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Abstract. Fire-enabled Dynamic Global Vegetation Mod-
els (DGVMs) play an essential role in predicting vegetation
dynamics and biogeochemical cycles amid climate change,
but modelling wildfires has been challenging in process-
based biophysics-oriented DGVMs, regarding the role of
socioeconomic drivers. In this study, we aimed to build a
simple global statistical model that incorporates socioeco-
nomic drivers of wildfire dynamics, together with biophys-
ical drivers, within a DGVM-compatible framework. Using
monthly burnt area (BA) data from the latest global burned
area product from GFED5 as our response variable, we de-
veloped Generalized Linear Models to capture the relation-
ships between potential predictor variables (biophysical and
socio-economic) that are simulated by DGVMs and/or avail-
able in future scenarios. We used predictors that represent as-
pects of fire weather, vegetation structure and activity, human
land use and behavior and topography. Based on an iterative
process of choosing various variable combinations that repre-
sent potential key drivers of wildfires, we chose a model with
minimum collinearity and maximum model performance in
terms of reproducing observations. Our results show that the
best performing (deviance explained 56.8 %) and yet parsi-
monious model includes eight socio-economic and biophysi-
cal predictor variables encompassing the Fire Weather Index
(FWI), Monthly Ecosystem Productivity Index (MEPI), Hu-
man Development Index (HDI), Population Density (PPN),
Percentage Tree Cover (PTC), Percentage Non-Tree Cover
(PNTC), Number of Dry Days (NDD), and Topographic Po-
sitioning Index (TPI). When keeping the other variables con-
stant (partial residual plots), FWI, PTC, TPI and PNTC were

positively related to BA, while MEPI, HDI, PPN, and NDD
were negatively related to BA. While the model effectively
predicted the spatial distribution of BA (Normalized Mean
Error = 0.72), its standout performance lay in capturing the
seasonal variability, especially in regions often characterized
by distinct wet and dry seasons, notably southern Africa
(R2
= 0.72 to 0.99), Australia (R2

= 0.68) and South Amer-
ica (R2

= 0.75 to 0.90). Our model reveals the robust predic-
tive power of fire weather and vegetation dynamics emerging
as reliable predictors of these seasonal global fire patterns.
Finally, simulations with and without dynamically changing
HDI revealed HDI as an important driver of the observed
global decline in BA.

1 Introduction

Globally, the impacts of climate change continue to mani-
fest through extreme weather events and changes in weather
patterns (Clarke et al., 2019). In Australia, the mean annual
burned area in forested regions was about 1.8 million ha
per year between 1988–2001, increasing to 3.5 million ha
per year between 2002–2018, before the 2019–2020 “Black
Summer” fires burned over 15 million ha nationally (Aus-
tralian Government, 2020; Canadell et al., 2021). Similarly,
in Canada, the 1986–2022 mean annual burned area was
about 2.1 million ha, compared with the record-breaking 15
million ha burned in 2023 (Curasi et al., 2024; Jain et al.,
2024; MacCarthy et al., 2024). These multi-decadal increases
in burned area in both countries are consistent with evidence
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that climate change has intensified fire-conducive weather
over time. Even though the effects of fires may be positive
through contributing to selected natural ecosystem processes,
large and frequent fires are often destructive and have far-
reaching effects through loss of life, biodiversity, landscape
aesthetic value, and increase in forest fragmentation and soil
erosion (Bowman et al., 2017; Knorr et al., 2016; Nolan et al.,
2022). The negative role of climate change in driving large
and frequent burning has been well documented (Brown et
al., 2023). However, climate change by itself does not fully
account for the recent changes in global wildfire patterns as
human activities are crucial drivers as well (Pausas and Kee-
ley, 2021). For instance, recent empirical investigations have
highlighted a notable 25 % reduction in burnt area extent over
the past two decades, explicitly attributing this decline to hu-
man activities (Andela et al., 2017). Wu et al. (2021) argue
that future demographic and climate patterns will cause an
increase in burnt areas, particularly in high latitude warm-
ing and tropical regions. However, Knorr et al. (2016) con-
cluded that, under a moderate emissions scenario, global
burnt areas will continue to decline, but they will begin to rise
again around mid-century with high greenhouse gas emis-
sions. Cunningham et al. (2024), on the other hand reported
that although total burnt area is declining globally, extreme
fire events are increasing as consequence of climate change
especially in boreal and temperate conifer biomes. Future
global fire dynamics are clearly driven by the overarching in-
teraction between human activities (altered ignition patterns,
surveillance and management) and climate (Krawchuk et al.,
2009). Accurately evaluating these factors through modelling
could guide prescribing solutions that will ensure reliable
fire management and attainment of Sustainable Development
Goals (SDGs) (Koubi, 2019; Robinne et al., 2018).

Modelling continues to be an essential tool for compre-
hending and forecasting wildfire dynamics, founded on the
intricate interplay among fire weather, vegetation, and hu-
man activities (Bistinas et al., 2014; Hantson et al., 2016).
Models for wildfire can be process-based or statistical. While
process-based models delve into the physics and dynamics
of wildfires and vegetation, statistical models, on the other
hand, tend to focus on analyzing historical data and identi-
fying correlations to predict future wildfire events (Morvan,
2011; Xi et al., 2019). Process-based models such as fire-
enabled DGVMs stand out in understanding interactions be-
tween climate, vegetation, and human activities in a mech-
anistic manner (Hantson et al., 2016; Rabin et al., 2017).
However, their predictive skill is often not yet satisfactory
(Hantson et al., 2020). The predictive skill of process-based
models is often limited due to incomplete representation of
fire drivers, uncertainty in parameterization, and difficulties
in accurately simulating human-fire interactions (Archibald,
2016; DeWilde and Chapin, 2006; Hantson et al., 2020).
Hence statistical approaches have often been used to evalu-
ate human impacts on wildfires, in combination with weather
and vegetation drivers (Haas et al., 2022; Kuhn-Régnier et

al., 2021). Statistical approaches can effectively quantify and
evaluate empirical relationships between fire occurrences
and diverse predictors, providing flexibility in handling di-
verse data from multiple spatial and temporal scales. How-
ever, some authors reported that the application of statisti-
cal models for ecosystems other than the ones used in their
derivation is often not reliable (e.g. Perry, 1998). This is
mainly because statistical models assume that the relation-
ship between predictors and responses is stationery and con-
text dependent, which is not typical of fires that are stochas-
tic in nature. Integration of mechanistic process-based tech-
niques and statistical methods remains one common way for-
ward to advance our understanding of fire dynamics.

The integration of DGVMs and statistical models increas-
ingly benefits from remote sensing data (Dantas De Paula et
al., 2020). Remote sensing provides spatially explicit obser-
vations, such as vegetation cover, leaf area index (LAI), and
biomass, which are used to initialize, calibrate, and validate
DGVM simulations (Yang et al., 2020). Meanwhile, statis-
tical models help correct biases in DGVM outputs and en-
hance predictions by combining empirical relationships with
mechanistic model results. This integration enables more re-
liable modelling of global wildfires, offering a macroscopic
perspective, and allowing researchers to analyze large-scale
patterns across diverse ecosystems (Doerr and Santín, 2016;
Flannigan et al., 2009). The strength of modelling fires at
a global scale lies in its ability to capture overarching pat-
terns (spatial, seasonal and inter-annual) that might provide
valuable insights for strategic wildfire control. While one can
argue about the potential oversimplification of local factors
and the challenges in representing fine-scale heterogeneity,
global models do, on the other hand, excel in capturing and
understanding the effect of climate change, partly because
they capture large climatic gradients (Robinne et al., 2018).
The ability to capture the interconnectedness of ecosystems
and fire regimes on a planetary scale contributes to a more
holistic approach to understanding global vegetation dynam-
ics and carbon cycling (Bowman et al., 2013; Kelly et al.,
2023). As such, studies on evaluating drivers of burnt ar-
eas at a global scale in the face of ongoing climatic shifts
are crucial in ensuring sustainable management of vulnera-
ble ecosystems.

