.8%*
Bose- field West Indonesia  unhulled, not reported NA NA 310 164* NA Local ASGM-impacted
O’Reilly et study Java once (68-1186) rice consumed by
al. (2016) milled, and community. Stored rice
twice of variable ages and
milled types. Paddies irrigated
with Hg contaminated
water, paddy-ASGM
distances not reported.
Mallongi et field Gorontalo Indonesia  Once and within I5km  Wubudu 1.52-3.58 NA 1x mill: 1x mill: NA
al. (2014) study Prov. twice radius 1042-1821 552-965%*
milled 2x mill: 2x mill:
603-1084 320-575*
Motihamulo 0.48-2.9 NA I x mill: Ix mill: NA
795-915 421-485*
2x mill: 2x mill:
628-754 332-400*
Dulukapa 0.88-2.26 NA 1x mill: 1x mill: NA
122-254 65-135%
2x mill: 2x mill:
113-183 60-97*
Cheng et al. market Kratie Cambodia not stated; not stated ASGM mining NA NA 12.7 1.54 12 %-MeHg values were
(2013) basket Region likely twice district (9.90-16.7) (1.06-2.31) calculated from mean
Kamp- milled non-mining NA NA 8.14 1.44 18 MeHg and THg values
ng Cham district (6.16-11.7) (1.17-1.96)
Region
Kandal non-mining NA NA 10.21 2.34 23
Region district (5.91-15.1) (0.48-5.23)
Krisnayanti field Lombok  Indonesia one milled field directly not measured; NA NA grain: NA Maximum grain MeHg
etal. (2012) study Island adjacent to THg in 57.7+£42.9 concentration of
cyanidation solid-phase hull: 115 pgkg™ 1
tailings pond tailings of 28.6+£25.3
adjacent pond leaf:
was 36.0+24.9

1630+ 1130
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be within 5 km of ASGM site

(0.005-5.1)

District

basket

Southeast Asia, particularly Indonesia, has received more
attention than other regions, but levels of THg contamina-
tion were variable and did not always translate to elevated
THg in rice. For instance, surprisingly low rice THg con-
tamination was observed by Appleton et al. (2006), who
studied Hg in waters, sediments, different types of agricul-
tural soils, mussels, fish, bananas, and rice prepared in var-
ious ways in an irrigated farming area in the Naboc wa-
tershed, downstream of an ASGM site on Mindanao Is-
land, the Philippines. Expectedly, irrigation of rice paddies
with Hg-contaminated water from the mine resulted in sig-
nificantly higher THg concentrations in paddy soils (mean:
24, range 0.05-96 mgkg~!) compared to unirrigated banana
and corn field soils (means of 0.12 and 0.27 mgkg™! re-
spectively) (Appleton et al., 2006). However, rice Hg levels
ranged from an average of 20 ugkg ™' for once-milled rice
(range 1-43 ugkg™"), 18 ugkg ™! for twice-milled rice (range
8-50ugkg™!) and 15pugkg™! for cooked twice-milled rice
(range 6-37 ugkg™") (Appleton et al., 2006). These results
highlight that the preparation method of rice, including cook-
ing, has the potential to modulate exposure risk. The authors
suggested that the surprisingly low THg concentrations in
rice, given the degree of soil contamination, could be the re-
sult of the post-harvest sampling strategy, which combined
rice grown in paddies with variable magnitudes of contami-
nation (Appleton et al., 2006).

In contrast, Pataranawat et al. (2007) conducted THg mea-
surements of paddy waters, soils and rice (as well as other
matrices) around an ASGM facility in Phichit Province,
Thailand, and observed that once-milled rice had very high
THg concentrations (228 + 55 ugkg™!). However, the sur-
face soil THg concentrations (unclear if this was paddy
soil but associated with the rice samples: 120 & 80 ugkg™")
were lower compared to other ASGM sites (Table 2)
(Pataranawat et al., 2007). The authors also measured el-
evated Hg dry deposition rates in the area (range: 24—
139 ugm?d~!; compared to background dry deposition rates
in Japan: 8.0 +2.7 ugm?d~!; Sakata and Marumoto, 2005)
and suggested stomatal assimilation of Hg as the explana-
tion for the elevated rice and low paddy soil THg concentra-
tions. However, the study lacked both MeHg measurements
in rice or paddy soils (a significant fraction of the THg con-
tent of rice), and foliage Hg measurements to more compre-
hensively assess this hypothesis (Pataranawat et al., 2007).

