Supplement of Biogeosciences, 22, 6963–6978, 2025 https://doi.org/10.5194/bg-22-6963-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Modeling the mechanisms of coastal vegetation dynamics and ecosystem responses to changing water levels

Junyan Ding et al.

Correspondence to: Junyan Ding (jding@oxy.edu)

The copyright of individual parts of the supplement might differ from the article licence.

Supporting Information

Tables:

Table S1 List of major parameters of FATES-Hydro

Table S2 Marsh plant (grass) parameters

Table S3 measured %NSC in 2022 at Lake Erie site

Figures:

Fig S1. Google Earth photos of the upland broadleaf forest at Lake Erie site (a) and conifer forest at Chesapeake Bay site (b).

Fig. S2 Saturation-induced root loss function, showing different root loss rates for plants not adapted to water-logging environments (solid blue line) and plants more adapted to water-logging environments (dashed red line). The solid blue line represents the root loss rate used in this study, controlled by specific parameters.

Fig S3. Observed and simulated hourly leaf net carbon assimilation rate (Anet) and leaf water potential (LWP) at upland and shoreline locations at Lake Erie site on July 15th. 2022

Fig S4. Measured and simulated hourly sap flow of upland (top) and shoreline (bottom) broadleaf trees during 2022 growing season at Lake Erie

Fig S5. Comparison of simulated growth rate and measured growth rate from tree cores at shoreline location (top) and upland location (bottom)

Table S1 List of major tree parameters of FATES-Hydro

Symbol	Source code name	Value		Description	Source	
		Conifer tree	Broad leaf tree	Units		
P50gs	fates_hydr _p50_gs	-2.0	-1.6	MPa	Leaf xylem water potential at half stomatal closure	Wang et al., 2021, this study
$a_{ m gs}$	fates_hydr _avuln_gs	5	3.5	unitless	shape parameter for stomatal closure	Wang et al., 2021, this study
K_{max}	fates_hydr _kmax_no de	0.7	1.0	kg/MPa/m /s	Maximum xylem conductivity per unit sap area	Ding et al. 2023b, this study
A	fates_hydr _vg_alpha_ node	0.198392	0.07113	Mpa ⁻¹	Shape parameter of van Genuchten plant hydraulic model when soil PSU=0	Ding et al. 2023b, this study
m, n	fates_hydr _vg_m_no de fates_hydr _vg_n_nod e	0.866, 2.765	0.8, 1.25	unitless	Shape parameter of van Genuchten plant hydraulic model when soil PSU=0	Ding et al. 2023b, this study
dA, dn	fates_hydr _vg_da_sal fates_hydr _vg_dn_sal	-0.00651 -0.122193	-0.0065 -0.1222	unitless	change of A and n of plant hydraulic model per unit PSU	Ding et al. 2023b
Х	fates_hydr _p_taper	0.333	0.333	unitless	xylem taper exponent	Christoffersen et al., 2016
RWC _{res,l} , RWC _{res,s} , RWC _{res,r}	fates_hydr _resid_nod e	0.25, 0.325, 0.15	0.16,0.21, 0.21	proportion	residual fraction of leaf, stem, root	Christoffersen et al., 2016
$\Theta_{{ m sat},x}$	fates_hydr _thetas_no de	0.65	0.72	cm ³ /cm ³	saturated water content of xylem	Christoffersen et al., 2016

SLA _{max}	fates_leaf_ slamax	0.014	0.0185	m^2/gC	Maximum Specific Leaf Area (SLA)	This study
SLA _{top}	fates_leaf_ slatop	0.014	0.0185	m ² /gC	Specific Leaf Area (SLA) at top of canopy, projected area basis	This study
V _{cmax,25, top} (PSU=0)	fates_leaf_ vcmax25to p	50	47	μmol CO2/m²/s	maximum carboxylation rate of Rub. at 25C, canopy top	This study
g 0	fates_leaf_ stomatal_in tercept	10000	10000	μmol H2O/m²/s	Minimum leaf stomatal conductance	calibrated
ra, rb	fates_fnrt_ prof_a fates_fnrt_ prof_b	0.6, 1	0.6, 1	unitless	Root distribution parameters	Ding et al. 2023b
b	fates_hydr _frt_loss_c oe	1	1	unitless	Saturation root loss par.	calibrated
k_s	fates_hydr _frt_loss_e xp	0.02	0.02	unitless	Saturation root loss par.	calibrated
k_{ex}	fates_hydr _k_salex	0.80	0.80	ratio	root salt exclusion ratio	Ding et al. 2023b
kr_{sal}	fates_hydr _frt_loss_s alk	0.0000075	0.0000075	unitless	salinity root loss rate par.	Ding et al. 2023b
cr_{sal}	fates_hydr _frt_loss_s alcr	3.5	3.5	PSU	salinity root loss threshold	Ding et al. 2023b
m_{cs}	fates_mort _scalar_cst arvation	1.2	1.2	N/N/Year	maximum carbon starvation mortality rate	Ding et al. 2023b
$m_{\rm hf}$	fates_mort _scalar_hy drfailure	1.2	1.2	N/N/Year	maximum hydraulic failure mortality rate	Ding et al. 2023b

