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Abstract. The atmospheric CO;, growth rate (CGR) is char-
acterised by large interannual variability, mainly due to vari-
ations in the land carbon uptake, the most uncertain com-
ponent in the global carbon budget. We explore the rela-
tionships between CGR and global terrestrial water storage
(TWS) from the GRACE satellites. A strong negative corre-
lation (r = —0.70, p < 0.01, based on monthly data) between
these quantities over 2002-2023 indicates that drier years
correspond to a higher CGR, suggesting reduced land up-
take. We then show regional TWS-CGR correlations and use
a metric to assess their contributions to the global correlation.
The tropics can account for the entire global TWS-CGR cor-
relation, with small cancelling contributions from the North-
ern and Southern Hemisphere extratropics. Tropical America
makes the dominant contribution (69 %) to the global TWS-
CGR correlation, despite occupying < 12 % of the land sur-
face. Aggregating TWS by MODIS land cover type, tropi-
cal forests exhibit the strongest CGR correlations and con-
tribute most to the global TWS-CGR correlation (39 %), de-
spite semi-arid and cropland/grassland regions both having
more interannual TWS variability. Tropical forests exhibit
the strongest CGR correlations due to their high produc-
tivity and sensitivity to water stress, which strongly influ-
ences interannual variations in carbon uptake. An ensem-
ble mean of eight atmospheric CO; flux inversion products
also indicate a 66 % tropical contribution to CGR variability,
with tropical America/Africa contributing 27 %/28 % respec-
tively. Regarding land cover type, semi-arid/tropical forests
contribute most (37 %/28 %) to CGR variability, although
tropical forests cover a very much smaller surface area
(25 %/10 %). Time series of global and regional TWS and

CO; flux inversions through 2002-2023 also show changing
regional contributions between global CGR events, which are
discussed in relation to regional drought and ENSO events.
Our study advances previous work by providing a more de-
tailed analysis of regional contributions and doing a temporal
breakdown of contributions.

1 Introduction

The atmospheric CO;, growth rate (CGR) exhibits large
amounts of year-to-year variability, which holds high signif-
icance in the context of climate change mitigation and pro-
jection. This variability is predominantly driven by fluctua-
tions in the land carbon uptake, which has a year-to-year vari-
ability of about 1 Gt C yr~!, with smaller contributions from
oceanic uptake and anthropogenic emissions (Friedlingstein,
2023). The land carbon sink results from an imbalance be-
tween the uptake of carbon through photosynthesis (GPP),
the loss of carbon through ecosystem respiration (ER), and
carbon losses through other disturbances (D), such as fire and
land use change. The net carbon flux is termed the net biome
production (NBP), where NBP = GPP — ER — D. This land
carbon sink plays a crucial role in offsetting anthropogenic
CO; emissions, accounting for approximately 30 % of these
emissions each year (Friedlingstein et al., 2020). However,
NBP remains the most uncertain component of the global
carbon budget, with modelling studies indicating significant
uncertainties in both the magnitude and sign of future pro-
jections of the sink (Ahlstrom et al., 2012). Reducing these
uncertainties will require a better understanding of the pro-
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cesses underlying the CO; fluxes and how they might change
in the future, which will be essential for shaping effective
mitigation policies.

It is well documented that the CGR interannual variabil-
ity (IAV) is closely related to El Nifio-Southern Oscilla-
tions (ENSO) (Gurney et al., 2012). There are noticeable in-
creases in CGR during El Nifio events and decreases during
La Nifa events (Keeling and Revelle, 1985). There is also
a widespread consensus that variations in tropical ecosys-
tems exert the most significant influence on global CGR, with
numerous studies concentrating their efforts on the Tropics
(e.g., Wang et al., 2013, 2014; Liu et al., 2023; Luo and
Keenan, 2022). In particular, tropical temperature is found
to have a strong positive correlation with CGR (Wang et al.,
2013). Other physical factors governing the land carbon up-
take remain elusive. Given that tropical temperatures are typ-
ically considered optimal for photosynthesis (Huang et al.,
2019), any elevation in these temperatures are anticipated to
have a dampening effect on GPP while simultaneously ele-
vating ER. This combined impact may amplify the role of
temperature as a significant driver of CGR variability.

While many studies have pointed to the influence of tem-
perature on CGR (e.g., Cox et al., 2013; Wang et al., 2013),
recent research is increasingly highlighting the significance
of water availability as a primary control. The launch of the
Gravity Recovery and Climate Experiment (GRACE) satel-
lites in 2002 has largely helped to support this notion by pro-
viding accurate terrestrial water storage (TWS) data based on
gravitational measurements. Humphrey et al. (2018) used the
GRACE data and demonstrated that there is a strong negative
correlation between CGR variability and observed changes
in global TWS (monthly r = —0.65 and yearly r = —0.85),
revealing that drier years, especially in the tropics, coincide
with higher CGR. The study also highlighted that this wa-
ter storage relationship is clearer than for precipitation, as
previous studies find there is a weaker and lagged response
to precipitation. Most vegetation responds to soil moisture
(Wang et al., 2016), which is a component of TWS, whereas
precipitation anomalies only account for water input and do
not consider losses from evapotranspiration or runoff. Even
when combined, water flux observations inadequately cap-
ture the interannual variations observed by GRACE (Petch
et al., 2023a).

He et al. (2022) demonstrated that interannual variability
in atmospheric VPD was also significantly negatively corre-
lated with net ecosystem productivity and hence to the inter-
annual variability of the CGR, although this analysis relied
upon VPD estimates from FluxCOM and TRENDY. In this
study, we focus on the influence of TWS on CGR due to the
availability of large-scale, observation-based data from the
GRACE satellite mission. In contrast, VPD at global or conti-
nental scales is typically derived from model-based products
or reanalysis data. While TWS is not necessarily a better ex-
planatory variable to temperature or VPD, it offers a comple-
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mentary perspective and allows us to leverage independent
observational datasets.

Separating the individual contributions of various climatic
drivers to CGR fluctuations can be challenging due to their
often intertwined nature. For example, VPD and soil mois-
ture are coupled, where high VPD usually corresponds to
dry soils and low VPD to wet soil. As a result, vegetation
responses to water stress are likely to reflect the combined
influence of both variables, making their individual effects
difficult to disentangle. Temperature and water availability
are also interrelated, further complicating attribution. Never-
theless, Humphrey et al. (2018) showed that the relationship
between CGR and TWS stands independently of tempera-
ture influences, suggesting that TWS captures a distinct and
meaningful component of CGR variability.

Wang et al. (2022) then showed that the relative influence
of temperature and water on net ecosystem exchange (NEE)
IAV shifts across different regions and seasons. They em-
ployed three different approaches: atmospheric inversions,
process-based vegetation models from TRENDY, and a data-
driven model (FLUXCOM). Their findings reveal broad
agreement that the tropics are a key driver of global cor-
relations; however, the dominant driver of global NEE AV
varied due to disagreements regarding the seasonal temper-
ature effects in the Northern Hemisphere. This underscores
the critical importance of understanding the relative magni-
tudes of water and temperature contributions in the North-
ern Hemisphere for determining the dominant drivers of NEE
IAV. Another recent study by Liu et al. (2023) provides evi-
dence that the coupling between interannual CGR and TWS
is becoming increasingly strong. They report an increase of
around 35 % in CGR sensitivity to tropical water variations
from 1989-2018 compared to 1960-1989, however, existing
climate models do not exhibit signs of this rising trend in
tropical water-CGR coupling (Liu et al., 2023). Models are
also found to have a tendency to underestimate the strength
of the coupling (Humphrey et al., 2018). In general, inter-
actions between TWS variations and the carbon cycle are a
key uncertainty in current climate models that could strongly
influence CGR over the coming decades.

