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Abstract. Accurate estimates of future land carbon sinks and
thus the remaining carbon budget to achieve the Paris climate
goals requires rigorous modelling of the carbon sequestra-
tion potential of the terrestrial biosphere. Estimating the ter-
restrial carbon budget requires an accurate understanding of
the interlinkages between the land carbon and nitrogen cy-
cles, yet coupled carbon-nitrogen cycle models exhibit large
uncertainties. Leaf chlorophyll, chlleaf, is an indicator of the
leaf nitrogen content stored within photosynthetic nitrogen
pools and is central to the exchange of carbon, water and en-
ergy between the biosphere and the atmosphere. In this work,
we harness an advanced remote sensing (RS) chlleaf product
to evaluate a terrestrial biosphere model (TBM), QUantify-
ing Interactions between terrestrial Nutrient CYcles and the
climate system (QUINCY), which explicitly models chlleaf.
We focus on comparing the spatial and seasonal patterns of
modelled and observed chlleaf, and then further assessing if
modelled leaf area and productivity agree with a RS leaf area
index product and in-situ eddy covariance-based gross pri-
mary production, respectively. In addition, we conduct ad-
ditional simulations to test two alternative formulations of
leaf-internal nitrogen allocation within QUINCY. Our analy-
sis over a globally representative set of locations reveals that

QUINCY chlleaf magnitudes are mostly in line with the RS
chlleaf values. However, QUINCY chlleaf tends to show a nar-
rower numerical range compared to RS for specific ecosys-
tem types, such as grasslands. While the seasonal cycle of
QUINCY chlleaf mostly corresponds well to the observations,
for many deciduous forests, the increase in QUINCY’s chlleaf
predictions in spring and the decrease in autumn were de-
layed compared to observations. Our results also show that
compared to the original leaf nitrogen allocation scheme of
QUINCY, the revised scheme produced a more reasonable
sensitivity of gross primary production to increases in chlleaf.
However, the revised scheme did not directly lead to im-
provement in simulating chlleaf and gross primary produc-
tion. Our study shows the value of RS products linked to
nitrogen cycle that will be useful in both carbon and nitro-
gen modelling, and paves way for closer linking of RS and
TBMs.

1 Introduction

The terrestrial biosphere currently takes up approximately
one-third of the anthropogenic fossil fuel carbon emissions
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(Friedlingstein et al., 2023), and thereby playing pivotal role
in slowing global climate warming (Nabuurs et al., 2022).
The carbon (C) cycle is closely linked to the terrestrial ni-
trogen (N) cycle, as photosynthesis and plant growth require
sufficient nutrient supply. Land carbon uptake is limited by
nitrogen in many ecosystems (LeBauer and Treseder, 2008;
Fisher et al., 2012; Tamm, 1991; Vitousek and Howarth,
1991; Ziehn et al., 2021), however, the magnitude of this lim-
itation remains unclear. This highlights the need to better un-
derstand the coupled C and N cycles (Seiler et al., 2024), as
future changes in climate will also affect these cycles (Arora
et al., 2020).

Terrestrial biosphere models (TBMs) can be used to sim-
ulate coupled C and nutrient cycles and land-atmosphere
interactions under a changing climate. In recent decades,
TBMs have taken in an increasing number of factors affect-
ing plant photosynthesis, such as nutrient limitation (Blyth
et al., 2021). Whilst Kou-Giesbrecht et al. (2023) reported
that TBMs are capable of reproducing the historical terres-
trial C sink with a sufficient level of performance, uncer-
tainties persist. TBMs use different modeling approaches to
represent N limitation of photosynthesis and the effect of N
availability on leaf N, which can lead to varying results re-
garding plant productivity (Medlyn et al., 2015). Leaf N can
be obtained directly from soil N availability by using a fixed
parameter or with flexible parametrization using leaf C : N
ratios (Thomas et al., 2015). Increasing model complexity re-
garding modeling the N limitation can thereby also introduce
further uncertainties into the estimates of the carbon sink
(Fisher and Koven, 2020; Famiglietti et al., 2021), through
both process and parameter uncertainty, given the inclusion
of new process equations. These uncertainties are also re-
flected in significant divergence of N pools and fluxes mod-
elled by the current generation of TBMs (Kou-Giesbrecht
et al., 2023). In addition, the modelled responses of photo-
synthesis to elevated atmospheric carbon dioxide (CO2) or
to N deposition vary between different TBMs, requiring a
better understanding of the N cycle (Davies-Barnard et al.,
2020; Arora et al., 2020; Meyerholt et al., 2020; Zaehle et al.,
2014). It is therefore important to better constrain the nitro-
gen dynamics in these models.

One of the major sources of uncertainty in modeling the
land carbon sink with TBMs is the uncertainty in estimat-
ing the leaf photosynthetic capacity and photosynthetic rate
(Bonan et al., 2011; Rogers et al., 2017). Leaf chlorophyll
(chlleaf) is intrinsically related to plant photosynthesis, due
to its role in generating biochemical energy for the carboxy-
lation reactions within the Calvin–Benson cycle, through
the harvesting of solar radiation. Previous work has demon-
strated that leaf chlorophyll content is a strong proxy for pho-
tosynthetic capacity (Croft et al., 2017; Lu et al., 2020; Luo
et al., 2021). The maximum carboxylation rate at the 25 °C
reference temperature (Vc(max),25) represents the limitation of
photosynthesis by the Rubisco enzyme, which is the main
regulator in light-saturated photosynthesis (Houborg et al.,

2013). Due to the investment of N in chlleaf molecules and an
optimal N investment strategy to ensure close co-ordination
between light-harvesting and carboxylation reactions, there
is a close relationship between leaf N and chlleaf (Sage et al.,
1987; Evans, 1989). In-situ observations of chlleaf can there-
fore be used to improve the parametrization of physiological
schemes within TBMs to improve GPP estimates (Luo et al.,
2018, 2019; Lu et al., 2022; Thum et al., 2025). However,
many of the contemporary TBMs do not represent chlleaf,
and the widely used version of the FvCB model (Farquhar
et al., 1980) for photosynthesis description does not explic-
itly take into account the role of chlleaf in photosynthesis. In
addition, the majority of TBMs only consider total canopy N
and its vertical distribution (Vuichard et al., 2019; Best et al.,
2011; Clark et al., 2011).

In addition to in-situ observations, remote sensing (RS) of
the Earth’s vegetation provides comprehensive data for eval-
uating TBMs. Leaf nitrogen is difficult to retrieve directly
from RS observations (Farella et al., 2022), in comparison
to chlleaf which is more feasible to derive remotely (Croft
and Chen, 2018), due to the presence of large chlorophyll
absorption features in visible wavelengths. The advantage of
using remotely sensed chlleaf is its global and seasonal cover-
age and relatively long time span, compared to in-situ obser-
vations. Similarly as in-situ observations, RS chlleaf can be
harnessed to improve the modeled photosynthetic processes
which include Vc(max) (Houborg et al., 2013). For example,
Liu et al. (2023) retrieved global daily Vc(max) for C3 biomes
by using RS chlleaf and RS solar-induced chlorophyll fluores-
cence. Another advantage of RS chlleaf is that they are linked
to space-borne observations of leaf area index (LAI), both re-
trievable remotely (Croft et al., 2020). This allows the mod-
eled leaf surface area to be evaluated simultaneously with
chlleaf.

In this study, we utilized a spatial RS chlleaf product (Croft
et al., 2020) to evaluate the chlleaf representation of the TBM
QUINCY (QUantifying Interactions between terrestrial Nu-
trient CYcles and the climate system) (Thum et al., 2019;
Caldararu et al., 2020), which has fully prognostic coupled
carbon and nitrogen cycles. QUINCY includes an explicit
representation of chlleaf and its impact on photosynthesis, and
also the photosynthetic parameters Vc(max),25 and the max-
imum electron transport rate at 25 °C reference temperature
(Jmax,25) are directly determined from leaf nitrogen. We anal-
ysed model performance with respect to the temporal and
spatial distribution of chlleaf and LAI in different ecosystems
globally. We further compared the simulated gross primary
production (GPP) with the ground-based measurements from
eddy-covariance network stations. To understand model-data
mismatch, we used a machine learning approach to analyze
how different environmental drivers affect both QUINCY
and RS chlleaf. We further investigated whether the observed
difference in chlleaf between QUINCY and observations is
related to modeled N limitation by examining QUINCY’s
leaf C : N values. Here we use RS data as a reference for eval-
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uation, though we acknowledge that RS data are also simu-
lated product and have different characteristics than in-situ
data. In other words, our evaluation can be understood more
as a comparison study between TBM and RS-derived data.

Initial results suggested that the modeled response of
chlleaf to leaf N was not realistic, foremost because the orig-
inal leaf nitrogen scheme in QUINCY does not take into ac-
count of the observed relationship between chlleaf and Vc(max)
(Evans and Clarke, 2019). In order to have a more realistic
representation, we formulated an alternative leaf N alloca-
tion scheme in QUINCY based on Onoda et al. (2017) and
Evans and Clarke (2019), where the Vc(max) and chlleaf ratio
is taken into account, and compared the additional simulation
results with the original leaf N allocation scheme.

The objectives of the study were to determine different
methods for using RS chlleaf in model evaluation and how
RS chlleaf can benefit modeling of coupled C and N cycles.
The research questions addressed in this work are as follows:

– Are the spatial and temporal patterns of global chlleaf in
QUINCY and RS similar?

– Is QUINCY’s performance in modeling chlleaf related
to its ability to produce measured annual GPP?

– What are the main environmental drivers that affect
QUINCY chlleaf and RS chlleaf?

2 Materials and methods

In this section, we will first present the study sites and ob-
servational data, followed by QUINCY model description
and simulation setup. Finally, a machine learning approach to
determine chlleaf environmental drivers is presented. In this
study, chlleaf denotes both chlorophyll a and b (chla+b). All
the datasets used in the study are presented in Table S1 in the
Supplement.

2.1 Description of the sites

We conducted the analysis using two different site sets. The
first set was the Protocol for the Analysis of Land Surface
Models (PALS) Land Surface Model Benchmarking Evalua-
tion Project (PLUMBER2) (Ukkola et al., 2022). The second
site set, GLOBAL, is based on the study by Caldararu et al.
(2022).

PLUMBER2 (Abramowitz et al., 2024) was designed for
serving in a model intercomparison project for land surface
models, and provides CO2 eddy covariance measurements
and meteorological data for various sites. The time interval
of PLUMBER2 site data varies depending on the site, as
some of the site data cover only one year, while others cover
over a decade. The time span of PLUMBER2 site data is be-
tween 1992–2018. Of the available sites, we included 143
PLUMBER sites that had RS chlleaf, RS LAI and QUINCY
data available, and that were not reported by Abramowitz

et al. (2024) to have anomalous precipitation input data. The
GLOBAL site set represents all major climate zones and
global biomes, and the site input data is for the years 1989–
2018 based on the CRU JRA dataset (Harris, 2020). In our
analysis, we used 279 GLOBAL sites for which QUINCY
simulations and RS chlleaf data were available and matched
in land cover type (see Sect. 2.2.3).

In total, the combined PLUMBER2 and GLOBAL anal-
ysis included 422 sites. The locations of the PLUMBER2
and GLOBAL sites are presented in Fig. S1 in the Supple-
ment. The sites are categorized based on the QUINCY plant
functional types (PFTs), and the number of GLOBAL and
PLUMBER2 sites in each PFT are listed in Table 1.