There is a growing recognition of the significance of ex-
ploring both interannual and seasonal variations to com-
prehensively understand the dynamics of fire across di-
verse ecosystems (Dwyer et al., 2000), partly because of the
strong seasonal dynamics of vegetation. Also, understand-
ing seasonal cycles of fires helps to identify peak fire sea-
sons, regions prone to seasonal outbreaks, potential shifts
in fire regimes over time and facilitating adaptive manage-
ment strategies (Carmona-Moreno et al., 2005). Incorporat-
ing monthly data in global fire modelling helps researchers to
accurately capture seasonal variations in fire activity. Hence,
global models developed using monthly data are necessary.
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Recent efforts have seen global burnt area models based
on Convolution Neural Network (CNN: Bergado et al.,
2021), Random Forest (RF) and Generalized Additive Mod-
els (GAM) (Chuvieco et al., 2021) which are currently not
easily integrated into DGVMs, although we note that recent
work from Son et al. (2024) is an important step towards inte-
gration of an advanced recursive neural network in a DGVM.
GLMs are easier to implement into DGVMs, and their par-
tial residual plots show the relationships of each predictor
with the response variable when all other drivers are kept
constant, which facilitates a discussion of potential underly-
ing mechanisms. The risk of overfitting can be minimized by
only choosing potential driver variables that are mechanis-
tically expected to play an important role and by choosing
only a limited number of uncorrelated driver variables. Ac-
cordingly, Haas et al. (2022) developed a GLM for global
burnt area with good model skill but without accounting for
seasonal dynamics and without a focus on driver variables
that can be predicted with DGVMs. Generally, most earlier
fire modules in DGVMs such as the LPJ-Lmfire (v1) were in-
formally parameterized to predict seasonal fire cycles and do
not consider the fuller range of predictors available in a more
rigorous statistical framework (Fosberg et al., 1999; Pfeif-
fer et al., 2013). Nurrohman et al. (2024) produced monthly
fire predictions from downscaling of annual model outputs
without building a statistical approach that is trained based
on monthly inputs. This left an opportunity to improve burnt
area models in DGVMs to accurately represent the detailed
seasonal dynamics. To our knowledge, there haven’t been
any reports on a simpler and more efficient statistical model
specifically crafted to capture the seasonal cycles of global
burnt areas, while also being easily integrated into DGVMs.
Closing this gap can best be facilitated by developing a sta-
tistical model based on variables pertinent to fire modelling,
with the goal to later integrate it into DGVMs. This inte-
gration can efficiently enhance our comprehension of inad-
equately understood factors while leveraging the potential of
finely detailed temporal resolution burnt area datasets.

The main aim of this research is to build a parsimonious
statistical model for global seasonal burnt areas that can be
integrated into a DGVM. The specific objectives are to (1) to
improve our understanding of major drivers of global burnt
area dynamics, (2) to leverage a GLM for predicting global
burnt areas using DGVM-compatible predictors and (3) to
evaluate the interannual and seasonal cycles of burnt area ex-
tent, both globally and regionally.

2 Data and Methods

In this study, we used GLM to assess the drivers and dis-
tribution of global wildfires based on a combination of veg-
etation, weather, anthropogenic and topographic predictors.
The spatial and temporal variability (interannual and season-

ality) was also evaluated. Figure 1 provides an overview of
the steps that were followed during modelling.

2.1 Fire data

Monthly BA data for the period 2002–2018 were derived
from monthly mean fractional BA from the GFED5. We
selected this data because of their improved ability to de-
tect burnt area scars (Chen et al., 2023). GFED5 BA data
are classified according to 17 major land cover types using
the MODIS classification scheme. We used this land cover
information to remove burnt area in cropland land cover
type (type croplands and croplands/natural vegetation mo-
saic), to exclude the effect of cropland residue burning which
we suppose is likely to have different drivers from burning
in non-arable lands. The BA data comes at a resolution of
0.2°× 0.2°, therefore we aggregated it by a factor of 2 to a
resolution of 0.0°. This was done for ease of processing at a
global scale and at the same time to ensure that our outputs
are DGVM integrable since they are commonly applied at
0.0° globally.

2.2 Predictor variables

In this study, we only used variables which don’t prohibit the
use of the model for future projections. Whilst there are many
possible variables that could be tried as predictors of fire, es-
pecially in terms of socioeconomics predictors, we restricted
our selection to variables where: climate and vegetation vari-
ables typically available in a DGVM framework; socioeco-
nomic variables with future scenario projections; and time-
invariant topographic variables. Previous studies used sev-
eral variables that we couldn’t include due to lack of future
scenario projections such as nighttime lights, cattle density
(Forkel et al., 2019), vegetation optical depth (Forkel et al.,
2019), lightning (Rabin et al., 2017), soil moisture (Mukunga
et al., 2023), soil fertility (Aldersley et al., 2011). Conse-
quently, we considered predictor variables that are compat-
ible with DGVM integration to train the model effectively.
The chosen predictor variables were categorized based on
their representational nature and their roles in fire modelling
(See Table 1).

2.2.1 Vegetation-related predictors

We used nine vegetation predictor variables to comprehen-
sively evaluate their role on global fire distribution. These
variables encompass Percentage Grass Cover (PGC), Per-
centage Non-Tree Cover (PNTC), Percentage Crop Cover
(PCC), Percentage Graze Cover (PGZC), Percentage Range-
land Cover (PRC), Percentage Tree Cover (PTC), Fraction
of Absorbed Photosynthetically Active Radiation (FAPAR),
Aboveground Biomass (ABG), and Gross primary productiv-
ity (GPP). Previous work emphasizes the important role of
vegetation on burnt area dynamics. For example, Thonicke
et al. (2010), discussed the crucial role of vegetation struc-
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Figure 1. Study workflow showing an overview of steps followed in model training, testing, prediction and evaluation together with the
outputs and time periods.

ture in shaping fire occurrence, spread and intensity. PGC de-
fines the land covered by grass, influencing fuel availability,
while PNTC considers non-tree vegetation such as grass and
shrubs, contributing to overall fuel dynamics. PCC reflects
the presence of cultivated crops which have been found to
suppress fire occurrence as they fragment the landscape act-
ing and so act as a barrier to fire spread (Haas et al., 2022).

PGZC, PRC, PTNC and PTC were used to evaluate the
relationship between landcover and burnt area distribution.
Previous studies reported that land use/cover type has made
a significant contribution to wildfire distribution (Gallardo et
al., 2016; Villarreal and Vargas, 2021). GPP, AGB, and FA-
PAR were proxies for vegetation productivity and type, and
fuel load. Also, some studies emphasized the varying effects
of vegetation parameters on fire events (Bowman et al., 2020;
Kuhn-Régnier et al., 2021).

To evaluate the role of fuel accumulation from the previ-
ous year on the burnt area, we derived the Monthly Ecosys-
tem Productivity Index (MEPI) using monthly Gross Primary
Productivity (GPP) data following Eq. (1). MEPI was origi-
nally defined in the work by Forrest et al. (2024). This index
allowed us to quantify the relationship between vegetation
growth, fuel accumulation and subsequent fire activity, pro-
viding a more nuanced understanding of the factors influenc-
ing fire dynamics.

MEPI=
GPPm

max(GPPm, GPPm−1,, . . .,GPPm−13)
(1)

where GPPm is the month’s GPP, and the denominator is the
maximum GPP of the past 13 months. Furthermore, we cal-
culated additional metrics including GPP12 (the mean gross
primary productivity over the previous 12 months), (FA-
PAR12) (the mean fraction of absorbed photosynthetically
active radiation over the past 12 months), and FAPAR6 (the
mean FAPAR over the last 6 months). These metrics serve
to capture average vegetation productivity, serving as refined
indicators of fuel accumulation. Kuhn-Régnier et al. (2021)
highlighted the important role of antecedent vegetation as a
key driver for global fires.