Table S2 Marsh plant (grass) parameters

Parameter	description	value	unit	source
w_max	maximum width	35	cm	this study
	slope of leaf biomass to width power law			
bl2w_slp	function	0.0747	unitless	this study
	exponent of leaf biomass to width power law			
bl2w_exp	function	2.1555	unitless	this study
h2w_slp	slope of height to width power law function	41.96	unitless	this study
	exponent of height to width power law			
h2w_exp	function	0.5126	unitless	this study
				O'Meara et
bbslope	Ball-Berry leaf conductance slope	9	unitless	al., 2021
			μmol	O'Meara et
bbopt	Ball-Berry minimum leaf conductance	10000	$H2O/m^2/s$	al., 2022
			mmol	O'Meara et
Vcmax,25	maximum carboxylation rate of Rub. at 25C	55	$CO2/m^2/s$	al., 2023
				O'Meara et
SLA	specific leaf area	0.04	m^2/gC	al., 2024

Table S3 measured %NSC in 2022 at Lake Erie site

Location		Glucose	Fructose	Sucrose	Starch	Total
upland	foliage	0.159%	0.122%	3.469%	0.334%	4.084%
	wood	0.041%	0.367%	2.603%	1.426%	4.437%
shoreline	foliage	0.157%	0.155%	5.024%	0.850%	8.521%
	wood	0.031%	0.405%	3.423%	2.459%	6.319%

Fig S1. Google Earth photos of the upland broadleaf forest at Lake Erie site (a) and conifer forest at Chesapeake Bay site (b).

Fig. S2 Saturation-induced root loss function, showing different root loss rates for plants not adapted to water-logging environments (solid blue line) and plants more adapted to water-logging environments (dashed red line). The solid blue line represents the root loss rate used in this study, controlled by specific parameters.

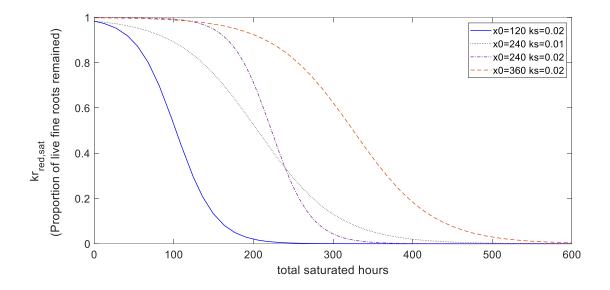


Fig S3. Observed and simulated hourly leaf net carbon assimilation rate (Anet) and leaf water potential (LWP) at upland and shoreline locations at Lake Erie site on July 15th. 2022

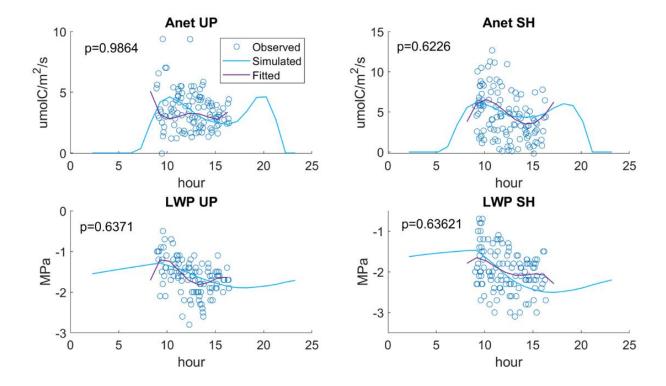


Fig S4. Measured and simulated hourly sap flow of upland (top) and shoreline (bottom) broadleaf trees during 2022 growing season at Lake Erie

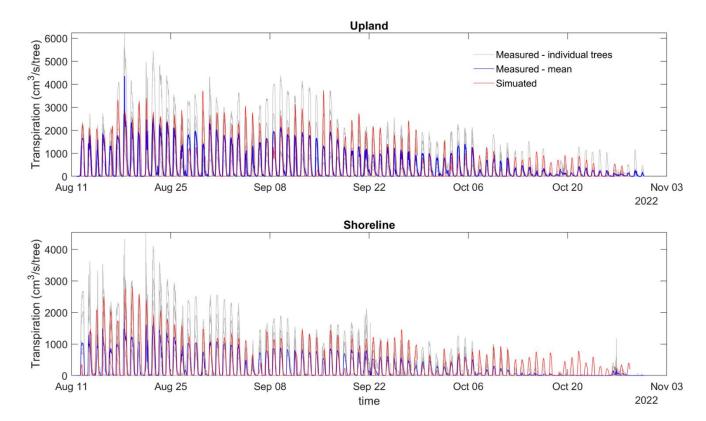
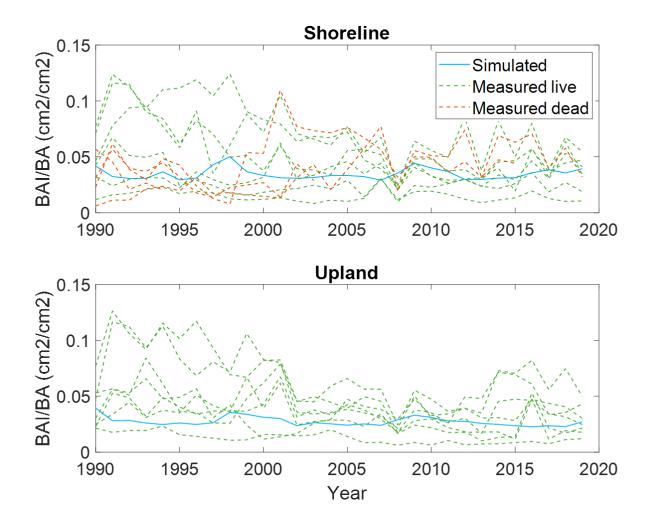



Fig S5. Comparison of simulated growth rate and measured growth rate from tree cores at shoreline location (top) and upland location (bottom)