Working in three villages within 15 km (specific distance
of each village to ASGM site not listed) of an active ASGM
site in North Gorontalo Province, Indonesia, Mallongi et
al. (2014) observed very high THg concentrations in both
once-milled (up to 1812 pgkg™") and twice-milled rice (up
to 1080 ugkg™!) (Table 2). Stomatal assimilation was again
speculated as a potential contributor to the high THg con-
centrations in rice due to high measured dry deposition rates
(166219 ugm?d—") but the authors again lacked the appro-
priate analyses to confirm this (Mallongi et al., 2014). They
also included a diet-based health assessment that raised con-
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cerns of residents consuming this rice in this area, particu-
larly brown rice from the village closest the ASGM site (Mal-
longi et al., 2014).

Giron et al. (2017) surveyed the soil and rice grain THg
concentrations on Masbete Island, the Philippines, at rice
fields near an ASGM site, and a reference site ~ 37 km
away. They found that paddy soil THg concentrations were
extremely elevated in the ASGM site (68807810 ugkg™")
compared to the distant region (13-74 ugkg™'). Unhulled
and once-milled rice concentrations were also elevated at the
ASGM site in comparison to the control site (117-133 and
1.6-13 ugkg ™!, respectively; Giron et al., 2017). The ASGM
site was directly adjacent to a tailings pond and reportedly re-
ceived tailings contaminated water (Giron et al., 2017).

Arrazy et al. (2023) measured somewhat lower THg con-
centrations in rice (mean: 50 £33 pgkg™!) from similarly
contaminated ASGM-derived Hg paddy soils (mean THg:
5600+ 12000 ugkg™") in rice-growing villages with ac-
tive amalgamation and amalgam burning North Sumatra
Province, Indonesia. In this study, THg concentrations in
rice were correlated with THg in soils and distance from
amalgam burning sources, but all rice sources were 300-
600 m from these sites; hence all sites were heavily contam-
inated (Arrazy et al., 2023). The authors also calculated av-
erage daily intake values of THg from rice for adults (0.30-
0.34ugkg='d!) and children (0.54-0.63 pugkg='d~") us-
ing a wet/dry conversion factor set at 0.91; both adults and
children had exposures above the USEPA reference dose
level (Arrazy et al., 2023).

A small epidemiological study exploring the health effects
of mercury exposure in an ASGM village in Indonesia ob-
served that the local rice supply, upon which the villagers de-
pended entirely, was highly contaminated (68—1186 ugkg™"
of THg in unhusked, once-milled, and twice milled stored
rice of various ages; mean value 301 pugkg™'), and esti-
mated THg intake rates of 0.14 ugkg='d~! for adults and
0.57 ugkg='d~! for children (Bose-O’Reilly et al., 2016).
Of the 18 villagers examined, 15 were experiencing symp-
toms of clinical Hg intoxication (Bose-O’Reilly et al., 2016).
These affected individuals had relatively high THg levels in
hair combined with relatively low THg levels in urine, which
is indicative of the manifestations of MeHg exposure rather
than inorganic Hg exposure (Bose-O’Reilly et al., 2016).

Shifting to Africa, studies of ASGM impacted rice paddy
systems were typically indicative of lower concentrations of
THg in paddy soils compared to studies in SE Asia. This may
reflect more distributed cultivation of rice in Africa, greater
competition for the same land resources in SE Asia, or sim-
ply that researchers have not been able to study more heav-
ily impacted rice paddies in Africa due to social/geopolitical
drivers or funding/capacity issues. Taylor et al. (2005) ex-
plored Hg in rice around a mining area in Nigeria using a
market basket approach combined with a single paired rice-
soil sample as part of a more complex survey of dietary metal
contamination across multiple environmental compartments.
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They found that rice grown within 5km of the ASGM site
had THg concentrations of 31-35pgkg™! and Hg in these
paddy soils had a mean THg concentration of 120 ugkg™!
(Taylor et al., 2005). However, other paddies that were not
sampled for rice had much higher THg concentrations in
paddy soils (up to 5100 ugkg~") (Taylor et al., 2005); hence,
the measured THg concentrations of rice may be on the low
end of actual rice concentrations in this ASGM affected area.