Despite the dominant role of terrestrial ecosystems in in-
fluencing CGR variability, the heterogeneity of these ecosys-
tems means pinpointing the specific land regions contribut-
ing to AV can be challenging and there are inconsistencies
among previous studies concerning the land cover types con-
tributing to IAV. Ahlstrom et al. (2015) used process based
models and found that semi-arid ecosystems could explain
39 % of the global NBP variability over 1982-2011, thereby
exerting dominant control over carbon sink interannual fluc-
tuations, while the mean sink was primarily influenced by
tropical forests. Zhang et al. (2016) found that semi-arid re-
gions contributed 57 % of the detrended interannual variabil-
ity in global GPP. These results are supported by Humphrey
et al. (2018), who used GRACE to demonstrate that TWS in
semi-arid regions contribute the most to the global storage
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variability, while also mentioning a possible role of TWS in
tropical forests which is also well correlated with the CGR.

Marcolla et al. (2017) examined the IAV in the terrestrial
carbon budget using three different datastreams: terrestrial
ecosystem level observations from FLUXNET (La Thuile
and 2015 releases; Baldocchi et al., 2001), a bottom-up
global product resulting from upscaling site level fluxes (the
MPI-MTE; le Maire et al., 2010), and a top-down inversion
product (Jena Carbonscope; Rédenbeck et al., 2003). They
found significant discrepancies among these datastreams re-
garding the main sources of temporal variability, particu-
larly in the tropics, where there is a lack of atmospheric
and ecosystem observations. However, all products unani-
mously identified several crucial global features, in particular
the high relative IAV in the terrestrial carbon cycle in water-
limited ecosystems. Similarly, Piao et al. (2020) used three
different approaches, including land carbon cycle models, a
data-driven model (FLUXCOM; Jung et al., 2020), and at-
mospheric inversion models (taking the mean of CAMS and
Jena CarbonScope; Chevallier et al., 2010; Rodenbeck et al.,
2003), to investigate regional contributions to global terres-
trial carbon IAV. They found the share in contributions of
tropical semi-arid regions versus tropical non-semi-arid re-
gions was similar between approaches. However, they found
relatively larger contributions from the extratropics in atmo-
spheric inversions compared to other approaches, possibly
due to limited surface CO; observations over the tropics.
These data are used exclusively in the atmospheric inver-
sions, affecting their ability to discern IAV between the trop-
ics and the extratropics.

Our research first aims to assess the global relationship
between TWS and CGR interannual variability, extending
Humphrey et al. (2018) analysis in time from 2016 up un-
til 2023 and highlighting the global CGR variability we are
seeking to explain. This period notably includes some of
the largest values of CGR on record. We then look to re-
gionalise the contributions based on both land cover type
and large spatial regions, and look at interannual variability
events through the whole period. Additionally, we use eight
atmospheric CO; inversion products to infer regional con-
tributions of CO; fluxes. This approach allows us to make
similar assessments without relying on assumptions of the
relationships between water and CGR. We assess the agree-
ment between the inversion products and GRACE, as well as
the consistency among inversion products. We also look at
major temporal events in the CGR record to examine which
regions are contributing most at different times and assess
the consistency between these approaches. We also use the
inversions to estimate regional-scale sensitivity of NBP to
TWS variability.

Section 2 discusses the data and analysis methods we use
to attribute the regional contributions to global signals. In
Sect. 3, we examine the relationships between GRACE TWS
on global and regional scales, and the CGR signal on interan-
nual timescales from 2002-2023. Section 4 looks at eight at-
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mospheric CO; inversion models from GBC2023 (Friedling-
stein, 2023) and their ability to regionalise the terrestrial
sources of CO> over the same time period. Section 5 dis-
cusses these results in relation to meteorological conditions
through the period, and Sect. 6 provides a summary and con-
clusions.

2 Data and Methods
2.1 GRACE

Terrestrial water storage data are obtained from the Gravity
Recovery and Climate Experiment (GRACE) and its succes-
sor mission, GRACE Follow-On (GRACE-FO). The version
used here is the Jet Propulsion Laboratory (JPL) Mascon
RLO6vV2 (Wiese et al., 2016). This dataset contains gridded
monthly global water storage/height anomalies relative to a
time-mean, derived from GRACE and GRACE-FO and pro-
cessed at JPL using the Mascon approach. The water stor-
age/height anomalies are given in equivalent water thickness
units (cm). This version of the data employs a Coastal Res-
olution Improvement filter that reduces signal leakage errors
across coastlines. Data can be obtained from http://grace.
jpl.nasa.gov/data/get-data/jpl_global_mascons/ (last access:
November 2025). There were a small number of months with
missing data which were filled with monthly climatology
plus the temporal interpolation of monthly storage anoma-
lies.

2.2 GML surface flasks

Measurements of atmospheric CO» concentration are taken
from the Global Monitoring Laboratory (GML) of the Na-
tional Ocean and Atmospheric Administration (NOAA) (Lan
et al., 2023). This dataset compiles measurements from the
Cooperative Global Air Sampling Network, where air sam-
ples are collected approximately weekly from a globally
distributed network of sites. Data can be found at https:
//gml.noaa.gov/ccgg/trends/global.html (last access: Novem-
ber 2025).

2.3 Atmospheric CO; inversions

This study uses eight different atmospheric CO, inversion
products, summarised in Table 1, selected based on their tem-
poral coverage, all of which span at least from 2002 to 2022.
These products are from GCB2023 where the land biosphere
fluxes have been adjusted to a common fossil fuel emis-
sions dataset (Friedlingstein, 2023). Other similar products
were discounted on the grounds they only cover shorter peri-
ods. Top-down inverse models provide spatially and tempo-
rally resolved estimates of the net CO, flux exchanged be-
tween the surface and the atmosphere. They are generated
as source/sink solutions using atmospheric transport models
made to fit surface flask based atmospheric CO; mole frac-
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tion measurements within their uncertainties, at various loca-
tions (Ciais et al., 2022). Typically, these inversion products
employ a Bayesian statistical approach, where an optimal
surface CO; flux is determined as the maximum likelihood
estimate within a statistical distribution of possible fluxes.
The products also use prior surface flux values and their as-
sociated uncertainty distributions. We also examined the in-
terannual variability in the prior fluxes, where available, and
in all cases found very little relationship with the posterior
fluxes, and hence conclude that the prior choices were not
directly influencing our results.

Atmospheric CO, inversion products differ in their use
of transport models, meteorological inputs, and prior flux
assumptions — all of which can significantly influence flux
estimates, particularly when comparing tropical and extrat-
ropical regions (Peylin et al., 2013; Chevallier et al., 2010).
In the tropics, flux estimates are especially sensitive to how
transport models represent deep convection and vertical mix-
ing, while extratropical estimates are more influenced by
synoptic-scale advection and boundary layer dynamics. Prior
flux assumptions, such as prescribed seasonal cycles or veg-
etation responses, can also introduce regional biases — es-
pecially in the tropics where these assumptions often fail
to capture complex climate—ecosystem interactions (Munas-
sar et al., 2022; Gaubert et al., 2019). Moreover, the rel-
ative scarcity of CO, observations in tropical regions am-
plifies the impact of model structure and prior uncertainty,
whereas denser observational networks in the extratropics
provide stronger constraints on inversion results (Patra et al.,
2005; Schuh et al., 2019).