2.2.2 Topographic-related predictors

To evaluate how topography can influence the occurrence
and spread of fires, we incorporated Topographic Position-
ing Index (TPI). Topography has been reported to be more
influential in regions with complex terrain and microclimatic
conditions (Blouin et al., 2016; Fang et al., 2015; Oliveira
et al., 2014). Some studies used slope (Cary et al., 2006)
and surface area ratio (Parisien et al., 2011) in their models
and reported topography to marginally contribute to wildfire
dynamics. However, recent studies reported some significant
contributions of topography to global burnt area distribution
when using the TPI (Haas et al., 2022). TPI is designed to
encompass and evaluate the complex influence of terrain fea-
tures, such as elevation and slope, on the distribution of burnt
areas. Thus, TPI goes beyond simplistic representations of
landscapes and offers a more nuanced perspective on how
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terrain characteristics contribute to the occurrence and extent
of wildfires. Given the role of terrain on fire behavior and
propagation patterns, the inclusion of TPI in this study allows
for a comprehensive examination of wildfire distribution.

2.2.3 Anthropogenic influence predictors

To capture the impact of anthropogenic factors on both fire
ignition and suppression, we adopted the Human Devel-
opment Index (HDI), Population Density (PPN), and Road
Density (RD). The inclusion of HDI aims to encapsulate hu-
man influence on ecological landscapes, thereby affecting the
dynamics of both ignition and suppression processes. HDI is
a composite index developed by the United Nations Develop-
ment Program (UNDP) to assess long-term progress in three
basic dimensions of human development, including health
(life expectancy at birth), education (mean years of school-
ing and expected years of schooling), and standard of living
(gross national income per capita) (Uddin, 2023). HDI val-
ues range from 0 to 1, with higher values indicating higher
levels of human development. Although HDI itself may not
directly relate to fire occurrence, it stands as a valuable socio-
economic indicator that significantly influences overall fire
dynamics and management, like how Gross Domestic Prod-
uct (GDP) has been used in other fire models (Perkins et al.,
2022). To address the limitations of using GDP as a proxy
for human development in predicting global fires, we opted
for HDI. Previous research has utilized GDP for this pur-
pose (Zhang et al., 2023), however, GDP is an indicator of a
country’s economic performance (Callen, 2008). In contrast,
HDI is a broader socioeconomic indicator which evaluates
a country or other administrative region’s development sta-
tus based on the critical factors of life expectancy, education,
and income. We assume it acts as a proxy for factors such
as investments and advancements in fire control methods,
surveillance, technology, and outreach strategies increasing
awareness, thus providing a more nuanced understanding of
the socio-economic context shaping fire behavior than GDP.
To evaluate model sensitivity to inclusion of HDI, we trained
our model based on the three settings: including, excluding
and holding HDI constant.

2.2.4 Weather-related predictors

We employed the Canadian Fire Weather Index (FWI) to cap-
ture the impact of fire weather on the distribution of wildfires.
FWI is renowned for its comprehensive framework integrat-
ing diverse meteorological parameters to evaluate potential
fire behavior and danger (de Jong et al., 2016). The FWI is
widely adopted by fire management agencies facilitating in-
formed decisions on fire prevention, preparedness, and sup-
pression strategies. It has been shown to correlate well with
burnt areas across the globe (Jones et al., 2022). We used
the number of dry days (NDD) as a proxy for biomass pro-
duction limitations. While it falls in the category of weather-

related fire predictors, in this study it’s an indirect indicator
of how moisture availability can affect available combustible
vegetation. We incorporated additional covariates capturing
seasonal and annual weather dynamics that influence fires,
including Precipitation Seasonality (PS), and Annual Aver-
age Precipitation (AAP). The selection of these predictors
was informed by their significance in previous global fire
modelling studies (Chuvieco et al., 2021; Joshi and Suku-
mar, 2021; Le Page et al., 2015; Mukunga et al., 2023; Saha
et al., 2019), as well as insights from seminal works such as
that by Pechony and Shindell (2010).

2.3 Data processing

We harmonized the spatial and temporal resolution of the
predictor dataset to conform to our analytical framework,
which had a spatial resolution of 0.0° and a temporal res-
olution of one month. This involved employing techniques
such as aggregation, resampling, and consolidation. For in-
stance, while the native temporal resolution of FAPAR and
GPP were 8 d, we transformed it into a monthly temporal res-
olution to align with our primary variable. Most predictors
originally possessed an annual temporal resolution, except
for FWI which was also available every month. For annual
predictors, we replicated the same data for each month. Sim-
ilarly, long-term variables like AGB, RD, and TPI were uti-
lized every month to synchronize with the shorter-resolution
predictors. PPN, which was available at a 5-year interval, was
used monthly over the represented 5-year span.

2.4 Variable selection

To address variable collinearity, we conducted pairwise cor-
relation analyses among predictor variables using the R sta-
tistical package (R Core Team, 2012). Following established
guidelines by Dormann et al. (2013), we applied the con-
ventional threshold of R>0.5 to enhance the model’s effi-
ciency. Moreover, we employed the Variance Inflation Factor
(VIF) to evaluate collinearity among predictor variables, re-
moving those with VIF values surpassing 5, as recommended
by O’Brien (2007). Post collinearity tests, an additional 3 pa-
rameters were adopted to progressively select the best model,
namely: (1) a simple (∼ parsimonious) model which com-
prise of a full suite of categories of covariate combinations
(i.e. vegetation, climate, topography, ignitions), (2) the de-
viance explained value and (3) the Normalised Mean Square
Error (NME) value as illustrated in the making of Burnt Area
Simulator for Europe (BASE: Forrest et al., 2024).

2.5 Model training and testing

A quasi-binomial GLM was selected for modelling BA due
to its capability to handle non-Gaussian error distributions,
ease of transference to other modelling framework’s ability
to generate partial residual plots, i.e., the effect of each pre-
dictor in the model while the others are held constant (Bisti-
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nas et al., 2014; Haas et al., 2022; Lehsten et al., 2016).
Residual plots were utilized to examine the magnitude and
nature of each predictor’s relationship with wildfire burnt
area distribution. We used data from the period 2002–2010
for model training, the period 2011–2018 for model test-
ing, and the full period 2002–2018 dataset for predictions
and model evaluation. During model testing we compared
the performance of the model on training data vs testing data
to assess model robustness.

2.6 Model selection

We employed a sequential model-building approach, begin-
ning with additive structures (M1–M12) to estimate the in-
dependent contribution of climate, vegetation, and human
variables on burned area (Table 2). This approach aligns
with established fire risk modelling practices (e.g., Forrest
et al., 2024). Additional predictors were introduced if they
represented ecologically meaningful processes (e.g., drought
severity, vegetation productivity) and improved model fit (de-
viance explained and Normalised Mean Error). Multiplica-
tive interaction terms (M13 onward) were added only when
fire ecology theory suggested synergistic effects (e.g., human
ignitions under extreme weather, vegetation dryness and tem-
perature) and retained if deviance explained improved. This
stepwise approach ensures both statistical rigor and ecologi-
cal interpretability rather than ad hoc formula selection.

2.7 Model performance evaluation

Model performance was assessed using the NME following
Kelley et al. (2013). NME serves as a standardized metric
for evaluating global model performance, facilitating direct
comparison between predictions and observations. The NME
was calculated following Eq. (2).

NME=
∑

Ai Iobsi − simi I∑
Ai Iobsi − obs I

(2)

The NME score was computed by summing the discrepan-
cies between observations (obs) and simulations (sim) across
all cells (i), weighted by the respective cell areas (Ai), and
then normalized by the average distance from the mean of
the observations. A lower NME value reflects superior model
performance, with a value of 0 indicating a perfect alignment
between observed and simulated values. After conducting a
collinearity test, the models were systematically evaluated
using various combinations of predictor variables. A total of
26 model runs were conducted, each incorporating different
sets of variables while iteratively excluding some, to discern
the extent to which each predictor explained variance when
others were not included (see Table A1). We followed the
stepwise approach of variable inclusion, exclusion, interac-
tion terms, log transformations, and polynomial transforma-
tions as described by Forrest et al. (2024). While their anal-
ysis focused on Europe, our objective was to replicate and

test the method at a global scale. To evaluate the reliability
of the predicted interannual variability and seasonal cycles,
we applied a regression function to determine the relation-
ship (R2) between the observed and predicted trends using
annual average data for the period 2002–2018. An R2 of 1
shows good performance in our predictions and an R2 of
0 shows poor performance in our predictions. To assess the
trend in predicted interannual variability, we used the Mann-
Kendall test (Kendall, 1975; Mann, 1945). This widely used
method detects monotonic trends in environmental data. Be-
ing non-parametric, it works for all distributions, does not
require normality, but assumes no serial correlation.

