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Abstract. Quantification of environmental controls on
ecosystem photosynthesis is essential to understand the im-
pacts of climate change and extreme events on the car-
bon cycle and the provisioning of ecosystem services. Ma-
chine learning models have become popular for simulating
ecosystem terrestrial photosynthesis because of their pre-
dictive skill, but often do not consider temporal dependen-
cies in the data, even though process understanding suggests
that these should exist. Here, we investigate how models
that account for temporal structure impact the prediction of
ecosystem photosynthesis. Using time-series measurements
of ecosystem fluxes paired with measurements of meteo-
rological variables from a network of globally distributed
sites (N = 104) and remotely sensed vegetation indices, we
train three different models to predict ecosystem gross pri-
mary production (GPP): a mechanistic, theory-based photo-
synthesis model, a memoryless multilayer perceptron (MLP)
and a recurrent neural network (Long Short-Term Memory,
LSTM). Through comparisons of patterns in model error, we
assess the ability of these models to predict GPP across a
wide diversity of ecosystems and climates, and to account for
temporal dependencies, with a focus on effects by low root-
ing zone moisture and freezing air temperatures. While both
deep learning models outperform the mechanistic model, we
find their overall performance is similar, with an R2 of 0.79
spatial out-of-sample predictions for both models. Overall,
model skill is consistently good across moist sites with strong
seasonality. During periods affected by temporal patterns
such as drought and frost, the LSTM shows lower model er-
ror than the MLP as well as an LSTM with shuffled input,

showing that there is an advantage from learned temporal
dependencies. Generalisation patterns reveal that the LSTM
tends to be more successful than the (time-agnostic) MLP in
simulating GPP in dry environments. However, a large vari-
ability in model skill across relatively dry sites remained.
This was not resolved by the inclusion of additional earth
observation data, although this improved overall model per-
formance. Insufficient information on the exposure and re-
sponse to water stress and related effects on GPP appear to
be dominant sources of error for modelling ecosystem fluxes
across the globe. With the increasing frequency of hydrocli-
matic extreme events, effects of water limitation are expected
to become more prevalent, which calls for models that better
represent its impact on ecosystem function.

1 Introduction

Photosynthesis plays a major role in the global carbon cycle
and drives important ecosystem functions (Beer et al., 2010).
Ecosystem-level gross CO2 uptake through photosynthesis
is referred to as gross primary production (GPP) and varies
in response to the environment. Understanding its variations
across space and time as well as its dependencies on envi-
ronmental conditions is key for predicting changes and feed-
backs in the terrestrial biosphere (Booth et al., 2012).

GPP variations are driven by multiple, simultaneously
varying environmental factors and the physiological and
structural responses of plants to these conditions. Solar radia-
tion supplies the energy for photosynthesis and acts as a dom-
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inant driver of GPP, depending on light absorption (Mon-
teith, 1972). Temperature, light and water availability trigger
phenological changes and regulate seasonal cycles of active
leaf surface area and therefore seasonal changes in light ab-
sorption. Air temperature affects leaf temperatures, which in
turn govern enzymatic rates and photosynthesis (Berry and
Bjorkman, 1980; Kattge and Knorr, 2007; Kumarathunge
et al., 2019; Bernacchi et al., 2003). Low moisture avail-
ability across the rooting zone, in combination with a high
vapour pressure of air at the leaf surface, determines the ef-
fects of water stress and can lead to GPP reductions (Stocker
et al., 2018; Novick et al., 2016).

Continuous GPP estimates can be obtained from eddy co-
variance measurements of ecosystem gas exchange (Baldoc-
chi, 2020) and capture surface-atmosphere exchange fluxes,
integrated over a radius on the order of a kilometre around the
site of measurement (Chu et al., 2021). These measurements,
paired with observations of meteorological variables and soil
conditions, are made available through different networks
and initiatives (e.g., AmeriFlux, 2025; ICOS, 2025; OzFlux,
2025). The combination of data from multiple regional net-
works has led to large datasets with standardized process-
ing of eddy covariance measurements from a large number
of sites (Pastorello et al., 2020; Hufkens and Stocker, 2025;
Abramowitz et al., 2024). The availability of large datasets
of GPP along with their environmental covariates, and paired
with remotely sensed variables, has made machine learning
(ML) a widely used approach for predicting spatio-temporal
variations of ecosystem-atmosphere exchange fluxes (Kang
et al., 2025; Gaber et al., 2024; Tramontana et al., 2016;
Montero et al., 2024; Papale et al., 2015; Yang et al., 2007;
Jung et al., 2011; Joiner and Yoshida, 2020; Zheng et al.,
2020).

Process understanding and empirical patterns of GPP dy-
namics suggest that there should be temporal dependencies
in data of GPP and its predictors. Temporal dependencies
arise as a result of several processes. Low soil moisture can
reduce GPP (Stocker et al., 2018) and reflects the history
of precipitation, radiation, and leaf phenology over the pre-
ceding weeks to months. Plant hydraulic processes induce a
temporal hysteresis effect over the course of diurnal cycles
(Tuzet et al., 2003). Physiological changes are caused, e.g.,
by the seasonal acclimation of the photosynthetic apparatus
to varying levels of radiation inputs and temperature (Ku-
marathunge et al., 2019; Luo and Keenan, 2020; Liu et al.,
2024b; Berry and Bjorkman, 1980). Ecosystems in cold cli-
mates have been found to delay springtime photosynthesis
resumption early in the season through photoprotective pro-
cesses, despite high levels of solar radiation (Luo et al., 2023,
henceforth referred to as “cold acclimation”). Stress by ex-
treme environmental conditions can cause delayed and long-
lasting effects, such as impaired transpiration and reduced
CO2 assimilation (Barber and Andersson, 1992; Reichstein
et al., 2013; McDowell et al., 2022; Bastos et al., 2020; Yu
et al., 2022).

Several published machine learning models for GPP treat
values of GPP time series as independent and identically dis-
tributed observations and therefore do not account for tem-
poral dependencies (Nelson et al., 2024; Kang et al., 2025;
Tramontana et al., 2016; Gaber et al., 2024). This limitation
may be relieved by temporal aggregation to daily-monthly
time scales and by pairing data with additional, remotely
sensed observations that capture phenological changes and
variations in the amount of active, light-intercepting foliage
area (Baldocchi, 2018). However, additional physiological
changes that affect the efficiency of light utilization for CO2
assimilation at the leaf level are more challenging to cap-
ture by remotely sensed reflectance data (Ryu et al., 2019;
Stocker et al., 2018). As a consequence, substantial unex-
plained GPP variation is expected to remain at the seasonal
and diurnal time scales.

A potential solution for this problem is the use of time-
aware machine learning algorithms that can learn non-
stationary relationships and temporal dependencies. Such al-
gorithms have been introduced for modelling GPP and re-
lated fluxes (Nakagawa et al., 2023; Besnard et al., 2019;
Kraft et al., 2025; Montero et al., 2024). Montero et al.
(2024) compared the performance of three recurrent archi-
tectures for GPP modelling and evaluated them on GPP
extremes. Besnard et al. (2019) evaluated a Long Short-
Term Memory (LSTM) network to study net ecosystem CO2
exchange. Kraft et al. (2025) assessed sequential models
for global upscaling of evapotranspiration. Nakagawa et al.
(2023) introduced a temporal fusion transformer for global
upscaling of GPP. In these previous studies, the impact of
using such an architecture for modelling known temporal ef-
fects was either not evaluated or inconclusive.

In contrast to ML models, mechanistic GPP models, such
as the P-model (Stocker et al., 2020), embody process under-
standing and provide a theory-based prediction that accounts
for these known temporal dependencies. The foundation in
plant physiology may also help these models to generalise
more robustly, as the underlying relations remain valid when
extrapolating to new conditions not seen in the training data.
The price to pay is that these models lack the flexibility to
pick up any patterns that were not anticipated during their
design, whereas the high representation power of ML models
gives them the ability to uncover and respect such patterns.