The UoE and CT NOAA products both adopt an ensem-
ble Kalman filter (EnKF) approach, whereas NISMON-CO,
employ a BFGS-based quasi-Newton method. CAMS on the
other hand uses a variational approach and Jena CarboScope
employs a Bayesian inversion framework. For the prior ter-
restrial fluxes UoE and CT NOAA use the CASA biogeo-
chemical model introduced by Potter et al. (1993), NISMON-
CO; use data from the Vegetation Integrative SImulator for
Trace gases (VISIT) (Ito, 2019), whereas the land priors
are climatological in the CAMS product. MIROC uses both
CASA and VISIT Chandra et al. (2021), and Jena Carbo-
scope uses the LPJ biosphere model (Sitch et al., 2000).
The 8 products share harmonized fossil fuel and fire emis-
sions, all using the same version of the Global Fire Emissions
Database (GFED) (van der Werf et al., 2017).

24 MODIS

Land cover types are classified using the Terra and Aqua
combined Moderate Resolution Imaging Spectro-radiometer
(MODIS) Land Cover Climate Modelling Grid product
MCD12Q1 Version 6.1, available from https://Ipdaac.usgs.
gov (last access: November 2025). We use the International
Geosphere-Biosphere Programme (IGBP) legacy classifica-
tion schemes, and group into six surface classes, shown in
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the Supplement (Fig. S1). These will be used to determine
aggregated flux information.

2.5 Data processing and analysis framework

The CGR is derived by taking the differential of monthly at-
mospheric CO, concentration data. We calculate the inter-
annual variability by first removing the mean seasonal cy-
cle from the monthly data, then removing the linear trend.
We assume that by removing the linear trend this removes
the main fossil fuel driving signal. However, this could also
remove any trend in biogenic and ocean fluxes. The CGR
time series and CO; inversion products are then smoothed
with a 12 month moving mean, while the GRACE TWS
data is smoothed using a 6 month moving mean, following
(Humphrey et al., 2018). Different smoothing windows are
used because the CGR data is inherently noisier than the
TWS data, therefore requiring slightly stronger smoothing
to reveal meaningful interannual variability. To convert the
global CGR from ppm to Gt C we use the conversion factor
1 ppm by volume of atmosphere CO, =2.13 GtC. We gen-
erate an ensemble mean of inversion products spanning from
January 2002 to December 2022, with each product equally
weighted.

To assess the importance of different regions to a global
total, we use the “contribution index” (f;), as defined by
Ahlstrom et al. (2015) also adopted by Zhang et al. (2019)
and Humphrey et al. (2018). This index quantifies the spatial
contributions to the global monthly time series #, scoring re-
gions based on how consistent their regional flux IAV is with
the sign and magnitude of the global IAV. It is given by:

Z ij\Xt|
_ t X
21Xl

where x, represents the detrended regional data j at time
t, and X; = ) x;j; denotes the detrended global value. Re-
gions with higher positive values of f; contribute more to the
global variations. This is used on both the regional GRACE
TWS variations, and on regional CO; fluxes from the atmo-
spheric inversion products. Regions may represent continen-
tal areas or areas with particular land cover classes depicted
in Fig. S1.

To connect the TWS and CGR time series we use the Pear-
son correlation coefficient (r). Additionally, we look to iden-
tify the regional origin of the global TWS (GTWS) correla-
tion with CGR. Let GTWS represent the global TWS signal
and TWS; represent the storage signal at grid point i. The
relationship between the global correlation rgrws,cor, and
grid point correlations rtws; cGR, can be expressed as;

fi 6]

FGTWS,CGR X OGTWS X A = Z”TWS,-,CGR x otws; X a;, (2)
;

where a; is the area of grid box i, A is the total land surface
area such that A = Ziai , and ogTws and orws, are the tem-
poral standard deviations of the global and grid point storage
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Table 1. Summary of atmospheric CO, flux inversion products.
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Product Transport model ~ Meteorol. fields Fossils Reference
CAMS LMDZ ERAS-Interim GCP-GridFED Chevallier (2023),
Chevallier et al. (2005)
UoE GEOS-Chem MERRA2 Oda and Feng et al. (2009, 2016)
Maksyutov (2011)
NISMON-CO, 1 NICAM-TM JCDAS, JRA-55  GCP-GridFED Niwa et al. (2022, 2017)
NOAA TM5 ERAS5-Interim Millier, ODIAC Jacobson et al. (2023)
CarbonTracker
CarbonTracker TMS ERA-Interim EDGAR4.2 van der Laan-Luijkx et
Europe (CTE) al. (2017)
Jena CarboScope  TM3 NCEP reanalysis EDGAR Rodenbeck et al.
(2003, 2018)
IAPCAS GEOS-Chem GEOS-5 Oda and Feng et al. (2016), Yang
Maksyutov (2011) et al. (2021)
MIROC4-ACTM  MIROC4-ACTM  JRA-55 GridFED Chandra et al. (2021)

signals, respectively. This equation holds due to the additivie
properties of covariance. Hence, the contribution of a partic-
ular region (R) to the global GTWS-CGR correlation, which
we will denote as g, can be expressed as a percentage as fol-
lows;

Y icr@i X OTWS; X I'TWS; CGR y

100. 3)
A X 0GTWS X 'GTWS,CGR

g(R) =

This helps identify regions which may have a smaller
contribution to the GTWS variability but which are more
strongly correlated to CGR variations. This is similar to the
metric used by Wang et al. (2022) in their Eq. (4).

3 CO; Growth Rate (CGR) and Terrestrial Water
Storage (TWS)

Extending the results from Fig. 1a of Humphrey et al. (2018),
our Fig. 1 shows the de-trended time series of global terres-
trial water storage from GRACE (note the reversed axis di-
rection for TWS), and the CGR derived from surface flasks,
for the period January 2002 to December 2023. It is impor-
tant to note that, although atmospheric CO;, concentrations
continue to increase each year, the CGR has been detrended;
therefore, negative CGR anomalies reflect periods of below-
average growth relative to the long-term mean growth rate.
A negative correlation of r = —0.70 (p < 0.01) is found, im-
plying that reduced terrestrial water availability corresponds
to lower net land uptake of carbon, consequently leading
to a higher atmospheric CGR. A correlation of r = —0.69
is observed for the period from 2002 to 2016 as analysed
by Humphrey et al. (2018), and r =—0.74 from 2016 to
2023. The strongest CGR peak in 2016 is clearly associated
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Global CGR and GRACE TWS 2002-2023
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Figure 1. Comparison of the interannual variability of global ter-
restrial water storage (GTWS) from GRACE (right inverted axes)
and atmospheric CO, growth rate (CGR) (left axes) from 2002 to
2023. Time series have been de-seasoned and de-trended. The grey
dashed line marks the end of the Humphrey et al. (2018) analysis.

with the strong El Nifio that occurred, with associated dry-
ing across many land areas (Santoso et al., 2017; Wigneron
et al., 2020). We will investigate regional relationships later
in the paper, but this figure clearly underscores the persis-
tence of the TWS-CGR relationship beyond 2016 shown by
Humphrey et al. (2018).