3 Results

3.1 Correlation between variables

We found correlated variables that we had to exclude from
the analysis. Specifically, variables such as AGB, FAPAR12,
FAPAR6, AAP, and RD were excluded due to their strong
correlations with other variables (see Fig. 2). There were
however some variables that correlated but had to be re-
turned to the model due to their significant contribution to fire
modelling and model performance. For example, NDD was
strongly correlated to PTC (∼−0.68), but both increased the
variance explained by the full model.

3.2 Optimal model selection and GLM results

The initial models (model 1 to model 3) progressively in-
clude more variables and substantial improvement is ob-
served in model 3 which explained 52.98 % following the
inclusion of PNTC. Models 4 to 8 involve adding vegeta-
tion (FAPAR) and various land use types (PCC, PPS, PRC,
PGC). This is accompanied by marginal improvement in de-
viance explained, indicating these factors provide some ad-
ditional predictive power but are not as impactful as existing
vegetation covariates (such as GPP). Models 10 to 12 intro-
duce polynomial terms for PTC. This results in an increase in
performance explaining 55.88 % in model 12. Models 13 to
16 incorporate interactions between HDI and land use types
(e.g., PCC and PRC), resulting in marginal improvement in
performance with the highest recorded in model 15 which
explained 56.65 %. Models 19 to 26 fine-tune the overall per-
formance by incorporating various variables and their inter-
actions. Model 24, which includes a comprehensive set of
climatic, vegetation, human, and topographic variables along
with their interactions, achieves the highest performance as
it explained 57.20 %. The marginal improvements observed
in subsequent models indicate that while additional vari-
ables contribute to the model, the primary influencing fac-
tors were already identified by model 19, however it was
not the simplest model (∼ parsimonious), and included vari-
ables for which future projections are currently unavailable
(e.g., RD), due to the lack of established projection models
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Table 2. Summary of models (M1–M26) with corresponding formulas, performance metrics, and rationale for predictor inclusion or interac-
tion terms. Predictor additions were guided by ecological theory (e.g., fuel load, climate extremes, anthropogenic factors) and retained based
on statistical improvements.

Model(s) Formula type Deviance explained NME Rationale for additive/interaction terms
(range) (range)

M1–M2 Additive, baseline
predictors (FWI, GPP,
HDI, PTC, RD±PGC)

0.35–0.37 0.74–0.75 Start with core fire-weather, vegetation, and human
variables widely used in fire risk modelling (e.g., FWI,
HDI). Summation quantifies independent effects and
provides a baseline for deviance explained.

M3–M9 Additive, extended
predictors (e.g., PNTC,
FAPAR, PCC)

0.52–0.54 0.72–0.71 Additional vegetation productivity and phenology
metrics tested to capture fuel continuity and biomass
effects. Additive inclusion based on ecological theory
(fuel load→ fire extent) and retained if
deviance ↑ > 1 %–2 %.

M10–M12 Additive,
polynomial+ seasonal
predictors

0.52–0.55 0.71–0.72 Added nonlinear terms (e.g., poly(PTC,2)) to test
curvilinear effects of vegetation productivity on fire
risk, seasonal indices (e.g., FAPAR12) reflect lagged
vegetation–fire relationships.

M13–M20 Additive+ interaction
terms (HDI×PCC,
MEPI×PNTC, etc.)

0.55–0.57 0.71–0.72 Interaction terms introduced where ecological or
anthropogenic synergies are expected (e.g., human
density× vegetation affects ignition; drought× fuel
load affects spread). Retained if deviance > 2 and
NME improves 2 %.

M21–M26 Full interactions,
topographic+ climate
covariates

0.56–0.57 0.71–0.72 Topography (TPI) and drought indices (NDD) interact
with vegetation to capture compound effects on fire
behavior; final models balance explanatory power with
ecological plausibility and parsimony.

or datasets. Since the main objective of the study was to pro-
duce a DGVM-compatible model, availability of future pro-
jections for these datasets was indispensable to model build-
ing. We removed some of the redundant variables till model
24 (∼ 11 variables), however, it was not as parsimonious as
model 25 (∼ 8 variables). Therefore, model 25, which offers
a balance of parsimony, simplicity, high deviance explained,
and low NME, was selected as the best model in this analysis.
Our results reveal that each predictor variable incorporated
in the final analysis significantly predicted the distribution of
wildfires (p<0.05), as outlined in Table 3.

Our analysis results revealed the relationship between var-
ious predictors and BA distribution, as depicted in Fig. 3.
Among the predictors studied, FWI, PNTC, PTC and TPI
showed a positive relationship with BA distribution. Notably,
FWI and PNTC showed particularly strong relationships, un-
derscoring the substantial role of fire weather, fuel availabil-
ity on the expansion of BA extent. Conversely, several pre-
dictors showed a negative relationship with BA distribution,
including the MEPI, HDI, PPN and NDD. A polynomial of
PTC shows a slightly bell-shaped relationship with burnt area
fraction.

Overall, our observations highlight the critical role of fac-
tors such as fire weather, fuel availability, vegetation cover,

climate conditions, and landscape characteristics in shaping
BA distribution patterns. Figure 3 visually represents the dif-
ferential relationship of these predictors on BA distribution,
offering a comprehensive overview of the underlying mech-
anisms driving wildfire dynamics.

3.3 Performance evaluation

The model demonstrated comparable performance across the
training and testing datasets. Specifically, the training data
yielded a deviance explained of 0.57 and an NME of 0.73,
while the testing data yielded a deviance explained of 0.56
and an NME of 0.70. The close agreement between training
and testing performance supports the robustness of the model
and justifies its application to the full dataset, which we sub-
sequently evaluated with respect to both spatial and temporal
predictive capability.

The full dataset model demonstrated strong performance
in predicting BA, as it explained 56.83 % of the variability in
burnt area. Our model’s performance, based on eight predic-
tors and operating at a finer temporal resolution (monthly), is
considered satisfactory and parsimonious. Overall, the model
accuracy yielded an NME of 0.718, indicating a generally
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Figure 2. Correlation matrix of all the variables that were considered for modelling in this investigation.

Table 3. Summary of GLM coefficients for the final model, presenting t-values and p-values for predictors. The results indicate that all
predictors in the final model were statistically significant for wildfire distribution (p<0.05).

Estimate SE t value Pr (>|t |)

(Intercept) −6.159× 10 2.349× 10−2
−262.17 < 0.00001

FWI 9.296× 10−1 1.948× 10−3 477.28 < 0.00001
MEPI −2.270× 10 8.974× 10−3

−252.96 < 0.00001
HDI −1.680× 10 1.235× 10−2

−135.99 < 0.00001
PNTC 5.170× 10−2 2.270× 10−4 227.78 < 0.00001
poly(PTC,2)1 2.135× 103 1.114× 101 191.55 < 0.00001
poly(PTC,2)2 −9.783× 102 6.975 −140.27 < 0.00001
TPI 2.225× 10−1 3.946× 10−3 56.39 < 0.00001
NDD −9.550× 10−3 4.757× 10−5

−200.78 < 0.00001
PPN −1.075× 10−3 1.808× 10−5

−59.48 < 0.00001

close correspondence between observed and predicted burnt
area patterns.

The correlation analysis further shows significant varia-
tion in the strength of relationship between observed and
predicted burnt area extent across the 14 GFED regions an-
nually (Fig. 4a) and seasonally (Fig. 4b). These include:
Boreal North America (BONA), Temperate North America
(TENA), Central America (CEAM), Northern Hemisphere

South America (NHSA), Southern Hemisphere South Amer-
ica (SHSA), Europe (EURO), Middle East (MIDE), Northern
Hemisphere Africa (NHAF), Southern Hemisphere Africa
(SHAF), Boreal Asia (BOAS), Central Asia (CEAS), South-
east Asia (SEAS), Equatorial Asia (EQAS) and Australia and
New Zealand (AUST).