While the P-model only uses a single greenness index
derived from remote sensing, previous work on flux mod-
elling has shown that additional remotely sensed variables
can be informative (Nelson et al., 2024; Kraft et al., 2025).
The signal from thermal remote sensing may reflect changes
in photosynthesis that are driven by physiological responses
and stomatal regulation, affecting transpiration and there-
fore surface energy partitioning and surface heating. There-
fore, land surface temperature (LST) may be useful infor-
mation for GPP prediction. Common mechanistic and light
use efficiency models don’t consider this information as ad-
ditional forcing. Furthermore, the full information of sur-
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face reflectance in all available individual bands may contain
additional information about GPP changes as pigments de-
ployed under stress conditions or the leaf water content can
affect surface reflectance beyond what commonly used single
greenness-based indices reflect (Ceccato et al., 2001; Gamon
et al., 2016).

In this study, we evaluate the use of an LSTM (Hochre-
iter and Schmidhuber, 1997) as a predictor of GPP. LSTMs
have been shown to be successful at tasks where memory
effects across a range of temporal scales are involved, such
as sea surface temperature prediction (Zhang et al., 2017),
rainfall-runoff modelling (Kratzert et al., 2018) and canopy
greenness modelling (Liu et al., 2024a). To contrast the re-
current and purely data-driven design, we compare against
a standard, non-recurrent multilayer perceptron (MLP), an
LSTM with permuted input, as well as to the process-based
P-model. The P-model serves as a benchmark with known
treatment of temporal effects. We compare these models
based on model performance and generalisation capabilities.
To investigate the ability of the LSTM to account for tempo-
ral dependencies, we assess seasonal patterns of cold accli-
mation and water limitation effects in dry conditions. Addi-
tionally, we analyse spatial patterns of model generalisability
(spatial out-of-sample performance) with respect to different
environmental factors.

In addition to the standard set of predictors, we include
LST and multiple bands of surface reflectance. To aid the
models in simulating temporal dependencies, we also pro-
vide additional features related to soil water availability. In
view of the known influence of root zone moisture on GPP
(Stocker et al., 2018) and the inability of the MLP to account
for the precipitation and radiation history (and thus implicitly
for the evolution of root zone moisture), we test if its perfor-
mance improves when (simulated) soil moisture is provided
as a complementary predictor. Providing observation-derived
soil moisture or a general index of water availability as an ad-
ditional predictor is a common approach taken also for other
memoryless GPP models (Nelson et al., 2024; Kang et al.,
2025; Tramontana et al., 2016; Gaber et al., 2024). While the
LSTM is expected to be able to learn the effects of soil mois-
ture limitation, we also test whether it benefits from an Earth-
observation derived estimate of root zone water storage ca-
pacity (Stocker et al., 2023) as additional time-invariant con-
text.

2 Materials and methods

2.1 Data

We sourced daily GPP data from a collection of eddy co-
variance flux sites gathered from the PLUMBER2 frame-
work (Ukkola et al., 2022), which includes sites from OzFlux
(Isaac et al., 2017), FLUXNET2015 (Pastorello et al., 2020),
LaThuile (2025) as well as AmeriFlux (2025), ICOS Warm

Winter 2020 (Warm Winter 2020 Team and ICOS Ecosystem
Thematic Centre, 2022) and ICOS Drought 2018 (Drought
2018 Team and ICOS Ecosystem Thematic Centre, 2020).
Site selection was performed through several steps. Sites lo-
cated in cropland or wetland ecosystems were excluded. For
each site, we only included full calendar years of data. Some
years of data were excluded due to evident inconsistencies
found by visual inspection. We selected sites with at least five
consecutive years of high-quality, gap-free data. GPP data
were included if at least 50 % of all half-hourly measure-
ments were of good quality (either measured or gap-filled
with high confidence).

We used GPP estimates generated by the nighttime par-
titioning method (GPP_NT_VUT_REF; Reichstein et al.,
2005). Half-hourly GPP estimates were aggregated to ob-
tain daily GPP values. In addition to GPP, meteorolog-
ical variables were obtained, which were measured di-
rectly at the flux sites. We used the following mete-
orological variables: air temperature (TA_F_MDS), day-
time air temperature (TA_DAY_F_MDS), shortwave incom-
ing radiation (SW_IN_F_MDS), longwave incoming radi-
ation (LW_IN_F_MDS), daytime vapour pressure deficit
(VPD_DAY_F_MDS), air pressure (PA_F), precipitation
(P_F) and wind speed (WS_F). Observations that were either
missing or had insufficient quality (< 50 % measured or gap-
filled half-hourly measurements with high confidence) were
gap-filled with linear interpolation for air temperature, re-
spectively k-nearest neighbour imputation per site. This only
affected around 10 % of all predictor values.

Along with local site-level measurements, we used re-
motely sensed estimates of the fraction of absorbed photo-
synthetically active radiation (fAPAR), extracted from the
MODIS FPAR MCD15A2H Collection 6.1 product (My-
neni et al., 2021). fAPAR captures variations in phenology
and represents the amount of solar radiation absorbed by the
canopy and usable for photosynthesis. fAPAR data were ex-
tracted for the pixel (500× 500 m2 area) that contains the
flux measurement site and for the eight pixels immediately
surrounding it. The nine values where combined through a
weighted average, using as weights the inverse of their vari-
ance as per the data product. The fAPAR sequences were
gap-filled based on the mean seasonal cycle, then smoothed
and interpolated to the time resolution of the flux data with a
LOESS spline.

We retrieved additional pre-processed remote sensing vari-
ables from the MODIS instruments through the FluxnetEO
dataset (Walther et al., 2022). We included the first seven
reflectance bands (RED, NIR, BLUE, GREEN, SWIR1,
SWIR2, SWIR3) as well as daytime and nighttime land
surface temperature (LST) at a viewing zenith angle of 0°
(LST_TERRA_Day_VZA0, LST_TERRA_Night_VZA0).

The collection of flux sites was further filtered to include
only sites with data available from the FluxnetEO dataset.
This process resulted in a collection of 104 sites (Fig. 1) with
a total of 1020 site-years of data. Detailed site information is
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given in Appendix A. The selected sites cover a wide range
of environmental factors, in particular aridity (Figs. 1 and
D1). To measure aridity, we calculated the moisture index
(MI) for each site as total P/PET, where P is the precipi-
tation measured at the site and PET is the potential evapo-
transpiration following Priestley-Taylor (Priestley and Tay-
lor, 1972), as implemented in the SPLASH ecosystem wa-
ter balance model (Davis et al., 2017). The root zone water
holding capacity for each site was sourced from Stocker et al.
(2023).

2.2 Models

We have implemented two deep learning models to evaluate
different architectures for the prediction task. To account for
temporal dependencies, we used a Long Short-Term Mem-
ory (LSTM) network (Hochreiter and Schmidhuber, 1997).
The network included LSTM cells with layer normalization,
known to stabilize hidden dynamics and reduce training time
(Ba et al., 2016). The number of layers and hidden dimension
of the network were tuned as hyperparameters on validation
data. The LSTM layers were followed by a variable number
of linear layers with GELU activations (Hendrycks and Gim-
pel, 2023) that each halve the dimension until reaching a size
of 16 neurons.

To isolate the impact of recurrence, we implemented a sec-
ond neural network model without any memory mechanism,
namely a standard multilayer perceptron (MLP). Its archi-
tecture is identical to keeping only the linear layers of the
LSTM. The hidden dimension of the first layer was tuned
as a hyperparameter. The architectural similarity means that
the difference between predictions of the two networks is a
good indication for the influence of information from past
time steps. Hyperparameters were tuned separately to ensure
both variants reach their best performance. We also evaluated
a version of the LSTM where we permute the temporal order-
ing (LSTMperm). This model has the same architecture and
capacity but it cannot rely on memory as the temporal pat-
terns are eliminated from the input data. This version serves
as an additional evaluation that disentangles the influence of
the memory of the LSTM from other model properties such
as the overall capacity.

The third model was the P-model, a mechanistic, theory-
based representation of ecosystem-level photosynthesis ac-
climation and GPP (Stocker et al., 2020; Wang et al., 2017;
Prentice et al., 2014). It builds on the widely used Farquhar-
von Caemmmerer-Berry (FvCB) model for leaf-level C3
photosynthesis (Farquhar et al., 1980). The FvCB model is
combined with an optimal balancing of the costs of carbon
assimilation and transpiration (Prentice et al., 2014). Further-
more, the P-model implements the coordination hypothesis,
which states that photosynthesis is balanced at the intersec-
tion of light and Rubisco-limited assimilation rates during
average daytime conditions (Maire et al., 2012). Based on
these relations, the P-model predicts photosynthesis accli-

mation parameters to describe the processes that determine
the light use efficiency (LUE). GPP is then modelled as the
product of LUE and absorbed photosynthetically active ra-
diation (APAR), which in turn is taken to be the product of
the photosynthetic photon flux density (PPFD) and fAPAR.
The forcings for the P-model correspond to the input data of
the LSTM and the MLP. We used the FULL model setup as
described in Stocker et al. (2020), which includes an empiri-
cal soil moisture stress function and temperature dependency
of the intrinsic quantum yield. These two components were
calibrated to the data with an optimization of four parame-
ters through minimising the root mean squared error with the
generalised simulated annealing algorithm, as implemented
in the GenSA R package (Xiang et al., 2013). The P-model
is implemented in the R package rsofun (Stocker et al.,
2024).