Kinimo et al. (2021) assessed Hg contamination of rice
and human exposure at two ASGM sites in rice-subsistence
communities of Ababou and Bonikro, in south-central Cote
d’Ivoire. In once-milled rice, THg concentrations were
204 10 ugkg™" at Bonikro (53 % of samples exceeded Chi-
nese MAC threshold), and 40 +20 ugkg™' in Agabou (all
samples exceeded) (Kinimo et al., 2021). Nonetheless, cal-
culated average daily intakes of Hg via rice fell below
the USEPA threshold (Bonikro: 0.0075 ug~'kg='d~!, range
0.0029-0.016; Agabou mean 0.018 ug~'kg='d~!, range
0.0073-0.079). However, their wet/dry conversion factor was
set to 0.085, an order of magnitude lower than that used by
other authors here (Arrazy et al., 2023: 0.91, Sanga et al.,
2023: 0.86) and may have biased these estimates (Kinimo et
al., 2021).

Finally, Sanga et al. (2023), measured elevated rice grain
THg concentrations (mean: 97.6+34.3 ugkg™") near (<
2km) an ASGM site in Geita Region of Tanzania and calcu-
lated a daily intake of Hg from rice of 0.429 ug~'kg=!'d~!
using a wet/dry conversion factor of 0.86; both rice con-
centrations and intake rates exceed safe thresholds. Sanga
et al. (2023) observed that rice grain THg concentrations
(mean: 75.6 £ 0.005 ugkg~!) at a “background” site (=~ 9 km
away) were also above the Chinese MAC (EDIs not esti-
mated at this site). Despite the elevated Hg concentration
in rice grains, paddy soil THg concentrations at both the
near mining (mean: 32.1 +38.2 ugkg™!) and “background”
(mean: 10.6 4 2.3 ugkg™!) were anomalously low and near
background levels (Sanga et al., 2023). Atmospheric foliar
uptake was briefly discussed with relation to other crops ex-
amined in this study but not linked directly to the observed
high rice Hg and low soil Hg data (Sanga et al., 2023). We
posit that foliar uptake and translocation of THg(II) to rice
grains could drive this discrepancy.’

The literature summarized in this section suggest that both
uptake through roots (likely of MeHg) and Hg(0) uptake
through foliage are important determinants of grain THg con-
centrations in rice grains in ASGM areas. This conclusion is
largely derived from the data inconsistencies between THg
concentrations in paddy soils (and on occasion also distance
from source) and THg concentrations in rice, which indicate
that simple soil THg concentration was not the only con-

7Reporting/method issues could also explain the very high
rice/very low soil Hg concentration anomaly, but we could not iden-
tify any issues from the data provided (the same anomaly was noted
for other crops in this study; footnote iv).
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trol on grain THg concentration in grains (i.e., Appleton et
al., 2006; Pataranawat et al., 2007; Sanga et al., 2023), as
well as the comprehensively structured study by Aslam et
al. (2022) which strongly suggested an atmospheric route of
Hg(0) uptake is occurring in rice. This does not discount the
importance of uptake from roots in ASGM areas, as there
are studies that have observed a positive rice grain — paddy
soil THg correlation (i.e., Arrazy et al., 2023; Novirsa et al.,
2019). While the authors interpreted this to mean that the soil
was the source of grain THg, we believe it is more likely to
be the result of bioaccumulation of the (unmeasured) methy-
lated fraction of the total Hg pool, given that MeHg is read-
ily detected in rice grains at high levels in ASGM areas
(Krisnayanti et al., 2012; Novirsa et al., 2020; Rothenberg
et al., 2014). While we cannot fully discount the possibil-
ity of direct soil uptake of IHg, the presence of IHg in rice
grain could also be explained by the recently confirmed in-
planta demethylation pathway (Tang et al., 2024), or stom-
atal uptake and subsequent reverse translocation (Aslam et
al., 2022) followed by loading to the developing grain. Stud-
ies to better understand the local controls over both uptake
mechanisms, and why anomalously low rice Hg occurs in ar-
eas with high paddy soil Hg (and vice versa), should be the
focus of future research