To highlight smaller scale features of this relationship,
Fig. 2a shows the monthly correlation between GRACE
TWS TAV at each grid point and the global CGR time se-
ries. The map has been filtered to only show correlations
significant at the level of p <0.01, which corresponds to a
minimum correlation coefficient of r ==+0.16. We also cal-
culated the map using the Spearman’s correlation coefficient
(results not shown) and the spatial patterns were the same as
in Fig. 2a. The most prominent negative correlations appear

Biogeosciences, 22, 7031-7051, 2025
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(b) TWS signal contribution
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Figure 2. (a) Correlation map of GRACE TWS and CGR for the period 2002-2023. Only areas with p <0.01 are shown. (b) Contribution
of each 1° x 1° grid point to total global TWS signal, expressed as a percentage.

over the eastern Amazon and extend across eastern parts of
tropical South America. Other areas of negative correlation
in the tropics extend through India, Southeast Asia and north-
ern Australia. There is also a substantial region in northeast-
ern Siberia showing strong negative correlation. However,
not all areas with high local correlations contribute mean-
ingfully to the total GTWS—CGR relationship. This is often
due to either a small magnitude of TWS variability or a lim-
ited spatial extent, which reduces their overall influence on
the global signal. To address this, we evaluate the contri-
bution of each 1°x1° grid cell to the global GTWS signal
using Eq. (1), as shown in Fig. 2b. This contribution met-
ric effectively downweights regions with minimal influence
due to low TWS variance allowing a clearer assessment of
the regions that dominate GTWS IAV. In this representation,
tropical areas stand out much more strongly, as the metric in-
corporates the magnitude of TWS variability in addition to
correlation strength.

From Fig. 2, it can be seen that in certain regions,
TWS variability exhibits positive correlations with the global
CGR, such as in South Brazil and East China. There could
be possible biophysical explanations for this result, for in-
stance, it was suggested that the Brazilian Southeast is a tran-
sition region characterized by rainfall anomalies with oppo-
site signals related to ENSO (Coelho et al., 2002). It is also
possible that these regions simply do not contribute substan-
tially to the global CGR, and the observed positive correla-
tions may reflect local or regional processes that are largely
cancelled out at the global scale. Determining the underlying
causes of these correlations would require reliable estimates
of regional-scale carbon fluxes, but as will be discussed in
Sect. 4, atmospheric CO; inversion products currently do not
do a good job at capturing fine scale interannual variability,
limiting their utility for such attribution.

Figure 3 shows correlations between regional TWS and
the global CGR in blue on the left axis, and the right axis
shows the regional contribution to the GTWS signal (f),
based on Eq. (1) in red, and the regional contributions to
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the GTWS-CGR correlation (g) following Eq. (3) in or-
ange. To aid interpretation, the regional domains cover the
following proportions of global land area: Northern Hemi-
sphere extratropics (54 %), Southern Hemisphere extratrop-
ics (8 %), tropical America (12 %), tropical Africa (18 %),
and tropical Eurasia and Australia (8 %). Percentage cover-
age by vegetation type is as follows: croplands and grass-
lands (32 %), semi-arid (25 %), tundra and arctic shrubland
(15 %), sparsely vegetated (12 %), tropical forest (10 %), and
extratropical forest (5 %). The continental values in Fig. 3a
show that the tropics alone can explain all of the GTWS-
CGR correlation, with the Northern Hemisphere (NH) and
Southern Hemisphere (SH) extratropics providing small can-
celling contributions.

The tropics play a disproportionately large role in driving
the covariance between CGR and regional TWS. This is due
to a combination of factors: (i) the tropics exhibit some of the
largest magnitudes of TWS IAV. (ii) Climate anomalies such
as ENSO events often synchronise drought and temperature
anomalies across vast tropical regions, creating spatially co-
herent signals that are amplified at the global scale. In con-
trast, temperate regions typically experience more localized
and less synchronised climate variability, resulting in smaller
contributions to global CGR variance.

Notably, tropical America makes the largest contribution
to the GTWS-CGR correlation (g = 69 %), despite only rep-
resenting around 12 % of the land surface area. Table 2 shows
the aggregated correlations and contributions for some ad-
ditional regions. However, it is important to note when ag-
gregating grid boxes into regional or global averages, com-
pensatory effects can arise, where TWS anomalies in differ-
ent regions covary negatively (e.g., due to ENSO patterns),
potentially cancelling each other out. This can obscure the
true influence of individual regions on the global signal, as
spatial covariances are not fully accounted for, leading to an
oversimplification of their relative contributions. For exam-
ple, Jung et al. (2017) demonstrates that the effects of soil
moisture on NEE operate at relatively small spatial scales (in
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Figure 3. (a) Correlation between TWS signal for different regions
and global CGR is represented by the blue bar on left axis. Contri-
bution of continental/hemispheric regions to global TWS-CGR cor-
relation is shown in orange, and contribution to global TWS signal
is shown in red against the right axis. (b) This shows the contri-
butions from each land cover type, using the same colour key. The
dashed line represents the global TWS-CGR correlation.

Table 2. Regional correlations between GRACE TWS and global
Atmospheric CGR variability (first column), regional contributions
to the global TWS signal (second column), and contributions to the
global TWS-CGR correlation (third column) from 2002 to 2023.
Percentage of total land surface area (fourth column).

Region Correlation  Contrib. to Contrib. to  Land

GTWS GTWS-CGR  Area

Signal Correlation %
Global —0.70 1.0 1.0 100
Tropics —0.61 0.74 0.98 37
Extratropics 0.02 0.26 0.02 63
Amazon —-0.51 0.13 0.28 4
All Africa -0.21 0.23 0.15 23
All India —0.33 0.09 0.10 2
All Australia —0.11 —0.01 0.05 5

comparison to temperature), however, this does not prevent
the strong impact of TWS on the CGR at the global scale, as
seen by Humphrey et al. (2018) and in our results.
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Figure 3b captures TWS wvariability by land cover
type across the whole time period. The correlation be-
tween TWS and CGR variations is strongest in tropical
forests (r = —0.55, p < 0.01), followed by semi-arid regions
(r=-0.46, p <0.01), but correlation alone does not con-
sider the actual magnitude of TWS variations. The con-
tribution index to GTWS signal (Eq. 1) and the contribu-
tion to the GTWS-CGR correlation (Eq. 3), also shown in
Fig. 3b, provide greater insight into the role of each land
cover type. Croplands and grasslands, as the dominant land
cover type covering 32 % of the Earth’s land surface area,
largely contribute to GTWS signal (f =22 %). However,
they have a relatively low correlation with CGR and over-
all do not contribute much to the GTWS-CGR correlation
(g =15 %). Tropical forests on the other hand, emerge as
the primary land cover type influencing the GTWS-CGR
correlation (g =37 %), despite only covering 10 % of the
land surface. Semi-arid regions also play an important part,
contributing a substantial fraction to both the GTWS sig-
nal (f =25 %) and the GTWS-CGR correlation (g =26 %).
However, semi-arid regions cover approximately 25 % of the
land surface area, a much larger portion than tropical forests,
highlighting the much stronger role of tropical forests in gov-
erning the GTWS-CGR relationship per unit area.

Figure 4 presents a time series of the regional TWS vari-
ations through the whole period 2002-2023. Figure 4a re-
gionalises across the five spatial regions shown in Fig. 3a.
Each region is accounted for such that the sum of positive
and negative contributions equals the GTWS, in black, while
the CGR variations are also shown against a separate axis.
While the NH extratropics show large TWS variations this
often tends to be anti-correlated with TWS elsewhere, and
there is little correlation with the CGR. By contrast there
is a particularly consistent alignment between the timing of
many CGR events and the variations in TWS across tropical
America. After 2020 the CGR and TWS signals both become
more variable without the clear peaks or troughs seen ear-
lier, although there is still reasonable alignment of the GTWS
and CGR signals up to the end of 2022. Overall, this figure
demonstrates that tropical regions generally contribute sig-
nificantly to the GTWS signal and are consistently coherent
with CGR variations. Whereas, even substantial variations in
the NH extratropics, where there is a lot of anti-correlation
with the GTWS, are thus unlikely to be significantly impact-
ing the CGR. This pattern is also true for the SH extratropics,
although the magnitude of variations is smaller here than in
the NH.