2.3 Experimental setup

We assessed the three models for their ability to handle tem-
poral dependencies and their ability to generalise to new sites
with different environmental conditions.

2.3.1 Global model

We first evaluate each model in a spatial cross-validation
setup, which measures performance at sites that were not
seen during model training (where “training” of the P-model
means calibration). For the spatial cross-validation, we as-
signed each site to one of five folds, stratified based on
the per-site mean air temperature and the moisture index to
achieve a similar distribution of climate types in all folds.
In turn, four folds served as training data to fit the model
weights and tune the hyperparameters, then GPP predictions
were produced for the test sites in the fifth, held-out fold.

2.3.2 Site-specific model

To separate changes in environmental conditions (which can
be covered by the global model) from potential variations
of the functional relationships between different sites (which
cannot be represented by a single set of model parameters),
we also fit separate per-site models and evaluate them with
a temporal cross-validation. In that setup, the temporal se-
quences of predictors and GPP at every individual site are
split into years, setting the start of the year to the coldest
month for sites in temperate, continental and polar climates,
and to the wettest month for tropical and arid sites (following
the Köppen-Geiger climate code). Cross-validation then pro-
ceeds by holding out every year in turn, and fitting the model
on the remaining years.

2.3.3 Model training

In both setups, the models are trained on chunks of 128 d,
whereas testing was performed on the full sequences (i.e., all
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Figure 1. Site locations and their moisture indices. For each category, the quantised moisture index values and number of sites are given in
brackets.

data of a site in the spatial cross-validation setup, respectively
individual years in the temporal cross-validation setup). The
training chunks were created per site, with a random start
date of the initial chunk within the first 96 d and a sliding
window with regular overlap of 32 d. The features were stan-
dardized using the mean and standard deviation of the train-
ing folds.

Models were trained by minimising the mean squared er-
ror with the Adam optimizer (Kingma and Ba, 2017). Train-
ing was performed for a maximum 50 iterations and stopped
after 10 iterations without improvement in the validation
loss. To limit overfitting, an L2 penalty was applied on the
parameter updates, and dropout (Hinton et al., 2012) was
used after each LSTM layer except for the last layer. The
learning rate was adaptively reduced when the loss no longer
improved for several iterations. The batch size, the weight of
the L2 penalty, the dropout rate, the initial learning rate, the
patience before reducing the learning rate as well as the re-
duction factor were all tuned in an inner cross-validation loop
within each data fold. In the spatial cross-validation setup, a
3-fold inner cross-validation was performed within each of
the 5 data folds. The sites were distributed based on mean air
temperature and moisture index to ensure equal representa-
tion of climate types across folds. The hyperparameters were
tuned using random sampling of 20 configurations. In the
temporal cross-validation setup, hyperparameters were tuned
for each held-out test year based on the remaining years of
data for each site. A cross-validation with 5 randomly cho-
sen held-out validation years was performed. In this setup,
the hyperparameters were tuned using random sampling of
40 configurations. In both setups, the configuration with the
lowest average validation RMSE across the held-out folds
was selected. The set of options for each hyperparameter is
listed in Table 1. After hyperparameter tuning, models were
trained on the full data folds with the chosen hyperparameter
configurations, with 20 % of the sites used as validation data
for early stopping of the training.

2.3.4 Evaluation

GPP predictions were evaluated using the squared Pearson’s
correlation coefficient (R2) and root mean squared error
(RMSE). In addition to assessing the daily predictions, we
aggregated predictions and observations to different scales.
We calculated the mean seasonal cycle by averaging over all
years observed at a site to obtain a mean value per day of the
year. Predictions and observations were also temporally ag-
gregated to site-level means. Moreover we calculated daily
anomalies, defined as deviations between the daily values
from the mean seasonal cycle; as well as yearly anomalies,
defined as deviations between a site’s annual mean values
and its global, multi-year mean.

The site-specific models were evaluated for test years that
start at the wettest or coldest month. For days before the
first day of the first such month, no predictions where made.
When comparing the site-specific model and the global
model at the site level, we therefore filter the predictions of
the global model to comprise the exact same test days as the
site-specific model.

When evaluating the P-model, the same spatial cross-
validation was used as for the machine learning models,
with the model parameters calibrated separately for each
fold (Stocker et al., 2024).

We investigated the ability of the models to capture two
different, well-known temporal effects. To test how well soil
moisture effects are reproduced, we looked at the (abso-
lute) percentage error of the model predictions as the poten-
tial cumulative water deficit (PCWD) increases. PCWD was
calculated from the flux data as the cumulative difference
between potential evapotranspiration (PET) and precipita-
tion (Stocker, 2021). PET was estimated based on Priestley-
Taylor (Priestley and Taylor, 1972), as implemented in the
SPLASH ecosystem water balance model (Davis et al.,
2017). Values were pooled from all sites and all test days per
PCWD interval, with intervals chosen such that they have
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at least 100 data points. We evaluated the temporal effect
from soil moisture from a different angle through an anal-
ysis of model bias during drought events identified from the
full dataset. Drought events were collected through the iden-
tification of sites and days where light use efficiency was re-
duced for at least 3 d (Stocker et al., 2018). All events were
aligned at the onset. The bias was calculated as the difference
between model predictions and observations and aggregated
per day for the period between 10 d before the start of each
event and up until 100 d after the start of each event. The bias
values were normalised by subtracting each value by the me-
dian value during the window covering between 1 and 10 d
before each event.

Second, we evaluated the models’ ability to reproduce cold
acclimation effects. We selected four sites that have been
found to have a reduced light use efficiency and thus a de-
layed increase in GPP at the start of the growing season (DE-
Hai, US-Ha1, US-MMS, US-PFa). Prediction errors at these
sites were contrasted with those at four sites that did not ex-
hibit any GPP delay (BE-Vie, FI-Hyy, NL-Loo, RU-Fyo),
based on the findings of Luo et al. (2023). For the two groups
of sites, we aggregated and compared predictions per day of
the year with different models.

For the global LSTM model, we compared site-level per-
formance across various environmental conditions: moisture
index (P/PET), Köppen-Geiger climate zone (Beck et al.,
2018), and IGBP vegetation type (International Geosphere-
Biosphere Programme). To further investigate the general-
isation of the models across sites, we compared site-level
performance between the global model and the site-specific
model, by computing the relative difference1R2

= R2
global−

R2
site and the ratio rRMSE= RMSEglobal/RMSEsite.
We evaluated two different sets of predictor variables. The

standard set included the site-level meteorological measure-
ments as well as fAPAR. The expanded set included LST
variables and the MODIS reflectance bands. The model eval-
uations with this expanded set are denoted by a + after the
model name. We compared this setup to the standard pre-
dictor set in terms of overall performance. Separately to the
standard setups, we fed additional predictors to the feature
set of the deep learning models. For the MLP, we added soil
moisture. Due to the limited quality of measured soil mois-
ture at many flux sites, we used modelled soil moisture from
the SPLASH water balance model (Davis et al., 2017). For
the LSTM, we added the root zone water storage capacity,
extracted from the global map of Stocker et al. (2023).

Finally, we evaluated a Temporal Convolutional Net-
work (Bai et al., 2018) and an LSTM with attention layer
(Vaswani et al., 2017) as two alternative sequence models
(Appendix C). We compared their overall performance as
well as their event response performance to the LSTM.

The details of the data, models and experimental setup are
summarised in Tables B1, B2 and B3.

Table 1. Hyperparameter search space for the LSTM and MLP
models.