3.3 Hg uptake by livestock/poultry: the consumers

Restricting our definition of agriculture to more traditional
terrestrial farming practices (fungi or aquaculture farming
are not considered), we must also consider potential Hg ex-
posures through the consumption of Hg contaminated live-
stock, poultry, or their egg/dairy by-products; yet research in
this area is very limited. Hg in herbivorous, mammalian live-
stock (i.e., cattle, sheep) and their milk is suggested to be de-
rived largely from Hg in feedstocks with inhalation deemed
a minor uptake pathway (Vreman et al., 1986; Crout et al.,
2004; Parsaei et al., 2019). Qian et al. (2021) mention that Hg
speciation, and specifically the fraction of MeHg in the con-
taminated feedstocks is likely to impact the extent of bioac-
cumulation in poultry and livestock. Yet the authors did not
directly measure any form of Hg in the animals or animal
products (only THg and MeHg in plants) and simply high-
light this potential exposure pathway (Qian et al., 2021).
Vreman et al. (1986) demonstrated that dosing cattle (Bos
taurus) for 3 months with feedstocks enriched in inorganic
Hg (1.2-3.1 mg of Hg per day) above control doses (0.2 mg
of Hg per day) can result in accumulation of Hg in the an-
imals, particularly in the liver (9x Hg enrichment in liver
tissue vs control) and kidneys (16 x Hg enrichment in kidney
tissue vs. control). Similar results (Hg enrichment in kidneys
and liver compared to muscle) were found by Crout et al.
(2004) by dosing cattle feedstocks with isotopically labelled
inorganic Hg, but no control cattle were used in this study.
These data present livestock health implications due to the
known impacts of Hg on the gastrointestinal and renal sys-
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tems in humans and other mammals (Ha et al., 2017; Basu
etal., 2023). Indeed, data demonstrating the concentration of
Hg in the kidneys and liver of terrestrially farmed animals
not only stress the need for caution/avoidance of human con-
sumption of these tissues in regions with known Hg pollution
issues such as ASGM areas, but they also highlight renal and
gastrointestinal health risks in humans consuming of crops
contaminated by inorganic Hg (via the stomatal assimilation
pathway).

Hg in terrestrially farmed animals impacted by ASGM
activities

Basri et al. (2017) measured significantly higher THg con-
centrations in hair of cattle living inside (< 2km from;
11.44+9.5mgkg™") compared to outside (> 8km from;
2.9+2.5mgkg™!) an ASGM area on the island of Sulawesi.
THg concentrations in hair also increased with cattle age,
which suggests Hg is bioaccumulating the cattle (Basri et
al., 2017). In a follow-up study of the same area, the au-
thors examined soils and forage grasses (Imperata cylin-
drica, Megathyrsus maximus, and Manihot utilissima) that
these cattle feed upon; though THg concentrations in soils
were significantly higher inside compared to outside the min-
ing area, the difference for forage grasses (inside vs outside)
was not determined to be significant (Basri et al., 2020).

A study from Ghana examined liver, kidney, and muscle
in sheep (Ovis aries), goat (Capra hircus), and chicken (Gal-
lus gallus domesticus) and in each case THg concentrations
were greater in kidneys (7+8, 342, and 12+ 8pugkg™!,
respectively) than liver (3£3, 1+1, and 1147 ugkg™',
respectively), which were higher again than muscle (non-
detect, non-detect, and 1+ 1 ugkg ™', respectively) (Bortey-
Sam et al., 2015). While the study did use a robust and
highly sensitive THg analyser (MA3000, NIC), it appears
low sample mass impacted the detectable THg concentration
in the results (Bortey-Sam et al., 2015). Furthermore, chick-
ens were market bought, and sheep and goat were obtained
from slaughterhouses; hence, little specific information on
feed and exposures could be determined (Bortey-Sam et al.,
2015).