2.2 Remote sensing data

2.2.1 Remotely sensed chlleaf

We obtained chlleaf content from the global RS product by
Croft et al. (2020). The RS chlleaf is derived from the EN-
VISAT MERIS full-resolution reflectance data with a two-
stage radiative transfer model. The spatial resolution of the
global RS chlleaf is 300 m, and the data are processed to
a 7 d temporal resolution for the years 2003–2011. The
chlleaf has been retrieved by first modeling the reflectance
spectra at the leaf level using two separate models: the 4-
Scale model (Chen and Leblanc, 1997) for forested and spa-
tially clumped ecosystems, and the SAIL model (Verhoef,
1984) for cropland and grassland ecosystems. The chlleaf has
been then derived from the leaf reflectance spectra by using
the PROSPECT leaf optical model (Jacquemoud and Baret,
1990). The influence of gaps has been partially minimized in
the RS chlleaf by Croft et al. (2020) by gap-filling the missing
data with the year 2010 data and a smoothing algorithm. A
detailed description of the RS chlleaf product is presented in
Croft et al. (2020).

In addition, we obtained chlorophyll content data based
on the Sentinel-3 OLCI data (Reyes-Muñoz et al., 2022) for
two needle-leaved sites for which we also had in-situ chlleaf
measurements (see Sect. 2.3.2). The RS chlleaf product by
Reyes-Muñoz et al. (2022) is generated by involving Gaus-
sian process regression algorithms, and the training data for
the algorithm consisted of simulated top of atmosphere radi-
ance from coupled canopy radiative transfer model SCOPE
and the atmospheric radiative transfer model 6SV. The aim
was to further evaluate the magnitude and the seasonality of
chlleaf for the needle-leaved evergreen boreal forests by us-
ing data from a different Earth observation instrument and
also obtained with a different retrieval algorithm than with
RS chlleaf by Croft et al. (2020).

2.2.2 Remotely sensed LAI

We used the GEOV1 remotely-sensed leaf area index (LAI)
product from the Copernicus Global Land Service (Baret
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Table 1. List of QUINCY PFTs and the corresponding number of sites in the PLUMBER2 and GLOBAL site sets.

Abbreviation Long name Nr of sites, PLUMBER2 Nr of sites, GLOBAL Nr of sites, all

BNE Boreal needle-leaved evergreen 20 50 70
TeNE Temperate needle-leaved evergreen 8 6 14
BNS Boreal needle-leaved deciduous 0 6 6
TeBE Temperate broad-leaved evergreen 4 4 8
TeBS Temperate broad-leaved deciduous 25 20 45
TrBR Tropical broad-leaved rain deciduous 2 2 4
TrBE Tropical broad-leaved evergreen 9 38 47
TeC C3 crops 21 0 21
TeH C3 grasslands 34 69 103
TrH C4 grasslands 20 84 104

all – 143 279 422

et al., 2013), which is the same RS LAI product used to re-
trieve the RS chlleaf by Croft et al. (2020). GEOV1 LAI is
derived from the SPOT-VGT satellite data and has a tempo-
ral resolution of ten days and a spatial resolution of 1 km. We
used data for the years 2003–2011.

2.2.3 Post-processing of the RS data

As RS chlleaf depends in part on the assumed land cover (LC)
type for each grid cell, it was important to ensure that the
QUINCY chlleaf values for each site represented the same
ecosystems as RS chlleaf. We compared the PFT values used
in the QUINCY simulations with the LC values from a Eu-
ropean Space Agency Climate Change initiative (ESA-CCI-
LC) LC map (ESA, 2017), from which the LC types were
also taken for the RS chlleaf retrieval modeling by Croft et al.
(2020). A list of LC types is presented in Table S2 in the
Supplement, and the LCs associated with each PFT in our
comparison are presented in Table S3 in the Supplement. For
each site, we first selected the site grid cell and the eight sur-
rounding grid cells, i.e. the 3× 3 cell area, from the ESA-
CCI LC map. We then checked whether the QUINCY PFT
matched the LC type for each of the grid cells, and added
to a list those grid cells that had a matching land cover type
to the QUINCY PFT. We then picked from the RS chlleaf
grid data only those listed grid cells that had a matching
land cover type, and calculated an area average RS chlleaf
based on the listed cells. This area average was calculated
separately for each time step. If there were no matching grid
cells in the 3× 3 surrounding cells, we extended the search
to cover 5× 5 surrounding cells, and looped through 25 grid
cells. We then selected the matching cells from the 25 cells,
and calculated the area average RS chlleaf for each time step.
There were eight PLUMBER2 sites and 80 GLOBAL sites
for which we did not find any matching grid cells, and these
sites were excluded from the analysis. We only used the top-
of-canopy chlleaf values from QUINCY to ensure that the val-
ues were consistent with the RS-based values. In addition,
the RS chlleaf for the needle-leaved sites was multiplied by

π
2 . This was done to account for the half-hemispherical nee-
dle geometry in the remote sensing retrieval (Stenberg et al.,
1995).

The RS LAI data were only retrieved using the one grid
cell where the site was located, i.e. the PFT classification of
a site did not affect the RS LAI post-processing. If no data
were available in that particular grid cell, we extended the
area to cover±0.01° latitude and longitude degrees and used
the average of the whole extended area.

2.3 In-situ observations

2.3.1 Eddy covariance flux observations

Ground station GPP observations were available for the
PLUMBER2 sites, and the data were taken from the eddy co-
variance flux tower dataset provided by Ukkola et al. (2022).
The dataset includes flux tower data from three data re-
leases: FLUXNET2015 (Pastorello et al., 2020), La Thuile
(FLUXNET, 2024), and OzFlux (Isaac et al., 2017). The flux
data were gap-filled using statistical methods depending on
the length of the gap. The short gaps up to four hours were
gap-filled using linear interpolation methods. Gaps that were
longer than four hours were gap-filled with linear regression
against the incoming shortwave (SW) radiation, air temper-
ature and humidity, or only against the SW radiation if the
other two variables were missing. Depending on the site, the
flux time series ranged from one to 20 years, between the
years 1992 and 2018 (see Ukkola et al., 2022, Table S1). Data
from all years were used, and therefore, the GPP time series
are not necessarily from the same time interval as RS chlleaf.

2.3.2 chlleaf and leaf C : N in-situ measurements

To further investigate the chlleaf magnitude and seasonal cy-
cle for boreal needle-leaved evergreen (BNE) forests, we per-
formed an additional comparison for RS and QUINCY out-
put with in-situ observations for two PLUMBER2 sites: So-
dankylä site (FI-Sod) in Finland (67.4° N, 26.6° E) (Thum

Biogeosciences, 22, 6937–6962, 2025 https://doi.org/10.5194/bg-22-6937-2025



T. Miinalainen et al.: Leaf chlorophyll evaluation of the QUINCY model 6941

et al., 2007) and Niwot Ridge (US-NR1) in the United States
(40.0° N, −105.5° E) (Bowling and Logan, 2019). Both sites
are characterized as needle-leaved forest sites with strong
seasonal cycle and harsh winters. FI-Sod is classified as bo-
real forest, and US-NR1 as subalpine, and it is located in a
mountainous terrain. The sites were selected as both sites had
a time series of chlleaf observations. In addition, there were
also fraction of absorbed photosynthetic radiation (fAPAR)
in-situ observations available at FI-Sod, which we used in
our analysis. Further details about chlleaf data collection and
the use of in-situ observations is provided in Sect. S1 in the
Supplement.

We also used in-situ observations from the TRY database
(Kattge et al., 2011) to compare the in-situ leaf C : N ra-
tios with our model-derived values. The leaf C : N observa-
tions were retrieved from the TRY database for two sites: the
boreal needle-leaved forest station Hyytiälä in Finland (FI-
Hyy, 61.8° N, 24.3° E) and the deciduous forest site, Mor-
gan Monroe State Forest site in the US (US-MMS, 39.3° N,
−86.4° E). The FI-Hyy measurements are sampled from
Scots pine tree. US-MMS is a secondary successional broad-
leaved forest, and the leaf C : N measurements cover vari-
ous different deciduous trees: sugar maple (Acer saccharum),
American beech (Fagus grandifolia), American elm (Ulmus
americana), Northern red oak (Quercus rubra), and other de-
ciduous species. The sites were selected based on consistent
measurement time with the QUINCY simulations, and to ex-
pand the geographical gradient of in-situ measurements, and
also to include an example of a temperate broad-leaved de-
ciduous forest (TeBS) site.

2.4 Terrestrial biosphere model QUINCY

We used the terrestrial biosphere model QUINCY (Thum
et al., 2019; Zaehle et al., 2019), which includes fully cou-
pled carbon, nitrogen and phosphorus (P) cycles, as well as
water and energy fluxes in ecosystems. Global vegetation
ecosystems are classified into eight categories by PFTs. In
addition, there are several acclimation mechanisms that al-
low a smooth transition of ecosystem functioning in different
climatic conditions. Vegetation is represented as an average
individual, which is characterised by its height and diameter
as well as an average individual density, and which includes
structural tissues (leaves, fine roots and fruits, and for trees
additionally coarse roots, sapwood and heartwood) as well
as two non-structural pools, labile and reserve. The canopy
is divided into ten layers. The canopy scheme incorporates
photosynthesis and canopy conductance separately for sunlit
and shaded leaves for each canopy layer.

Plants in QUINCY respond to soil N availability. This
includes a response in leaf N content, which decreases if
there is not enough N is available. Leaf nitrogen is di-
vided into structural and photosynthetically active compo-
nents. The photosynthesis scheme explicitly accounts for the
role of chlleaf. Photosynthesis is calculated using the Kull and

Kruijt (1998) model. According to this model, in the light-
saturated part of the leaf, photosynthesis is the minimum
of electron transport rate-limited photosynthesis (determined
by Jmax,25) and the carboxylation capacity-limited photosyn-
thesis (determined by Vc(max),25). In the non-light-saturated
part, photosynthesis is determined by the electron transport-
rate-limited photosynthesis. Chlorophyll partly determines
the depth of the light-saturated layer in the leaf. Thus, all the
three photosynthetically active components of leaf nitrogen
influence the photosynthesis calculation in QUINCY, as de-
scribed by Friend et al. (2009), Zaehle and Friend (2010), and
Thum et al. (2019). The photosynthesis model by Kull and
Kruijt (1998) is extended to cover C4 plants (Friend et al.,
2009).

The C : N ratios of leaves and fine roots respond dynami-
cally to the balance of C and N in the labile pool. When there
is shortage of N supply, the leaf C : N ratio increases and
vice versa. The ratios are constrained to an empirically de-
rived range based on the TRY database (Kattge et al., 2011),
and the lower and upper boundaries are presented in Table S4
in the Supplement. Soil carbon and nitrogen pools are mod-
eled on the basis of the CENTURY soil model (Parton et al.,
1993) and the soil profile is divided into 15 vertical soil lay-
ers, extending to a depth of 9.5 m with increasing depth when
moving deeper into the ground.