LSTM and MLP

Hidden dimension 64, 128, 256, 512
Learning rate 10−2, 5× 10−3, 10−3, 5× 10−4

Scheduler patience 2, 3, 5
Scheduler factor 0.1, 0.5
Weight decay (λ) 10−3, 10−4, 10−5, 0
Batch size 64, 128, 256

LSTM-only

Dropout 0, 0.1, 0.2, 0.3, 0.4
Number of layers 1, 2, 3, 4, 5

3 Results

3.1 Overall performance

Overall, we found that both machine learning models in the
global setting (i.e., a single, fixed model trained on multiple
sites) predict GPP more accurately than the process-based P-
model (Table 2). Furthermore, the model variants with the
additional remote sensing variables (+ version) performed
better than the models with only the standard predictor set.
For daily predictions, the R2 calculated from pooled data of
all sites was 0.79 for both the LSTM+ and the MLP+, com-
pared to 0.64 for the P-model. The RMSE was 22.5 % lower
for the LSTM+ than for the P-model. Both the LSTM+ and
MLP+ modelled the seasonal cycle well, with R2 values of
0.88. The P-model achieved an R2 of 0.78 for modelling
the mean seasonal cycle. The prediction of anomalies was
more challenging for all three evaluated models. The LSTM+
achieved an R2 of 0.28 for daily anomalies and R2 of 0.1
for annual anomalies. While the differences in both R2 and
RMSE were minimal between the LSTM+ and MLP+, the
P-model was outperformed in both aspects.

Model performance varied substantially between sites
(Fig. 2). For 94 (out of 104) sites the LSTM+ reached a
higher R2 value than the P-model. The LSTM+ also out-
performed the MLP+ at slightly more than half of the sites.
While the LSTM+ clearly outperformed the LSTM in terms
of overall metrics, the performance didn’t improve at every
site. At 68 out of 104 sites, the LSTM+ outperformed the
LSTM. In further analyses, we focus on the + versions of
each model, as the overall performance evaluation indicates
that they are better predictors of GPP.

More salient differences between the models were ob-
served when inspecting the predicted mean seasonal cycles
within different climate zones (Fig. 3). The deep learning
models were better at predicting the timing of early spring
GPP increase in several climates (Köppen-Geiger codes Dfb,
Dfc, Cfa). They also outperformed the P-model in desert and
semi-arid climates.
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Table 2. Performance metrics (R2 and RMSE) of the global model at different aggregation levels. Metrics are calculated from pooled data
of all sites. “Daily” evaluates daily predictions and observations. “Seasonal” aggregates by day of year per site. “Spatial” uses site means.
“Daily anom.” is the deviation from each site’s mean seasonal cycle. “Annual anom.” is the deviation of the annual mean from the multi-year
mean per site. The best values per row are printed in bold.

Metric Aggregation LSTM LSTM+ LSTMperm LSTMperm+ MLP MLP+ P-model

R2 Daily 0.75 0.79 0.74 0.77 0.75 0.79 0.64
Seasonal 0.84 0.88 0.83 0.87 0.84 0.88 0.78
Spatial 0.73 0.81 0.73 0.77 0.73 0.82 0.61
Daily anom. 0.26 0.28 0.25 0.26 0.26 0.27 0.2
Annual anom. 0.1 0.1 0.14 0.1 0.12 0.12 0.05

RMSE Daily 1.92 1.79 1.96 1.85 1.92 1.77 2.32
Seasonal 1.37 1.2 1.4 1.26 1.39 1.17 1.65
Spatial 0.89 0.74 0.89 0.82 0.89 0.71 1.06
Daily anom. 1.37 1.35 1.39 1.39 1.37 1.37 1.64
Annual anom. 0.44 0.44 0.42 0.44 0.42 0.43 0.46

Figure 2. Comparison of the LSTM+ against the P-model (a), against the MLP+ (b), and against the LSTM (c). R2 of predicted versus
observed values of daily GPP per site from the global cross-validation is shown for the LSTM+ along the y-axis and the P-model/MLP/LSTM
along the x-axis. The dotted line indicates equal performance.

3.2 Temporal patterns in model error

From the overall performance metrics, it appeared that the
LSTM+ is not clearly better than the MLP+, despite its abil-
ity to learn temporal patterns. However, the improved per-
formance of the LSTM+ compared to the LSTMperm+ in-
dicates that temporal dependencies were learned. Targeted
evaluations of temporal patterns give a clearer insight into
the differences between the MLP+, the LSTMperm+ and the
LSTM+.

The LSTM+ showed different error characteristics than the
P-model at high values of PCWD. While relative errors in-
creased with higher PCWD for the P-model, they stayed rel-
atively constant for the LSTM+ (Fig. 4a) For all pooled data,
the four models showed similar error distributions at lower
levels of PCWD, again the errors of the P-model increased at
higher PCWD values, whereas they did not for the LSTM+,
LSTMperm+ and the MLP+.

Separating the analysis of model errors versus PCWD by
vegetation type revealed differences at higher PCWD values
(Fig. 4b). For evergreen forests, relative errors increased for
the P-model, the MLP+ and the LSTMperm+ from a PCWD
of 800 mm, but also decreased again. The relative errors
increased less for the LSTM+ than for the other models.
For non-evergreen forests, both the LSTM+ and the MLP+
showed lower relative error than the P-model above a PCWD
of 1000 mm.

The comparison between sites with and without cold ac-
climation (delayed GPP) revealed clear differences w.r.t. the
predicted seasonal cycles (Fig. 5) of the different models and
the seasonal cycle of model bias. For sites without a delay
in springtime GPP increase, the LSTM+ performed best dur-
ing spring and summer. For sites with cold acclimation, the
deep learning models capture the delay better than the P-
model. The LSTM+ predicts the evolution of GPP best dur-
ing springtime, although that edge is mostly after the start
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Figure 3. Mean seasonal cycle of GPP and model predictions by climate zone and hemisphere. Predictions from the global cross-validation
for the LSTM+, LSTMperm+, MLP+ and P-model are compared against GPP observations. Climate zone boundaries are from Beck et al.
(2018).

of spring, whereas some bias remains at the onset of GPP
increase as well as during summer.

The event analysis (Fig. 6) showed that the deep learning
models predicted the drought response equally well during
the first 20 d after an event. The LSTM+ predicted the re-
sponse best from 20 d after the start of a drought event.

Evaluations of the alternative sequence models (Ap-
pendix C) showed that while the TCN+ performed better at
60 out of 109 sites (Fig. C1), no difference was found be-
tween models in terms of their performance during drought
events (Fig. C2), supporting the further evaluation of the
LSTM+ for temporal patterns.

3.3 Spatial patterns in model performance

The observed error patterns suggest a qualitatively differ-
ent behaviour of machine learning models, especially the
LSTM+, during conditions where temporal effects are known
to occur. To investigate this further at the site level, we plot
model performance per site against relevant site characteris-
tics (Fig. 7).

The LSTM+ performed best for relatively moist sites.
Across sites with moisture index P/PET≥,0.75 the median
R2 is 0.82, whereas it was only 0.65 for more arid sites
(MI< 0.75). The (normalised) RMSE follows a similar pat-
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Figure 4. Error distribution across different amounts of cumulative water deficit (PCWD, quantized into 100 mm bins). Bins with less than
100 samples are not shown. Predictions are by the global models. Lines denote the median values, shaded regions lie between the lower
(25 %) and upper (75 %) quartiles. (a) all data pooled. (b) Evergreen sites, including Evergreen Needleleaf Forests and Evergreen Broadleaf
Forests. (c) Non-evergreen sites, including all other vegetation types (Deciduous Forests, Shrublands, Savannas and Grasslands).

Figure 5. Mean seasonal cycle of GPP and model predictions of the LSTM+, LSTMperm+, MLP+ and P-model for four sites with delayed
GPP (a) and four sites without delayed GPP (b), as well as mean bias per day of the year for sites with delayed GPP (c) and non-delayed
GPP (d). The bias is calculated as the difference between model predictions and observations.

tern, with a median value of 0.62 for sites with MI< 0.75,
compared to 0.44 for moist sites (Fig. D2).

We found only a single site with poor predictions and a
high moisture index, conditions at that site are likely not ad-
equately represented since it is one of the few very moist

evergreen sites in the dataset. All other sites with low per-
formance (R2 < 0.5) have a moisture index below 0.75. The
opposite is not true: the R2 varies greatly among the drier
sites, not all sites with low moisture index exhibit poor per-
formance.
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Figure 6. The model bias per day before and after the start of
drought events. The bias is calculated as the difference between
model predictions and observations. The bias is normalised with
respect to the median value during the 1 to 10 d before each event
onset. Shaded areas mark the area between the 33rd and 66th per-
centiles.