Now we consider regionalising the IAV in GRACE TWS
and its correlations with the CGR, according to land cover
types, using the MODIS land cover map (Fig. S1). Figure 4b
shows the contribution to the GTWS IAV for each land cover
type plotted against the right (inverted) axis, with the CGR
on the left axis. The largest CGR peak due to the 2015/2016
El Nifio event very closely corresponds to the water storage
variations seen in tropical forests, where there is a substantial

Biogeosciences, 22, 7031-7051, 2025
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Figure 4. GRACE terrestrial water storage (TWS) interannual variability and global CO, growth rate (CGR) 2002-2023. (a) Aggregated by

continental regions, (b) by land cover type.

TWS minimum over this period. The CGR returned to refer-
ence levels in 2017, and global TWS recovered shortly after-
wards. Note that we might also associate the increase in CGR
around 2005 with the tropical forests, although this event is
not noticeable in the global storage signal. This increase co-
incides with the 2005 drought in the Amazon driven, not by
El Nifio, but by elevated tropical North Atlantic sea surface
temperatures, affecting the southern two-thirds of Amazonia
(Phillips et al., 2009). Then in 2009, a notable drop in CGR
aligns with a peak in tropical forest TWS, an occurrence as-
sociated with the exceptional flood season observed in the
lower Amazon basin during the first half of 2009, suppos-
edly linked to the 2008-2009 La Nifia event (Chen et al.,
2010). This is followed by a sharp peak in CGR which co-
incides with another drought of 2010 in Amazonia, more se-
vere than in 2005. This event started during El Nifio and was
then intensified as a consequence of the warming of the trop-
ical North Atlantic (Marengo et al., 2011).

A decrease in CGR can also be observed in 2011, indica-
tive of a strong land carbon sink. This sink anomaly has been
corroborated by independent observations from MODIS EVI

Biogeosciences, 22, 7031-7051, 2025

and GOME-2 SIF showing much enhanced photosynthetic
activity over this period (Ma et al., 2016), as well as by
GOSAT XCO;, (Detmers et al., 2015). This feature relates
to an increase in TWS in semi-arid regions, primarily re-
sulting from a wet period in Australia during 2010-2011.
Large parts of semi-arid Australia are covered by endorheic
basins, where TWS variations are highly sensitive to precip-
itation (Petch et al., 2023b). Our results align with Poulter
et al. (2014), who found that nearly 60 % of carbon uptake
over this period could be attributed to semi-arid Australian
ecosystems, which experienced several consecutive seasons
of increased precipitation due to prevalent La Nifia condi-
tions. However, other features in the CGR variability are less
clearly associated with TWS variations partitioned in this
way. In 2020, the CGR exhibited an opposite response com-
pared to what we normally observe in relation to the tropi-
cal forest TWS anomaly. The global TWS anomaly remained
positive, possibly due to conditions in other regions (notably
wet in NH extratropics and Tropical Africa from Fig. 4a).
This could also be an indication of a lack of TWS influence

https://doi.org/10.5194/bg-22-7031-2025
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on the CGR and may be caused by external factors, such as
reduced human emissions due to the COVID-19 pandemic.
A clear difference between the Fig. 4a, b TWS signals
is that the vegetation cover contributions tend to be more
aligned with the global TWS signal without the strong can-
cellations seen in continental TWS. This is largely explained
by croplands and grasslands which often have large com-
pensating TWS anomalies distributed between the NH ex-
tratropics and the tropical zones on all continents. This can
be demonstrated by the disappearance of the pronounced
anomalies depicted in Fig. 4a when croplands and grasslands
are excluded from the analysis (see Figs. S2 and S3). This
is an example of compensatory effects of water anomalies
discussed in Jung et al. (2017), which could lead us to under-
estimate the overall CGR role of croplands and grasslands.

4 Regional flux contributions to CGR estimated by
atmospheric inverse methods

The previous section looked at regionalising TWS with re-
spect to CGR correlations. In contrast this section will try
to regionalise CGR contributions by using atmospheric CO,
inversion model products. This approach offers the advan-
tage of identifying the regions that directly contribute most to
CGR variability without depending on the coupling between
TWS and CGR. Additionally, these products potentially al-
low us to gain direct insight into the relative magnitude of the
CO; flux contributions from each region, which were previ-
ously only inferred from regional TWS variations. The relia-
bility of this approach will however be limited by the quality
of inversion products. Therefore, we employ multiple prod-
ucts to assess their agreement with each other, as well as with
the previous GRACE results, to provide further insights.

Figure 5 compares the global land surface CO; flux cre-
ated from the ensemble of eight different inversion products,
and the CGR interannual variability derived from surface
flasks. The shaded region represents the maximum and min-
imum across the products around the mean. The products,
when integrated over global land, show good agreement with
each other and with the surface flask based CGR in terms
of correlation, although there are substantial variations in the
amplitude of the resulting terrestrial IAV. These results un-
derscore that the majority of the IAV originates from the land,
with minimal contributions coming from variations in ocean
uptake and fossil fuel emissions. However, there is reduced
agreement between the CGR and the inversion products be-
tween 2020 and 2021, e.g. CGR observations and inversion
anomalies may be of opposite sign. The low CGR may result
from anthropogenic emissions being 8.8 % lower in the first
half of 2020 compared to the same period in the previous
year, as a result of the COVID-19 pandemic impacting hu-
man activities (Liu et al., 2020). In this case pure detrending
is unlikely to remove the anthropogenic signal in the CGR,
which could explain this result.
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Total Land IAV from Ensemble of Inversion Products and Global CGR
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Figure 5. Interannual variability of observed atmospheric CO»
growth rate (CGR) derived from GML NOAA surface flasks (red
dashed), and global terrestrial carbon flux interannual variability
from an ensemble of eight atmospheric CO» inversion products over
2002-2022. Ensemble mean, black, with product range in grey.

In order to compare the inversion products at finer spatial
scales, Fig. 6 shows the contribution of each land grid point
to the global land surface flux TAV, from Eq. (1), for each
inversion product over the period January 2002 to December
2022. While there are some similarities on larger scales (see
below), the maps also highlight many differences between
the products. Such discrepancies will limit the value of these
products for fine scale analysis.

The aggregated regional CO, percentage contributions for
each inversion product from Fig. 6, are shown in Fig. 7. The
ensemble means show agreement with GRACE in attributing
most of the terrestrial carbon variability to the tropical re-
gions (f =66 %), based on Eq. (1). NISMON-CO; strongly
favours tropical America, while CAMS and UoE show tropi-
cal Africa as the dominant contributor. IAPCAS is a very low
outlier in tropical America, and IAPCAS and CTE largely
favour the NH extratropical contributions. This emphasises
the very strong regional disagreements between even conti-
nent scale aggregated products. Contributions from the NH
extratropics vary especially widely; IAPCAS and CTE at-
tribute around 40 % of CGR variability whereas CAMS and
NISMON attribute only around 10%. This may reflect a
known challenge in attributing extratropical carbon variabil-
ity with inversions using only in situ CO; data which may
undersample variability. Guerlet et al. (2013) suggest that
satellite observations show more substantial flux variability
in the NH extratropics than is captured by surface-only at-
mospheric inversions.