Marchese et al. (2024) assessed THg in feathers, eggs, and
internal tissues (muscles and organs) and MeHg in eggs and
internal tissues of “backyard” chickens from an ASGM com-
munity and an upstream remote community in the Peruvian
Amazon (Madre de Dios Region). Median THg concentra-
tions were 7.3 x higher in muscle and organ tissues and 3.6 x
higher in feathers from mining areas compared to the back-
ground site; there was no significant difference in egg THg
or MeHg between the sites (Marchese et al., 2024). Interest-
ingly, chicken livers had the highest THg concentration, but
lowest fraction of MeHg (54 %; MeHg fraction was up to
100 % in other tissues: spleen and back muscle) and MeHg
fractions were significantly lower in ASGM area than back-
ground (Marchese et al., 2024).
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The omnivorous nature of chickens and other poultry
presents additional dietary variables to their own and subse-
quent human (via consumption of meat and eggs) exposures
to Hg; their diets can vary greatly depending on how they
are reared (Klasing, 2005). Indeed, Marchese et al. (2024)
observed significantly higher 8!3C data in chicken feath-
ers in background area compared to ASGM area, suggest-
ing differences in chicken diets between the sites. The lack
of difference in 89N between the sites indicates that this
is not associated with a significant change in trophic feed-
ing level but rather changes in plant food types (Marchese
et al., 2024). Despite these differences the authors conclude
that differences in environmental exposure levels drive the
observed differences in chicken THg and MeHg concentra-
tions at the ASGM and background sites (Marchese et al.,
2024). In addition to Hg in chicken and crops, the March-
ese et al. (2024) study also examined Hg in fish and com-
bined all these data to produce probable weekly Hg intake
values for humans in these regions. As expected, fish are the
dominant dietary source of Hg make up ~ 82 % of THg in-
take (= 96 % of MeHg) compared to ~ 17 % (=~ 3 %) and
~ 1% (~ 1 %) for crops and chicken, respectively (Marchese
et al., 2024). Although the high THg concentration and lower
MeHg fractions observed in chicken tissues (particularly liv-
ers) again raises some concern of inorganic Hg contamina-
tion and potential bioaccumulation in (particularly in detox-
ifying organs of) poultry/livestock in ASGM affected areas,
the much larger Hg burden from fish consumption adds cru-
cial perspective to dietary concerns relating to poultry/live-
stock consumption at least based on results of the Marchese
et al. (2024) study.

Two other studies have examined THg concentrations in
poultry blood. Abdulmalik et al. (2022) measured signifi-
cantly higher THg blood concentrations (0.08-0.09 ugL~")
in chickens sampled within 1 km of ASGM compared to con-
trol chickens (non-detectable concentrations). While Aendo
et al. (2022) measured much higher THg concentrations in
poultry blood (mean THg range: 20-43 ugL~!), linkages
between concentrations and proximity to mining were less
clear. Only free-grazing ducks (specific species not listed)
within a mining area (albeit a large area, within 25 km radius,
deemed to be impacted by mining) had significantly higher
THg concentrations to those outside the mining area; chick-
ens and farmed ducks were not significantly different (Aendo
et al., 2022).

4 Implications and future research direction

The global extent and rapid growth of ASGM places critical
emphasis on the need to address the serious environmental
and human health risks presented by ASGM Hg use. Ideally,
such efforts should start with improving our understanding of
Hg emissions and releases associated with ASGM, which are
highly uncertain and currently based on poorly constrained
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knowledge of Hg use, gold production, and the sheer scale
of the rapidly growing and largely informal/illegal sector.
The implementation of accessible, low-cost, low-tech solu-
tions such as the Hg passive air sampler method utilized by
Szponar et al. (2025) to assess Hg(0) concentrations, expo-
sures, and emissions to air from ASGM activities are needed
to generate the robust monitoring data needed to better assess
ASGM Hg emissions and releases. Efforts to model ASGM
emissions and fate remain hampered by our limited knowl-
edge of Hg use inventories. Nonetheless, novel ASGM Hg
modelling efforts that account for the importance of the sink
of Hg to terrestrial vegetation (particularly in the more heav-
ily vegetated tropics where much ASGM occurs) such as that
presented by Hedgecock et al. (2024) will undoubtedly im-
prove our understanding of the cross-compartmental distri-
bution and air-vegetation dynamics of Hg in ASGM areas.
Considering > 55 % of the planet’s ice-free land has been
converted to farming or lands for human settlement (Ellis et
al., 2010), it could be beneficial to adapt such models to in-
clude agricultural biomes.