All sites with low R2 (< 0.5) belonged to desert and semi-
arid (BWh, BWk, BSh, BSk), Mediterranean (Csa, Csb) and
hot and warm temperate (Cfa, Cfb) climates. In terms of nor-
malised RMSE, predictions are especially poor in cold semi-
arid climates (BSk). Also sites in polar climates (ET) per-
formed relatively poorly, followed by other desert and semi-
arid climates.

Among vegetation types, the LSTM+ works best for sites
with deciduous broadleaf forest vegetation, with an average
R2 of 0.84. Sites with inaccurate predictions (R2 < 0.5) are
spread across most vegetation types, with the exception of
closed shrublands and deciduous broadleaf forest. The veg-
etation types with the lowest overall performance are ever-
green broadleaved forests and open shrublands.

3.4 Generalisation across space

The ability of the global LSTM+ to generalise across space
varies across different values of the moisture index, vege-
tation types, and climate zones (Fig. 8). For most sites, we
observe a positive rRMSE, meaning that the global model is
less accurate than the site-specific ones. On the other hand,
1R2 exhibits a less clear dependence on the moisture index,
vegetation types, and climate zones.

The LSTM+ appears to show worse generalisability (more
negative 1R2 and rRMSE further above 1) at relatively arid
sites (MI< 0.75), compared to more moist sites. For rela-
tively arid sites, site-specific models mostly have a lower
RMSE than the global one (5 out of 40 sites, or 12.5 %),
whereas the advantage is less pronounced for moist sites (21
out of 64, or 33 %). Out of the 13 sites with a consider-
able drop in performance of the global model compared to
the site-specific model (poor generalisability of the model to
those sites,1R2 <−0.1), 11 have a MI of less than 0.75. Out
of those 11 sites, 4 are classified as a hot summer Mediter-
ranean climate (Csa) and 6 as a semi-arid climate (BSh,
BSk). For the Mediterranean, desert, and semi-arid climates,
generalisation capabilities vary substantially, with the global

model outperforming the site-specific one in some sites but
not in others.

In terms of generalisation, there are no clear overall differ-
ences between the LSTM+ and the MLP+ (Fig. 9). However,
a pattern emerges w.r.t. aridity: sites for which the global
LSTM+ model performed better than the MLP+ have a mean
moisture index of 0.85, while sites for which the opposite
was found (global MLP+ model better than global LSTM+
model) have a mean MI of 1.11.

3.5 Performance with additional features

Based on the observed temporal error patterns in response
to water deficit, we tested whether the memoryless MLP+
would benefit from soil moisture as an added predictor
(Fig. 10). Including soil moisture information from the
SPLASH water balance model led to a minimal difference in
overall performance. There is a trend that adding soil mois-
ture improves the MLP+ prediction at drier sites (mean MI
0.93), but leads to a small performance loss at moist sites
(mean MI 1.10).

We also tested the LSTM+ with the estimated root zone
water holding capacity as additional (time-invariant) predic-
tor (Fig. 10). While this led to minimal overall differences,
the performance improved at both very moist and very dry
sites.

4 Discussion

4.1 Key insights

We have compared different model types for predicting GPP
from a shared set of predictors. To summarise, the following
key results were obtained:

– The neural networks (LSTM and MLP) are better GPP
predictors than the mechanistic model (P-model) (Ta-
ble 2, Figs. 2, 3).

– The LSTM improves GPP prediction compared to the
LSTMperm (and MLP) under temporal stress patterns by
leveraging learned memory (Figs. 4, 5, 6).

– When averaged across conditions, the LSTM is not
clearly better than the MLP (Table 2). However, the
LSTM shows advantages under drought conditions
(Figs. 4, 6, 9). This can be mitigated to some extent by
providing a simple soil moisture index (Fig. 10).

– With added earth observation variables, there is a clear
improvement in model performance (Table 2, Fig. 2).
However, there is still a large variability in model per-
formance in dry conditions (Figs. 7, 8).

In the following, we discuss these insights in more detail.
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Figure 7. Performance as R2 (a) and normalised RMSE (b) of the LSTM+ (global model) per site against different site characteristics.
Section (a) and (b) each show comparisons of model performance against different site characteristics: moisture index, vegetation type
and climate zone. The plots on the left show model performance per site against the moisture index. The plots on the right show model
performance per site for different categories of vegetation type and climate zone, as well as box plots summarising the performance in each
category. GRA: grassland, SAV: savanna, EBF: evergreen broadleaf forest, WSA: woody savanna, MF: mixed forest, CSH: closed shrubland,
ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, OSH: open shrubland.

4.2 Neural networks are skilled GPP simulators

An initial conclusion from our experiments is that neural net-
work models have higher predictive skill than the theory-
based P-model, across all levels of aggregation (Table 2). The
main advantage of neural models is their capacity to repre-
sent complex functional dependencies, including effects that
may not have been anticipated when deriving a model from
plant physiological theory. Importantly, the neural networks
predict GPP more accurately at unseen test sites. In other

words, learning does not overfit the specific data streams at
the training sites but discovers transferable patterns that are
valid across space, and thus implicitly across environmen-
tal gradients. We attribute this robustness to the diversity of
sites in our dataset, and to careful (fully automatic and data-
driven) hyperparameter tuning.

In contrast to the deep learning models (LSTM+ and
MLP+), the P-model implements rigid functional dependen-
cies derived from a simplified depiction of the underlying
processes (e.g., the big-leaf representation of canopy light
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Figure 8. Patterns in the LSTM+’s ability to generalise, measured by 1R2 (a) and rRMSE (b). Positive 1R2 values and rRMSE values < 1
mean the global model performs better than the site-specific one. Section (a) and (b) each show comparisons of model performance against
different site characteristics: moisture index, vegetation type and climate zone. The plots on the left show generalisation ability per site
against the moisture index. The plots on the right show generalisation ability per site for different categories of vegetation type and climate
zone, as well as box plots summarising the performance in each category. GRA: grassland, SAV: savanna, EBF: evergreen broadleaf forest,
WSA: woody savanna, MF: mixed forest, CSH: closed shrubland, ENF: evergreen needleleaf forest, DBF: deciduous broadleaf forest, OSH:
open shrubland.

absorption and a schematic, empirical treatment of water
stress effects). The model has only few parameters to cali-
brate to the data (in our case four). On the one hand, so few
degrees of freedom deprive the model of the ability to adapt
to small but persistent effects present in the data; making it
less accurate. On the other hand, they prevent it from going
too far astray in the face of unexpected inputs.

Considering overall evaluations across all sites and dates,
the two neural models perform equally well. However, the
advantage of the LSTM+ over the other models was clear
under certain conditions that we expected from the outset to
underlie temporal structure in the data – water stress (Fig. 4)
and frost/cold acclimation (Fig. 5). Under these conditions,

the LSTM+ outperforms both the MLP+ and also the mech-
anistic model. This indicates a lack of current mechanistic
understanding of processes affecting GPP under these condi-
tions.

It should also be noted that the collection of sites used here
represents only a limited subset of all relevant environments
on Earth. None of the sites are located in a tropical ever-wet
climate and certain conditions and combinations of vegeta-
tion types and species, environments, and plant growth con-
ditions (soil, subsurface hydrology) may not be covered by
our spatial cross-validation setup. The limited data availabil-
ity is exacerbated by the fact that seasonal variations in GPP
and environmental conditions tend to be very small in the
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Figure 9. Per-site comparison of 1R2 LSTM+ vs. MLP+. Colours
encode the moisture index. The number of sites on either side of the
diagonal and their mean moisture index are displayed in the corners.
At the top we show the significance of the difference in MI, as per
the two-sided Mann-Whitney U -test.

tropics. Hence, it remains unclear whether the learned mod-
els extrapolate to conditions not well represented in our data
collection (Ludwig et al., 2023; Meyer and Pebesma, 2022).
While it is technically possible to predict GPP wherever the
input predictors are available, such upscaling should be done
with caution, and the limited reliability under particular con-
ditions should be considered. Our results suggest that predic-
tions are least reliable in regions with pronounced seasonal
or perennial water limitation.

Analysing patterns in prediction error of the different mod-
els and model performance of out-of-sample predictions has
revealed several key insights for (data-driven) modelling of
terrestrial photosynthesis and its limitations. In the follow-
ing, we discuss them in more detail.