There is a little more consensus among the products re-
garding contributions from land cover types, Fig. 7b, with
all products attributing nearly all CGR variability to three
vegetation types: semi-arid areas, tropical forests, and grass-
lands/croplands, although tropical forests represent by far
the smallest land area at only 10%. The ensemble means
highlight semi-arid regions ( f =38 %) where there is also
the greatest agreement between products. Croplands and
Grasslands (f =27 %) also show product consistency apart

Biogeosciences, 22, 7031-7051, 2025
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Figure 6. Maps of 1° x 1° grid point contributions to global (excluding Greenland and Antarctica) land carbon flux IAV for each of the eight

atmospheric CO; inversion products.

from NISMON which is a very low outlier. Tropical forests
(f =28 %) however show alot of disagreement between in-
dividual products, possibly because of the smaller area repre-
sented, but they still represent the largest contribution regions
to CGR by unit area, as also seen from the contributors to the
GTWS-CGR correlation in Fig. 3b.

We also checked that posterior AV estimates for large re-
gions is not already present in the a-priori biosphere IAV flux

Biogeosciences, 22, 7031-7051, 2025

estimates, in the products for which priors were available.
In many cases the priors include only seasonal cycles and
lack substantial interannual variation, indicating that the [AV
in the posterior fluxes is not inherited from the prior. This
means that observational constraints and transport model dy-
namics do play the key role in shaping the posterior variabil-

ity.
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Figure 7. Regional contributions to terrestrial CO, flux IAV for eight different atmospheric CO, inversion products and ensemble mean over
2002-2022. Panel (a) shows continental regions while panel (b) shows vegetation cover type regions.

Figure 8 presents time series illustrating how different re-
gions contribute to the total land CO; flux variability, based
on the ensemble mean of the inversion products, with the
CGR line shown in red. This allows us to see how differ-
ent regions may serve as dominant drivers of CGR variabil-
ity at different times throughout the 20-year period, similar
to Fig. 4. The colour bar inserts on Fig. 8§ represent the stan-
dard deviations of the eight inversion products around the
ensemble mean for the whole 20-year period, sharing the
same scale as the main axis used in the figure. The standard
deviations for continental regions average 0.32GtCyr—!,
whereas for land cover types the average is significantly
lower, 0.21 Gt C yr~!. We also examine how the contribution
from each land cover type varies during different temporal
CGR events, in Fig. 8b.

During the period of elevated CGR levels around 2002 (re-
duced uptake by the land), similar contributions are observed
from semi-arid regions and croplands and grasslands, with
some input from tropical forests. This peak is thought to pos-
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sibly be associated with Northern Hemisphere fires (Jones
and Cox, 2005). The decrease in CGR observed in 2004 can
primarily be attributed to cropland and grasslands accord-
ing to the inversion products, although the timing of this
event does not exhibit a strong correlation with the GRACE
TWS variations in Fig. 4b, suggesting that water availability
may not be a key driver. In 2005 tropical forests and semi-
arid regions emerge as the dominant contributors to the posi-
tive CGR anomaly, which agrees well with the GRACE data
showing droughts across these regions, despite there being
a positive global TWS anomaly during this period. The in-
version products also align with GRACE in attributing the
2008-2009 decrease in CGR mostly to tropical forests and
the 2011 decrease mostly to semi-arid regions. During the
substantial increase in CGR coinciding with the 2015/16 El
Nifio the inversion products show comparable contributions
from semi-arid regions, croplands and grasslands and trop-
ical forest, whereas the GRACE data most strongly high-
light the role of tropical forests, illustrated in Fig. 4b. Over-

Biogeosciences, 22, 7031-7051, 2025
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Figure 8. Contribution to terrestrial IAV from atmospheric CO; inversion products 2002-2022. (a) Aggregated by continental regions, (b)

by land cover type.

all the inversion products show minimal CGR IAV contri-
butions from sparsely vegetated regions, and little from tun-
dra and Arctic shrublands and extratropical forests, also in
agreement with the GRACE GTWS-CGR correlation contri-
butions, Fig. 3b.

From Fig. 8a it is notable that the NH extratropics exhibits
considerably less CO; flux variability compared to the TWS
implied variability Fig. 4, however it is much more aligned
with the global CGR variations, as also suggested in Fig. 7.
The inverse models will lack the spatial resolution from the
data to detect smaller scale fluxes and seem to mostly indi-
cate CGR-correlated fluxes from all regions. The global land
TAV is perhaps more uniformly distributed across spatial re-
gions compared to land cover types however, suggesting that
factors related to land cover type may play a more signifi-
cant role in determining the terrestrial carbon flux variabil-
ity than spatial regions per se. Examining specific time peri-
ods reveals interesting regional patterns. For instance, during
2002-2003, the inversion products indicate a period of low
uptake from the land, leading to high CGR, primarily driven
by variations in the tropics, particularly tropical Africa, de-
spite GRACE observations showing positive tropical TWS
variations at this time, Fig. 4. Atmospheric data for the in-
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verse models in these regions were sparse until around 2010,
which could be a possible cause of this discrepancy.

The drop in CGR during 2004 appears to coincide with
increased land uptake in tropical Eurasia and Australia, and
tropical Africa, again with limited evidence of TWS influ-
ence in these regions. The large CGR drops in 2009 and 2014
appear to be predominately driven by the NH extratropics,
despite GRACE only indicating possible contributions from
tropical America with minimal input from the NH. In 2022,
tropical America stands out as a significant influence for the
decline in CGR in the inversion products, which is also ac-
companied by a clear increase in TWS in the same region.

We calculate local sensitivities of the terrestrial CO; flux
to GRACE TWS interannual variations using the inversion
products. This provides insight into how changes in TWS
translate into carbon flux variations and can help us relate
Fig. 4 to Fig. 8. Sensitivities allow us to assess how water-
limited or energy-limited conditions might modulate the in-
fluence of TWS anomalies on NBP. For instance, a small
TWS anomaly in a water-limited region may have a dispro-
portionately large impact on CGR, while large TWS changes
in energy-limited regions may have a smaller effect. Fig-
ure 9 shows the sensitivities calculated using the ensemble
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Figure 9. Regional CO, flux sensitivity to TWS variations (units: kg Cyr™
(a) Sensitivity by spatial regions, and (b) sensitivity by land cover type.

mean of the inversions for (a) spatial regions and (b) land
cover type. The sensitivity is calculated using linear regres-
sion. These sensitivities do resemble the contributions seen
in Fig. 3. Figure 9a shows higher sensitivities in the tropics
and smaller (insignificant) opposite sensitivities in the NH
extratropics and SH extratropics. Figure 9b indicates strong
CO; sensitivity to TWS variations in semi-arid regions, as
well as high sensitivity in tropical forests, and croplands and
grasslands. The high sensitivity in tropical forests indicates
that TWS variations in these regions directly influence NBP,
rather than merely being correlated with CGR through ex-
ternal factors like ENSO. This reinforces our conclusion that
tropical forests play a crucial role in regulating the CGR.

Overall, the total sensitivity is greater when aggregating
by land cover type than by spatial regions. This suggests that
aggregation by land cover better captures the variation in
ecosystem responses to water availability, as different land
cover types have distinct physiological and ecological re-
sponses to TWS anomalies. Aggregation by spatial regions
can then obscure these differences, as regions often contain
a mix of land cover types with varying sensitivities to water
availability. For example, areas of high sensitivity to water
availability in parts of tropical America (e.g tropical forests)
can be masked when grouped into larger spatial regions that
include ecosystems that are more sensitive to energy and less
sensitive to water.