Our model overall performed poorly in predicting inter-
annual variability as exhibited by a poor strength of rela-
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Figure 3. Partial Residual Plots illustrating the relationship between burnt Areas (BA) and the eight final predictor variables. These plots show
the effect of each predictor while the others are held constant (Larsen and McCleary, 1972). Predictor variables were Monthly Ecosystem
Productivity Index (MEPI), Fire Weather Index (FWI), Percentage Non-Tree Cover (PNTC), Human Development Index (HDI), Percentage
Tree Cover (PTC), Topographic Position Index (TPI), Population Density (PPN) and Number of Dry Days (NDD).

tionship between the predicted trend when compared to the
observed (R2

= 0.24). This poor relationship was exhibited
across most of the GFED regions (R2<0.50, Fig. 4a), except
for the NHSA which showed strong similarities between the
predicted trend and observed trend (R2

= 0.55). This obser-
vation suggests that the combination of covariates that we
incorporated in this model has limited strength in capturing
global interannual variability in burnt areas.

Unlike the global interannual trends, there was a strong
strength of similarity between observed and predicted sea-
sonal cycles in most GFED regions (refer to Figs. 4b and
A4). The model predicted better in GFED regions that are
situated in Southern Africa, South America, Australia and
Asia (R2>0.50). However, a few poor seasonal predictions
were recorded in GFED regions situated in North America,
North Africa and Europe as indicated by a poor relation-
ship between observed burnt area and predicted burnt area
(R2<0.50).

Spatially, our model effectively captured the distribution
of BA in the tropics and the southern hemisphere, demon-
strating notable similarities between observed and predicted
burnt area fractions on an annual basis (see Fig. 5). How-
ever, in extratropical regions, particularly in the northern
hemisphere, instances of overprediction were observed. This
discrepancy is evident in the inconsistencies between ob-

served annual distribution patterns and those predicted by the
model.

3.4 Interannual distribution

Our analysis results revealed a substantial global decrease
in burnt areas exceeding 1 million square kilometers from
2002–2018, with the peak decline observed in 2004 (see
Fig. 6). This downtrend was reproduced by the model, but
the model underestimated the interannual variability and the
model-predicted decline was stronger than observed. How-
ever, it aligns with the decreasing patterns reported in earlier
studies (Andela et al., 2017; Jones et al., 2022). Excluding
and holding HDI constant in the model made the projected
trend remain steady, suggesting the role of anthropogenic de-
velopments (increasing HDI over time) driving a downward
trend in wildfire distribution.

The Mann Kendall trend analysis further shows signifi-
cant variation in the magnitude and direction of predicted
burnt area extent across the 14 GFED regions (refer to Fig. 7
and Table A2). Five regions (SHAF, SHSA, NHAF, CEAS)
predicted a significantly positive trend (p<0.05) in burnt
area extent, while the other regions predicted no significant
trends (NHSA, SHSA, MIDE, TENA, AUST, EURO, EQAS,
CEAM, BONA, BOAS). Overall, the projected positive trend
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Figure 4. Evaluation of the selected model using observed burned area data from GFED5 predicted data (2011–2018). The maps show
r-square values highlighting the model’s performance for interannual (a) and seasonal variability (b) per GFED region.

predominated in GFED regions situated in central and south-
ern Africa, and central and southern Asia. In contrast, the
Americas, Australia, and Europe demonstrated no significant
trend, as illustrated in Fig. 7.

3.5 Seasonal distribution

Our analysis results show that the global extent of BA shows
an alternating seasonal cycle with strong peaks in February
and August (see Fig. 8). The predicted pattern slightly under-
estimates the burnt area, however, appears to be closely knit
with the observed trend (R2

= 0.54).

4 Discussion

4.1 Main drivers of global burned area

We found that our candidate variables, namely FWI, PNTC,
PTC, TPI, MEPI, HDI, PPN and NDD, had strong influence
on burnt areas. FWI and PNTC exhibited a strong positive re-
lationship with fire occurrence, underscoring the importance
of conducive fire-weather conditions and combustible fuel in
driving wildfire occurrence and spread. High PNTC is most
likely related to high amounts of flammable vegetation, such
as grasses and shrubs. Our findings that fire weather (∼ FWI)

and fuel availability (∼ PNTC) influence burnt area extent
align with previous studies (Andela et al., 2017; Bistinas et
al., 2014; Forkel et al., 2019; Kuhn-Régnier et al., 2021).
The other studies, however, did focus on the annual burnt
area, not the seasonal cycle, which is also crucial to adapt to
changes in fire risk.

Our results show that higher PNTC leads to higher burnt
area fractions. In contrast, areas with lower PNTC show
lower burnt area fractions. Areas with high PNTC typically
consist of grasses and shrubs (∼ height <2 m), while ar-
eas with low PNTC are often characterized by trees. Grass
and shrubs often encourage frequent burning much more
than trees (Juli et al., 2017; Wragg et al., 2018). Conversely,
low PNTC indicates high tree cover, which is often less
flammable, leading to fewer fires. Though our findings sup-
port previous literature indicating that regions with abundant
combustible vegetation and favorable fire-weather conditions
are prone to frequent burning (Kraaij et al., 2018; Thonicke et
al., 2010), we observed a surprising negative relationship be-
tween NDD and burnt area. Previous studies found a positive
relationship between NDD and burnt area fractions (Haas
et al., 2022), like our single-factor plots of NDD and burnt
area in Fig. A3. This result most probably shows that rela-
tionships derived with annual data, as in the other studies
mentioned here, cannot simply be transferred to seasonal fire
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Figure 5. Annual burnt area fraction distribution map with the observed burnt area (top) and predicted burnt area (bottom).

predictions. Studies have shown that the effect of dryness on
fire varies depending on vegetation communities in Mediter-
ranean ecosystems (Cardil et al., 2019). Stott (2000) echoed
similar sentiments for tropical environments, indicating the
complex relationship between vegetation, dryness and fire.
Our efforts to investigate this complex relationship through
an interaction term did not significantly improve our model
accuracy (∼ model 26). Hence, future studies may benefit
from further exploring the complex relationship between dry-
ness and vegetation at a global scale, particularly the effect of
incorporating polynomial terms on correlated predictors in a
linear model.

Our findings revealed that HDI, MEPI and PPN are neg-
atively associated with trends in global fire extent. For HDI,
our findings imply that technological advancements, im-
proved surveillance systems, and effective mitigation efforts
play a significant role in limiting the extent of burnt areas.
Contrary to expectations based on Haas et al. (2022), PPN,
which should correlate with more ignitions, does not appear

to increase the burnt area extent (see Fig. 3). In fact, we
observed that lower PPN corresponded to larger burnt ar-
eas, likely due to the impact of human activities on land-
scape fragmentation through road construction, and mea-
sures to suppress fires in human inhabited spaces to protect
properties (Kloster et al., 2010). Saunders et al. (1991) ob-
served that the response of fire to changes in PPN is gov-
erned by two opposing processes, an increase in population
leads to more ignition sources, while simultaneously prompt-
ing greater fire management efforts to suppress fires. They
further highlighted that fire suppression rates are highest in
densely populated areas. This suggests that the scale (both
spatial and temporal) of analysis may influence nature and
extent to which PPN affects burnt area extent. Our results for
the effect of PPN have important implications for DGVMs
and land surface models. These models differ widely in the
assumed effect of PPN, often using a unimodal response sim-
ulating BA annually, in some cases distributing the wildfires
across seasons in a second step, using rather simplified as-
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Figure 6. Interannual variability in burnt area extent showing the observed trend (based on GFED5 burnt estimates detection for the period
2002–2018) and model projections of the respective period under different HDI treatments: when HDI was excluded, included and held
constant from the value of the first year in the model.

Figure 7. Variation in the direction of trend of interannual variability for burnt areas across different GFED regions.

sumptions (Teckentrup et al., 2019). Similarly, we antici-
pated a positive relationship between MEPI and burnt areas,
as MEPI is indicative of ecosystem dryness and flammabil-
ity. However, our findings revealed a negative relationship,
indicating that other factors may be influencing the connec-
tion between MEPI and the extent of burnt areas. Our find-
ings are in line with those of Forrest et al. (2024) who ini-
tially investigated the effect of this index on burnt areas in
Europe. Unlike previous global studies that utilized annual
GPP, our research employed a more refined measure, MEPI.
Future research could benefit from evaluating the relation-

ships between MEPI and burnt areas in other GFED regions
and temporal scales.

