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Abstract. The Southern Ocean plays a vital role in global
biogeochemical cycles, yet comprehensive assessments of
its representation in Earth System Models (ESMs) are still
limited. This study evaluates the performance of 14 Cou-
pled Model Intercomparison Project Phase 6 (CMIP6) mod-
els in simulating key biogeochemical variables south of
30° S, including austral-summer surface chlorophyll, deep
chlorophyll maxima (DCMs), nitrate, silicate, dissolved iron,
and particulate organic carbon (POC). Model output for the
period 2000-2014 is compared to multiple observational
datasets, such as a Copernicus product for estimated chloro-
phyll and POC profiles, the World Ocean Atlas (WOA)
for nitrate and silicate, and GEOTRACES products for dis-
solved iron. Model performance is assessed using statis-
tical metrics including mean bias error (MBE), standard-
ised standard deviation (SSD), root mean squared devi-
ation (RMSD), and correlation coefficient (CC). The re-
sults reveal substantial inter-model variability, with individ-
ual models exhibiting strengths in simulating different vari-
ables. GFDL-ESM4 best reproduces surface chlorophyll and
POC and DCM patterns, and IPSL-CM6A-LR performs best
for all nutrients, including nitrate, silicate, and dissolved
iron. Based on composite rankings, the top-performing mod-
els are IPSL-CM6A-LR, GFDL-ESM4, CNRM-ESM2-1,
UKESM1-0-LL, and CMCC-ESM2. This work underscores
the importance of multi-model evaluation for identifying
model strengths and guiding future improvements in biogeo-
chemical (BGC) model development, particularly in the con-
text of understanding and projecting Southern Ocean biogeo-
chemistry under climate change.

1 Introduction

Climate change is a critical global challenge, driving ma-
jor shifts in marine conditions and ecosystems. The South-
ern Ocean, covering 30 % of the global ocean, plays a cru-
cial role in the oceanic carbon and nutrient cycles, absorbing
over 40 % of anthropogenic CO; and 70 % of human-induced
warming (Gruber et al., 2019; Petrou et al., 2016; Xue et al.,
2024). The Southern Ocean is characterised by complex in-
teractions among physical circulation, biogeochemistry, and
biological productivity, making it a challenge to model (Hen-
ley et al., 2020; Morley et al., 2020). The powerful eastward-
moving Antarctic Circumpolar Current (ACC), one of the
Earth’s strongest currents, connects ocean basins and regu-
lates global climate and ocean circulation, supports diverse
marine ecosystems, and distributes nutrients (Boning et al.,
2008; Rintoul et al., 2001; Lopes et al., 2011; Song, 2020).
The upwelling of deep, nutrient-rich waters, driven by ACC,
supports phytoplankton growth, influencing global carbon
sequestration and ecosystem dynamics (Venables and Moore,
2010; Morrison et al., 2015; Hunt et al., 2021; Pollard et al.,
2006). This complex region of both physical and biological
processes is important due to its significant impact on global
climate regulation, carbon sequestration, and the health of
marine ecosystems.

Phytoplankton, particularly silicifying diatoms, are a key
component of the Southern Ocean food web and the global
carbon cycle, playing a crucial role in carbon sequestration
and nutrient cycling (Deppeler and Davidson, 2017; Baldry
et al., 2020; Petrou et al., 2016; Nissen and Vogt, 2021; Tim-
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mermans et al., 2004; Hoffmann et al., 2008). Their biomass
and primary production are often assessed through chloro-
phyll concentrations, which serve as an essential indicator
in oceanic carbon fixation and ecosystem productivity (Car-
ranza and Gille, 2015; Johnson et al., 2013). However, de-
spite the abundance of macronutrients such as nitrate and
silicate, phytoplankton growth is frequently constrained by
light limitation and iron deficiency, both of which regulate
their distribution and productivity (Boyd and Ellwood, 2010;
Boyd, 2002). In response to these physiochemical conditions,
deep chlorophyll maxima (DCMs) have been observed in
nutrient-stratified waters during austral summer in the South-
ern Ocean, indicating robust phytoplankton production in the
subsurface layer (Boyd et al., 2024; Cornec et al., 2021;
Cullen, 1982; Cullen, 2015; Hopkinson and Barbeau, 2008;
Li et al., 2012). These DCMs contribute significantly to the
regional carbon cycle, for example, approximately 40 % of
primary production in the Southern Ocean occurs below the
mixed layer (Vives et al., 2025), and support marine food
webs by sustaining primary production below the surface,
where light and nutrient conditions are more favourable, par-
ticularly the supply of iron and silicon, for certain phyto-
plankton communities (Signorini et al., 2015; Cornec et al.,
2021; Sauzede et al., 2018).

Ocean biogeochemical (BGC) modules, are an important
component of coupled Earth system models (ESMs), and
are indispensable for understanding the complicated physi-
cal and biogeochemical processes in the ocean (Follows and
Dutkiewicz, 2011; Séférian et al., 2020). Depending on their
complexity, these models simulate the cycles of key ele-
ments such as carbon, oxygen, nitrogen, phosphorus, silicate,
and iron, and organisms including phytoplankton, zooplank-
ton and bacteria, which are vital for marine ecosystems and
global climate regulation (Dunne et al., 2020; Aumont et al.,
2015; Pak et al., 2021; Ilyina et al., 2013). BGC models en-
able researchers to investigate how changes in environmental
conditions, such as temperature, light, and nutrient availabil-
ity, impact marine biogeochemistry and ecosystem dynamics
(Kwiatkowski et al., 2020). They are particularly valuable
for studying regions like the Southern Ocean, where obser-
vational data are limited, and the interactions between physi-
cal and biogeochemical processes are highly complex (Tagli-
abue et al., 2017; Lauderdale et al., 2017). Despite their sig-
nificance, BGC models face considerable challenges, includ-
ing the need for precise parameterisation of key biological
processes, accurate representation of small-scale processes,
and effective constrained by diverse data sources (Acker-
mann et al., 2024; Beadling et al., 2019).

The Coupled Model Intercomparison Project Phase 6
(CMIP6) represents the latest advancement in climate mod-
elling, providing a standardised framework for evaluating
ESMs across various simulations under different climate sce-
narios (Eyring et al., 2016; O’Neill et al., 2016; Meehl et al.,
2020). Compared to previous phases, CMIP6 models feature
higher spatial resolution, improved physical processes, and
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enhanced biogeochemical components, including expanded
phytoplankton functional types, refined biogeochemical cy-
cle representations and optimised parameterisation (Séférian
et al., 2020; Kwiatkowski et al., 2020). However, signif-
icant discrepancies persist in biogeochemical performance
due to variations in BGC model structures, parameterisation,
and ocean physics (Séférian et al., 2020). Evaluating CMIP6
models highlights these differences, offering insights for fu-
ture model development and refinement (Kwiatkowski et al.,
2020; Séférian et al., 2020; Hauck et al., 2015).

While some studies have assessed the performance of
CMIP6 models in simulating biogeochemical variables glob-
ally and regionally, a comprehensive analysis of chlorophyll,
nutrient distribution, and DCM characteristics in the South-
ern Ocean remains unexplored. Marshal et al. (2024) evalu-
ated chlorophyll, phytoplankton, nitrate and dissolved oxy-
gen across 13 CMIP6 models in the South China Sea, rank-
ing them using statistical metrics to identify the five best-
performing models. Fisher et al. (2025) synthesised CMIP6
outputs to examine climate-driven shifts in Southern Ocean
primary production, projecting a 30 % increase in Antarc-
tic zone productivity under a high-emission (SSP5-8.5) sce-
nario, albeit with regional variations. Séférian et al. (2020)
compared CMIP5 and CMIP6 models, demonstrating im-
proved CMIP6 biogeochemical representations, including
chlorophyll, dissolved oxygen, silicate and nitrate, due to
more comprehensive biogeochemical cycles and Earth sys-
tem interactions. Rohr et al. (2023) analysed 11 CMIP6
models and found that zooplankton grazing parameterisation
introduced uncertainty in marine carbon cycle projections.
These studies underscore the need for further evaluation of
the CMIP6 models to assess the impact of biogeochemical
processes and parameterisation on model performance.