The seasonal development of leaf biomass and LAI de-
pend on the plant’s ability to grow new tissues, given the
availability of C and N, as well as the fractional allocation
to plant organs. This fractional allocation is constrained by
allometric relationships and the availability of nutrients and
water. Meteorological conditions and soil moisture are used
as phenological controls for LAI development, and it is as-
sumed that plant growth is zero outside the growing season.
Both the beginning and the end of the growing season, which
determine the LAI seasonal cycle, depend partly on the PFT.
For cold and temperate deciduous and herbaceous PFTs, the
start of the season is described as a function of the accumu-
lated growing degree days. The accumulated growing degree
days are calculated from the beginning of the last dormancy
period. In addition, for these PFTs, the end of the growing
season is triggered when the weekly air temperature falls
below a PFT-specific threshold. For PFTs of rain-deciduous
phenology, the start of the season is triggered when the soil
moisture stress factor exceeds the PFT-specific threshold val-
ues. For these PFTs and also for the warm herbaceous PFTs,
the trigger for the end of the season is again the soil moisture
stress factor. An additional condition for herbaceous PFTs to
end their growing season is when the weekly carbon balance,
i.e. the residual between GPP and maintenance respiration,
becomes negative. The evergreen needle-leaved trees are as-
sumed to be in a continuous growing season. A more detailed
description of QUINCY is presented in Thum et al. (2019).
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2.4.1 Original leaf nitrogen allocation in QUINCY

QUINCY allocates the total canopy nitrogen to canopy layers
with exponentially decreasing N content towards the bottom
of the canopy as in Niinemets et al. (1998). At the leaf level,
nitrogen is partitioned into structural (fN,struct) and photo-
synthetic fractions at each canopy layer (Friend et al., 1997).
The photosynthetic fractions are associated with chlorophyll
(fN,chl), Rubisco (fN,rub), which is used directly to calculate
Vc(max), and electron transport (fN,et), which is used to cal-
culate the maximum rate of electron transport (Jmax).

The fraction of leaf N in the structural compartment for
each layer, fN,struct, is calculated as a linear function of leaf
N, as presented in Zaehle and Friend (2010):

fN,struct = k
struct
0 − kstruct

1 ·Nleaf (1)

where kstruct
0 is the PFT-specific maximum fraction of struc-

tural leaf N, and kstruct
1 = 7.143 (gN)−1 is the slope of struc-

tural leaf N with respect to total N (Nleaf) (Friend et al.,
1997).
The fraction of leaf N in the chlorophyll compartment, fN,chl,
is calculated as an increasing function of cumulative LAI
across the canopy (LAIcum) (Kull and Kruijt, 1998; Friend
et al., 2009; Zaehle and Friend, 2010):

fN,chl =
kchl

0 − k
chl
1 e−k

chl
fn ·LAIcum

achl
n

(2)

where kchl
0 and kchl

1 are PFT-specific empirical parameters,
kchl
f n is an empirical parameter describing the increasing
fN,chl with canopy depth, and LAIcum is the cumulative LAI.
achl
n = 25.12 molmmol−1 describes the molecular N content

of chlorophyll (Evans, 1989). The kchl
0 and kchl

1 parameters
are the same for trees and C3 grasslands, but different for
C4 grasslands. The rest of the leaf N is divided between the
fN,rub and the fN,et with a fixed ratio of 1.97 (Wullschleger,
1993).

2.4.2 Alternative leaf N allocation

In the alternative leaf N allocation scheme, fN,rub is calcu-
lated based on a function of leaf mass per area (LMA) as
described by Onoda et al. (2017). The formulation using the
QUINCY PFT-specific LMA values (Thum et al., 2019) is as
follows:

fN,rub =
−21.1 · log10(LMA)+ 57.5

100
. (3)

The fraction in electron transport, fN,et, is derived from
fN,rub using the fixed ratio of 1.97. fN,chl is then calculated as
a function of fN,et, based on the results by Evans and Clarke
(2019):

fN,chl =
37.3

8.85 · 2.0
fN,ete−kn LAIcum (4)

where kn =−0.11 describes the increase in chlleaf within the
canopy depth. The fN,struct is then calculated as the remaining
part of the leaf N, (fN,struct = 1− fN,chl− fN,et− fN,rub).

2.4.3 QUINCY simulation setup

We conducted individual site-level QUINCY simulations for
the PLUMBER2 and GLOBAL sites. In QUINCY, C3 crops
and C3 grasslands are grouped as one PFT, i.e. they are sim-
ulated with the same parametrization. The current version of
QUINCY does not include management practices. Therefore,
C3 crops do not differ from C3 grasslands in QUINCY sim-
ulations. Similarly, boreal and temperate needle-leaved ever-
green forests are grouped into the same PFT. In this study,
we labeled those as the needle-leaved evergreen sites with a
mean annual temperature below 10 °C as boreal and the rest
as temperate.

We ran all the simulations with active C and N cycles, i.e.
the CN version of the model. Soil P availability was kept at
a level that did not limit plant uptake or soil organic matter
decomposition. The model input fields included half-hourly
meteorological data: SW and longwave radiation, air tem-
perature, precipitation, surface air pressure, relative humid-
ity and wind speed. In addition, atmospheric CO2, and N
and P deposition rates are part of the input drivers. Model
input parameters include PFT classification and various soil
properties such as soil texture, bulk density, soil depth, root-
ing depth and inorganic soil P content. The specific leaf area
(SLA), which is the inverse of LMA, is a PFT-specific con-
stant. There is only one PFT associated with each site. The
list of PFTs and the corresponding PFT abbreviations are pre-
sented in Table 1.

For the PLUMBER2 sites, the meteorological fields were
obtained from the PLUMBER2 dataset (Ukkola et al., 2022).
Depending on the PLUMBER2 site, meteorological data was
available from 1992 to 2018 (Ukkola et al., 2022, Table S1).
For the GLOBAL sites, the meteorological data were ob-
tained from the CRU JRA dataset, and covered the years
1989–2018. Soil physical and chemical parameters (bulk
density, rooting and soil depth and soil texture) were re-
trieved from the SoilGrid dataset (Hengl et al., 2017). Atmo-
spheric CO2 concentrations were retrieved from the Global
Carbon Budget 2019 data (Friedlingstein et al., 2019), and
the N and P deposition data are based on the dataset pre-
sented by Lamarque et al. (2010, 2011).

For each site, we ran a 1000 year model spin-up in or-
der to bring the soil and vegetation biogeochemical pools
into quasi-equilibrium. During the spin-up, atmospheric CO2
concentration, N deposition and P deposition data were used
by repeating the values from the period between 1901–1930.
Meteorological data were taken from a random year of ob-
served meteorological data. After spin-up, the simulations
were conducted as transient simulations, starting from the
year 1901. The transient simulation was continued with data
from a random year of observed meteorology until the start
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of the period for which observed meteorological data were
available. For the PLUMBER2 sites, the start of the period
was site-dependent, while for the GLOBAL sites, the mete-
orological data began in 1989. In the transient simulation,
atmospheric CO2 concentrations and N deposition were re-
trieved for the corresponding years from the data sources
mentioned above.

In addition to the simulation with the default QUINCY
setup for the PLUMBER2 and GLOBAL sites, we carried out
four additional simulations for the PLUMBER2 sites to ana-
lyze how N limitation and changes in leaf nitrogen allocation
affect the results. First, we performed an additional simula-
tion with the QUINCY C-only setup (QUINCY Conly), where
only the C cycle was active but the leaf stoichiometry was de-
scribed with a fixed parametrization. This was done in order
to compare the effect of N limitation with the results of the
default QUINCY CN-simulation. We then conducted a CN-
simulation with the alternative leaf N allocation scheme, as
described in Sect. 2.4.2. After that, we ran a CN-simulation
using the default QUINCY settings, but modified the source
code by multiplying the fN,chl parameter by 1.3. This was
done in order to see the effect of increasing fraction of leaf N
allocated to chlleaf. Finally, we carried out a simulation with
the alternative leaf N allocation, but the fN,rub was multiplied
by 1.3, to represent a 30 % increase in the Rubisco fraction,
which leads to an increase in the chlleaf fraction. The addi-
tional simulations with increased fN,chl and fN,rub were only
performed for the TeBS sites in the PLUMBER2 site set. The
list of different simulations is presented in Table S5 in the
Supplement.

2.5 Feature importance analysis

The impact of different environmental drivers on the sim-
ulated and RS chlleaf magnitude was examined using the
permutation feature importance algorithm, based on random
forest (RF) regression fitting (Breiman, 2001). RF is a re-
gression tree-based machine learning method that is able to
capture non-linear correlations. Permutation importance in-
dicates the contribution of an individual input variable to the
statistical performance of a model. In other words, permuta-
tion importance can be used to investigate the influence of
an environmental driver on a target variable, which in our
case is chlleaf. In addition, we analyzed the importance of
each selected environmental variable via the SHAP (SHap-
ley Additive exPlanations, Lundberg and Lee, 2017) val-
ues. We used the SciKit Learn Python3 package for both
RF and permutation importance (Pedregosa et al., 2011),
and the shap Python library by Lundberg and Lee (2017)
(https://github.com/shap/shap, last access: 23 June 2025) to
compute the SHAP values.

The target data for the RF models were either QUINCY
chlleaf or RS chlleaf. We trained 22 separate RF models.
Of the 22, the first ten RFs were dedicated to monthly
QUINCY chlleaf and each individual PFT from PLUMBER2

and GLOBAL sites. In addition, we trained one RF model
with monthly data from all of the sites and QUINCY chlleaf,
using both PLUMBER2 and GLOBAL sites. The remaining
RF models were used for monthly RS chlleaf and individual
PFTs, and one model with data from all of the sites.

The input data consisted of monthly means of air tempera-
ture and PAR, and annual sums of precipitation and N deposi-
tion, and annual means of Standardized Precipitation Evap-
otranspiration Index (SPEI) at each of the sites. The input
variables for the RF models were selected from the available
environmental data that showed the least correlation between
each other. Air temperature, precipitation and N deposition
were those used as input in the QUINCY simulations. The
SPEI data were retrieved from the global drought monitoring
dataset by Vicente-Serrano et al. (2023b). We used the SPEI
with a two-week time scale (SPEI 0.5 months), which was
then averaged as monthly mean data. The spatial resolution
of the SPEI dataset was 0.5°× 0.5°, and we chose the same
time steps as in the QUINCY data. The PAR radiation was
taken from the QUINCY output, and it was converted from
SW radiation with the model (Howell et al., 1983).

The random forest hyperparameters were set to default
values, but the maximum number of features per node was
set to three. A recommended value for the maximum number
of features per node in RF regression is one-third of the in-
put features (Hastie et al., 2009), but here we used a slightly
higher value in order to maintain representative subset sizes.

First, we tested the performance of RF models by splitting
the data using the train_test_split function in SciKit Learn.
We used 75 % of the data for preliminary training and 25 %
for preliminary testing. The coefficient of determination (R2)
scores for the preliminary training and preliminary testing
phases are reported in Table S6 in the Supplement. Next, we
used all the data (i.e. the preliminary training and preliminary
testing data) for the final training of the models.

After the final RF model training, we calculated the cor-
responding permutation feature importance values for each
model. The permutation feature importance algorithm was
used with 30 repeats (nrepeats = 30) and with a fixed random
state. Finally, the SHAP values were calculated using data
averaged over three months. The higher positive SHAP val-
ues indicate a stronger, increasing effect on chlleaf, and the
lower negative SHAP values indicate a decreasing effect on
chlleaf compared to the average.