4.2 Spatial variation in model performance

Our model exhibits stronger performance in predicting the
spatial distribution of fires in southern Africa, Australia, and
South America than in other world regions (See Fig. 4). The
stronger performance in these areas is likely due to the well-
defined and predictable fire regimes in these regions. Since
fire activity here is strongly governed by distinct wet-dry sea-
sonal cycles, which align closely with fire weather, enabling
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Figure 8. Global seasonal burnt area patterns showing the observed (GFED 5) and predicted burnt area extent.

our model to capture these patterns effectively using linear
functions (See Fig. A5), hence better model generalization.

Conversely, our model tends to overpredict fires in the
northern hemisphere, particularly in North and Central
America, as well as Asia. Performance here declines as fire
regimes are more heterogeneous and driven by a combina-
tion of biophysical and anthropogenic factors (Chuvieco et
al., 2021; Forkel et al., 2019). High interannual variability
in burnt areas in these regions is due to irregular droughts,
land use change, and fire suppression policies that make pre-
diction more challenging for linear models. Additionally, the
influence of snow cover, freeze-thaw cycles, and varied ig-
nition sources in temperate and boreal regions further com-
plicates seasonal pattern detection (Flannigan et al., 2009).
Chuvieco et al. (2021) reported about this challenge when
building global models. Thus, our findings build upon ex-
isting models on global burnt area distribution. What sets
our model apart from previous models is its ability to reli-
ably identify global seasonal fire distribution patterns. This
simplicity offers a notable advantage, as it facilitates more
nuanced interpretation and implementation of DGVMs com-
pared to annual models.

4.3 Attribution of global trends

Previous studies have improved our understanding of drivers
of fire but differ in approach and attributional focus for
fire trends. For instance, Joshi and Sukumar (2021) em-
ployed region-specific multilayer neural networks to re-
veal spatially varying sensitivities between fire and socio-
environmental drivers, providing strong spatial diagnostics
but limited transparency on attributions of burnt area trends.
Kraaij et al. (2018) provided detailed biome-level attribution
of destructive fires by linking drought, fuel state and veg-

etation context in case studies (e.g., fynbos/plantation com-
plexes), emphasizing vegetation and weather controls at local
scales. Mukunga et al. (2023) used random-forest analyses
to quantify the added value of human predictors for ignition
probability, focusing on anthropogenic controls of ignitions
rather than burnt area extent. Building on these approaches,
our study contributes novel attributional insight because it
explicitly integrates a compact set of DGVM compatible fire-
weather and fuel indices (FWI, PTC, TPI, PNTC) with a
socio-economic indicator (HDI) within a parsimonious sta-
tistical framework for burnt area trends. This allows direct at-
tribution of directional effects (for example, the negative as-
sociation between HDI and burnt area) across regions. Work
by Andela et al. (2017), primarily attributed the decline in
global burnt areas to agricultural expansion and intensifica-
tion. Earl and Simmonds (2018) supported this view, adding
that increased net primary productivity in Northern Africa
also played a significant role. However, our results suggest
that human development is a more important driver than agri-
cultural expansion alone. Despite the conventional empha-
sis on agricultural factors, our attempt to incorporate crop-
land and rangeland fractions as predictor variables did not
substantially enhance our understanding of this trend (model
5–10, Table 2). Interestingly, our analysis revealed that ex-
cluding the HDI from our model and holding it constant to
the value of the first year predicted a steady trend that de-
viates from the observed negative trend in global fire extent
and including HDI is partly followed by a decreasing trend
(Fig. 5). This highlights the significant influence of HDI in
projecting the purported negative global fire trend. Impor-
tantly, HDI is not uniform worldwide but varies substantially
across regions and levels of socioeconomic development. For
instance, in high-HDI countries, greater financial resources,
infrastructure, and institutional capacity often translate into
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stronger investments in fire control technologies, improved
surveillance systems, and more effective prevention cam-
paigns. By contrast, in low and middle HDI countries, limited
resources and weaker institutional frameworks may constrain
fire management capabilities, resulting in greater reliance
on natural fire dynamics or less formalized suppression ef-
forts. As many countries continue to develop, it translates
improvements in HDI and fire management strategies. Al-
though strategies are often implemented independently and
on a smaller scale, their cumulative impact on global fire
trends is substantial. Thus, HDI serves as a broad socioe-
conomic indicator that we assume acts as a proxy for the
combined effects of investments, advancements in fire con-
trol methods, surveillance, technology, and outreach strate-
gies that increase awareness (Teixeira et al., 2023). There-
fore, our model underscores the necessity for global initia-
tives aimed at enhancing fire control measures through com-
prehensive awareness campaigns, capacity-building efforts,
resource mobilization, and the development and deployment
of reliable surveillance technologies. By addressing these
factors collectively, we can effectively mitigate the extent and
severity of global wildfires, thereby safeguarding ecosystems
and human livelihoods.

4.4 Interannual variability

Despite demonstrating the significant role of the HDI in pre-
dicting global fire trends, our model struggled to achieve high
precision in forecasting interannual variability both globally
(see Fig. 5) and within specific GFED regions (see Fig. A1).
Recognizing that this limitation might stem from an inade-
quate representation of vegetation (fuel) dynamics, we incor-
porated FAPAR12 in models 9 to 12 (Table A1) and MEPI in
models 11 to 26 (Table A1). Unfortunately, these adjustments
did not enhance our ability to predict the interannual variabil-
ity of wildfires. Studies have found a relationship between
increased precipitation in the years preceding the fire sea-
son and fire activity in the drier savanna regions of Southern
Africa (Shekede et al., 2024). Hence, we also explored the
role of previous fuel accumulation on subsequent fire seasons
using GPP12 in model 10, respectively. While this approach
did not improve global interannual predictions, it showed a
slight enhancement in deviance explained (from 0.5357 to
0.5461). This improvement might have been confounded by
the effects of the fire-aerosol positive feedback mechanism in
Africa (Zhang et al., 2023) and periodic El Niño conditions,
which can affect rainfall patterns and lead to drier vegetation
conditions, reducing the predictability of fire occurrence, es-
pecially with linear models (Shikwambana et al., 2022). We
note that in the recent comparison of fire-enabled DGVMs
in the Fire Model Intercomparison Project (FireMIP) project
(Hantson et al., 2020), all models did a poorer job of match-
ing the interannual variability than the spatial patterns by a
considerable margin. The seven acceptably-performing mod-
els achieved a mean spatial NME (across all data and model

comparisons) of 0.84 with respect to spatial patterns, but an
NME of 1.15 for interannual variability. Our modelling ef-
forts highlight the complexity of accurately predicting wild-
fire trends and underscore the need for future research to
identify covariates that more effectively capture the interan-
nual variability of fires at a global scale.

4.5 Fire seasonality

Globally, our model predicts a notable peak in burnt areas
during February and August (Fig. 8). The February peak cor-
responds to dry conditions and fuel accumulation in north-
ern hemisphere regions such as NHSA, NHAF, and MIDE
(Fig. A2), with the complementary August peak occurring in
regions such as SHSA, SHAF, and AUST. Our model pre-
dicts this with only two sub annual predictors - the logarithm
of FWI and MEPI as already demonstrated for Europe by
Forrest et al. (2024). This underscores the enduring influence
of fire weather and vegetation growth and phenology as prin-
cipal drivers of seasonal burnt area cycles, with factors such
as moisture content in vegetation and soil, as well as humid-
ity, playing pivotal roles in modulating ignition and fire ex-
tent within ecosystems. The seasonal forecasts generated by
our model hold significant implications for guiding adaptive
strategies, fire management and prevention at both regional
and global scale.