There have been considerable advancements, paradigm
shifts even, in terms of our understanding of the importance
of Hg(0) uptake (stomatal assimilation) by plants from the
atmosphere, now understood to be the dominant flux of Hg
from air to terrestrial systems. However, there needs to be a
greater focus on such research from the context of ASGM
and agricultural crops. The recent work by Eboigbe et al.
(2025) using Hg stable isotopes analyses of soils, air, and
different crop tissues provided critical insight into the impor-
tance of the stomatal assimilation pathway in staple crops.
While many previous studies of Hg in crops mention this
as a potential uptake mechanism, this research has largely
focussed on soil contamination as the primary source of
crop exposure to Hg. Experimental design of future research
should not discount soil uptake entirely, definitely not in the
context of MeHg uptake in rice but assessment of the atmo-
spheric Hg(0) concentration crops are exposed to should be
an essential component of future studies in this area. Again,
more accessible air monitoring technologies such as passive
sampling are likely the most effective strategy considering
that most ASGM happens in the Global South. Such data
are not only critical for assessment crop exposures to atmo-
spheric Hg, but also to assess the magnitude of ASGM emis-
sions at specific sites (Szponar et al., 2025). As posited by
Arrazy et al. (2024) and Rothenberg et al. (2014) the types
of ASGM activities and the intensity and age of those ac-
tivities as influencing factors on crop Hg concentrations and
speciation.

The complexity of MeHg production, and paddy cycling
of Hg, have been under appreciated in ASGM environments.
Including such analyses in future work would improve inter-
pretation of studies that observe anomalous data of low soil
and high rice THg concentrations (and vice versa). Future
work should incorporate measurements of Hg(0) at the stud-
ied paddies to assess atmospheric exposures of rice to Hg(0)
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and delineate the burden of THg in rice coming from air-
stomata uptake pathway (and potentially direct sorption of at-
mospheric Hg species to developing grain). Adding measure-
ments of MeHg in soil and grain compartments would allow
greater capacity to differentiate if anomalous high soil/low
rice or low soil/high rice THg concentrations are driven more
by variable methylation rates in different paddies or a greater
fraction of THg in rice being derived from the Hg(0) stomatal
assimilation pathway than previously thought.

Authors focussed on concentration data and seldom mea-
sured the biogeochemical factors that could help explain
and understand methylation in ASGM rice paddies. Data
on relevant soil and water biogeochemistry is limited to
nearby waterways, rather than paddies (Appleton et al., 2006;
Pataranawat et al., 2007). Where feasible, measurements of
methylation and demethylation rate potentials, Hg stable iso-
topes (or isotope enrichments), and complementary biogeo-
chemical analyses (i.e., pH, temperature, redox conditions,
carbon composition) are also needed. It is important to note
that even if methylation rates are low, the extremely high sup-
plies of inorganic mercury in ASGM environments can still
lead to high concentrations of MeHg; this question remains
largely unexplored. These knowledge gaps of Hg cycling in
ASGM impacted paddy soils limit our capacity to identify
specific drivers of elevated MeHg production and the asso-
ciated health risks. This in turn makes it difficult to iden-
tify which agricultural strategies that have potential to re-
duce paddy production of MeHg and accumulation in rice
grains (i.e., biochar amendment, alternative wetting and dry-
ing cultivation, or the use of low-MeHg accumulating culti-
vars; Tang et al., 2020).