2.6 Data-analysis

In this study, the QUINCY chlleaf is the top-of-canopy chlleaf,
as mentioned in Sect. 2.2.3. For the PLUMBER2 sites, we
used all the available years from the QUINCY simulations,
as well as from RS and eddy covariance observations. For
the GLOBAL sites, we used QUINCY simulation data for
the years in which RS chlleaf data was available for each site.

We calculated the PFT mean chlleaf, LAI 90th percentile
for GLOBAL and PLUMBER2 sites for both QUINCY and
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RS. In addition, we calculated the PFT mean annual GPP
for GLOBAL and PLUMBER2 sites for QUINCY, but only
the PFT mean for the GPP ground observations on the
PLUMBER2 sites, as no GPP ground station measurements
were available for the GLOBAL (artificial) sites. We used the
90th percentile of LAI instead of the mean values. This was
done to reduce the effect of differences in seasonal amplitude
and timing variation between QUINCY and RS and to focus
on LAI values during the growing season. We calculated the
Pearson correlation coefficients (r) between QUINCY and
RS site-level mean chlleaf, LAI 90th percentile and GPP an-
nual sum values, and the statistical significance of the corre-
lation using Student’s t test, with a threshold value of 5 % for
the statistical significance.

We analyzed the seasonal cycle of chlleaf and LAI for the
PLUMBER2 and GLOBAL Northern Hemisphere (NH) sites
separately for different PFTs. In addition, the analysis of the
PLUMBER2 sites included GPP. First, we calculated the av-
eraged seasonal cycle over years for each site and variable.
Then, using these averaged seasonal cycles, we calculated the
mean seasonal cycle per PFT across sites and the standard de-
viation between sites for each day of year (DOY). This was
done for QUINCY simulated values and for RS and eddy
covariance CO2 observations. Using the PFT-averaged sea-
sonal cycles, we calculated the Pearson correlation (r) and
root mean squared error (RMSE) between QUINCY and the
observations.

For the NH PLUMBER2 TeBS sites, we estimated the start
of season (SOS), the end of season (EOS) and the length of
season (LOS) based on the PFT-averaged chlleaf, LAI and
GPP. We calculated the seasonal metrics using the method
as described by Thum et al. (2025). The SOS and EOS val-
ues from the PFT-averaged GPP were calculated using the
first and last pass of the threshold value. The threshold was
set at 30 % of the 90th percentile value of the PFT-averaged
mean seasonal cycle of GPP. For LAI and chlleaf, the thresh-
old was determined using the difference between the summer
and winter values. Winter values were calculated using the
mean values from January and February, and summer values
were calculated using the mean values from June and July.
The threshold was then set to 20 % of the difference, added to
the winter mean, (i.e. ythres = xwinter+0.2·(xsummer−xwinter)).
The earliest DOY for SOS was set to 50. LOS was calculated
as the difference between EOS and SOS.

We calculated the residuals between the QUINCY chlleaf
mean and RS chlleaf for each site, and compared these to
the QUINCY leaf C : N ratios. Leaf C : N can be consid-
ered as an indicator of N availability for plants. The aim
was to examine whether the under- or overestimation of
QUINCY chlleaf was related to nitrogen limitation in the
model. The comparison was done for BNE, C3 grasslands
(TeH) and TeBS. These PFTs were assumed to represent dif-
ferent vegetation types: BNE represents evergreen forests,
TeH grasses and TeBS deciduous forests. In addition, we
calculated the mean chlleaf interannual variability (IAV) for

the PLUMBER2 and GLOBAL sites. We first calculated the
standard deviation of the annual mean chlleaf for each site,
and then the average of the standard deviations at the PFT
level and over all sites.

We analyzed the seasonal cycle of chlleaf for two evergreen
needle-leaved PLUMBER2 sites, FI-Sod and US-NR1 (see
Sect. 2.3.2), by comparing the QUINCY simulations, in-situ
observations and remote sensing observations. We calculated
the averaged seasonal cycles over years for QUINCY and for
remote sensing chlleaf and compared them with in-situ ob-
servations. Furthermore, we analyzed the seasonal cycles of
LAI, fAPAR and GPP for the FI-Sod site and compared the
QUINCY simulated values to the observations. We also com-
pared briefly the simulated mean annual averaged leaf C : N
values to in-situ observations for two PLUMBER2 sites, FI-
Hyy and US-MMS.

3 Results

3.1 Evaluation of simulated chlleaf, LAI and GPP
against observations

3.1.1 Yearly values

At the PFT level, QUINCY estimates of the mean annual
chlleaf and LAI agree relatively well with the RS-derived
chlleaf and LAI values (Figs. 1, S2, and S3 and Tables S7
and S8 in the Supplement) for all PLUMBER2 sites, with
correlations of r = 0.61 for chlleaf and r = 0.51 for LAI (Ta-
ble S7). QUINCY does overestimate both chlleaf and LAI for
temperate broad-leaved evergreen forest (TeBE) and tropical
broad-leaved rain deciduous forest (TrBR) sites, with tem-
perate needle-leaved evergreen forest (TeNE) and C3 crops
(TeC) also overestimated for LAI on a mean PFT scale. De-
spite the variability in simulated chlleaf and LAI values in
comparison to RS-derived values, the overall simulated GPP
for all PLUMBER2 sites correlates well between QUINCY
estimates and eddy-covariance data (r = 0.71; Table S7 and
Fig. S4 in the Supplement).

As expected, the within PFT variability between sites re-
veals greater scatter, the nature of which differs for chlleaf
and LAI (Figs. S2 and S3). For chlleaf in all cases apart from
TeBS, tropical broad-leaved evergreen forest (TrBE) and C4
grasslands (TrH), there is a lack of variation in the QUINCY
chlleaf, which present more constant values and smaller dy-
namic range compared to RS chlleaf values (Fig. S2 and Ta-
bles S7 and S8). This is particularly pronounced for TeC and
TeH sites, which give a range of 10–17 µgcm−2 for TeC and
4–17 µgcm−2 for TeH, for QUINCY and a range of 13–46
and 2–47 µgcm−2 for RS, respectively. The site-level LAI es-
timates by contrast generally present a larger dynamic range
(with the exception of TeBS, TeNE, TeBE and TrBE). The
TrH in particular show a large overestimation in QUINCY
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Figure 1. The PFT mean (a) chlleaf, (b) LAI, and (c) GPP for the PLUMBER2 sites. The standard deviation is represented by whisker lines.
A 1 : 1 line is marked with a gray line.

LAI compared to RS LAI at higher LAI values (LAI> 2.5)
(Fig. S3).

The site-level GPP results show a good correlation be-
tween QUINCY estimates and eddy-covariance observations
across PFTs. Whilst the correlation is generally along the
1 : 1 line, in 58 % of the PLUMBER2 sites, QUINCY un-
derestimates the GPP on average by about 400 gCm−2 yr−1.
The majority of these underestimations are for BNE and
TeBS forests. The QUINCY overestimation of GPP is mainly
for crops and grasslands, with an average overestimation
of 384 gCm−2 yr−1 across 42 % of the PLUMBER2 sites.
For the PLUMBER2 sites, the slight LAI overestimation
of the TrH sites does not seem to lead to an overestima-
tion of the mean GPP, but the QUINCY PFT mean GPP
(756 gCm−2 yr−1) is lower than the PFT mean of the ob-
servations (902 gC m−2 yr−1). Due to very high LAI values
for the GLOBAL TrH sites, the QUINCY mean GPP for the
GLOBAL TrH sites was 1461 gCm−2 yr−1 (not shown), and
QUINCY chlleaf mean was 50.2 µgcm−2.

The QUINCY over- or underestimation in chlleaf did not
have a strong, detectable geographical pattern when assessed
together and separately for all PFTs. The residual chlleaf, i.e.
the difference between the mean QUINCY and RS values,
is shown in Fig. S5 in the Supplement on a map showing
the geographical location of each site. For the C3 grassland
sites, the QUINCY mean chlleaf was rather small compared
to the RS chlleaf. When analyzing the residuals for the C3
grasslands, the northernmost sites seem to have less nega-
tive residuals in magnitude than for the sites around latitudes
30–60° N. This was also the case when the relative residual
was analyzed (not shown). The greater QUINCY underesti-
mation of chlleaf for the warmer, southern C3 grassland sites
is not related to the GPP underestimation. Interestingly, for
the GLOBAL C3 grassland sites the LAI over/underestima-
tion shows an opposite pattern to QUINCY chlleaf: the north-
ern sites show more negative LAI residual, and sites around

latitudes 30–60° N mostly QUINCY overestimation of LAI
(not shown), which could be due to the fact that RS chlleaf is
calculated using RS LAI.

The mean IAV of RS chlleaf over all PFTs is 4.11±
3.18 µgcm−2, which is much higher than the correspond-
ing value for QUINCY (1.35±1.52 µgcm−2). The RS chlleaf
IAV is higher for all other PFTs except for TrH, where
the QUINCY chlleaf IAV was 3.39± 2.04 µgcm−2, and the
RS chlleaf IAV was 3.37± 2.35 µgcm−2. The largest dif-
ferences in IAVs between RS and QUINCY were seen for
the evergreen sites. For example, the RS chlleaf IAV for the
BNE sites is 5.95± 3.51, and the QUINCY chlleaf IAV is
0.5± 0.4 µgcm−2.

3.1.2 Seasonal cycle

The annual cycle of chlleaf for the PLUMBER2 NH TeBS
sites (Fig. 2) is similar when comparing QUINCY and RS.
However, the start of the growing season is delayed in
QUINCY. The SOS, EOS and LOS values for the PFT-
averaged PLUMBER2 NH TeBS sites are presented in Ta-
ble S9 in the Supplement. The QUINCY SOS for LAI
is approximately 13 d later in spring compared to the RS
LAI. Similarly, the end of the growing season is delayed in
QUINCY, and the EOS of QUINCY chlleaf occurs approxi-
mately 10 d later than in RS chlleaf. While the RS LAI shows
a decrease throughout the autumn season, QUINCY LAI re-
mains at a high value until day of year (DOY) 280, which
corresponds to mid-October. The EOS for QUINCY LAI is
approximately 30 d later than for RS LAI. However, senes-
cence occurs more rapidly in QUINCY than in the observa-
tions.
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Figure 2c shows that the GPP between DOY 90–150 for
QUINCY is slightly lower than in the observations. The
spring development of GPP is slower in QUINCY than in
the observations, though the QUINCY SOS of GPP occurs
almost at the same time as in the measurements. Although
the simulated LAI remains at the summer level until DOY
∼ 280, the simulated GPP decreases due to the environmen-
tal conditions in autumn. However, the delay in autumn LAI
senescence is reflected in the QUINCY GPP EOS, which is
approximately 26 d later than for the GPP observations. The
delay in the QUINCY spring GPP is compensated partly for
by the delayed end of the season where the QUINCY GPP
is higher than the observed GPP after DOY 275. The mean
GPP 3 month sum for the PLUMBER2 NH TeBS sites for
spring (March, April and May, MAM) is 289 gCm−2 for the
observations, while for QUINCY, the value is 196 gCm−2.
The corresponding 3 month sum values for autumn (Septem-
ber, October, November, SON) for observations is 256, and
351 gCm−2 for QUINCY.