In this paper, we evaluate biogeochemical variables, in-
cluding chlorophyll, silicate, nitrate, dissolved iron, and par-
ticulate organic carbon (POC) across 14 CMIP6 models and
assess their performance in representing DCMs in the South-
ern Ocean. Section 2 details the observed and simulated data
and the statistical analysis methods. Section 3 presents an
inter-model evaluation of each biogeochemical variable. Sec-
tion 4 discusses the ocean vertical carbon structure, model
performance, and avenues for improvement. Section 5 pro-
vides a summary of our findings.

2 Data and methods
2.1 Study region

This study focuses on the open waters of the Southern Ocean
(south of 30°S). We divide the Southern Ocean into four
zones: the subtropical zone (STZ), subantarctic zone (SAZ),
polar front zone (PFZ) and Antarctic zone (AZ; Fig. 1).
These zones are separated by three key fronts: the subtropical
front, subantarctic front and polar front, which are defined by
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distinct physical and biogeochemical properties (Orsi et al.,
1995). We compare the CMIP6 model outputs of chlorophyll,
nitrate, silicate, dissolved iron, and POC across these zones
and across the entire Southern Ocean.

2.2 CMIP6 datasets and availability

We obtained outputs from 14 CMIP6 models from the Earth
System Grid Federation (ESGF) Nodes (Cinquini et al.,
2014). Specifically, we collected data from the historical ex-
periment for model evaluation, using the ensemble mem-
ber rlilplfl for most models, while rlilp1f2 was used for
CNRM-ESM2-1, MIROC-ES2L, and UKESM1-0-LL. Dis-
solved iron and carbon data of ACCESS-ESM1-5 were col-
lected from the National Computational Infrastructure. This
includes monthly data for chlorophyll, nitrate, silicate, dis-
solved iron, POC which comprises phytoplankton, detritus,
and bacteria (see Sect. 2.4 for details), and NPP. These data
were also used to compare chlorophyll and DCM distribu-
tion. The selected CMIP6 models, their properties and avail-
able variables are detailed in Table 1. To ensure consistency,
we regridded all outputs to a 1° x 1° common horizontal res-
olution using bilinear interpolation in Climate Data Opera-
tors (CDO) software (Schulzweida, 2023), covering the time
range from January 2000 to December 2014.

2.3 Observed datasets and availability

Observed surface chlorophyll and POC data, as well as ver-
tical chlorophyll profiles, were obtained from the Coperni-
cus Global Ocean 3D Chlorophyll-a Concentration, Particu-
late Backscattering coefficient and Particulate Organic Car-
bon product (hereafter referred to as the Copernicus product;
Sauzede et al., 2016) The original POC fields were estimated
using a neural network approach (machine-learning method)
known as SOCA2016 (Satellite Ocean Colour merged with
Argo data; 2016 version), which integrates satellite-derived
surface estimates of the particulate backscattering coefficient
(bbp) and chlorophyll a concentration with depth-resolved
physical properties derived from BGC-Argo floats (Sauzede
et al., 2016). In this study, we used the updated SOCA2024
product, which merges bbp and chlorophyll-a concentrations
derived from both satellite and BGC-Argo floats. This prod-
uct has been validated against a global independent pig-
ment dataset obtained from High Performance Liquid Chro-
matography (HPLC) and BGC-Argo floats (Sauzede et al.,
2024). The reprocessed dataset provides a spatial resolu-
tion of 0.25° x 0.25° and 36 vertical levels from the sur-
face to 1000 m depth, with a bathymetric mask applied to
exclude grid cells shallower than 1000 m to avoid poten-
tial coastal artifacts (Sauzede et al., 2024). This masking,
however, removes several productive shelf regions such as
around New Zealand and the Patagonian Shelf. The pri-
mary advantage of this dataset lies in its integration of satel-
lite and BGC-Argo data, ensuring consistent vertical and
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horizontal chlorophyll and POC distributions. To verify the
reliability of the Copernicus dataset, we compared multi-
ple Copernicus versions and satellite-derived products us-
ing different algorithms from Johnson et al. (2013). Chloro-
phyll estimated with SOCA2024 showed the strongest agree-
ment with BGC-Argo data (R2 =0.89, slope =1.04; Ta-
ble S1 in the Supplement), outperforming other approaches.
When validated against HPLC data, SOCA2024 also per-
formed well (R? = 0.53, slope = 0.70) globally, similar to
the MODIS-Aqua chlorophyll recalculated using the new al-
gorithm of Johnson et al. (2013), which remains one of the
best-performing satellite products for the Southern Ocean
(Table S1). The SOCA2024 POC dataset also proved robust
when compared with BGC-Argo bbp data in the Southern
Ocean (R2 =0.93, slope = 0.89; Table S1). Moreover, a di-
rect comparison between surface chlorophyll from Coper-
nicus product and MODIS (Johnson et al., 2013) reveals a
strong correlation (R? = 0.69, slope = 0.80; Fig. S1 in the
Supplement), confirming the reliability of the Copernicus
dataset. Accordingly, we use the Copernicus chlorophyll and
POC products for all subsequent analyses of surface chloro-
phyll, POC, and DCMs to maintain consistency across dif-
ferent observational comparisons. Additionally, we provide
model-data comparison using Aqua-MODIS chlorophyll de-
rived with the Johnson et al. (2013) algorithm in the Supple-
ment for cross-validation.

Observed nitrate and silicate data were sourced from
the World Ocean Atlas (WOA) 2018 (Garcia et al., 2019),
representing climatological averages from 1955 to 2017.
Observed dissolved iron data were obtained from GEO-
TRACES 1DP2021v2 (GEOTRACES Intermediate Data
Product Group, 2023) and a global compilation of dissolved
iron measurements (Tagliabue et al., 2012), which compiles
bottle-sampled dissolved iron measurements from 2001 to
2014.

Existing NPP estimating algorithms exhibit large discrep-
ancies in the Southern Ocean, with values ranging from ap-
proximately 400 to 1400 mg C m~2d~! in December (Silsbe
et al.,, 2016). The scarcity of in situ NPP measurements
makes it difficult to constrain or validate these NPP algo-
rithms, introducing substantial uncertainty into any evalua-
tion. Thus, this study does not include NPP in the model per-
formance ranking to avoid the influence of uncertain refer-
ence datasets. Instead, we provide model-data comparison
figures in the Supplement (Figs. S2-S5) for readers inter-
ested in model NPP performance, using NPP products de-
rived from the Standard VGPM (Behrenfeld and Falkowski,
1997) and CAFE (Silsbe et al., 2016) algorithms avail-
able from the Ocean Productivity site (https://orca.science.
oregonstate.edu/index.php, last access: 3 October 2025).
Both algorithms estimate NPP using MODIS satellite inputs,
including chlorophyll a concentration, sea surface tempera-
ture, and photosynthetically available radiation, among other
parameters.
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Table 1. List of 14 CMIP6 models utilised, detailing the ESM name, coupled ocean biogeochemical model (OBGCM) name, averaged
horizontal resolution and variables with available data. All variable abbreviations and their long names: chl (mass concentration of phyto-
plankton expressed as chlorophyll in seawater), no3 (dissolved nitrate concentration), si (total dissolved inorganic silicon concentration), dfe
(dissolved iron concentration), phyc (phytoplankton carbon concentration), detoc (mole concentration of organic detritus expressed as carbon
in seawater), bacc (bacterial carbon concentration), and intpp (integrated net primary production).