We must consider that the range of crops potentially af-
fected by ASGM activities is broad. C3 and C4 plants have
different photosynthetic pathways, which as Eboigbe et al.
(2025) speculate could lead to differing rates of Hg(0) uptake
from air. Xia et al. (2020) suggest longevity of crops (annu-
als vs. perennials) may also impact Hg uptake rates from air
and/or soils. Future work should not only broaden the range
of crop species exposed to Hg contamination from ASGM,
but also as many different crop tissues, beyond simply edible
parts, as possible, and even different compartments of indi-
vidual tissues (i.e., tubers: peels vs. flesh; stems and roots:
cortex/epidermis vs. vascular bundles vs. pith). Such detail is
crucial for subsurface tissues (i.e., roots) as it has been sug-
gested that the root epidermis is an effective barrier prevent-
ing uptake of inorganic Hg species (Lomonte et al., 2014).
Applying Hg stable isotope analyses to the different sections
of dissected tissues has the potential to identify the source
of Hg in each tissue section using two end-member mixing
models for the air and soil uptake pathways (as applied in
Eboigbe et al., 2025) as well as elucidate information on the
internal translocation of Hg by these crops. Development of
a process-based vegetation model examining internal Hg cy-
cling using THg, Hg(0), IHg(Il), and MeHg concentrations
and stable isotopes (including fractionation factors) would be
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a major advancement not just for ASGM impacted farming
systems, but for all study of Hg in vegetation.

It is a clear from our review that there is a dearth of in-
formation relating to Hg in livestock and poultry meat and
dairy/egg by-products be that in high-risk ASGM areas or
otherwise. Concerns of inorganic Hg bioaccumulation and
health impacts are evidenced by Hg in livestock and poultry,
particularly in detoxifying organs like kidneys and the liver.
More study is required to understand the health risks to live-
stock/poultry themselves and humans consuming them (and
their edible by-products) through the examination of THg
and MeHg concentrations. Moreover, future work should
better examine the transfer of Hg from contaminated feed-
stocks to these animals and determine the role Hg speciation
in feedstocks plays in this transfer. Adding Hg stable iso-
topes to such assessments would improve our mechanistic
understanding of Hg uptake, cycling, and fate within animals
farmed in areas adjacent to ASGM.

Another important gap is that the effects of food prepa-
ration are not included in estimates of daily intake. Under-
standing of the effects of cooking on Hg and MeHg bioavail-
ability has only recently coalesced, and is still limited to in
vitro studies, which has been recently reviewed by Gong
et al. (2025). The bioaccessibility of THg and MeHg vary
widely between foodstuffs based on the macronutrient com-
position of food preparation methods (i.e., grinding vs. whole
grain), and cooking methods (high temperature cooking can
reduce MeHg bioaccessibility) (Gong et al., 2025). With this
considered, it is essential that there be a greater focus of re-
search into the effects of meal composition and preparation
and cooking methods on Hg concentrations, speciation, and
bioavailability in edible crop parts and livestock and poultry
meats and eggs/dairy. This is particularly so for areas im-
pacted by ASGM activities due to greater potential Hg expo-
sure via contaminated foods.

Bridging these barriers will require multidisciplinary ap-
proaches involving collaboration with mine stakeholders,
community leaders and engaged citizens, and both local and
international scientists to conduct safe and effective site as-
says that effectively address the critical knowledge gaps out-
lined in this work. As highlighted by Moreno-Brush et al.
(2020), we stress the importance of international collabora-
tions between scientists in areas directly impacted by ASGM
that possess key local partnerships and knowledges of ge-
ographies, customs, and cultures, and those from the Global
North with access to greater funding opportunities and ad-
vanced methodologies (i.e., Hg stable isotope instrumenta-
tion, global fate and transport models) critical to generat-
ing the scientific robustness and impact needed to assess the
impacts of ASGM Hg use on terrestrial agricultural com-
munities. Equally vital is also ensuring knowledge transla-
tion to impacted communities post-research by promoting re-
spectful engagement, avoiding exploitation (parachute/colo-
nial science), and fostering lasting collaborations (Kukko-
nen and Cooper, 2019). The production of knowledge alone
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should not be the sole motivator in such efforts. Growth of
ASGM is driven by demand for gold in the Global North
and rapidly developing economies in Asia (Verbrugge and
Geenen, 2020; Prescott et al., 2022); hence, there is respon-
sibility that this global issue (and its impacts) requires global
solutions.
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