Figures S6 and S7 in the Supplement show the PFT-mean
seasonal cycles of chlleaf and LAI for the PLUMBER2 and
GLOBAL NH sites, and Fig. S8 in the Supplement for GPP
for the PLUMBER2 NH sites. The most visible difference
between QUINCY and RS chlleaf and LAI seasonality can
be observed for the boreal and temperate evergreen sites
(Figs. S6a, c, and f and S7a, c, and f): QUINCY shows very
little variation across seasons, while the RS indicates more
variation throughout the year with a clear seasonal cycle.
Nevertheless, the QUINCY GPP for these PFTs (Fig. S8a,
b, and e) shows a similar annual cycle as the eddy covariance
observations, and the correlation r for the evergreen needle-
leaved sites is high (r > 0.95). For the boreal needle-leaved
deciduous forest (BNS) sites (Figs. S6b and S7b), the biases
in seasonal cycle were similar to the TeBS results (Figs. S6d
and S7d).

QUINCY chlleaf for TeH and TeC sites show a delay in
spring compared to RS chlleaf, but this was not observed for
QUINCY LAI. In autumn, the decrease in QUINCY chlleaf
and LAI occur later than in RS. For the TrH sites (Fig. S6j),
the seasonal cycle of QUINCY chlleaf and LAI differ from
the observed seasonal cycle. The lowest PFT mean chlleaf for
QUINCY is in April (DOY∼ 100). Of the 47 TrH sites in the
NH, 74 % of the sites had a higher QUINCY winter (Decem-
ber, January, February, DJF) chlleaf average compared to the
QUINCY spring (March, April, May, MAM) chlleaf mean.
Furthermore, 55 % of the TrH NH sites were such that the
QUINCY DJF means of both chlleaf and LAI were higher
than the QUINCY MAM means. RS chlleaf shows (Fig. S6j)
the largest TrH averages for summer (June, July, August,
JJA) and September, and a fairly clear seasonal cycle.

3.1.3 In-situ comparison of chlleaf for two needle-leaved
forests

The seasonal cycle of chlleaf, LAI, fAPAR and GPP for So-
dankylä is shown in Fig. 3, and the chlleaf values of the US-
NR1 site are presented in Fig. S9 in the Supplement. The
mean annual and seasonal chlleaf and GPP values are pre-
sented in Table S10 in the Supplement.

Figure 3a highlights that the QUINCY chlleaf values are
in a range comparable to the in-situ observations for FI-Sod,
but the QUINCY mean (Table S10) is lower than the annual
mean of the in-situ measurements. On the contrary, the RS
chlleaf by Croft et al. (2020) shows much lower values. In
addition, the mean of the Sentinel-3 RS chlleaf is also lower
than the in-situ or QUINCY chlleaf but close to the mean RS
chlleaf by Croft et al. (2020).

The RS LAI in Fig. 3b shows a clear seasonal pattern
for FI-Sod, which has a small effect on the RS chlleaf.
The summer (JJA) average RS chlleaf is approximately 10%
higher than the winter (DJF) average, which is a relatively
small difference compared to the interannual variability (∼
4 µgcm−2). In addition, the late spring RS chlleaf between
DOY 100–151 show lower values than winter or summer.
The late spring RS chlleaf averages 14.6 µgcm−2, approxi-
mately 27% less than the JJA average. Similar spring de-
creases in RS chlleaf were also observed for other BNE sites.
The Sentinel-3 chlleaf peaks in midsummer, and also shows a
clear seasonal pattern. The in-situ chlleaf is slightly higher in
late summer (DOY 200–240) compared to spring and fall.

QUINCY LAI shows a small seasonal variation, which is
reflected in the simulated chlleaf. The winter QUINCY av-
erage is slightly lower than the summer QUINCY average
chlleaf. The in-situ fAPAR values are in agreement with the
simulations during most of the year, but show a stronger
seasonal variation than the QUINCY fAPAR (Fig. 3c), with
higher values during winter.

QUINCY GPP is in line with the observations until DOY
175, but then decreases until the end of the season (Fig. 3d).
However, the difference in annual GPP is not large, and an-
nual QUINCY GPP is on average approximately 9 % lower
than the in-situ GPP. The difference between observed and
simulated GPP after DOY 175 could be due to missing late
fall chlleaf development or due to too strong response to a
drought.

The mean in-situ chlleaf for the US-NR1 site was close
to the QUINCY chlleaf mean (Fig. S9 and Table S10). The
minimum value of individual tree samples was 26.8 µgcm−2

and the maximum was 60.8 µgcm−2, i.e. there was varia-
tion between individual samples that is partially minimized
by the averaging. The in-situ observations show a slight in-
crease during spring, but the variation is large due to the
small number of samples. The mean in-situ chlleaf for DOY
1–150 is 37.1± 6.1 µgcm−2, while the mean for summer-
time is 43.2± 2.3 µgcm−2. The summer QUINCY chlleaf
was close to the annual mean, i.e. there was no pronounced
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Figure 2. The average annual cycle of (a) chlleaf, (b) LAI, and (c) GPP for the PLUMBER2 TeBS NH sites, as a function of the day of year
(DOY). The shaded regions represent the standard deviation between sites. The start of season (SOS) and end of season (EOS) are marked
with red (QUINCY) and grey (observations) vertical lines. The Pearson correlation (r) and root mean squared error (RMSE) are marked for
each variable.

seasonal cycle. The RS chlleaf annual mean by Croft et al.
(2020) was lower than the annual mean chlleaf of in-situ mea-
surements or QUINCY. Interestingly, the RS chlleaf shows
a lower JJA mean than the annual mean. Similarly to the
FI-Sod RS chlleaf, there is a decrease in the spring chlleaf
after DOY 100, and the decrease is more pronounced than
for Sodankylä. The minimum value (∼ 16 µgcm−2) of RS
chlleaf averaged annual cycle appears around DOY 155, with
an increase after that. For the Sentinel-3 chlleaf, the mean
chlleaf was close to the QUINCY values, although the nu-
merical range was much wider. The JJA mean for Sentinel-3
is close to the in-situ observations, and approximately 32 %
higher than the QUINCY JJA chlleaf. The annual QUINCY
GPP was 45 % lower than the observed GPP. In addition, the
QUINCY JJA LAI (not shown) was 2.2± 0.1 m2 m−2, and
was lower than the RS JJA LAI (2.5± 0.2 m2 m−2), which

may partially explain the underestimation of GPP. Bowling
et al. (2018) report that the observed in-situ LAI at the site is
3.8–4.2 m2 m−2.

3.2 Nitrogen limitations in QUINCY

Figures 4a–c show the QUINCY leaf C : N ratios and the cor-
responding QUINCY chlleaf values for three PFTs. The TeBS
sites show an almost linear relationship between chlleaf and
leaf C : N with a correlation of r =−0.87 (p < 1× 10−13).
Higher leaf C : N values indicate lower leaf N levels rela-
tive to leaf C. This leads to lower chlleaf since chlleaf is a
function of leaf N. The same nearly linear relationship be-
tween QUINCY leaf C : N and decreasing chlleaf is seen
for the BNE sites (Fig. 4c) with a correlation of r =−0.96
(p < 1× 10−40). The TeH sites represent a more scattered
pattern and the correlation is only r =−0.58 (p < 1×10−9),
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Figure 3. Seasonal cycle of daily means for FI-Sod (a) chlleaf, (b) LAI, (c) fAPAR, and (d) GPP for QUINCY, remote sensing (RS) and
in-situ measurements. The standard deviation for some of the data series is visualized as a shaded area. The Sentinel-3 chlleaf values for
different years are shown with different colors (2016 = white, 2017 = yellow, 2018 = pink, 2019 = orange, 2020 = brown).

indicating that chlleaf is more influenced by other factors,
such as water availability, temperature and precipitation than
leaf C : N levels, compared to BNE and TeBS. However, for
the TeH sites, both the QUINCY chlleaf and leaf C : N val-
ues are in a narrower range compared to the other two PFTs,
which partly affects the comparison.

For the TeBS sites, the chlleaf residual is moderately con-
nected to QUINCY leaf C : N values (Fig. 4d), but the same
is not true for the BNE and TeH sites. Especially for the
PLUMBER2 TeBS sites, the chlleaf residual is more nega-
tive for the sites with higher leaf C : N values. The TeH sites
do not show much variation in the leaf C : N values, and the
chlleaf residual does not appear to be connected to the mag-
nitude of leaf C : N. The 90th percentile of TeH leaf C : N
is 35.0, which is 88 % of the QUINCY maximum leaf C : N.
The BNE 90th percentile leaf C : N is 51.1 (78 % of the max-
imum) and the TeBS 90th percentile leaf C : N is 28.1 (73 %
of the maximum value).

The majority of the GLOBAL BNE sites are clustered in
a region with mean QUINCY chlleaf around 35–40 µgcm−2

and leaf C : N ratio around 50. The GLOBAL set contains
more BNE sites at higher latitudes than the PLUMBER2
set (see Fig. S1). In addition, most (over 83 %) of the

PLUMBER2 and GLOBAL sites with leaf C : N ∼ 50 are
in a region with a mean annual temperature below 5 °C. The
median chlleaf residual for the GLOBAL and PLUMBER2
sites is 9.9 µgcm−2 and 7.4 µgcm−2, respectively.

We analyzed whether the chlleaf residual is connected to
the GPP residual, i.e. the difference between QUINCY an-
nual GPP and observed annual GPP (not shown). For the
PLUMBER2 TeBS sites, the largest negative GPP residual,
i.e. the model underestimated GPP, was for those sites that
are more N-limited in QUINCY and have a negative chlleaf
residual. For the PLUMBER2 TeH sites, the GPP residual
was weakly negatively correlated with the chlleaf residual:
the largest positive GPP residual is observed for the sites
that have strong negative chlleaf residual. Similarly, the GPP
residual for the PLUMBER2 BNE sites was not strongly con-
nected with the chlleaf residual.

We also compared the QUINCY leaf C : N ratios with in-
situ measured values for two sites (FI-Hyy and US-MMS)
obtained from the TRY database. This was done to assess
whether the QUINCY leaf C : N values are at a realistic level
for individual sites. US-MMS is classified as a TeBS site and
FI-Hyy is classified as a BNE site. For the US-MMS site, the
QUINCY average leaf C : N was 17.3, and the TRY database
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Figure 4. QUINCY leaf C : N and chlleaf and the corresponding residual for (a, d) temperate broad-leaved deciduous (TeBS), (b, e) C3
grassland (TeH), and (c, f) boreal needle-leaved sites (BNE). The vertical lines show the QUINCY leaf C : N minimum and maximum limits.

average was 21.3. The US-MMS QUINCY leaf C : N is close
to the lower leaf C : N threshold, and the QUINCY chlleaf is
underestimated by 27 % compared to RS chlleaf. For the FI-
Hyy site, the values were 46.5 and 38.8, respectively. The
QUINCY chlleaf was underestimated by 28 %, which indi-
cates that for FI-Hyy, there is a slightly too strong N-deficit
modelled.

In order to study the effects of N limitation, we briefly
analyzed the QUINCY Conly simulation results for the
PLUMBER2 BNE sites (not shown). The results revealed
that at low chlleaf values, the difference between GPP from
QUINCY default, i.e. CN, and Conly simulations was greater
than at higher chlleaf levels for the BNE. In addition, for the
sites where the N deposition was low, the chlleaf values were
also small.