ESM and OBGCM Reference

ESM OBGCM Variable

ACCESS-ESM1-5 WOMBAT chl, no3, dfe, phyc, detoc, intpp
CanESM5 CMOC chl, no3, phyc, detoc

CESM2 MARBL chl, no3, si, dfe, phyc, intpp
CMCC-ESM2 BFM v5.2 chl, no3, si, dfe, phyc, detoc, bacc, intpp
CNRM-ESM2-1 PISCES-v2-gas  chl, no3, si, dfe, phyc, detoc, intpp
GFDL-ESM4 COLBALTV2 chl, no3, si, dfe, phyc, detoc, bacc, intpp
IPSL-CM6A-LR PISCES-v2 chl, no3, si, dfe, phyc, detoc, intpp
MIROC-ES2L OECO-v2 chl, no3, dfe, phyc, intpp
MPI-ESM-1-2-HAM HAMOCC6 chl, no3, si, dfe, phyc, detoc, intpp
MPI-ESM1-2-HR HAMOCC6 chl, no3, si, dfe, phyc, detoc, intpp
MPI-ESM1-2-LR HAMOCC6 chl, no3, si, dfe, phyc, detoc, intpp
NorESM2-LM HAMOCC chl, no3, si, dfe, phyc, detoc, intpp
NorESM2-MM HAMOCC chl, no3, si, dfe, phyc, detoc, intpp
UKESM1-0-LL MEDUSA-2.0 chl, no3, si, dfe, phyc, detoc, intpp

Ziehn et al. (2020); Oke et al. (2013)

Swart et al. (2019); Zahariev et al. (2007)
Danabasoglu et al. (2020); Long et al. (2021)
Lovato et al. (2022); Vichi et al. (2015)
Séférian et al. (2019); Skyllas (2018)
Dunne et al. (2020); Stock et al. (2020)
Boucher et al. (2020); Aumont et al. (2015)
Hajima et al. (2020)

Neubauer et al. (2019); Ilyina et al. (2013)
Miiller et al. (2018); Ilyina et al. (2013)
Mauritsen et al. (2019); Ilyina et al. (2013)
Tjiputra et al. (2020)

Tjiputra et al. (2020)

Sellar et al. (2019); Yool et al. (2013)

2.4 Data analysis

To evaluate the performance of CMIP6 models in simu-
lating biogeochemical variables, we compared observations
with model outputs for chlorophyll, nitrate, silicate and dis-
solved iron (Sect. 3.1), DCM (peak of chlorophyll concen-
tration in the subsurface) representation and characteristics
(Sect. 3.2) and particulate organic carbon (Sect. 3.3) and pre-
sented model rankings by variable (Sect. 3.4).

Since Southern Ocean DCMs predominantly occur during
austral summer (Cornec et al., 2021; Prakash and Bhaskar,
2024), all datasets (except observed dissolved iron) were re-
stricted to December, January and February (DJF). We calcu-
lated temporal averages for CMIP6-simulated variables and
Copernicus chlorophyll and POC profiles over DJF from
2000 to 2014. Similarly, we computed DJF-averaged nitrate
and silicate from observations.

The observed dissolved iron data are distributed sporad-
ically because of the limited source of bottled samples and
towed fish samples. Tagliabue et al. (2012) compiled the bot-
tled samples from voyages, and GEOTRACES IDP2021v2
have multiple sources of dissolved iron data, including bot-
tled samples and towed fish samples. To match the surface
dissolved iron south of 30° S in the model dataset, here we se-
lected the observed dissolved iron data points south of 30° S
and the depths no deeper than 30 m to represent the surface.
In this case, there are only 834 and 910 data points in these
spatial ranges, in GEOTRACES IDP2021v2 and Tagliabue
et al. (2012), respectively. We merged these two datasets
by removing the data points with the same longitude, lati-
tude, depth and dissolved iron concentration. There are fi-
nally 1693 unduplicated data points. To mitigate the impact
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of uneven spatial sampling density on the overall assess-
ment, we gridded all observational data points onto a 1° x 1°
longitude—latitude mesh grid and aggregated multiple obser-
vations within the same grid cell (using the median) to obtain
a representative value for subsequent analyses. Finally, there
are 615 grid points with available dissolved iron concentra-
tions, accounting for 4.33 % of the total ocean grid points. In
this research, we only compared the surface dissolved iron
concentrations where the observed dissolved iron concentra-
tions are available.

In cases where CMIP6 models do not provide a specific
variable representing total particulate organic carbon (POC),
we manually derive it by summing different species of POC.
The simulated POC concentration in this paper is calculated
as the sum of phytoplankton carbon, detrital organic carbon
(absent in CESM2 and unavailable in MIROC-ES2L), and
bacterial carbon (available only in CMCC-ESM?2 and GFDL-
ESM4).

To quantify model performance, we calculated spatial
variations, mean bias error (MBE), standardised standard de-
viation (SSD), correlation coefficient (CC), and root mean
squared deviation (RMSD) for chlorophyll, nitrate, silicate
and dissolved iron. We visualised spatial variations using
Southern Ocean maps, MBE in bar charts, SSD, CC and
RMSD using Taylor Diagram (TD) to illustrate the agree-
ment between models and observations (Taylor, 2001). The
TDs and their related statistics-SSD, CC, and RMSD-are pro-
vided in Supplement.

DCMs are identified as the vertical peak of chlorophyll
concentration, where the chlorophyll value exceeds 1.1 times
the surface chlorophyll concentration. The 1.1 threshold is
applied to account for potential measurement errors in the
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observation. To evaluate DCM characteristics, we calculated
peak chlorophyll concentration at the identified DCM depth
and frequency of DCM occurrence, which is defined as the
area proportion where DCMs are detected.

The assessment of CMIP6 model performance relies on
the ranking of four statistical metrics, containing MBE (the
lower [MBE)| has the higher ranking), SSD (the closer to 1
has the higher ranking), RMSD (the lower has the higher
ranking), and CC (the higher has the higher ranking) for
chlorophyll, nitrate, silicate, dissolved iron, and POC. For
the evaluation of DCMs, both the chlorophyll rank and DCM
occurrence frequency (the closer to the reference, the higher
ranking) are considered. The ranking score for each variable
is calculated by averaging the rankings of its relevant sta-
tistical metrics. That means the model with a lower ranking
score has a higher rank. The overall ranking score of each
CMIP6 model is calculated by averaging the ranking score
of all variables, where the model with a lower ranking score
has a higher overall rank. We will present the ranking of each
variable and the overall ranking in Sect. 3.4.

All data processing and analysis were performed using
MATLAB R2024a and its numerical toolboxes. Maps were
generated using the M_Map toolbox (Pawlowicz, 2020).
Taylor diagrams in the Supplement were generated us-
ing MATLAB functions from Haroon Haider (https://www.
youtube.com/@EngrHaroonHaider, last access: 22 April
2025).

3 Results
3.1 Southern Ocean biogeochemistry

We evaluate the performance of 14 CMIP6 models in simu-
lating Southern Ocean biogeochemistry by comparing their
outputs for chlorophyll, nitrate, silicate, and dissolved iron
with observational data. The surface chlorophyll concentra-
tion in the Southern Ocean exhibits a general increase from
north to south, reaching its highest concentrations in the
coastal regions of Antarctica (Fig. 1), with some exceptions
associated with island wake effects related to continental iron
input (Blain et al., 2007). Another main exception is the
exceptionally high chlorophyll on the Patagonian Shelf off
southeastern South America (Fig. S6), driven by the conver-
gence of the nutrient-rich Malvinas Current with the warm
Brazil Current, in addition to shelf upwelling and riverine
inputs (Piola et al., 2024; Ferreira et al., 2009; Rivas et al.,
2006; Rijkenberg et al., 2014). However, none of the CMIP6
models reproduce this feature, likely because their coarse 1°
resolution fails to resolve critical shelf-front dynamics.
Most models underestimate the surface chlorophyll south
of the subtropical front, except for the three MPI-ESMs,
and many models underestimate the surface chlorophyll
in the subtropical zone (Fig. 1). This discrepancy poten-
tially reflects methodological differences: models include
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only chlorophyll in live phytoplankton, whereas satellites
detect chlorophyll in both living and senescent cells. A
slight overestimation in the Copernicus chlorophyll prod-
uct (slope = 1.04; Table S1; Sauzede et al.,, 2024) may
also contribute. The three MPI-ESMs, MPI-ESM-1-2-HAM,
MPI-ESM1-2-HR, and MPI-ESM1-2-LR, tend to substan-
tially overestimate chlorophyll concentrations throughout the
Southern Ocean, with MBEs of 1.03, 1.79 and 0.76 mg m3
(Fig. 2), respectively, compared to a mean chlorophyll con-
centration of only 0.59 mgm~> in observations. Conversely,
the CanESMS5, CMCC-ESM2, CNRM-ESM2-1, and IPSL-
CMO6A-LR models underestimate chlorophyll concentrations
(Figs. 1 and 2). The ACCESS-ESM1-5, CESM2, MIROC-
ES2L, NorESM2-LM, NorESM2-MM, and UKESM1-0-LL
models exhibit small and negative MBEs for the entire
Southern Ocean but show opposing biases across regions.
For instance, they overestimate chlorophyll concentrations
north of the subtropical front and underestimate concentra-
tions to the south (Fig. 2). The GFDL-ESM4 model pro-
vides the most realistic simulation of chlorophyll concentra-
tion north of the polar front but underestimates concentra-
tions south of the polar front (Fig. 1).