The findings of this study exhibit robustness in captur-
ing the global seasonal cycle (R2

= 0.536, see Fig. 7), but
notable exceptions were observed in North America, the
Middle East and Mediterranean North Africa, and Europe
(R2<0.50, see Fig. 8). This discrepancy could be attributed
to the intricate climatic conditions inherent to these regions,
which influence fires in a manner that eludes simple lin-
ear modelling. For instance, tropical regions with clear-cut
wet and dry seasons tend to exhibit more regular fire cycles,
largely governed by seasonal shifts in precipitation, tempera-
ture, and vegetation growth. These predictable patterns make
them well-suited to linear modelling approaches (Kavhu and
Ndaimani, 2022; van Der Werf et al., 2017). In contrast,
extra-tropical areas experience more irregular and less sea-
sonally driven fire activity. Here, the interaction of drought
events, land management, and socio-economic drivers intro-
duces variability that weakens model performance (Chuvieco
et al., 2021; Forkel et al., 2019). Additionally, varied igni-
tion sources in temperate and boreal zones disrupt consis-
tent seasonal fire patterns (Flannigan et al., 2009). Given the
parsimonious design of our model, with only eight predic-
tors and only two of those on a monthly time step, we think
that the model’s performance is acceptable. Furthermore, this
acceptable seasonal performance fills a gap in the available
global fire models. To our knowledge there are no such mod-
els which are strongly data-constrained (i.e statistically fitted
as opposed to empirical or processes-based) and which pre-
dict the seasonal cycle. The closest is SIMFIRE, which is
fitted to observed data but which calculates annual burnt area

Biogeosciences, 22, 7001–7030, 2025 https://doi.org/10.5194/bg-22-7001-2025



B. Kavhu et al.: Development of a statistical model for global burned area 7017

and then distributes throughout the year using a prescribed
seasonal cycle based on observed data (Rabin et al., 2017).
So, whilst the work presented is not yet integrated into a
DGVM, it represents a significant advance in this direction.
This is particularly important given the comparatively poor
performance of global fire models in predicting the seasonal
concentration of burnt area (Hantson et al., 2020, Table 3).
However, for certain regions, it might be possible to increase
model performance by implementing further region-specific
predictors and relationships. Accurate predictions regarding
the seasonal dynamics of diverse GFED regions can facil-
itate the identification of temporal windows when fires are
prevalent, thereby furnishing valuable insights for simulating
carbon emissions in DGVMs.

4.6 Model limitations and excluding drivers of burnt
area

Several covariates initially considered, such as landcover
variables (∼ PCC, PPS, PRC, PGC), vegetation (∼ FAPAR)
and socioeconomic (∼RD), did not make it to the final model
(See Table A1) despite their potential relevance identified in
previous studies (Forkel et al., 2019; Hantson et al., 2015;
Knorr et al., 2014; Pausas and Keeley, 2021; Perkins et al.,
2022). The differences in our findings are related to differ-
ences in the statistical or modelling approach and the fact that
most of these studies addressed annual BA patterns, not sea-
sonal variations. Nevertheless, these other factors can clearly
also be important for understanding fire dynamics, e.g., in-
fluencing fuel availability, landscape structure, and ignition
sources. For instance, grazing lands can significantly impact
fire behavior by altering fuel types and continuity, with areas
used for grazing potentially reducing fuel loads (Davies et al.,
2010; Strand et al., 2014). Similarly, FAPAR indicates veg-
etation health and productivity, affecting fuel moisture con-
tent and thus fire risk (Pausas and Ribeiro, 2013). However,
these factors are apparently indirectly represented by the fi-
nal model, as they are correlated to the driver variables in the
final model. FAPAR, for example, is generally highly corre-
lated with GPP. Furthermore, RD is associated with human-
caused ignitions and fire suppression capabilities (Forkel et
al., 2019). However, it was excluded here because its con-
tributions were already effectively represented by HDI and
PPN, which capture broader socioeconomic conditions and
infrastructure impacts. Apart from that, Haas et al. (2022)
observed a shift in the direction of contribution for covariates
when PPN and RD are used together. Considering that we
may not have future projections for RD unlike PPN, includ-
ing the issue of collinearity, we decided to retain only PPN
in our model. Furthermore, our attempt to include RD in our
models 21, 23 and 24 (Table A1) yielded marginal improve-
ments, which were not different from when we excluded
it in model 25. Overall, the decision to exclude most of
these covariates was aimed at reducing redundancy and mul-
ticollinearity, ensuring a balance between model complex-

ity and predictive power. By focusing on more comprehen-
sive variables with high explanatory power, the final model
achieves robust explanatory power. However, the often-small
differences in the deviance explained and the NME between
different models imply that vegetation-fire modelers might
also pick a slightly different set of variables for DGVM inte-
gration without using much predictive power.

While our research represents relevant efforts in devel-
oping a streamlined model capable of accurately capturing
seasonal variations in global fire distribution, it’s important
to acknowledge certain limitations. The selection of covari-
ates and the statistical model was constrained by the neces-
sity for integration within DGVMs applied to predict fu-
ture dynamics, potentially omitting some previously identi-
fied key predictors (∼ lightning frequency, gridded livestock
densities) and modelling techniques (∼Random Forest, Neu-
ral networks, XgBoost, CatBoost) for global fires (Forkel et
al., 2019; Joshi and Sukumar, 2021; Mukunga et al., 2023;
Zhang et al., 2023). This might contribute to observed short-
comings in our model’s ability to predict spatial fire dis-
tribution in certain regions and to capture interannual vari-
ability across many parts of the world. Future investigations
should aim to explore the inclusion of other established pre-
dictors and methodologies in global fire modelling once they
become easily compatible with DGVM integration. Despite
these challenges, our study possesses intrinsic value, and the
developed model stands as a relatively simple tool for in-
forming global seasonal fire predictions.

4.7 Next steps for DGVM integration, future directions
and model improvements

To integrate the model presented here into a DGVM and en-
able future predictions, the remotely sensed variables of veg-
etation state (PTC, PNTC and MEPI) must be replaced with
equivalent variables from the DGVM. DGVMs include GPP
and the cover fractions of vegetation types required to cal-
culate PTC, PNTC and MEPI, so these variables provide a
robust and universal coupling strategy to capture the effect
of vegetation on burnt areas. However, all model results are
imperfect and biased to some degree, so the DGVM variables
will not correspond perfectly with the remotely sensed ones
used for model training. This error will propagate to the burnt
area calculation and so this discrepancy should be investi-
gated. In the likely event that this discrepancy is not small,
the GLM should be refitted using the model-calculated vari-
ables to implicitly account for biases in the DGVM simula-
tion, although the burnt area estimated will still be dependent
on the DGVM’s skill to capture certain dynamics and states.
However, we note that our comparatively restricted variable
set and simple GLM approach will be more straightforward
to integrate and less sensitive to errors in the DGVM sim-
ulated state than machine learning approaches with larger
suites of predictor variables. For example Son et al. (2024)
achieved excellent correspondence with observed data us-
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ing an advanced recursive neural network which was par-
tially integrated into the JSBACH DGVM. However, only the
fuel predictor was taken from the prognostically simulated
JSBACH model state, other high importance dynamic pre-
dictors (including plant functional type cover fractions and
both absolute values and anomalies of LAI and water con-
tent of four soil layers) are all determined from fixed input
data – remotely sensed of climate reanalysis. Thus, in this
case, the quality of the results from hypothetical full integra-
tion will be dependent on the ability of JSBACH to simulate
many more variables correctly. The model presented here is
tailored for integration into a DGVM by using only a few
variables which can be robustly predicted, and, as a simple
GLM in contrast to more complex machine learning meth-
ods, is less prone to overfitting and relying on correlations in
the data which may not hold in the DGVM predicted state.
Furthermore, the new model includes seasonal variations in
burned area, which are not captured by all existing fire mod-
ules within DGVMs (Hantson et al., 2020).

In comparison to the vegetation variables, the inclusion of
the other variables (FWI, HDI, PPN, NDD, TPI) is trivial as
they can either be prescribed input variables or can be calcu-
lated from the climate input. Finally, to build a fully coupled
vegetation-fire model, it is then necessary to include the ef-
fects of the simulated fire on the vegetation. For this step
we can use the mortality and combustion components of fire
models already available and integrated into DGVMs, for ex-
ample the BLAZE model (Rabin et al., 2017) or the appro-
priate equations in SPITFIRE (Thonicke et al., 2010). These
parameterizations may need to be adjusted to account for the
different simulated burnt areas.