3.3 Leaf N allocation schemes

Figure 5 shows that the alternative, more realistic N alloca-
tion scheme leads, on average, to greater chlleaf and GPP un-
derestimation for the TeBS sites compared to the QUINCY
default. Furthermore, the alternative N allocation scheme
produces lower leaf chlleaf (14.9± 4.4 µgcm−2) than the
QUINCY default (17.9± 5.6 µgcm−2) for the PLUMBER2
TeBS sites (Fig. S10 and Table S11 in the Supplement). The
corresponding RS chlleaf mean is 22.1± 6.1 µgcm−2. Simi-

larly, the TeBS mean GPP is lower for the alternative N frac-
tion scheme, 1044± 311 gCm−2 yr−1, while the QUINCY
default mean GPP is 1231±366 gCm−2 yr−1. For the obser-
vations, the mean GPP is 1539± 377 gCm−2 yr−1. The LAI
90th percentile values are in a similar range (∼ 4±1 m2 m−2)
between the QUINCY default simulation and QUINCY alter-
native N allocation. The underestimation of GPP and chlleaf
is most likely due to lower fN,rub. While the summer (JJA)
fN,rub for the QUINCY default is on average 0.20 for the
PLUMBER2 TeBS sites, the corresponding average for the
alternative N allocation scheme is 0.09.

The results for the other PFTs were similar to those for
TeBS: the chlleaf and GPP magnitudes were lower with the
alternative N allocation scheme (Table S11). An exception
is the TrH sites, where the annual GPP was higher with
the alternative N allocation than with the default QUINCY
scheme. This was due to increased proportions of leaf N in
Rubisco and electron transport, while fN,chl was decreased
and the fN,struct slightly increased. The PFT mean values for
fN,struct and other fractions were calculated over sites glob-
ally, i.e. including the Southern Hemisphere sites. This af-
fects the comparison slightly, as the seasonal cycles differ
between the Northern and Southern Hemispheres.

Increasing chlleaf affects more the QUINCY default chlleaf
levels than QUINCY alternative N fraction output, but the
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Figure 5. GPP residual (QUINCY – observations) vs. chlleaf resid-
ual (QUINCY – observations) for the PLUMBER2 TeBS sites. The
QUINCY default scheme results are marked with green circles, and
QUINCY alternative N fraction results are marked with beige cir-
cles.

difference is not large (Table S12 in the Supplement). When
fN,chl is increased in QUINCY default, the mean chlleaf in-
creases by 37.4 %, while the mean LAI 90th percentile de-
creases by 2.4 % and the mean annual GPP decreases by
6.3 %. This is due to the fact that in the QUINCY default,
increasing fN,chl decreases leaf N allocated in electron trans-
port and Rubisco, since their fractions of leaf N are cal-
culated after fN,chl (see Sect. 2.4.1). For the alternative N
fraction simulations, increasing fN,rub which leads to in-
crease in fN,chl results in different dynamics compared to
the QUINCY default scheme. In the alternative N alloca-
tion scheme, increasing fN,rub resulted in an almost linear re-
sponse in the chlleaf magnitude, with an increase of 24.2 %.
The increases in LAI and GPP were more moderate: 5.3 %
and 12.1 %, respectively. In the QUINCY default simulation,
increasing fN,chl resulted in decreased GPP, while in the al-
ternative N allocation scheme, GPP increased. Furthermore,
the fraction in the structural part fN,struct decreases in the al-
ternative N allocation scheme when the fN,rub and, conse-
quently, fN,chl are increased. In the default QUINCY simu-
lation, increasing fN,chl does not directly affect fN,struct, but
rather indirectly through its influence on leaf N, resulting in
only a minor decrease of fN,struct.

3.4 The environmental drivers of chlleaf

Figures 6 and S11 in the Supplement show that when the RF
fitting is done over all PFTs, the feature importances are very
similar between QUINCY and RS. Air temperature has the
largest impact on the random forest fitting of both QUINCY
chlleaf and RS chlleaf, when the fitting is done using data
from all PFTs. The effect of air temperature is even larger
for the TeH and TeBS sites compared to the importance cal-
culated over all PFTs. This result is logical, since chlleaf is
formed from leaf N, which is partly dependent on tempera-

ture via soil N mineralisation and biological nitrogen fixation
(BNF). The QUINCY BNE sites do not show such a strong
dependence on air temperature because the evergreen needle
chlleaf does not vary as much throughout the year as decid-
uous chlleaf. However, temperature shows a permutation im-
portance of 0.26± 0.003 for QUINCY BNE, which is most
likely a result of different sites being in different temperature
regimes.

Figure S11 shows that nitrogen deposition is the most
dominant driver for evergreen ecosystems for QUINCY
chlleaf. For the BNE and TeNE sites, the permutation im-
portance values are 0.95± 0.007 and 1.78± 0.054, respec-
tively, and the contribution of other environmental drivers is
smaller. For the RS chlleaf of BNE sites, N deposition has the
highest permutation importance value (0.84±0.012), but the
role of N deposition in the RS observations is not as pro-
nounced compared to other variables as in QUINCY. The
RS chlleaf for the TeNE sites is largely driven by temper-
ature (permutation importance = 0.63± 0.043). The grass-
lands (TeH and TrH) show similar contributions from differ-
ent variables for QUINCY and RS, although RS chlleaf is less
affected by temperature than QUINCY. There is a difference
in the permutation importances for the TeC sites between
QUINCY and RS, as QUINCY chlleaf is more influenced by
temperature and RS chlleaf indicates a slightly mixed effect
of different environmental drivers.

The results of the SHAP analysis (Figs. S12 and S13 in
the Supplement) are similar to the permutation importance
calculations: air temperature is a dominant driver for both
QUINCY and RS. In addition, the SHAP values indicate
that warmer temperatures lead to higher than average chlleaf
values, and colder temperatures lead to lower than average
chlleaf values. The SHAP analysis for QUINCY chlleaf sug-
gests that the higher PAR values lead to lower chlleaf values,
although the majority of the data points are close to SHAP
values of zero, i.e. PAR is not a strong driver of chlleaf com-
pared to, for example, temperature. For the RS chlleaf, a sim-
ilar pattern is not found, but the higher PAR would have an
increasing effect on chlleaf.

4 Discussion

4.1 QUINCY’s ability to reproduce chlleaf, LAI and
GPP magnitudes

4.1.1 Magnitude of chlleaf

When analyzed across all sites, QUINCY chlleaf correlated
well with RS observations and the PFT specific values were
generally in line with the observations, and the simulated
PFT-mean values were similar to RS chlleaf. In particular, the
PFT mean chlleaf of the BNE and TeBS sites was close to
the mean RS observations of these PFTs. However, QUINCY
generally produced lower variability in chlleaf between sites
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Figure 6. Permutation importance values based on random forest regression fitting for (a) QUINCY chlleaf and (b) RS chlleaf, based on data
from all sites, and separately for BNE, TeH, and TeBS sites.

compared to RS. Particularly for C3 grasslands and crops, the
QUINCY chlleaf was restricted to too narrow a range com-
pared to RS observations. This suggests that QUINCY lacks
some processes that cause variation in RS chlleaf values, and
that the QUINCY dynamics for C3 grasses and crops require
further in-depth analysis to explain the missing variation. In
addition, the chlleaf QUINCY parameterization for C3 grass-
lands is the same as for trees, which could affect chlleaf dy-
namics. Fertilization and other management practices are not
included in the version of QUINCY used in this study, which
could explain the difference in the chlleaf numerical ranges
between QUINCY and RS. This may affect the comparison
of magnitude and seasonality for C3 cropland sites. Lu et al.
(2020) gathered a collection of different chlleaf in-situ obser-
vations distributed globally. When comparing the QUINCY
chlleaf values with those reported by Lu et al. (2020), it was
observed that C3 crops and C3 grasslands are most likely un-
derestimated, similarly when compared to the RS chlleaf val-
ues. The correlation between QUINCY chlleaf and RS chlleaf
was poor for C3 grasslands and C3 crops. This also high-
lights the need for tuning the QUINCY parameterization for
grasslands, and possibly other changes to the model structure
to capture the grassland chlleaf dynamics.

Some of the PLUMBER2 sites are located in fens and wet-
lands, and these are classified as C3 grasslands in QUINCY.
The model version of QUINCY used in this study does not
include wetlands or fens, and therefore for some of the sites
(e.g. FI-Lom in high latitude region) QUINCY does not

model the relevant water table depth dynamics, which may
influence the carbon and water dynamics at the sites.

For C4 plants, the range for QUINCY values was similar
to RS chlleaf for higher values, but lower chlleaf concentra-
tions were missing in QUINCY. Lu et al. (2020) reported 15–
60 µgcm−2, while the QUINCY chlleaf range for C4 grass-
lands was 31–72 µgcm−2. The RS chlleaf range for C4 grass-
lands was 12–63 µgcm−2. However, it should be noted that
QUINCY chlleaf values only represent the top of the canopy,
while in-situ observations may have mixed results from dif-
ferent canopy heights, which may affect the comparison.

For the BNE sites, the QUINCY chlleaf overestimation was
higher for GLOBAL than PLUMBER sites, and relatively
higher portion of GLOBAL BNE sites were located in high
latitudes. This suggests that the QUINCY chlleaf overestima-
tion or RS chlleaf underestimation, is more pronounced for
the needle-leaved sites in cold regions, which could partly
reflect the challenges of optical remote sensing in high lati-
tudes.

Our machine learning-based analysis indicated that
QUINCY is able to capture the influence of environmental
drivers of the chlleaf in a big picture. QUINCY chlleaf for
evergreen sites was driven by N deposition, with other en-
vironmental variables contributing less. The same was true
for the RS chlleaf for BNE and TrBE but not for TeNE. Addi-
tional comparison of QUINCY simulations with active C and
N cycles with a Conly simulation also demonstrated a similar
conclusion. Though, the RS chlleaf for BNE sites seemed to
be more temperature-driven than for QUINCY. This could be
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explained by differences in the seasonal cycle, as RS chlleaf
shows a seasonal pattern for BNE sites, while QUINCY does
not. In addition, it was observed that QUINCY chlleaf for
the TeC sites was mainly driven by temperature, while RS
chlleaf had more equal contributions from different variables.
In addition, the footprint size of RS chlleaf may affect the
comparison, as crops are typically located in a heterogeneous
landscape. The analysis with the SHAP values revealed that
higher PAR values could produce lower chlleaf in QUINCY
simulations. The decreasing effect of higher PAR values on
QUINCY chlleaf could be partly due to the tropical regions,
where the PAR radiation does not vary as much throughout
the year. The decreasing effect could be also attributed to dif-
ferences between different sites.

4.1.2 Magnitudes of LAI and GPP

The QUINCY annual GPP showed a good correlation with
PLUMBER2 observations, however, the values were under-
estimated at most of the sites. This could be partly due to
a slightly delayed growing season for the deciduous forests
(Fig. S8), which hinders the early spring carbon seques-
tration. The delayed seasonal development calls for tuning
the QUINCY phenology parameters, which could benefit the
simulations with a reasonable amount of work. However, for
some of the PFTs (TeC, TrBR, TeBE), QUINCY overesti-
mated GPP.