When considering other metrics such as standardised stan-
dard deviation (SSD), root mean-squared deviation (RMSD),
and correlation coefficient (CC), we find that among the
models, GFDL-ESM4, IPSL-CM6A-LR, and CMCC-ESM2
have the lowest RMSD, small bias errors, and CC values
above 0.6, indicating that they were the best-performing
models for simulating the distribution of chlorophyll across
the Southern Ocean (Fig. S7 and Table S2). In contrast, the
three MPI-ESMs are less reliable due to their overestimation
of chlorophyll concentration. Additionally, the ACCESS-
ESM1-5, CanESM5, and NorESMs models exhibit poor per-
formance, such as their low CC (< 0.2), despite moderate
bias errors (Fig. S7 and Table S2). The remaining mod-
els, including CESM2, CNRM-ESM2-1, MIROC-ES2L, and
UKESM1-0-LL, exhibit moderate performance in simulating
chlorophyll.

Nitrate, a key macronutrient that regulates phytoplankton
growth and primary production, is abundant in the Southern
Ocean, particularly south of 50° S (Fig. 3). Three MPI-ESMs
(MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and MPI-ESM1-
2-LR) underestimate nitrate concentrations, with MBEs of
—4.72, —5.75, and —3.49 mmol m—3 (Fig. 4), respectively,
compared to the observed mean surface nitrate concentra-
tion of 11.92mmolm~3 from WOA. This underestimation
may be linked to the high simulated chlorophyll levels, which
could lead to excessive nutrient consumption. In addition, the
CESM2, CMCC-ESM2, and GFDL-ESM4 models also un-
derestimate nitrate concentrations (Fig. 3). In contrast, the
ACCESS-ESM1-5, CanESMS5, CNRM-ESM2-1, MIROC-
ES2L, NorESM2-LM, NorESM2-MM, and UKESM1-0-LL
models overestimate nitrate concentration, although the two
NorESMs underestimate it in the Antarctic zone. Among all
models, IPSL-CM6A-LR has the best performance, with the
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available.
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Figure 2. The mean bias errors in surface chlorophyll concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the sub-
antarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All MBEs and means in each region are calculated

using area-weighted averages.

lowest MBE of 0.29 mmolm~3 and a relative error of just
2.43 % (Fig. 4).

Among the 14 CMIP6 models, IPSL-CM6A-LR, GFDL-
ESM4, and CNRM-ESM2-1 produce the most accurate
simulations of surface nitrate concentration for the South-
ern Ocean. They exhibit the lowest RMSD (< 0.3), min-
imal MBE (absolute MBE < 4 mmol m~3), high CC (>

Biogeosciences, 22, 7269-7291, 2025

0.95), and SSDs close to 1, indicating strong agreement
with observations (Fig. S8 and Table S3). Conversely, the
three MPI-ESMs models produce less accurate simulations
of surface nitrate concentration for the Southern Ocean
due to their large bias errors and significant deviations
(represented by SSD, RMSD, and CC on a Taylor dia-
gram; Fig. S8 and Table S3). The remaining models in-
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Figure 3. Observed surface nitrate concentrations from WOA in DJF and spatial biases of surface nitrate concentrations for 14 CMIP6
models (model nitrate — WOA nitrate) in DJF for the Southern Ocean (> 30°S).
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Figure 4. The mean bias errors in surface nitrate concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the subantarctic
zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF.

cluding ACCESS-ESM1-5, CanESM5, CESM2, CMCC-
ESM2, MIROC-ES2L, NorESM2-LM, NorESM2-MM and
UKESM1-0-LL demonstrate moderate performance.
Among the CMIP6 models analysed, silicate concentra-
tions are generally overestimated across the Southern Ocean
(Fig. 5). The three MPI-ESMs exhibit the most signifi-
cant overestimation, with MBEs exceeding 30 mmol m—3
(Fig. 6), over twice the observed surface silicate concen-
tration of 12.65 mmol m~3 from WOA. The CMCC-ESM?2,
NorESM2-LM, NorESM2-MM, and UKESM1-0-LL mod-

https://doi.org/10.5194/bg-22-7269-2025

els also show large positive biases, with their mean sili-
cate concentrations roughly double that of observed values
(Fig. 6). The CMCC-ESM2 and UKESM1-0-LL models un-
derestimate silicate concentrations in the subtropical zone
(STZ), while the two NorESMs underestimate silicate con-
centrations in the Ross Sea, Weddell Sea, and adjacent wa-
ters (Fig. 5). CESM2, CNRM-ESM2-1, GFDL-ESM4, and
IPSL-CM6A-LR exhibit the lowest positive MBEs among
the models (Fig. 6). and underestimate silicate concentrations
in the STZ. Interestingly, in some regions around Antarc-

Biogeosciences, 22, 7269-7291, 2025
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Figure 5. Observed surface silicate concentrations from WOA in DJF and spatial biases of surface silicate concentrations for 14 CMIP6
models (model silicate — WOA silicate) in DJF for the Southern Ocean (> 30° S). Models with unavailable silicate are labelled with *.

tica, simulated silicate concentrations are lower than obser-
vations, particularly in areas where the GFDL-ESM4 and
IPSL-CM6A-LR models overestimate chlorophyll (Fig. 1),
suggesting a possible link between silicate availability and
diatom growth. Three models, including ACCESS-ESM1-5,
CanESMS5, and MIROC-ES2L are excluded from the silicate
comparison because they do not include diatoms as one of
their phytoplankton species or silicate as a nutrient variable.

Among the 11 CMIP6 models with available silicate data,
IPSL-CM6A-LR is the best-performing model for represent-
ing silicate distribution across the Southern Ocean. It has the
lowest MBE (1.50 mmol m~3, compared to the observation
of 12.65 mmol m_3), an SSD closest to 1 (1.04), the low-
est RMSD (0.37), and the highest CC (0.94; Fig. S9 and
Table S4), making it the most reliable model for simulat-
ing silicate concentrations. Following IPSL-CM6A-LR, the
CNRM-ESM2-1, GFDL-ESM4, and CESM2 models also
show relatively good performance, although their statisti-
cal metrics are not as strong as [PSL-CM6A-LR. The re-
maining models, CMCC-ESM2, MPI-ESMs, NorESMs, and
UKESMI1-0-LL, produce less realistic simulations due to
their large bias errors, which suggests significant discrepan-
cies in their silicate simulations.