4.3 Modelling cumulative and lagged effects on GPP
benefits from a recurrent model

The prediction errors for the MLP+, LSTMperm+ and P-
model tended to grow with increasing water deficit, but errors
of the LSTM+ remained smaller for moderate levels of water
deficits compared to the other models (Fig. 4). Event analy-
sis also showed that the recurrent architecture helps predict
the response in GPP to drought events (Fig. 6). The benefit
was observed primarily from 20 d after the start of a drought
event. The similarity in prediction errors among models dur-
ing the start of drought events and at lower levels of PCWD
appears to indicate that the recurrent architecture only bene-
fits the prediction of GPP at higher levels of water stress. On
the other hand, as the LSTM+ was trained with sequences of
128 d, it could adapt to water limited conditions that build up
over a period of up to 4 months. Due to the limited sequence

length, longer periods of water stress were presumably not
learned, which may contribute to rising errors towards the
high end of cumulative water deficits and the relatively poor
prediction of annual anomalies which may be driven by vari-
able hydroclimatic conditions across years.

In this context, we point out that several factors likely de-
grade the prediction of annual anomalies: Inter-annual vari-
ability of ecosystem fluxes likely reflects effects by specific
site histories which are not reflected in the predictor variables
(Abramowitz et al., 2024), from inconsistencies in measure-
ments of fluxes and meteorological covariates across years
(e.g., sensor replacements), or by lagged effects of climatic
extreme events (Zscheischler et al., 2014). By their nature,
such effects are difficult to learn from example data spanning
at most a few decades.

Adding soil moisture as a predictor to compensate for the
MLP+’s lack of memory did not clearly boost overall per-
formance. This indicates that (simulated) soil moisture does
not fully account for the effects of gradually changing wa-
ter stress, calling into question a widely used practice (Nel-
son et al., 2024; Kang et al., 2025; Tramontana et al., 2016;
Gaber et al., 2024) and likely relates to a general challenge in
accurately modelling water stress effects, which we discuss
in more detail below. Soil moisture information did, how-
ever, improve GPP prediction at relatively arid sites at the
cost of a slight drop at moist sites – nudging the behaviour
of the MLP+ towards that of the LSTM+. We speculate that
this trade-off could hint at a dependence of the functional
relationships on aridity. The dependence of GPP on a soil
moisture optimum that shifts in response to the growing sea-
son soil moisture (Peng et al., 2024) could also contribute to
an advantage of the LSTM+ compared to the MLP+ with the
current value of soil moisture.

Conversely, the LSTM+ had a (small) disadvantage in
moist regions compared to the MLP+ (Fig. 9); while there
was no obvious relation between the moisture index and the
preference for global or site-specific modelling. Taken to-
gether, it seems that the LSTM+ more consistently gener-
alises across different aridity levels than the non-recurrent
model. This could be an indication that the functional re-
lationships it uncovers hold over a wider range of aridity
regimes. These patterns are unlikely to stem from uneven
spatial representation, data sampling artifacts or differences
in training data length. These were accounted for by ensur-
ing even representation and sequence length of moist and arid
sites (Fig. D1) as well as even distribution of moisture index
values when splitting sites during training. Therefore, we at-
tribute performance gaps to the ability of the models to ac-
count for the ecological complexity under arid conditions.

The LSTM+ also better captured delayed GPP increase
in spring due to the cold acclimation effect (Fig. 5). Luo
et al. (2023) found that a reduced efficiency of photosyn-
thetic light utilisation during springtime was a consequence
of a combination of low minimum temperatures and high ra-
diation during the weeks and months leading up to and dur-
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Figure 10. Impact of complementary input features (soil moisture for the MLP+, water holding capacity for the LSTM+). (a) to (c) show the
R2 and (d) to (f) show the RMSE. (a) and (d) compare the MLP+ with soil moisture to the MLP+. (b) and (e) compare the LSTM+ to the
MLP+ with soil moisture. (c) and (f) compare the LSTM+ with water holding capacity to the LSTM+. Each dot represents the performance
for one site. The number of sites on either side of the diagonal and their mean moisture index are displayed in the corners. At the top we
show the significance of the observed differences, as per the two-sided Mann-Whitney U -test.

ing the start of the growing season. A recurrent deep learning
model offers a basis for more accurately modelling GPP un-
der such conditions than non-recurrent architectures. Unre-
solved challenges remain, though, in the form of a remaining
marked bias in the early part of spring also for the LSTM+.

Overall, we found that the LSTM+ benefits GPP predic-
tion during periods that are affected by temporal patterns. For
the temporal patterns evaluated, the LSTMperm+ and MLP+
behaved similarly, while the LSTM+ showed a performance
benefit. Furthermore, the LSTMperm+ had the same model
capacity as the LSTM+. Combined, this indicates that the
improved prediction of LSTM+ is due to a learned memory,
compared to the LSTMperm+ and MLP+ which both only see
contemporaneous predictor variables.

4.4 Unknown effects of water stress are a dominating
source of model error

We found that GPP can relatively reliably be predicted across
relatively moist, winter-cold sites. For sites with a moisture
index of 0.75 and above, the mean R2 for spatial out-of-
sample predictions was 0.80. This indicates that – at least for
the abiotic and biotic conditions represented in our dataset
– GPP can be reliably simulated. Generalised models that
spatially upscale yield relatively reliable results under such

conditions with the R2 of spatial out-of-sample tests falling
between 0.4 and 0.94.

However, under more arid conditions (MI< 0.75) we
found very variable performance of a generalised model. Dif-
ferent factors may cause poor generalisability across sites.
Poor data quality with systematic differences of measure-
ment errors across sites (Abramowitz et al., 2024), differ-
ences in functional relationships between GPP and its pre-
dictors across different species and vegetation types, or in-
sufficient information in predictor variables all may underlie
the variable performance of the global model across sites.
Our results suggest that variable model performance is not
clearly related to vegetation types (Fig. 7). A tendency of
poorer model performance in evergreen vegetation is likely
related to limited information in remotely sensed greenness
which is provided as a predictor (fAPAR). A clearer relation-
ship of model performance was found across climate zones
and across the gradient of the site’s average aridity (Fig. 7).
Together with our finding of a clear relationship between
the model prediction error and potential cumulative water
deficits (Fig. 4) and length of drought events (Fig. 6), this
suggests that poor model generalisability is linked to vari-
able exposure and response to water stress across sites. Ap-
parently, the history of precipitation and radiation is not suf-
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ficient to accurately model vegetation water stress exposure
and responses, and effects on GPP.

Two factors are likely to undermine generalisability. First,
responses to declining water potentials in the rooting zone
are highly variable across species and linked to plant hy-
draulic traits and water use strategies. Even within broad
classes of vegetation types, hydraulic relations of different
plant species exhibit a wide variety (Choat et al., 2012; Joshi
et al., 2022; Anderegg et al., 2018; Xu et al., 2016; Whit-
ley et al., 2017; Konings and Gentine, 2017). Particularly
in dry-adapted ecosystems (e.g., savannas and shrublands),
contributions of different species to ecosystem-level inte-
grated fluxes may also change over the season as a result of
species-specific responses of leaf area to dryness (Xu et al.,
2016; Whitley et al., 2017). Without related information pro-
vided to models, this complexity and the resulting variability
of GPP responses to dryness cannot accurately be modelled
across ecosystems with different species compositions.

Second, the exposure to water stress is highly variable
across sites as a result of the surrounding topography and
subsurface hydrology. Giardina et al. (2023) found strong
variations of the functional relationship between evapotran-
spiration and cumulative water deficits, suggesting strongly
variable rooting zone water storage capacities and plant ac-
cess to groundwater across sites (Fan et al., 2017). Sub-
surface hydrology, groundwater influence, and belowground
moisture convergence also appear to lead to large differences
in ecosystem water balances at relatively dry sites (Hahm
et al., 2019; McCormick et al., 2021). Several flux measure-
ment sites have been identified as having greater mean an-
nual precipitation than evapotranspiration, suggesting sub-
surface moisture convergence and the influence of ground-
water (Abramowitz et al., 2024). Due to the close link be-
tween evapotranspiration and GPP, these relations affect veg-
etation activity in general, including GPP. The surrounding
topography, water holding capacity of the soil and weath-
ered bedrock, groundwater table depth and rooting depth are
either insufficiently known or specified from the predictors
used for modelling GPP. Thus, related effects on GPP and the
associated variability of water stress exposure cannot accu-
rately be modelled across space. Variable water stress expo-
sure and response affect GPP in relatively moist and energy-
limited sites to a lesser degree than sites with frequent water
limitation. Hence, a clear relation of model generalisability
across aridity (Fig. 8) emerges.