The simulated LAI over all PFTs was generally in an
agreement with RS LAI (Fig. S3d and Table S8). However,
a clear future development point for QUINCY is the over-
estimation of LAI values, which was the case for most of
the PFTs. The overestimation of LAI in QUINCY could be
due to, for instance, missing herbivores and management.
These effects are currently under development in QUINCY.
The overestimation of LAI is pronounced for the C4 grass-
lands, for which the LAI values in QUINCY were unreal-
istically high. The very high LAI values were observed for
the GLOBAL sites located on the African and South Amer-
ican continents, for which we did not have GPP ground sta-
tion data. However, the QUINCY GPP for the PLUMBER2
C4 grassland sites was within a reasonable range, and the
QUINCY PFT mean GPP was close to the observed PFT
mean GPP. This suggests that despite high LAI, QUINCY
is able to account for environmental conditions affecting
GPP and maintain realistic GPP levels. However, for the
GLOBAL C4 grassland (TrH) sites, it was observed that if
the simulated extremely high LAI values were coupled with
high chlleaf, this resulted in high simulated GPP values. The
RS observations could potentially be used in model tuning to
balance the overestimation of both LAI and chlleaf.

Although QUINCY tended to overestimate LAI in gen-
eral, for TeBS it was mostly underestimated. Similarly, the
QUINCY mean chlleaf is underestimated at the majority of
the TeBS sites. However, when analyzing the residuals for
individual sites, the GPP under- or overestimation was not

always related to the chlleaf or LAI residual. Less than half
of the 25 PLUMBER2 TeBS sites showed an underestima-
tion for all chlleaf, LAI, and GPP. Overestimation of LAI can
potentially lead to too strong shading, which could result in
reduced GPP in lower canopy layers. The radiative transfer
model might therefore play a role in the underestimated GPP.

4.2 QUINCY’s ability to reproduce the observed
seasonal cycle

The seasonality of GPP for QUINCY was consistent with the
observations for many of the PFTs. However, the seasonality
for chlleaf and LAI in QUINCY was found to have differences
compared to RS values for some of the PFTs.

The annual cycle of QUINCY chlleaf for deciduous forest
sites was similar when QUINCY and RS chlleaf were com-
pared. However, the increase in QUINCY chlleaf in spring
occurred late compared to RS chlleaf, as well as decrease
in autumn chlleaf. The QUINCY LAI estimations showed
similar biases when compared against RS results. However,
this was not reflected as prominently in the seasonality of
GPP compared to the delay in LAI, most likely due to en-
vironmental drivers. This indicates that QUINCY is able to
maintain reasonable GPP levels in autumn even when LAI
is overestimated. For the NH PLUMBER2 TeBS sites, the
PFT-averaged seasonal cycle showed that the QUINCY un-
derestimation of annual GPP is not too strongly affected
by the delay in start of the growing season. The GPP sum
for the spring (MAM) was underestimated by QUINCY by
∼ 93 gCm−2, while the overestimation in the autumn (SON)
was 95 gCm−2, i.e. they compensate each other.

The QUINCY chlleaf and LAI seasonality differed from
RS observations for the boreal and temperate evergreen sites.
QUINCY chlleaf and LAI do not change as much from sea-
son to season at these evergreen sites, whereas RS chlleaf and
LAI show more variation during the year. The RS chlleaf for
BNE forests implied a stronger seasonal cycle than what was
seen from in-situ observations at two BNE sites, which was
most likely driven by too strong LAI seasonality of the RS
product. In addition, the RS observations for the Sodankylä
(FI-Sod) and Niwot Ridge (US-NR1) sites indicated a slight
decrease in spring chlleaf, and this was seen also for other
BNE sites. The decrease in RS chlleaf in spring could be
driven by resorption of N to form new needles, or by the im-
pact of the understory during the snow-melt season. A study
by Zhang et al. (2019), conducted in a laboratory environ-
ment, demonstrated a similar decrease for a boreal evergreen
forest. The RS chlleaf retrieval algorithm does not consider
variations in understory, and therefore the understory vegeta-
tion can cause artifacts to the retrieved needle-leaf reflectance
signal. In addition, the mountainous landscape surrounding
US-NR1 might affect RS retrieval, which also can create ar-
tifacts to the mean RS chlleaf. The Sentinel-3 chlleaf shows
the strongest seasonal cycle at the US-NR1 site compared to
other products used in this study, which could be partly due
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to assumptions made in the retrieval processing. For instance,
the assumptions made for the LAI seasonality and the effect
of snow cover can affect the RS chlleaf retrieval. For tem-
perate broad-leaved evergreen sites, QUINCY did not sim-
ulate seasonal variation in chlleaf, while RS chlleaf showed a
clear increase in spring and decrease in fall. Site-level studies
have indicated contradicting results for chlleaf seasonal cycle
for temperate evergreen forests (Joshi et al., 2024; Yasumura
and Ishida, 2011), therefore it is not straightforward judge
whether the model behavior is erroneous.

The in-situ observations in the boreal Sodankylä forest
(Fig. 3a) for the year 2015 showed that the chlleaf concen-
trations increased throughout the growing season in needle-
leaved forests. Similar behavior at other evergreen needle-
leaved forests was reported by Laitinen et al. (2000) and
Katahata et al. (2007). The increase in chlleaf could indi-
cate that the Sodankylä forest may be N-limited, and requires
strong N uptake throughout the summer. The observations
from the Niwot Ridge forest did not show such a strong pat-
tern (Fig. S9), as also shown by Bowling et al. (2018), poten-
tially reflecting a different N status of the ecosystem.

For TeC and TeH sites, the seasonal cycle of QUINCY
chlleaf was delayed compared to RS, but the bias was not
large. The lower QUINCY spring chlleaf for NH TrH sites
suggests that the phenological cycle for these sites needs fur-
ther tuning in QUINCY, and is most likely linked to simu-
lated LAI biases. In QUINCY, the start of senescence is con-
trolled by soil moisture and temperature thresholds. Given
the high species diversity in herbaceous systems, both within
and between sites, ecosystem-level models such as QUINCY
often struggle to capture phenological variation. This is par-
tially due to PFT-level parameters not reflecting diversity at
the site level, and partially due to the difficulty of capturing
an average response of diverse species.

4.3 Modeling the N cycle and N limitation

QUINCY is one of the state-of-the art TBMs that include
an advanced representation of chlleaf in the canopy, and also
the connection between chlleaf and N limitation. This allows
the intercomparison to remote sensing chlleaf products, which
can be further extended to cover analysing the N limitation
on photosynthesis and the implications on carbon sequestra-
tion efficiency. In addition, our analysis demonstrated how
to use chlleaf as a metric to support analysing the N limi-
tation in simulations. However, one needs to keep in mind
that the modelled and remotely sensed chlleaf are not com-
pletely equivalent, but there are conceptual differences in
spatial coverage, for instance.

The strongest QUINCY GPP underestimation for the
PLUMBER2 TeBS sites was connected to stronger N-
limitation and QUINCY chlleaf underestimation, suggesting
a too strong modeled N limitation for these sites. However,
the leaf C : N values were not close to the maximum leaf
C : N values for the TeBS sites, suggesting that the QUINCY

maximum threshold value of leaf C : N may be slightly too
high (Fig. 4d). Though, we compared QUINCY leaf C : N
values to the TRY database observation leaf C : N values for
two sites, and the QUINCY values were in line with the ob-
servations.

Some of the QUINCY chlleaf underestimation for the
TeBS sites could be due to lower N availability or allocation
to leaves (Fig. 4d). Both the QUINCY underestimation of
chlleaf and also GPP could be partly related to modeling defi-
ciencies in the N cycle. The QUINCY mean symbiotic BNF
was ∼ 0.3 gNm−2yr−1 for the TeBS sites. Davies-Barnard
and Friedlingstein (2020) report that for deciduous broad-
leaved forests, including both tropical and temperate forests,
the mean symbiotic BNF is approximately 0.8 gNm−2yr−1,
suggesting that QUINCY symbiotic BNF is underestimated
for the TeBS sites. Though, the negative residual of chlleaf
between model and observations was higher with the higher
leaf C : N values, indicating that QUINCY’s modeled N
deficit for the TeBS sites is too strong. The analysis shows
that for the TeBS forests, the chlleaf residual between sim-
ulated and RS chlleaf brings additional information in pin-
pointing that the N-deficit influence is overestimated at cer-
tain sites and contributing to too low GPP.

For the BNE sites, QUINCY overestimated chlleaf com-
pared to RS chlleaf, and the BNE chlleaf and GPP residuals
were not correlating, which may be partly be due to RS chlleaf
magnitude issues as presented in Sect. 3.1.3. The observed
GPP increased as a function of observed chlleaf (not shown),
and this was also evident in the simulations. A comparison
of QUINCY CN- and C-only simulations for the BNE sites
indicated that QUINCY simulates an N deficit at low chlleaf
values, as GPP was lower with the CN-simulation. Including
the N cycle in the simulations improved the model behav-
ior and led to a decrease in simulated chlleaf values at the
lower end of the observations and improved model behavior
in terms of chlleaf and GPP. This shows a realistic behavior
of the QUINCY N cycle. Furthermore, the low chlleaf values
coincided with the low N deposition values, indicating that
N deposition plays a significant role in the N deficit of these
ecosystems, as also shown in the feature importance analysis
results.

In addition, the TeH leaf C : N values (Fig. 4e) were closer
to the upper bound and covering only approximately half of
the leaf C : N range derived from the TRY database, even
when we had sites globally distributed across different cli-
matological regions. This suggests that many of the TeH sites
are more N-limited in QUINCY compared to BNE and TeBS
sites, and that QUINCY has difficulty capturing TeH sites
with high leaf N values. This may be a partial cause of the too
low and also too static chlleaf values for the TeH sites. For the
TeH sites, QUINCY had the largest overestimation of GPP
when the modeled chlleaf is the most underestimated. This
indicates that the leaf N allocation in QUINCY for TeH sites
requires further parameter tuning. The QUINCY dynamics
related to N cycling may require further analysis to estimate
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the contributions of N deposition and BNF to leaf N content,
and to determine whether they are in the range of estimates
presented in the reference literature.

Our analysis using the more advanced N allocation rou-
tine shows that the chlleaf and GPP magnitudes for the TeBS
sites were not improved compared to the observation data.
This was partly due to lower fN,rub. In the alternative N
scheme, fN,chl is a function of fN,et and therefore a func-
tion of fN,rub, and therefore the lower fN,rub affects both GPP
and chlleaf. The underestimation of fN,rub could be partly due
to the LMA representation in QUINCY. LMA is the inverse
of SLA, and thus it is the same fixed value per PFT, which
may be too general a representation with respect to the N
allocation scheme. On the other hand, the advanced N al-
location scheme provided a more realistic mechanism when
fN,rub was increased by resulting in simultaneous increases
in fN,chl and GPP. This indicates that what the alternative N
allocation scheme produces is more in line with the current
ecophysiological understanding from the literature (Onoda
et al., 2017; Evans and Clarke, 2019) regarding the relation-
ship between Vc(max) and chlleaf: increasing leaf N in chlleaf
does not decrease other photosynthetic fractions, but rather
the structural part (fN,struct).