After evaluating the overall model performance for surface
nitrate and silicate, we further examined whether these sur-
face biases are linked to errors in the deep upwelling source
waters. To this end, we compared the model-observation bi-
ases in nitrate and silicate between the surface and 700 m

Biogeosciences, 22, 7269-7291, 2025

depth, representing the upwelling Circumpolar Deep Water
(CDW) south of 50° S. Most models show positive but weak
correlations between surface and deep nitrate biases, with
slopes ranging from —0.12 to 0.74 and R? from 0.01 to 0.42
(p < 0.001; Fig. S10), suggesting that surface nitrate errors
are only weakly linked to deep-water biases. In contrast, cor-
relations for silicate are slightly stronger but remain weak
overall, with slopes between 0.23 and 0.76 and R? of 0.06—
0.50 (p <0.001; Fig. S11). This suggests that surface sili-
cate biases are more directly linked to deep CDW properties
than nitrate, although neither nutrient exhibits a particularly
strong surface-deep correspondence. The overall weak rela-
tionships imply that, although biases in deep nutrient fields
contribute to surface discrepancies, other processes such as
biological uptake, vertical mixing, and mixed-layer variabil-
ity also play substantial roles in shaping the surface nutrient
distributions.

Dissolved iron concentrations in the Southern Ocean are
generally low in open waters and higher in coastal re-
gions in the observations (Fig. 7). Among the CMIP6
models analysed, the dissolved iron simulations exhibit
significant discrepancies with MBEs ranging from —O0.15
to 0.29umolm~> compared to the observed mean of
0.31 umolm~3 (Fig. 8). Four models including CESM2,
CNRM-ESM2-1, GFDL-ESM4, and IPSL-CM6A-LR un-
derestimate dissolved iron concentrations but reproduce the
spatial pattern relative well, exhibiting small regional bi-
ases (Fig. 7). In contrast, ACCESS-ESM1-5, NorESM2-LM,
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Figure 7. Observed surface dissolved iron concentrations from an integrated product by GEOTRACES IDP2021v2 and Tagliabue et al.
(2012), and spatial biases of surface dissolved iron concentrations for 14 CMIP6 models (model dissolved iron — observed dissolved iron)
for the Southern Ocean (> 30° S). Models with unavailable dissolved iron are labelled with *.

NorESM2-MM, and UKESM1-0-LL overestimate dissolved
iron in most Southern Ocean surface waters, while CMCC-
ESM2, MIROC-ES2L, and the three MPI-ESMs show mod-
erate overestimation except in Antarctic waters. All mod-
els share a consistent bias around the Antarctic Peninsula
and East Antarctica, where they underestimate elevated dis-
solved iron levels found in observations (Fig. 7). These high-
iron regions are maintained by the entrainment of iron-rich
shelf waters by the iron-poor Antarctic Circumpolar Current

https://doi.org/10.5194/bg-22-7269-2025

through the Drake Passage (Measures et al., 2013) and by
iron inputs from melting icebergs and sediments along the
East Antarctic shelf (Schallenberg et al., 2016; Person et al.,
2019). The incomplete representation of such physical mech-
anisms in models likely contributes to the underestimation
of dissolved iron. Furthermore, insufficient representation of
the transport of shelf-derived iron may also lead to the under-
estimation of chlorophyll, POC, and primary production on
the Patagonian Shelf.

Biogeosciences, 22, 7269-7291, 2025



7278

M. Cheng et al.: Evaluating the performance of CMIP6 models

0.4 T T T 1 J
03 ]
& J
o 02
g
2" LA b |
é— 0 S— I I I | = I ] I I I
: L B [
[72]
201F )
c
$02f C—lorz| |
[ sAz
03 C_PFz[]
Az
0.4 | 1 1 | | | | 1 | | | L |
5 : Q @ A 5 \, N @ Q N .
o o® & oW S5 @ g 2 Y et o \\WQ\/
S s L W e o N oM o & &0 S
& o o @ S W \@s\‘“ A N\@—@ W &
w Nt

Figure 8. The mean bias errors in surface dissolved iron concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the
subantarctic zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. Models with unavailable dissolved iron are labelled

with *.

Although several models exhibit reasonable MBEs, most
perform poorly in other statistical metrics for dissolved iron,
with SSD values below 0.51, RMSD exceeding 0.99, and CC
lower than 0.18 (Fig. S12 and Table S5). Some models, in-
cluding the three MPI-ESMs and NorESM2-LM, even show
negative CC values, indicating an unrealistic spatial distribu-
tion of dissolved iron. Among the models, IPSL-CM6A-LR
and CNRM-ESM2-1 perform best when all four statistical
metrics (SSD, RMSD and CC) are considered together (Ta-
ble S5), largely benefiting from their shared ocean biogeo-
chemical module, PISCES-v2 (Aumont et al., 2015). Despite
these results, the large overall biases and weak correlations
highlight persistent uncertainties in evaluating dissolved iron
simulations, primarily due to the limited spatial and tempo-
ral coverage of observational data and the oversimplified rep-
resentation of iron cycling processes in many models. Con-
sequently, it remains difficult to draw definitive conclusions
regarding model skill in reproducing dissolved iron distribu-
tions in the Southern Ocean.

3.2 Performance of DCMs

The observational data from Copernicus indicate that DCMs
are widespread across approximately 85 % of the South-
ern Ocean in austral summer (Fig. 9). Their occurrence
frequency is lower in the SAZ (below 70 %) but exceeds
90 % in other regions. Areas without DCMs are primar-
ily located south of Australia, southwest of Chile, and in
the Weddell and Ross Seas and surrounding waters. CMIP6
models exhibit varying performance in simulating DCMs.
GFDL-ESM4 has DCM occurrence frequency close to 100 %
across the Southern Ocean (Fig. 10), while the CanESMS5
model simulates a DCM frequency similar to observations,
but its spatial distribution deviates from observations where

Biogeosciences, 22, 7269-7291, 2025

we find no DCMs in the Antarctic waters. CNRM-ESM2-
1 simulates a high occurrence of DCMs in the STZ and
AZ, but a low occurrence in the SAZ and PFZ (Fig. 9).
CMCC-ESM2, IPSL-CM6A-LR, and UKESM1-0-LL mod-
els simulate DCMs in the STZ but fail to capture them
south of the subtropical front (Fig. 9). The ACCESS-ESM1-
5, CESM2, MIROC-ES2L, and the three MPI-ESMs mod-
els sporadically simulate DCMs in the STZ, resulting in
a low overall DCM frequency (< 20% for the Southern
Ocean). NorESM2-LM and NorESM2-MM fail to simu-
late any DCMs. Among the remaining models, CanESMS5,
CNRM-ESM2-1, and GFDL-ESM4 exhibit DCM frequen-
cies closest to observations. However, the simulations from
CanESMS5 and CNRM-ESM2-1 are less realistic for repre-
senting DCMs due to their poor chlorophyll performance
(Figs. 1 and 2). They generally fail to reflect the actual distri-
bution of the phytoplankton biomass in the water column,
as chlorophyll serves as a key indicator of phytoplankton
abundance, despite their accurate DCM frequencies. Con-
sequently, GFDL-ESM4 is identified as the best-performing
model for DCM simulation, given its strong agreement with
both DCM frequency and chlorophyll distribution.

3.3 Particulate organic carbon (POC)

Observed particulate organic carbon (POC) concentrations
in the Southern Ocean are higher in Antarctic coastal wa-
ters and lower at low latitudes, with elevated concentra-
tions in the Antarctic Circumpolar Current (ACC) regions
within the polar front zone (Fig. 11). Model simulations
diverge markedly from this pattern. CMCC-ESM2, MPI-
ESM-1-2-HAM, and MPI-ESM-1-2-HR generally overesti-
mate POC across most of the basin, except for underes-
timations in the subtropical zone, yielding MBEs of 18.3,

https://doi.org/10.5194/bg-22-7269-2025
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Figure 10. The percentage of DCM occurrence in the Southern Ocean (SO), the subtropical zone (STZ), the subantarctic zone (SAZ), the
polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. All percentages in each region are calculated using area-weighted averages.