Another factor that contributes to these generalisation
challenges is remotely sensed fAPAR, which is a predictor of
GPP and tends to be less accurate in arid regions, where satel-
lite sensors struggle to capture the large spatial heterogeneity
at sub-pixel scales and may be affected by light absorption
by non-photosynthetically active tissue (Kannenberg et al.,
2024). In particular, noise due to sparsity, vegetation senes-
cence and soil background lead to a frequent overestimation
of fAPAR in arid and semiarid regions (Smith et al., 2019).

This is exacerbated by the relative lack of ground observa-
tions in drylands, needed for calibration.

We expected that site-specific responses would be more
effectively modelled by site-specific models compared to
a generalised, global model. However, this was not unani-
mously the case. While the mean prediction error (RMSE)
was generally lower for site-specific models, these models
often predicted a smaller fraction of variation in the data than
the global models. This was most clearly found for sites for
which relatively short time series were available for model
training. Hence, site-specific responses appear to be learn-
able, given sufficient data. Our interpretation is that R2 mea-
sures the ability to explain the variance in GPP, a task that
becomes easier as the model sees more data. Put differently,
a site-specific model can more accurately memorize the mean
seasonal cycle of one particular site; but may not learn as well
to deduce daily variations from observed changes in light and
meteorology, due to its restricted sample. Indeed, sites where
the global model was better (positive 1R2) invariably had
relatively short observation periods (Fig. 8), which increases
the need to learn parts of the functional relation from other
sites.

While the data-driven models showed advantages in cer-
tain situations with temporal effects, it is clear that challenges
remain. Even with memory and accessible precipitation his-
tory, exposure and responses to water stress is not sufficiently
modelled. This applies to models of GPP in general, includ-
ing mechanistic models. As outlined above, it is likely that
models need additional information to simulate GPP reliably
at arid sites. Our experiments indicated that addition of com-
monly used satellite-derived variables boosts overall model
performance without resolving the large variability in model
performance across dry sites. This highlights the need for
the inclusion of further information that is relevant for accu-
rate drought response simulations. We expect that a similar
reasoning and potential for model improvement applies also
for mechanistic land surface models. The integration of addi-
tional satellite data to inform models for reliable simulations
of water stress exposure in land surface models remains a
largely unsolved task. Typically, land surface models account
for water limitation by predicting leaf area index and stom-
atal conductance internally. Therefore, unknown exposure to
water stress will likely remain a large source of uncertainty in
land surface models. Similarly, mechanistic models like the
P-model use fAPAR, but no other remote sensing data due to
challenges in linking them in process representations.

5 Conclusions

We have demonstrated that an LSTM – a popular type of
recurrent deep neural network – is a powerful model to pre-
dict ecosystem GPP from local meteorological observations
and remotely sensed fAPAR. Based on a spatial and tem-
poral out-of-sample evaluation, we find that the model has
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significantly higher predictive skill than the theory-based P-
model and outperforms a non-recurrent deep learning model
under conditions of low root-zone moisture availability and
very low temperatures in preceding weeks. The LSTM reli-
ably simulates GPP dynamics across a range of environmen-
tal conditions and vegetation types (no agricultural vegeta-
tion tested here) at relatively moist sites (MI> 0.75).

Through a detailed analysis of error patterns, we find that a
recurrent model more accurately captures the GPP response
to longer-term, cumulative impact. In particular, the LSTM
adapts better to arid environments affected by water stress,
a condition that builds up over time. Yet, we find that there
is still a large variability in model skill across relatively arid
sites, even if it outperforms both the mechanistic P-model
and a memoryless neural network. The variability remains
even with the inclusion of additional earth observation data,
although this improves general model performance. This
suggests that the model lacks information on variations in
exposure and response to water stress and related effects on
GPP. The inclusion of additional remotely-sensed and tem-
porally varying information (e.g., sun-induced fluorescence
(Li et al., 2018), vegetation optical depth (Konings and Gen-
tine, 2017)) or static information about the topography, av-
erage groundwater table depth (Fan et al., 2013), and sub-
surface structure (Pelletier et al., 2016) as predictors for the
deep learning models bears the potential for reducing errors
and yielding more reliable GPP simulations in dry environ-
ments. As ecosystems are becoming more exposed to water
limitation due to climate change (Denissen et al., 2022; Fu
et al., 2024), it remains an important research topic to im-
prove the predictability of ecosystem fluxes in the context of
water stress.
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Appendix A: Site information

Table A1. Overview of sites included in the study. “MI” is the moisture index. “Clim.” is the Köppen-Geiger climate zone. “Veg.” is the
IGBP vegetation type. “Evergeen” is the classification of sites into categories used in Fig. 4. “Delayed GPP” is the classification of sites into
categories used in Fig. 5.

Sitename Period MI Clim. Veg. Evergreen Delayed GPP

AT-Neu 2002–2012 1.34 Dfc GRA False
AU-ASM 2012–2016 0.23 BSh SAV False
AU-Cum 2013–2018 0.60 Cfa EBF True
AU-DaS 2012–2017 0.74 Aw SAV False
AU-GWW 2013–2017 0.23 BWh SAV False
AU-Gin 2012–2017 0.42 Csa WSA False
AU-How 2009–2017 0.92 Aw WSA False
AU-Stp 2011–2016 0.50 BSh GRA False
AU-Tum 2011–2017 0.53 Cfb EBF True
AU-Ync 2012–2016 0.23 BSk GRA False
BE-Bra 2010–2020 1.17 Cfb MF False
BE-Dor 2011–2020 1.07 Cfb GRA False
BE-Maa 2016–2020 1.16 Cfb CSH False
BE-Vie 2000–2020 1.36 Cfb MF False False
CA-Ca1 2000–2009 3.03 Cfb ENF True
CA-Ca2 2001–2010 3.45 Cfb ENF True
CA-Gro 2004–2013 1.16 Dfb MF False
CA-Qfo 2004–2010 1.47 Dfc ENF True
CA-TP1 2009–2013 1.15 Dfb ENF True
CA-TP3 2008–2017 1.35 Dfb ENF True
CA-TPD 2012–2017 0.92 Dfb DBF False
CH-Aws 2015–2020 1.96 ET GRA False
CH-Cha 2010–2020 1.53 Cfb GRA False
CH-Dav 2000–2009 1.20 ET ENF True
CH-Fru 2011–2020 2.47 Cfb GRA False
CH-Lae 2005–2019 1.22 Cfb MF False
CH-Oe1 2003–2008 1.93 Cfb GRA False
CZ-BK1 2004–2019 1.88 Dfb ENF True
CZ-Lnz 2015–2020 0.66 Dfb MF False
CZ-RAJ 2012–2020 0.83 Dfb ENF True
CZ-Stn 2010–2020 0.96 Dfb DBF False
DE-Gri 2005–2019 1.38 Cfb GRA False
DE-Hai 2000–2019 1.22 Cfb DBF False True
DE-HoH 2015–2020 0.66 Cfb DBF False
DE-Obe 2009–2020 1.64 Cfb ENF True
DE-RuR 2012–2020 1.52 Cfb GRA False
DE-RuW 2013–2020 1.66 Cfb ENF True
DE-Tha 2000–2019 1.18 Cfb ENF True
DK-Sor 2000–2012 1.75 Cfb DBF False
ES-Abr 2016–2020 0.35 Csa SAV False
ES-Agu 2007–2013 0.28 BSk OSH False
ES-LJu 2006–2015 0.72 Csa OSH False
ES-LM1 2015–2020 0.54 Csa SAV False
ES-LM2 2015–2020 0.51 Csa SAV False
FI-Hyy 2000–2016 1.27 Dfc ENF True False
FI-Let 2010–2020 1.29 Dfb ENF True
FI-Sod 2008–2014 1.74 Dfc ENF True
FI-Var 2016–2020 1.70 Dfc ENF True
FR-Bil 2015–2020 0.99 Cfb ENF True
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Table A1. Continued.