The strong correlation and sensitivity in tropical forests
could be attributed to several possible factors. Tropical rain-
forest trees tend to have relatively shallow rooting systems
and are hence more likely to be affected by changes in TWS
when prolonged or severe droughts deplete soil moisture
(Kleidon, 2004). While some trees can develop deep roots
that provide drought resilience, the majority of water uptake
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in tropical forests occurs from shallower soil layers, mak-
ing them especially sensitive to reductions in available water.
Additionally, tropical forests generally have high water-use-
efficiency (WUE), which allows them to maximize carbon
uptake under favourable conditions but also makes them vul-
nerable to rapid declines in productivity when water becomes
limiting (Keenan et al., 2013; Saleska et al., 2016). Another
reason for this sensitivity could be due to the ongoing drying
of parts of the Amazon — especially the southeastern region
— which has pushed these forests into a state of heightened
vulnerability to drought (Barkhordarian et al., 2019), further
amplifying their sensitivity to interannual variability in water
storage and the observed coupling between terrestrial CO;
and water storage variability.

5 Discussion

The significant negative correlation observed between
GTWS and CGR suggests a compelling link between water
availability and terrestrial carbon uptake, where drier years
coincide with elevated CGR levels, implying a weakening of
the land carbon sink. This observation supports the notion
that water availability plays a pivotal role as a limiting fac-
tor influencing land carbon uptake on interannual timescales.
From Fig. 4, it is also clear that even when the GTWS sig-
nal does not align with the CGR, regional TWS component
signals sometimes closely follow the CGR, suggesting that
water may be a key factor influencing CO; variations. The
evidence for water scarcity restricting land uptake is clear
during times of extreme drought. For instance, the Amazon
which typically acts as an important carbon sink, experienced
major droughts in the years 2005 and 2010 marked by no-
table peaks in the CGR. Additionally, the inversion prod-
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ucts provide regional evidence supporting the impact of wa-
ter availability during these events. However, it is important
to note that other factors, including light availability and tem-
perature, may also impact the interannual variability in land
carbon uptake. This becomes apparent when regional varia-
tions in water availability do not consistently align with re-
gional carbon variations from inversion products, suggesting
weaker water-carbon coupling.

During the 2016 El Nifio event, the high CGR was largely
associated with reduced land uptake in tropical Africa, de-
spite this region showing less dominant TWS variations. In
this case, enhanced fire activity, reduced cloud cover (and
thus increased radiation), and shifts in vegetation phenology
have all been suggested as contributing factors to reduced
carbon uptake (Liu et al., 2017; Zhu et al., 2018).

Our sensitivity analysis with the inverse model products
indicated that the CO, flux was not highly sensitive to wa-
ter variations in this region, suggesting that the variations
in carbon uptake in tropical Africa were more likely driven
by other factors beyond water availability during this event.
Overall, our results demonstrate that water availability exerts
a notable influence on interannual land carbon uptake. How-
ever, this impact exhibits spatial variability and is subject to
influence from other environmental drivers which are not in-
dependent from water availability, adding complexity to the
carbon-water relationship.

Given that tropical Africa shows a strong control on the
CGR but low correlation with TWS, the value in understand-
ing the relationship between CGR and TWS will primarily
be in diagnosing the regional carbon cycle for areas such as
the Amazon, for which numerous studies have shown evi-
dence of it being vulnerable to water-related tipping points
(Cox et al., 2000, e.g). The Amazon generates about half
of its own rainfall (Salati et al., 1979) and so drought con-
ditions have the potential to be amplified, thus creating a
stronger carbon signal than would be observed otherwise.
However, even in regions where the TWS-CGR relationship
is not strong, knowing this helps deepen our understanding of
which processes control the carbon cycle in that region and
where modelling efforts can then be focused. An application
of this technique will be to observe changes to the strength
of the water control of the terrestrial carbon cycle with time,
to understand how the processes are changing with shifts in
climate.

We explored both land cover types and spatial regions be-
cause each offers a unique perspective. Examining different
spatial regions allowed us to uncover regional patterns and
variations, while considering land cover type can help high-
light the role of vegetation in shaping carbon-water dynam-
ics. We found that tropical forests contribute the most to the
GTWS-CGR correlation while covering only a small frac-
tion of the Earth’s land surface relative to other land cover
types. Among tropical forests, the Amazon basin stands out
from Fig. 2, contributing a disproportionately large amount
to the GTWS-CGR correlation (g =28 %) relative to its spa-
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tial coverage (<5 %). However, these are not the regions
dominating the GTWS signal, nor are they the only regions
controlling the land carbon uptake IAV. We found that semi-
arid regions and croplands and grasslands contribute more to
the GTWS signal, which is mainly due to their larger spa-
tial coverage. This is consistent with Humphrey et al. (2018)
who also looked at the TRENDY model results (Sitch et al.,
2015), and FluxCOM datasets (Tramontana et al., 2016),
as well as GRACE, to assess contributions. Ahlstrom et al.
(2015) also found that semi-arid regions dominate the land
carbon sink variability by calculating the contribution index
using a biogeochemical dynamic global vegetation model
(DGVM) LPJ-GUESS. They also compared results with an
ensemble of TRENDY models and found similar partition-
ing.

The contribution to the GTWS-CGR correlation metric
(Eq. 3) provides further insights that examining the TWS
variability alone (Eq. 1) does not. For instance, the strong
TWS variability signals seen in the NH extratropics or crop-
lands and grasslands, only have small contributions to the
global TWS correlation with CGR. The temporal filtering
used in our TWS-CGR analysis may still be underestimat-
ing the true impact of water availability on CO, fluxes in
the extratropics, which will be strongly seasonally sensitive
(Keppel-Aleks et al., 2014).

Similarly, focusing solely on the regional TWS-CGR cor-
relations does not provide information about the magnitude
of the contributions to the global correlation. Therefore, in-
tegrating these three metrics provides a comprehensive anal-
ysis, which taken together more strongly indicate the role of
tropical forests. This complements the work of Humphrey
et al. (2018) who indicated a possible role for tropical forests
due to the high correlation with CGR. However all three met-
rics only consider time-integrated information.

The regional time series displays (Fig. 4 for TWS, and
Fig. 8 for regional CO; fluxes) allow a more detailed analy-
sis of particular events. Our results underscore the influence
of tropical America along with tropical forests through the
20+ year period considered (Fig. 3), however, it is also evi-
dent from both GRACE and the inversion products, that the
dominant region influencing CGR IAV varies across differ-
ent temporal events (Figs. 4, 8). This is consistent with previ-
ous studies that have focused on individual events (e.g., Chen
et al., 2010; Ma et al., 2016).

Our results show agreement with previous studies that
have employed Earth System models (ESM) to assess CGR
IAV. For instance, the dominant role of tropical America is
also recognised by Martin-Gémez et al. (2023), who anal-
ysed various ESM simulations from CMIP6 over 1986-2013.
They find that tropical regions, particularly tropical South
America, tropical southern Africa, Southeast Asia, and parts
of Oceania, contribute the most to interannual variations in
CGR, with average land variance explained percentages of
22 %, 10%, 5%, and 4 % respectively. Additionally, Kim
et al. (2016) analysed how interannual CGR is associated
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with ENSO using ESM simulations from CMIP5. During El
Nifio, strong NBP anomalies appear over most tropical land
regions, particularly over Amazonia, Australia, and South
Asia, and the Maritime Continent, where tropical rain forests
exist. This is consistent with the regions we found to show
high TWS-CGR correlations in Fig. 2.