13.2, and 58.6mgm™3 (Fig. 12), respectively, compared to
the observed mean of 84.1 mgm™3. The overestimated POC
concentrations in MPI-ESM-1-2-HAM and MPI-ESM-1-2-
HR correspond to their significantly high simulated chloro-
phyll concentrations (Fig. 1). In contrast, ACCESS-ESM1-5,
CanESM5, CESM2, CNRM-ESM2-1, GFDL-ESM4, IPSL-

https://doi.org/10.5194/bg-22-7269-2025

CM6A-LR, and MIROC-ES2L tend to underestimate sur-
face POC across most of the basin. MPI-ESM1-2-LR, two
NorESMs, and UKESM1-0-LL slightly overestimate POC in
the subtropical zone but also overestimate it south of the sub-
tropical front. ACCESS-ESM1-5, CanESMS5, CESM2, and
MIROC-ES2L exhibit the largest negative MBEs (exceeding

Biogeosciences, 22, 7269-7291, 2025
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Figure 11. Observed surface POC concentrations from Copernicus in DJF and spatial biases of surface POC concentrations for 14 CMIP6
models (model POC — Copernicus POC) in DJF for the Southern Ocean (> 30°S). POC data in CMIP6 models contain phytoplankton

carbon, detrital organic carbon, and bacterial carbon.

50mg m™3), severely underrepresenting POC. These strong
underestimations are primarily attributable to the absence of
a diatom or silicon module in ACCESS-ESM1-5, CanESM5,
and MIROC-ES2L and the lack of detrital organic matter out-
put in CESM2 and MIROC-ES2L. Moreover, most models
fail to reproduce the elevated POC concentrations observed
in the polar front zone, which are sustained by nutrient sup-
ply by upwelling and cross-shelf transport, suggesting that
the simulated ACC strength in these models may be weaker
than observed.

Among 14 CMIP6 models, GFDL-ESM4 provides the
most realistic simulations of POC, with an MBE of
—24.16 mg m~—3, an SSD (0.71) close to 1, the smallest
RMSD (0.70), and one of the highest CC values (0.71),
making it the best-performing model for representing POC
(Fig. S13 and Table S6). IPSL-CM6A-LR, UKESM1-0-LL,
and CMCC-ESM2 also show strong statistical performance
across all metrics. CESM2 performs moderately well due to
its favourable SSD, RMSD, and CC values despite exhibit-
ing a relatively large bias error. In contrast, MPI-ESM1-2-
LR performs poorly because of its weak statistical metrics,
despite having the smallest [MBE|. Other models, including
ACCESS-ESM1-5, CanESMS5, CNRM-ESM2-1, MIROC-
ES2L, MPI-ESM-1-2-HAM, MPI-ESM1-2-HR, and the two
NorESMs, are less reliable for simulating POC due to their
large biases and poor overall statistical performance.

Biogeosciences, 22, 7269-7291, 2025

3.4 Model ranking

Based on the statistical evaluation of surface chlorophyll,
nitrate, silicate, dissolved iron and POC using MBE, SSD,
RMSD, and CC (Sect. 3.1 and 3.3), along with DCM oc-
currence frequency (Sect. 3.2), we computed a variable-
specific and an overall ranking for each model following the
methodology described in Sect. 2.4. The results are shown
in Fig. 13 as a heat map. IPSL-CM6A-LR ranks the high-
est overall, placing within the top two models for all vari-
ables. GFDL-ESM4 follows closely, achieving top two rank-
ings across all variables except silicate and dissolved iron,
where it ranks third and fourth, respectively. UKESM1-0-
LL ranks third, supported by its relatively balanced perfor-
mance across all metrics. CNRM-ESM2-1, which also incor-
porates the PISCES-v2 biogeochemical model (as in IPSL-
CMO6A-LR) ranks third, with performance slightly below that
of IPSL-CMO6A-LR across most variables. CMCC-ESM2
demonstrates strong performance in chlorophyll, DCM and
POC (all rank in the top five), but its lower scores for nutri-
ent variables reduce its overall ranking to fifth. Models such
as MIROC-ES2L, CESM2, NorESM2-LLM, and NorESM2-
MM show moderate performance, ranking from sixth to
ninth. CanESM5 and ACCESS-ESM1-5 perform poorly in
biogeochemistry due to the absence of key variables (e.g.
silicate and dissolved iron), ranking tenth and eleventh. The
three MPI-ESMs, all coupled with HAMOCCS6, occupy the
lowest three positions, with weak performance across all

https://doi.org/10.5194/bg-22-7269-2025
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Figure 12. The mean bias errors in surface POC concentrations for the Southern Ocean (SO), the subtropical zone (STZ), the subantarctic
zone (SAZ), the polar front zone (PFZ), and the Antarctic zone (AZ) in DJF. POC data in CMIP6 models contain phytoplankton carbon,

detrital organic carbon, and bacterial carbon.

variables. In summary, IPSL-CM6A-LR and GFDL-ESM4
emerge as the most robust models for simulating biogeo-
chemical processes in the Southern Ocean, with consistent
and reliable performance across a suite of key biogeochemi-
cal indicators.

4 Discussion
4.1 Vertical structure of carbon

Most CMIP6 models perform relatively well in simulating
surface chlorophyll in the Southern Ocean, but they exhibit
only moderate skill in representing surface particulate or-
ganic carbon (POC). In contrast, the majority of models
struggle to accurately simulate the deep chlorophyll maxima
(DCMs), which are crucial for capturing the vertical struc-
ture of chlorophyll distributions. As discussed in Sect. 3.2,
models such as CanESM5, CNRM-ESM2-1, and GFDL-
ESM4 reproduce the horizontal frequency patterns of DCMs
reasonably well. However, when surface chlorophyll perfor-
mance is also considered, GFDL-ESM4 emerges as the only
model that satisfactorily represents both surface chlorophyll
concentrations and DCM frequency. This finding suggests
that most CMIP6 models face challenges in simulating the
vertical structure of chlorophyll, as well as POC distribu-
tions.

To compare the vertical structure of chlorophyll and POC
between models and observations, we integrated their con-
centrations over the top 100 m of the water column, where
the majority of primary production occurs (Henley et al.,
2020; Arrigo et al., 2008). Unlike the surface chlorophyll
and POC, which are generally close to observations, the ver-
tically integrated chlorophyll and POC in the upper 100 m

https://doi.org/10.5194/bg-22-7269-2025

are significantly underestimated by most CMIP6 models, ex-
cept chlorophyll in MPI-ESM-1-2-HR and POC in CMCC-
ESM2, both of which are overestimated (Fig. 14).

The underestimation of vertically integrated chlorophyll
in the top 100 m ranges from —63 % for CESM2 to —16 %
for GFDL-ESM4 (Fig. 14) and is influenced by both sur-
face chlorophyll concentrations and the vertical structure of
the water column. For example, ACCESS-ESM1-5, CESM2,
NorESM2-LM, and NorESM2-MM exhibit similar vertical
chlorophyll profiles, characterised by low surface concen-
trations, almost no deep chlorophyll maxima (DCMs), and
shallow chlorophyll threshold depth (CTD; defined as the
depth where chlorophyll falls to 10 % of the maximum),
resulting in underestimations exceeding 50 % (Fig. 14). In
contrast, MPI-ESM-1-2-HAM and MPI-ESM1-2-LR show
high surface chlorophyll levels but extremely shallow CTD
(< 50 m), leading to low vertically integrated chlorophyll. A
third pattern is found in CanESMS5, CMCC-ESM2, CNRM-
ESM2-1, IPSL-CM6A-LR, MIROC-ES2L, and UKESM1-0-
LL, which simulate appropriate threshold depths (~ 150 m)
and some occurrence of DCMs, but their low surface chloro-
phyll leads to insufficient primary production in the water
column. GFDL-ESM4 demonstrates a vertical structure most
similar to observations, with a slightly shallower threshold
depth, resulting in only an 18 % underestimation of inte-
grated chlorophyll. While CMIP6 models vary widely in
their simulation of surface chlorophyll concentrations and
generally manage to control these levels, they largely lack
the capability to accurately simulate the vertical structure of
chlorophyll, including both DCMs and CTD.