Sitename Period MI Clim. Veg. Evergreen Delayed GPP

FR-FBn 2009–2020 0.63 Csa MF False
FR-Fon 2006–2013 0.96 Cfb DBF False
FR-LBr 2003–2008 1.04 Cfb ENF True
FR-Pue 2001–2013 1.00 Csa EBF True
IL-Yat 2012–2020 0.18 BSh ENF True
IT-Col 2007–2014 1.29 Cfa DBF False
IT-Cpz 2001–2007 0.65 Csa EBF True
IT-Lav 2003–2020 1.41 Cfb ENF True
IT-Lsn 2016–2020 1.12 Cfa OSH False
IT-MBo 2004–2012 1.88 Dfb GRA False
IT-Ren 2001–2014 1.27 Dfc ENF True
IT-Ro1 2002–2006 0.84 Csa DBF False
IT-Ro2 2002–2007 0.77 Csa DBF False
IT-Tor 2009–2020 1.94 Dfc GRA False
NL-Loo 2000–2017 1.07 Cfb ENF True False
RU-Fy2 2016–2020 0.96 Dfb ENF True
RU-Fyo 2000–2009 0.93 Dfb ENF True False
SE-Htm 2015–2020 1.30 Cfb ENF True
SE-Nor 2014–2020 0.89 Dfb ENF True
SE-Ros 2015–2020 1.59 Dfc ENF True
US-BZS 2016–2020 0.75 Dfd ENF True
US-Bar 2005–2017 1.54 Dfb DBF False
US-Blo 2001–2006 1.19 Csb ENF True
US-Fmf 2006–2010 0.51 Csb ENF True
US-GLE 2006–2019 1.73 Dfc ENF True
US-Ha1 2000–2020 0.80 Dfb DBF False True
US-Ho2 2007–2017 1.06 Dfb ENF True
US-ICh 2010–2021 1.60 ET OSH False
US-ICt 2016–2020 1.31 ET OSH False
US-Jo2 2011–2020 0.23 BWk OSH False
US-KFS 2008–2019 0.66 Cfa GRA False
US-KLS 2013–2019 0.42 Cfa GRA False
US-MMS 2000–2020 0.58 Cfa DBF False True
US-MOz 2007–2019 0.86 Cfa DBF False
US-Me2 2005–2010 0.64 Csb ENF True
US-Mpj 2009–2020 0.30 BSk WSA False
US-NR1 2000–2015 0.67 Dfc ENF True
US-PFa 2000–2014 0.52 Dfb MF False True
US-Rms 2015–2019 0.51 BSh CSH False
US-Ro4 2015–2021 1.28 Dfa GRA False
US-Rwf 2015–2019 0.59 BSh CSH False
US-Rws 2015–2019 0.69 BSk OSH False
US-SRG 2009–2014 0.37 BSk GRA False
US-SRM 2005–2014 0.29 BSk WSA False
US-Seg 2007–2021 0.27 BSk GRA False
US-Ses 2008–2021 0.24 BSk OSH False
US-Syv 2002–2006 1.14 Dfb MF False
US-Ton 2002–2014 0.50 Csa WSA False
US-UMB 2000–2014 0.41 Dfb DBF False
US-UMd 2008–2021 1.21 Dfb DBF False
US-Var 2001–2020 0.65 Csa GRA False
US-WCr 2000–2005 1.08 Dfb DBF False
US-Whs 2009–2015 0.26 BSk OSH False
US-Wjs 2008–2021 0.29 BSk SAV False
US-Wkg 2005–2021 0.31 BSk GRA False
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Appendix B: Methods details

Table B1. Overview of the data sources.

Variable Description Source

Main experiments (all models)

GPP Target variable (GPP_NT_VUT_REF) PLUMBER2 (flux sites)
Meteorology TA_F_MDS, TA_DAY_F_MDS,

SW_IN_F_MDS, LW_IN_F_MDS,
VPD_DAY_F_MDS, PA_F, P_F, WS_F

Flux sites

fAPAR Absorbed solar radiation MODIS MCD15A2H (500 m, 8 d)
MODIS reflectance bands + LST RED, NIR, BLUE, GREEN, SWIR1, SWIR2,

SWIR3, LST_TERRA_Day_VZA0,
LST_TERRA_Night_VZA0

FluxnetEO

Additional predictors

Soil moisture Modelled soil water availability SPLASH water balance model
Water holding capacity Root zone storage Stocker et al. (2023)

Site features

Moisture index (MI) P/PET SPLASH model + site precipitation
Vegetation type IGBP International Geosphere-Biosphere Programme
Climate zone Köppen-Geiger climate zone Beck et al. (2018)

Table B2. Overview of the implemented models.

Model Key components Implementation

LSTM LSTM cells with LayerNorm + linear layers (until 16 units) PyTorch
MLP Linear layers only (until 16 units) PyTorch
LSTMperm Same as LSTM, permuted input PyTorch
P-model FvCB photosynthesis, soil moisture stress R (rsofun)

Table B3. Cross-validation and training setups.

Global model (Spatial CV) Site-specific model (Temporal CV)

Data split 5 folds, stratified by mean TA_F_MDS, MI Years per site, started at coldest/wettest month
Inner CV 3-fold (20 configurations) 5 held-out years (40 configurations)
Training size 128 d, 32 d overlap 128 d, 32 d overlap
Early stopping Max 50 epochs, patience 10 Max 50 epochs, patience 10
Evaluation R2, RMSE, bias, % error R2, RMSE, bias, % error
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Appendix C: Sequence models

We evaluated two additional sequence models using the
global model setup.

– Temporal Convolutional Network. We implemented a
Temporal Convolutional Network (TCN) following Bai
et al. (2018). Similar to the LSTM, we used GELU acti-
vations (Hendrycks and Gimpel, 2023) and LayerNorm
(Ba et al., 2016).

– LSTM + attention. We also implemented a second ver-
sion of the LSTM that uses a multi-head (8) attention
mechanism (Vaswani et al., 2017) with two linear lay-
ers after the LSTM layer.

Figure C1. Comparison of the LSTM against the TCN (a) and against the LSTM+ attention (b). R2 of predicted versus observed values of
daily GPP per site from the global cross-validation is shown for the LSTM along the y-axis and the TCN/LSTM+ attention along the x-axis.
The dotted line indicates equal performance.

Figure C2. The model bias per day before and after the start of drought events for three sequence models. The bias is calculated as the
difference between model predictions and observations. The bias is normalised with respect to the median value during the 1 to 10 d before
each event onset. Shaded areas mark the area between the 33rd and 66th percentiles.

Biogeosciences, 22, 7455–7481, 2025 https://doi.org/10.5194/bg-22-7455-2025



S. Biegel et al.: Unrecognised water limitation in models of terrestrial photosynthesis 7475

Appendix D: Additional figures

Figure D1. Number of sites as well as sequence lengths per site for different levels of the moisture index. The number of sites are counted
per bin of width 0.2 of the moisture index.

Figure D2. The distribution of performance metrics for sites with a moisture index below 0.75, and sites with a moisture index above 0.75.
The individual values as well as box plots are shown.
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Code and data availability. The code and data used in this
study are available in the following GitHub repository: https:
//github.com/SamanthaBiegel/gpp-ml (last access: 13 Novem-
ber 2025). Releases of this repository are archived on Zenodo
(https://doi.org/10.5281/zenodo.15236497, Biegel, 2025). The CSV
file “data/fdk_v342_ml.csv”, which can be obtained from the repos-
itory, contains the dataset that is used as input to the machine learn-
ing experiments. The creation of this dataset can be reproduced
with several steps. First, data is obtained from FluxDataKit v3.4.2
(https://doi.org/10.5281/zenodo.14808331, Hufkens and Stocker,
2025), which gathers publicly accessible flux data from the major
networks of eddy covariance sites described in Sect. 2.1. The files
from FluxDataKit are then processed using the script “src/prepro-
cess_data.py”, which results in the aforementioned CSV file. The
data used as forcing for the P-model is available in a separate file
in the repository that is derived from the CSV file and FluxDataKit
metadata: “R/drivers.rds”. Model experiments can be run with these
two files as input by following the steps for environment prepa-
ration and experiment runs as detailed in the documentation page
of the repository (https://github.com/SamanthaBiegel/gpp-ml). Pre-
dictions from all model experiments are stored in the directory
“preds/” and processed with “figures.ipynb” to produce the figures
presented here.
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