5 Conclusions

We present a parsimonious statistical model to simulate
global burnt area on a monthly timestep thus including sea-
sonal variations. This is an important advance as representa-
tion of the seasonal cycle is a weakness in global fire mod-
els, both in and out of DGVMs, and across different model
types. Notably, this representation of the seasonal cycle was
achieved with only two sub annual predictor variables. We
found the drivers FWI, TPI, and PNTC are positively associ-
ated with BA, whereas MEPI, HDI, PPN, and NDD exhibit
negative relationships, and PTC showed a unimodal response
with strongest effect at intermediate tree cover. The diver-
sity of these drivers underscores the multifaceted influence
of both climatic and socio-economic drivers on fire dynam-
ics. Our model explicitly accommodates these drivers, cap-
turing how variations in climate, vegetation productivity, and
human development interact to modulate fire occurrence and
extent. Notably, the use of HDI to represent societal develop-
ment as a proxy for fire management capacity and the transi-
tion away from fire-dependent agricultural practices provides
a coarse but global socioeconomic driver beyond GDP and
population density. Including this in DGVMs can improve
fire, vegetation and human feedbacks, particularly with re-
spect to Shared Socioeconomic Pathways (SSPs, O’Neill et
al., 2017) or other scenarios.

Overall, the model developed in this study has demon-
strated strong performance in simulating global burned area
patterns. It holds potential for integration into DGVMs to en-
hance the representation of fire dynamics, albeit it remains to
be tested how well the model performs when remote-sensing-
derived vegetation and land cover variables are replaced with
those simulated by a DGVM.
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Appendix A

Table A1. Results of modelling attempts using different combinations of predictor variables using a progressive inclusion of covariates
approach.

Model Formulae Deviance explained NME

model 1 glm(burnt ∼ FWI+GPP+HDI+PTC+RD) 0.3548030 0.7472088

model 2 glm(burnt ∼ FWI+GPP+HDI+PTC+RD+PGC) 0.3699393 0.7495652

model 3 glm(burnt ∼ FWI+GPP+HDI+PTC+RD+PNTC) 0.5298061 0.7208771

model 4 glm(burnt ∼ FWI+GPP+HDI+PTC+RD+PNTC+FAPAR) 0.5312036 0.7188448

model 5 glm(burnt ∼ FWI+GPP+HDI+PTC+RD+PNTC+FAPAR+PCC) 0.5312697 0.7191269

model 6 glm(burnt ∼ FWI+GPP+HDI+PTC+RD+PNTC+FAPAR+PCC+PPS) 0.5328183 0.7195616

model 7 glm(burnt ∼ FWI+GPP+HDI+PTC+RD+PNTC+FAPAR+PCC+PRC) 0.5313813 0.7193946

model 8 glm(burnt ∼ FWI+GPP+HDI+PTC+RD+PNTC+ FAPAR+PCC+PGC) 0.5349288 0.7190611

model 9 glm(burnt∼ FWI+GPP+HDI+PTC+RD+PNTC+FAPAR+PCC+FAPAR12+PGC) 0.5359802 0.7181930

model 10 glm(burnt ∼ FWI+GPP12+HDI+ poly(PTC, 2)+PNTC+FAPAR+PCC+
FAPAR12+PGC+PPN)

0.5295939 0.7172668

model 11 glm(burnt∼ FWI+MEPI+HDI+ poly(PTC, 2)+RD+PNTC+FAPAR12+PGC+PS) 0.5579946 0.7193546

model 12 glm(burnt ∼ FWI+MEPI+HDI+ poly(PTC, 2)+RD+PNTC+FAPAR12+PS) 0.5571164 0.7192122

model 13 glm(burnt ∼ FWI+MEPI+HDI×PCC+PGC+RD+ poly(PTC, 2)+PNTC+PS) 0.5569187 0.7214560

model 14 glm(burnt ∼ FWI+MEPI+HDI×PGC+RD+ poly(PTC, 2)+PNTC+PS) 0.5570586 0.7222061

model 15 glm(burnt ∼ FWI+MEPI+HDI×PRC+RD+ poly(PTC, 2)+ PNTC+PS) 0.5664789 0.7154708

model 16 glm(burnt ∼ FWI+MEPI*PNTC+HDI+RD+ poly(PTC, 2)+PS ) 0.5563012 0.7215202

model 17 glm(burnt ∼ FWI+MEPI+HDI+RD+ poly(PTC, 2)+PNTC+PS+NDD) 0.5681926 0.7191069

model 18 glm(burnt ∼ FWI+MEPI+HDI+RD+ poly(PTC, 2)+PNTC×PS+NDD+TPI) 0.5711503 0.7167015

model 19 glm(burnt∼FWI+MEPI+HDI+RD+ poly(PTC, 2)+PNTC×PS+NDD+
PGC+FAPAR12)

0.5709692 0.7175149

Model 20 glm(burnt ∼ FWI+MEPI+HDI+ poly(PTC, 2)+PNTC×PS+NDD+FAPAR12) 0.5677209 0.7182814

Model 21 glm(burnt∼ FWI+MEPI+HDI+ poly(PTC, 2)+RD+PNTC×PS+NDD+TPI+PPN 0.5714474 0.7170576

Model 22 glm(burnt∼ FWI+MEPI+HDI+ poly(PTC, 2)+PNTC×PS+ NDD+TPI+PPN 0.5705348 0.7177887

Model 23 glm(burnt∼ FWI+MEPI+HDI+ poly(PTC, 2)+RD+PNTC×PS+NDD+TPI+PPN 0.5714474 0.7170576

Model 24 glm(burnt ∼ FWI+MEPI+HDI+ poly(PTC, 2)+RD+PNTC*PS+NDD+TPI+
PPN+AAP

0.5720048 0.7173093

Model 25∗ glm(burnt ∼ FWI+MEPI+HDI+ poly(PTC, 2)+PNTC+ PPN+NDD+TPI 0.5682776 0.7186160

Model 26 glm(burnt∼ FWI+MEPI+HDI+ poly(PTC, 2)×NDD+NTC+PPN+NTC+TPI 0.5687439 0.7194855

∗ Selected best model.
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Table A2. Mann-Kendall test results for trend analysis across GFED regions from 2002–2018. The GFED regions include Boreal North
America (BONA), Temperate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA), Southern
Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF), Southern Hemisphere
Africa (SHAF), Boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), Equatorial Asia (EQAS) and Australia and New Zealand
(AUST). Regions with significant trends are bold (NHAF, SHAF, CEAS, SEAS); the remaining ten regions show insignificant trends.

Region Sen’s slope p-value

BONA 558.354 0.1082
TENA 895.8292 0.4338
CEAM −1963.035 0.1494
NHSA −1601.363 0.387
SHSA −9119.019 0.0529
EURO 189.2956 0.387
MIDE 202.3893 0.9016
NHAF −22329.83 0.0026
SHAF −28205.43 0.0001
BOAS −1560.25 0.1494
CEAS −8342.713 0.0011
SEAS −9671.238 0.0034
EQAS 69.04606 0.9671
AUST 1141.46 0.3434
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Figure A1. Shows the observed (in red) and predicted (in blue) interannual variability in burnt area fractions across different GFED regions.
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Figure A2. Shows the observed (in red) and predicted (in blue) seasonal variability in burnt area fractions across different GFED regions.
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Figure A3. Scatter plots illustrating single-factor relationships between burnt area fraction and various environmental and socio-economic
variables: Monthly Ecosystem Productivity Index, Fire Weather Index, Percentage Non-Tree Cover, Human Development Index, Percentage
Tree Cover, Topographic Position Index, Percentage Dry Days, Road Density, Precipitation Seasonality and Annual Precipitation Index.
The plots highlight distinct patterns, such as the negative correlation between percentage tree cover and burnt area fraction, and the positive
correlation between number of dry days and burnt area fraction.
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Figure A4. Scatter plots illustrating interannual comparison by GFED regional boundaries between observed burnt area fraction (GFED5)
and predicted burnt area fraction for the period between 2002 and 2018.
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Figure A5. Shows the seasonal comparison by GFED5 regional boundaries between observed burnt area (in orange), predicted burnt (in sky
blue), fire weather index (in bluish green).
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Code and data availability. The code used in this
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at https://doi.org/10.5281/zenodo.14177016 (Kavhu,
2024a). Data used for model fitting are available at
https://doi.org/10.5281/zenodo.14110150 (Kavhu, 2024b).
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