The vertical structure of chlorophyll and the formation of
DCMs are influenced by various environmental and biolog-
ical factors. Observational evidence indicates that roughly
half of DCMs are driven by photoacclimation (Cornec

Biogeosciences, 22, 7269-7291, 2025
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Figure 13. Heatmap of performance ranks for 12 CMIP6 models.
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et al,, 2021), reflected by the decline in the carbon to
chlorophyll (C: Chl) ratio from values exceeding 100 g : g
at the surface to below 50 at the base of the euphotic
zone (Maraiién et al., 2021; Boyd et al., 2024), while
the other half are deep biomass maxima (DBMs) driven
by the accumulation of phytoplankton biomass below the
surface (Cornec et al., 2021). The poor representation of
DCMs in ACCESS-ESM1-5 (with its coupled biogeochem-
ical component WOMBAT), the MPI-ESMs (coupled with
HAMOCCS6), and the NorESMs (coupled with HAMOCC) is
therefore likely due to their use of a fixed C : Chl ratio (Oke et
al., 2013; Ilyina et al., 2013; Tjiputra et al., 2020), which pre-
vents the simulation of photoacclimation processes. More-
over, most models represent chlorophyll as the biomass of
living phytoplankton only, excluding pigments associated
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with detrital cells that can still be detected in the real wa-
ter column (Behrenfeld and Boss, 2006). This structural dif-
ference contributes to weaker or shallower modelled DCMs
compared to observations. In addition, Boyd et al. (2024)
suggested that the formation and persistence of DCMs and
DBMs can also result from subsurface recycled iron and the
ammonium maxima, as well as upward silicate transport that
supports diatom production, processes that are often poorly
represented in models.

Phytoplankton functional types (PFTs) significantly influ-
ence the vertical distribution of chlorophyll. For instance,
siliceous diatoms, which account for approximately 75 %
of primary production in the Southern Ocean (Crosta et
al., 2005), are not represented in ACCESS-ESM1-5 and
CanESMS. This omission leads to the underestimation of
chlorophyll, particularly in the Antarctic zone (Fig. 14).
CMIP6 models represent no more than three PFTs, typi-
cally small phytoplankton, diatoms, and diazotrophs. In con-
trast, observational studies, such as Yingling et al. (2025),
identify at least five ecologically significant PFTs in the
Southern Ocean, including Synechococcus, Picoeukaryotes,
nanoplankton, diatoms, and microplankton. This simplifica-
tion of PFT diversity in CMIP6 models likely contributes
to inaccurate chlorophyll estimates and unrealistic vertical
chlorophyll structures.

The vertical structure of chlorophyll is linked to the
mixed layer depth (MLD), which modulates nutrient sup-
ply (Duran-Campos et al., 2019; Zampollo et al., 2023). Our
analysis indicates a positive correlation between the CTD
and MLD (Fig. S14a; R? = 0.24, p = 0.075), suggesting that
deep mixing enables phytoplankton to extend further into the
water column while maintaining detectable concentrations
(Mignot et al., 2014). Conversely, the integrated chlorophyll
within the upper 100 m shows a negative correlation with
MLD (Fig. S14b; R? =0.23, p =0.082), likely due to re-
duced light availability and dilution effects associated with
deeper mixed layers (Behrenfeld and Boss, 2006).

Furthermore, the occurrence frequency of DCMs exhibits
a Gaussian-like relationship with MLD (Fig. Sl4c; R?> =
0.42), peaking at MLD of 31 m. When the MLD is exces-
sively shallow, nutrient replenishment to the euphotic zone is
limited, inhibiting phytoplankton growth below the surface,
thereby reducing the likelihood of DCM formation (Letelier
et al., 2004). Conversely, when the MLD becomes too deep,
light availability at depth decreases to levels insufficient for
sustaining phytoplankton biomass accumulation, which sim-
ilarly suppresses DCM development (Mignot et al., 2014).
Thus, the observed distribution reflects a balance between
light limitation from above and nutrient supply from below,
a mechanism well-documented in earlier studies (Cullen,
1982; Fennel and Boss, 2003).
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Figure 14. Mean vertical profiles of chlorophyll during DJF (December—January—February) across the Southern Ocean (SO) and its subre-
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(Copernicus) and 14 CMIP6 models. Solid lines represent chlorophyll profiles in different regions, while dashed lines indicate the threshold
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4.2 Model components and their performance

The performance of CMIP6 models in simulating key bio-
geochemical variables such as chlorophyll, nitrate, silicate,
dissolved iron, POC and DCMs is jointly determined by
the complexity of the biogeochemical (BGC) module, the
adopted parameterisations of key biogeochemical processes,
and the resolution of their coupled ocean and atmosphere
model.

Among these, the complexity of the BGC module is the
most crucial factor. Key aspects include the representation of
phytoplankton functional types (PFTs), stoichiometry flexi-
bility, and nutrient uptake and regeneration schemes. Mod-
els that incorporate multiple PFTs, particularly those distin-
guishing between diatoms and non-diatom phytoplankton,
tend to outperform models with a single phytoplankton type
in simulating chlorophyll and overall biogeochemical pat-
terns (Fig. 15a; p < 0.01). In contrast, the inclusion of di-
azotrophs has a limited impact on chlorophyll performance,
as nitrate is rarely limiting in the Southern Ocean (Fig. 15b;
p=0.13).

https://doi.org/10.5194/bg-22-7269-2025

Cellular plasticity (stoichiometry) plays a vital role in reg-
ulating nutrient uptake and the cellular elemental compo-
sition under variable environmental conditions. Most mod-
els employ fixed carbon:nitrogen:phosphorus (C:N:P) ra-
tios consistent with the Redfield Ratio, while carbon :iron
ratios are generally dynamic. However, carbon : chlorophyll
and carbon : silicate ratios vary across models. A dynamic
carbon : chlorophyll ratio significantly improves the sim-
ulation of DCM (Fig. 15¢; p <0.01), as mentioned in
Sect. 4.1, while a variable carbon:silicate ratio enhances
POC representation (Fig. 15d; p < 0.01), especially given
the dominance of diatoms Southern Ocean primary produc-
tion (Crosta et al., 2005).

Phytoplankton growth in models is typically limited
by light and nutrient availability, often represented using
Michaelis-Menten kinetics (Michaelis and Menten, 1913).
However, our analysis did not reveal a clear relationship
between model performance in simulating surface chloro-
phyll or DCMs and specific light or nutrient uptake pa-
rameters, such as initial PI (production-irradiance) slope
or half-saturation coefficients for nitrate, silicate, and dis-
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Figure 15. Panels show statistical relationships between model rankings and key biogeochemical descriptors: (a) surface chlorophyll ranking
vs. inclusion of diatom; (b) surface chlorophyll ranking vs. inclusion of diazotroph; (¢) DCM frequency ranking vs. use of a variable C : Chl
ratio; (d) POC ranking vs. presentation of silica cycling (presence of an explicit Si pool or variable C : Si ratio); (e) silicate ranking vs silicate
half-saturation coefficient (Kyys;); (f) nitrate ranking vs. nitrate half-saturation coefficient (KiyNo, ); (g) dissolved iron ranking vs. iron half-
saturation coefficient (Kye); (h) dissolved iron ranking vs. iron chemistry complexity (simple-no ligand, simple ligand, or complex ligand
scheme); (i) DCM frequency ranking vs model ability to assimilate ammonium for photosynthesis. (a), (b), (c), (i) are performed using T-test,
(d) and (h) are performed using ANOVA (Analysis of Variance), (e), (f), (g) are performed using linear regression. Tests applied: two-sample
t-tests for (a), (b), (¢), (i); one-way ANOVA for (d), (h); linear regression for (e)—(g). Each point (colour/shape) represents a CMIP6 model,
and dashed lines indicate regression fits where relevant. Corresponding P-values and R? statistics (for regressions) are displayed on each

panel.