4.4 Limitations of the analysis

4.4.1 Limitations due to remote sensing products

Although the satellite product by Croft et al. (2020) agrees
well with the in-situ observations (Croft et al., 2020), the
satellite retrieval products contain a certain degree of uncer-
tainty. As Boegh et al. (2013) conclude, satellite inversions
are often ill-posed inversion problems, which can compli-
cate the retrieval of chlleaf and LAI from remote sensing data.
Furthermore, the coverage of the MERIS satellite data is not
optimal for certain regions such as South America, the trop-
ics, western Australia, and parts of the boreal zone. This is
partly due to gaps in the original data caused by clouds, sen-
sor errors, or light conditions (Tum et al., 2016), though the
RS chlleaf product by Croft et al. (2020) is gap-filled with a
smoothing algorithm. In addition, in this study, the impact of
gaps has been partially reduced by using the average of all
years.

Our analysis relied primarily on one RS chlleaf product.
For example, RS observations from the Sentinel-3 satellite
could be included as they were tested for two sites in this
study, although the time periods of the modeled values did
not match these observations. The challenge with Sentinel-
3 is that the in-situ observations are often provided years
back in time, and Sentinel-3 has only been operational since
2016. A potential candidate for combination with Sentinel-
based chlleaf products could be Integrated Carbon Observa-
tion System (ICOS) observations. The European ICOS re-
search infrastructure provides up-to-date flux measurements

that are also harmonized in terms of measurement and post-
processing techniques.

The remote sensing products of LAI are known to have
an overly pronounced seasonal cycle in the boreal needle-
leaved forests, with LAI values being underestimated in win-
ter, early spring and late fall (Heiskanen et al., 2012; Wang
et al., 2019). This is caused by snow and cloud contam-
ination, the understory effects, seasonal variation in nee-
dle greenness, low solar zenith angle and poor illumination
(Heiskanen et al., 2012; Fang et al., 2013; Wang et al., 2019).
In our study, we observed that for the Sodankylä BNE for-
est, RS LAI showed a clear seasonal pattern, while QUINCY
LAI was almost constant throughout the season. We also
compared QUINCY fAPAR with in-situ measurements, and
this comparison revealed that QUINCY fAPAR followed the
in-situ measurements outside the winter season. The in-situ
measurements during the winter season were influenced by
the low elevation angles of the sun, which limit the reliabil-
ity of the measurements throughout the winter months and,
in mid-winter, result in polar night. Additionally, in spring,
ground-level sensors may be covered by snow, compromis-
ing data quality even when light conditions would otherwise
be sufficient. In addition, as Wang et al. (2024) show, RS-
based data often contain inaccuracies in autumn phenology.
In our analysis, we used ground-based flux tower observa-
tions, which helped to form a comprehensive view of model
performance. Croft et al. (2020) report that the RS chlleaf
for the needle-leaved forests could benefit from intra-PFT
variability in the structural parameters (e.g. canopy height,
stem density), which would improve the spatial variability in
chlleaf. The contemporary RS products are advancing in this
front, providing opportunities to improve other RS products.
However, the Sentinel-3 product used in this study was not
yet free of these problems.

4.4.2 Limitations due to ground-based observations

The flux tower measurements used in this study were not
evenly distributed geographically, but rather concentrated in
central Europe and the United States. For example, the num-
ber of sites in Central and South America was small, limit-
ing the comprehensiveness of the analysis of the GPP mag-
nitudes relative to ground observations. TBMs and RS prod-
ucts cover larger spatial areas, allowing a global assessment
even in areas where the in-situ observations are sparse. In
this study, we were able to first analyze data at sites where
we had ground station measurements (PLUMBER2), and
then extend to other regions without in-situ observations
(GLOBAL).

In addition, our analysis does not take into account the po-
tential footprint mismatch between RS chlleaf and the flux
towers at the ground stations. Furthermore, the flux tower
footprints are not always homogeneous, but represent a mix-
ture of e.g. shrubs and trees. Our QUINCY modeling scheme
assumed only one PFT for each of the sites, which may lead
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to differences in the GPP if the flux tower is surrounded by
heterogeneous plant cover. For some sites, we increased the
footprint area of the RS chlleaf to include pixels with the
same land cover classification. This increase may have re-
sulted in greater differences in the footprint compared to the
flux tower footprint. Site location, topography, and landscape
heterogeneity influence the measured CO2 fluxes (Giannico
et al., 2018; Griebel et al., 2016).

4.4.3 Limitations of QUINCY and data-analysis

QUINCY simulations are based on the assumption of an av-
erage individual plant or a tree, and do not consider plants of
different ages. Similarly, RS inversion algorithms do not con-
sider variations in, for instance, tree height or crown width.
As previous studies have shown, chlleaf and nitrogen concen-
trations in leaves can vary between trees of different ages and
also between individuals (Laitinen et al., 2000; Sallas et al.,
2003; Warren and Adams, 2001; Thurner et al., 2025). In ad-
dition, a PFT can be a very broad category and different tree
species may have different characteristics, which is not taken
into account in our PFT-based modeling scheme and param-
eterization. Furthermore, the modeling framework does not
account for competition among plants.

Land cover classification can introduce an additional
source of uncertainty in this study. There are two sources of
uncertainty in the use of land cover maps, as they can be
caused by the classification into land cover classes based on
spectral reflectance or by the conversion of these land cover
classes into the PFT classes that we used (Georgievski and
Hagemann, 2019). We have partially accounted for this un-
certainty by increasing the number of points that we used for
each of the study sites.

The SHAP value analysis with RF fitting resulted in dif-
fering results between QUINCY and RS chlleaf and the im-
pact of PAR values on chlleaf. Since the SHAP values only
describe the machine learning interpretation of the vari-
able relationships, further investigation of the effect of high
PAR values on QUINCY chlleaf would require additional
QUINCY simulations where the radiation input fields are in-
creased, but keeping the rest of the input variables the same.

Our analysis could also benefit from including local mea-
surements of in-situ greenness indices (Linkosalmi et al.,
2016) to further validate the seasonal cycle of chlleaf for dif-
ferent PFTs, or up-scaled leaf trait maps (Dechant et al.,
2024). For instance, the up-scaled maps could provide re-
gional, PFT-specific SLA values that could improve the re-
sults of the alternative N allocation scheme.

4.5 Future directions

One objective of this study was to estimate the gain of us-
ing RS chlleaf to improve the modeled carbon and nitrogen
cycle. However, the approach in this study is based on only
one TBM. Though, our analysis included a comparison of

two different chlleaf formulations within a model, which has
the advantage that the comparison is not masked out by dif-
ferences in dynamics between the two models. As recom-
mended by Meyerholt et al. (2020), a model ensemble would
provide more robust results, as there is some uncertainty in a
single process model approach. However, this would be pos-
sible only if other TBMs were to provide chlleaf as a diag-
nostic, which would also allow that chlleaf could potentially
be incorporated into TBM benchmarking platforms, such as
ILAMB (Collier et al., 2018).

Another future prospect could be to integrate QUINCY
into a digital framework that integrates RS observational time
series, TBMs and a radiative transfer model. Based on a
comprehensive literature review, Kooistra et al. (2024) pro-
pose that such a digital twin combination with data assimila-
tion could enable an almost near-real-time representation of
ecosystems and help to overcome the current modeling limi-
tations.

5 Conclusions

The evaluation revealed that the magnitudes of QUINCY
chlleaf correlate well with RS chlleaf when analyzed across
all plant functional types. However, for some of the PFTs,
the QUINCY chlleaf values showed less site-to-site varia-
tion compared to the observations. This suggests that the
QUINCY parameterization requires further adjustments. RS
chlleaf for needle-leaved sites was clearly lower than for
QUINCY. The comparison to in-situ chlleaf measurements in-
dicated that RS chlleaf is underestimated for the boreal conif-
erous forests, while QUINCY chlleaf was in a reasonable
magnitude. The inter-comparison of QUINCY and RS chlleaf
and LAI seasonal cycles showed that QUINCY produced de-
layed seasonal pattern for deciduous tress. This suggests that
the phenological parameters of QUINCY need further adjust-
ment. In addition, for evergreen needle-leaved forests, there
was a clear seasonal pattern in RS chlleaf and LAI, while
QUINCY LAI and chlleaf did not vary much throughout
the annual cycle. However, the comparison to in-situ chlleaf
demonstrated that the RS chlleaf overestimates seasonality of
chlleaf for needle-leaved evergreen forests in cold environ-
ments, which is likely caused by the RS LAI biases (Heiska-
nen et al., 2012; Wang et al., 2019) known to happen in these
regions. Our analysis highlighted that while QUINCY was
able to produce chlleaf magnitudes in the big picture, the rep-
resentation of chlleaf in QUINCY calls for further improve-
ment. In addition, the results from machine learning-based
regression indicated that QUINCY and RS chlleaf have sim-
ilar contributions from different environmental drivers when
the analysis was performed over all sites and PFTs.

We also tested an alternative leaf N allocation scheme,
which resulted in more realistic ecophysiological behaviour.
A follow-up study with adjusting the parameterization to
have a better match with observations, and a larger sample
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of sites would provide valuable insights into the benefits of
using the alternative N allocation scheme.

Our results reveal that adding chlleaf to the model evalua-
tion provides additional information on photosynthetic pro-
cesses and leaf N distribution compared to using LAI alone.
While LAI provides information about seasonality, informa-
tion based on chlleaf complements this by enabling us to ad-
dress the N status of the leaves and identify the main drivers
of the chlleaf content. In this paper, we have demonstrated the
applicability of using remotely sensed chlleaf as an evaluation
point for TBMs. Our study highlights the potential of the use
of RS chlleaf as a model evaluation tool for analysing the C
and N cycles.

Code and data availability. The QUINCY model codes are avail-
able under a GPL v3 license. The scientific code of QUINCY re-
lies on software infrastructure from the MPI-ESM environment,
which is subject to the MPI-M License Agreement in its most
recent form (https://www.bgc-jena.mpg.de/en/bsi/projects/quincy/
software, last access: 3 June 2025). The source code is avail-
able online https://doi.org/10.17871/quincy-model-2019 (Zaehle et
al., 2019), release 76b2549 (last access: 3 June 2025), but ac-
cess is limited to registered users. Readers interested in run-
ning the model should request a username and password via the
Git repository. Model users are strongly encouraged to follow
the fair-use policy (https://www.bgc-jena.mpg.de/en/bsi/projects/
quincy/software, last access: 3 June 2025). The QUINCY simulated
data used in this study are available at https://doi.org/10.57707/fmi-
b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Miinalainen, 2025)
(last access: 6 October 2025). The forcing data to run the QUINCY
model are stored in the model repository.

The global drought monitoring SPEI data is available
in https://global-drought-crops.csic.es/#map_name=all_spei_0.5#
map_position=2211 (last access: 3 June 2025) (Vicente-Serrano
et al., 2023a).

The post-processed RS chlleaf (Croft et al.,
2020) for the PLUMBER2 and GLOBAL
sites is available at https://doi.org/10.57707/fmi-
b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Miinalainen,
2025) (last access: 6 October 2025).

The Sodankylä chlleaf in-situ measurement data is available in
https://doi.org/10.5281/zenodo.17192030 (Peltoniemi et al., 2025)
(last access: 24 September 2025).

The Sodankylä fAPAR measurement data
is available at https://doi.org/10.57707/fmi-
b2share.f8ab5f4ed6534b1597a2db73cc5175ff (Miinalainen,
2025) (last access: 6 October 2025).

The Sentinel3 RS chlleaf can be retrieved using the scripts
available from here: https://github.com/psreyes/S3_TOA_GPR_1
(Reyes-Muñoz and Salinero-Delgado, 2022).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-22-6937-2025-supplement.
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