The process of aggregating local data into regional or
global scales introduces challenges due to the complex
spatial scale interactions. For example, Jung et al. (2017)
demonstrated that local-to-global aggregation can result in
different conclusions regarding the dominant driver of NEE.
This was attributed to compensatory effects, where soil-
moisture-controlled NEE anomalies showed strong spatial
anti-correlation, leading to spatial compensation of positive
and negative values. This meant that when aggregated glob-
ally, temperature emerged at the dominant driver of NEE be-
cause its variability is on larger spatial scales, so the effects
do not average out. Therefore, when interpreting results such
as Fig. 3, it is important to consider the potential role of spa-
tial covariance.

We note also that the reported correlations between TWS
and CGR have not been adjusted for co-varying climate fac-
tors such as temperature or VPD. As a result, these relation-
ships may partly reflect indirect effects mediated by such
variables. Covariance among climatic drivers — particularly
between temperature, VPD, and water availability — intro-
duces a degree of multicollinearity that complicates attri-
bution of individual effects. For example, Humphrey et al.
(2021) highlighted the difficulty of disentangling the respec-
tive roles of VPD and temperature on NBP variability due
to their interrelated nature and showed that soil moisture im-
pacts on NBP are shaped not only by direct water limita-
tion but also by indirect feedbacks involving temperature and
VPD. However, Humphrey et al. (2018) also found that most
of the explanatory power contained in TWS could not be ac-
counted for by temperature alone. Their partial correlation
analysis showed that the CGR-TWS relationship remained
significant even after controlling for temperature, suggesting
that TWS captures a distinct and meaningful component of
carbon cycle variability. Thus, while water availability can-
not be interpreted in isolation from other variables, it still
provides uniquely valuable information about ecosystem—
climate interactions. Our findings should therefore be viewed
as complementary to other studies that emphasise the roles of
temperature or VPD.

We therefore turned to direct estimates of carbon fluxes
from atmospheric inversion models which, while designed to
constrain the atmospheric carbon budget, are often employed
to regionalise surface carbon fluxes and investigate tempo-
ral variations, based on available atmospheric observations.
Our analysis of eight such products demonstrate consistency
of result only on the largest global scales, with limitations
very evident at smaller scales (Fig. 6). As highlighted by
Marcolla et al. (2017), spatial flux estimates from inversions
are subject to limitations because atmospheric data may only
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effectively constrain larger-scale patterns comparable to the
distances between monitoring stations. Globally, products
agree because observationally the CGR is well constrained,
set broadly by the difference between the slowly varying an-
thropogenic fossil fuel input and the well-measured accumu-
lation rate of CO; in the atmosphere (Baker et al., 2006).
However, the inversion models introduce factors contribut-
ing to discrepancies, such as the selection of the atmospheric
CO» data, prior fluxes, and the choice of transport model.
For example, Schuh et al. (2019) demonstrate that the trans-
port models TMS5 and GEOS-Chem, used by NOAA CT
and UoE respectively, lead to systematic space-time differ-
ences in modelled distributions of CO;. Bastos et al. (2020)
also found that at regional scales, differences between in-
version products contribute the most to uncertainty in re-
gional carbon budgets, whereas differences in DGVMs dom-
inate uncertainty at the global scale. They emphasised that
reducing the uncertainty in atmospheric inversions, for ex-
ample through more observations in the tropics or the use
of satellite-observations, is essential to reduce uncertainty in
carbon budgets.

Here using the ensemble mean does offer a more repre-
sentative picture by incorporating a range of estimates from
different models, although different atmospheric inversion
products may still be related through the same transport mod-
els or meteorological fields, allowing biases to remain. The
spread between ensemble member fluxes is also very large
in nearly all regions (Fig. 7), making it very hard to draw
conclusions in comparison with the TWS derived estimates.
It is important that each individual ensemble member is well
evaluated, otherwise outliers such as NISMON in the extrat-
ropics, or IAPCAS over tropical America, can cause the en-
semble mean to be misleading. Overall, our results empha-
sise the need to improve consistency among inverse models
at finer scales to provide tests for flux sensitivity studies such
as we perform here for water. In future work it may be bene-
ficial to conduct a more comprehensive comparison of atmo-
spheric CO, inversion products involving additional products
beyond those considered in our study, e.g. containing satellite
CO, observations.

6 Conclusion

This study first assesses the relationship between TWS varia-
tions at global and regional scales with the interannual CGR
over 2002-2022. This builds on the work of (Humphrey
et al., 2018) by extending the TWS-CGR relationship up
until 2023. The correlation between global TWS and CGR
was r = —(0.70 over the entire period, with a correlation of
r =—0.69 observed for the period from 2002 to 2016, and
r =—0.74 from 2016 to 2023. We expand on Humphrey et al.
(2018)’s analysis by separately mapping regional TWS-CGR
correlations and their relative contributions to the GTWS-
CGR correlation. This allows for better identification of key
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regions where water limitation is likely to be influencing sur-
face CO; fluxes and thus contributing to the GTWS-CGR
correlation.

Our analysis reveals that the tropics alone can explain the
entire GTWS-CGR correlation. Specifically, tropical Amer-
ica emerges as the largest contributing area, accounting for
g =069 % of the GTWS-CGR correlation, despite only rep-
resenting f =40% of the GTWS variance and covering
less than 12 % of the Earth’s land surface area. Moreover,
we observe minor cancelling contributions to the GTWS-
CGR correlation from the Northern (g = +17 %) and South-

ern (g = —15 %) Hemisphere extratropics, which represent
f=38% and f=—12% of GTWS variability signal re-
spectively.

Tropical forests emerge as the primary land cover type
influencing the global correlation (g =37 %), despite be-
ing less important for the global TWS signal (f =22 %).
Semi-arid regions also play an important role in contributing
to both the GTWS-CGR correlation and the GTWS signal
(g=26%, f=23%). Notably, tropical forests cover only
10% of the land surface area, hence they exert a dispro-
portionately stronger impact relative to their spatial extent
compared to semi-arid regions, which encompass 25 % of
the land surface. Croplands and grasslands contribute largely
to GTWS variability (f =22 %) due to large spatial cov-
erage but have a relatively low correlation with the CGR
(r = —0.27) and consequently contribute less strongly to the
GTWS-CGR correlations (g = 15 %).

We also employed eight different atmospheric CO; trans-
port inversion model products to directly assess the regional
contributions to CGR interannual variability. The ensemble
mean of the eight products shows good agreement with the
CGR globally, however their agreement diminishes rapidly
when examined at finer spatial scales. In alignment with
GRACE TWS data, the ensemble mean of the inversion prod-
ucts also attribute the majority of terrestrial carbon interan-
nual variability to the tropics (f = 66 %), but with contribu-
tions from the NH extratropics ( f =24 %) and SH extratrop-
ics (f = 10 %), being higher than derived from TWS. The in-
version products show more agreement with each other and
with GRACE-TWS when comparing land cover type contri-
butions to the CGR variability. Although not strongly trust-
ing the regional inverse products we also calculated regional-
scale sensitivities of inverse model NBP against TWS, and
find general consistency with the TWS-CGR correlation con-
tribution results.

Finally for both water storage variability and inverse
model derived CO, fluxes we look at the interannual vari-
ation time series and note that the dominant anomaly regions
do change over the 20-year period, and we discuss how this
ties in with literature on patterns of drought over time. These
time series also reveal cases where regional TWS signals
often closely follow the CGR even when the global TWS
does not, thus providing further evidence of the importance
of water availability as a constraint on regional CO, fluxes.

Biogeosciences, 22, 7031-7051, 2025

S. Petch et al.: TWS-CGR relation on interannual timescales

Overall, our results suggest that terrestrial ecosystem mod-
els should prioritize improved representation of water con-
straints, particularly in tropical forests where water availabil-
ity plays a critical role in modulating carbon fluxes.
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