solved iron. This suggests that chlorophyll distribution is
governed by a complex interplay of environmental drivers
rather than any single parameter. In contrast, nutrient con-
centrations are more directly influenced by process parame-
terisation. For example, higher silicate half-saturation coef-
ficients (e.g. 8 mmol m~2 in PISCES-v2, as used in CNRM-
ESM2-1 and IPS-CM6A-LR) spear to improve silicate sim-
ulations (Fig. 15¢; R? =0.52, p = 0.01; Nelson et al., 2001)
Similarly, nitrate half-saturation coefficients in the range of
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1-3 mmol m~3 tend to yield better agreement with observa-
tions (Fig. 15f; R% =0.36, p = 0.02; Eppley et al., 1969) For
dissolved iron, no clear correlation was found between model
performance and the half-saturation coefficient (Fig. 15g;
R? =0.01, p = 0.81). The complexity of the iron cycle con-
tributes to variability in simulated dissolved iron perfor-
mance (Fig. 15h; p =0.03). Models with more advanced
iron chemistry, such as PISCES-v2 (BGC model coupled
in CNRM-ESM2-1 and IPSL-CM6A-LR), which includes
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strong and weak ligands, and five iron forms (free Fe(Il),
Fe(II), Fe(IIT) bounded to strong and weak ligands, and par-
ticulate iron) tend to simulate dissolved iron more accurately
than those with simple iron complexation (Tagliabue et al.,
2023). In contrast, models with simple iron complexation
schemes do not show strong ability to simulate better iron
concentrations than a simple iron model, which only contains
basic iron processes such as scavenging. These inconsisten-
cies are likely due to the limited spatial and temporal cov-
erage of iron observations, which hinders robust evaluation
and may mask the benefits of advanced iron cycling mech-
anisms. Additionally, the utilisation of ammonium appears
to promote the formation of DCMs (Fig. 15i; p < 0.01), as
ammonium-primarily produced through remineralisation-is
more readily and rapidly assimilated by phytoplankton than
nitrate. This is due to its lower energy and electron require-
ments for incorporation into cellular biomass. Consequently,
substantial ammonium production by heterotrophic bacte-
ria in the subsurface can enhance phytoplankton growth and
contribute to the development of DCMs (Boyd et al., 2024).

We also found that the resolution of the ocean compo-
nent in ESMs can influence the performance of simulated
biogeochemical variables. For example, MPI-ESM1-2-HR
and MPI-ESM1-2-LR, both coupled with the same biogeo-
chemical model (HAMOCC®), differ significantly in ocean
resolution 0.4° vs 1.5°, respectively, and show notable dif-
ferences in biogeochemical performance. The mean surface
chlorophyll concentration in austral summer is 2.37 mgm™3
in MPI-ESM1-2-HR, compared to 1.35mgm™> in MPI-
ESM1-2-LR which is closer to the Copernicus chlorophyll
dataset. These discrepancies may arise from resolution-
induced differences in ocean circulation and physical con-
ditions, which influence nutrient availability, light penetra-
tion, and phytoplankton dynamics. In contrast, variations in
atmospheric model resolution appear to have a limited im-
pact on ocean biogeochemistry. For instance, NorESM2-MM
and NorESM2-LM, which use the same ocean biogeochem-
ical model (HAMOCC) but differ in atmospheric resolution
(2° vs 1°), exhibit nearly identical biogeochemical outcomes
such as mean austral summer surface chlorophyll concen-
trations of 0.56 and 0.55mgm™3, respectively. These find-
ings suggest that while higher ocean resolution can improve
the realism of physical processes affecting biogeochemical
simulations, it does not necessarily guarantee better biogeo-
chemical performance.

4.3 Avenues for improvement in biogeochemical
representation

This study provides a comparative assessment of several
ocean biogeochemical indicators for 14 CMIP6 ESMs over
the Southern Ocean. Although some models performed ad-
equately, there remain several key directions for future im-
provements:
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— Improvements in the underlying physical ocean mod-

els are equally critical for advancing BGC performance.
Many biases originate from deficiencies in simulating
stratification, mixed layer depth, and large-scale circu-
lation. In particular, key processes such as the entrain-
ment of nutrient-enriched shelf waters along the Patag-
onian Shelf and the nutrient supply from icebergs and
glacial melt along East Antarctica are poorly resolved
in coarse-resolution models. Increasing model resolu-
tion, refining submesoscale and vertical mixing param-
eterisations, and enhancing the coupling with sea-ice
dynamics and meltwater fluxes will be essential to bet-
ter capture nutrient transport pathways and the resulting
spatial distribution of phytoplankton.

The representation of key biogeochemical processes in
most BGC models remains simplified or parameterised
based on limited observations. For instance, differences
in the phytoplankton functional types (PFTs), elemental
composition (fixed or variable stoichiometry), and nutri-
ent uptake parameterisation contribute to model diver-
gence. Future models should incorporate a more com-
plex marine food web, and more dynamic parameteri-
sations informed by field and laboratory experiments,
especially under Southern Ocean specific conditions.

As the key factor controlling the Southern Ocean pri-
mary production, iron cycles and their representations
remain poor in most models, compared to limited iron
sampled data. Improvements in the simulation of iron
sources (e.g., dust deposition, sediment resuspension),
bioavailability (i.e., more complex iron chemistry mod-
ule (Tagliabue et al., 2023), such as including iron-
binding ligands), and biological recycling are essential
to help reduce the bias in simulated chlorophyll.

Most models lack a good representation of the verti-
cal structure of chlorophyll and biomass. For example,
some models exhibit discrepancies in simulating mixed
layer depth and other physical properties, which in turn
affects nutrient supply. There is also an oversimplified
remineralisation by heterotrophic bacteria, and a lack
of diversity of PFTs. Future efforts could expand the
model structure to capture these ecological dynamics,
which are particularly important in determining vertical
profiles and export efficiency for biomass.

Observational constraints remain limited, especially for
subsurface variables such as DCMs, dissolved iron, and
POC. Future work should prioritise the integration of
additional in situ datasets to validate and improve model
parameterisations. Ensemble data assimilation or ma-
chine learning approaches could also be explored for
model tuning.

Biogeosciences, 22, 7269-7291, 2025
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5 Conclusions

This study evaluated the performance of key biogeochemical
variables, including austral summer surface chlorophyll and
deep chlorophyll maxima (DCMs), nitrate, silicate, dissolved
iron, and particulate organic carbon (POC) across 14 CMIP6
models in the Southern Ocean (south of 30°S). The re-
sults reveal substantial variability in model skill. While some
models demonstrated strong performance, others showed
significant over- or underestimations. Among them, GFDL-
ESM4 was the most effective in reproducing surface chloro-
phyll and POC and DCM features, while IPSL-CM6A-LR
performed best in simulating nutrient distribution, such as
nitrate, silicate, and dissolved iron. Based on aggregated per-
formance across all variables, the top five models for sim-
ulating Southern Ocean biogeochemistry are IPSL-CMO6A-
LR, GFDL-ESM4, CNRM-ESM2-1, UKESM1-0-LL, and
CMCC-ESM2. Our analysis highlights common limitations
across CMIP6 models: the underrepresentation of vertical
biogeochemical structures, such as the DCM distributions,
and the inadequate simulation of physical nutrient transport
processes, including upwelling and terrestrial nutrient inputs
in productive shelf regions such as the Tasman Sea and the
Patagonian Shelf. Additionally, spatial mismatches and per-
sistent biases, particularly for dissolved iron and POC, un-
derscore the need for targeted model improvements. Over-
all, this study not only provides a comprehensive evaluation
of model performance for key biogeochemical variables but
also offers insights into areas requiring refinement. These in-
sights can guide future model development and support more
informed model selection. Enhancing the representation of
biogeochemical processes in Earth system models is essen-
tial for improving projections of the Southern Ocean’s role in
the global carbon and nutrient cycles under ongoing climate
change.
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https://doi.org/10.5281/zenodo.17693788, Cheng, 2025).
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