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Abstract. Mesoscale eddies are known to influence the
Southern Ocean biogeochemistry. However, the distinct con-
tributions of cyclonic and anticyclonic eddies to air—sea CO»
fluxes, as well as their longer-term effects remain poorly
studied. We present results from a 27-year global eddy-
resolving ocean-biogeochemical simulation. We used the
Okubo-Weiss parameter to classify the modeled flow regimes
into cyclonic and anticyclonic eddies, peripheries, and the
surrounding background waters. Our results reveal a hetero-
geneous influence of eddies depending on the region, driven
by regional differences in eddy intensity and the gradients in
background properties. The factors controlling CO, fluxes
within eddies follow the same degree of importance as in
background waters, with ApCO, being the dominant fac-
tor. This is driven primarily by changes in dissolved inor-
ganic carbon. Our analysis shows that eddies act as a per-
sistent carbon sink on decadal timescales, while their in-
fluence on shorter timescales is more variable and strongly
shaped by eddy polarity. Overall, mesoscale regimes ex-
hibit higher carbon uptake efficiency, with anticyclonic ed-
dies showing the highest efficiency. The ability of eddies to
absorb carbon computed in our results is consistent with re-
cent observational estimates, confirming that the model real-
istically represents the influence of mesoscale eddies on CO,
fluxes. Above all, the overall contribution of mesoscale ed-
dies to carbon uptake across the Southern Ocean was rela-
tively small, accounting for approximately 10 % of total and
1 % of anomalous carbon uptake. However, the regional in-
fluence is more pronounced in eddy-rich regions.

1 Introduction

The Southern Ocean exhibits high mesoscale eddy activ-
ity (Chelton et al., 2011b; Petersen et al., 2013). These
mesoscale eddies influence the physical properties of sea-
water by transporting heat and salinity across regions and
into the ocean’s interior (Morrison et al., 2013; Griffies et al.,
2015; Morrison et al., 2016; von Storch et al., 2016). Sim-
ilarly, these eddies play a substantial role in the transport
of biogeochemical properties (Chelton et al., 2011a; Dufour
et al., 2015; Schiitte et al., 2016b; Moreau et al., 2017; Daw-
son et al., 2018; Patel et al., 2020; Su et al., 2021; Lévy
et al., 2023). Notably, the mass transport induced by eddies
is comparable to large-scale transport (Zhang et al., 2014).
Moreover, eddies play a significant role in shaping South-
ern Ocean future climate projections (Farneti et al., 2010;
Dufour et al., 2015; Hogg et al., 2015; Bilgen and Kirt-
man, 2020; van Westen and Dijkstra, 2021; Putrasahan et al.,
2021). However, the study of mesoscale eddies has been lim-
ited by the lack of biogeochemical datasets that can capture
the high eddy activity in the region, both from observational
and modeling perspectives. Observational studies are limited
by the sparse spatial and temporal coverage of measurements
(Gray, 2023; Dong et al., 2024), while eddy-resolving simu-
lations are limited by their high computational cost (Hewitt
et al., 2022; Guo and Timmermans, 2024).

Despite growing research interest, the role of cyclonic and
anticyclonic eddies in modulating air-sea CO, fluxes re-
mains inconclusive. Regional and short-term oceanographic
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campaigns have identified that mesoscale eddies exhibit di-
verse influence on carbon uptake. It has been shown that
both cyclonic and anticyclonic eddies can function as car-
bon sinks (Jones et al., 2017; Orselli et al., 2019a; Ford et al.,
2023). Conversely, other studies have reported inverse pat-
terns, where anticyclonic eddies release CO, to the atmo-
sphere, while cyclonic eddies serve as carbon sinks (Pezzi
et al.,, 2021; Kim et al., 2022). Additionally, it has been
shown that there are seasonal differences in the carbon up-
take depending on the eddy polarity (Song et al., 2016; Jones
et al., 2017).

Only recently have studies begun to investigate the effects
of mesoscale processes on air—sea CO, fluxes at larger spa-
tial scales (Keppler et al., 2024; Guo and Timmermans, 2024;
Li et al., 2025). Keppler et al. (2024) combined mesoscale
eddies identified from satellite altimeter with data from bio-
geochemical Argo floats, showing on average that both cy-
clonic and anticyclonic eddies contribute to the carbon up-
take in the Southern Ocean. However, cyclonic eddies were
associated with a weaker carbon uptake or more outgassing,
whereas anticyclonic eddies were associated with stronger
carbon uptake or less outgassing. Li et al. (2025), using an
observation-based machine learning approach, showed that
anticyclonic eddies substantially enhance CO, uptake on av-
erage, whereas cyclonic eddies contribute less consistently.
From a modeling perspective, Guo and Timmermans (2024)
used an eddy-resolving global biogeochemical simulation to
isolate the effect of mesoscale activity. Their findings indi-
cate that mesoscale dynamics account for over 30 % of the
total variance of the air—sea CO, fluxes in energetic regions
and can act either as sources or sinks depending on the re-
gion, showing the importance of mesoscale dynamics from a
global perspective. From a regional modelling perspective in
the South-East Atlantic Ocean, studies have shown distinct
thermodynamic and biogeochemical signatures between cy-
clonic and anticyclonic eddies (Smith et al., 2023), as well
as a high occurrence of eddies with abnormal characteristics
that can weaken or even reverse the air—sea fluxes (Smith
et al., 2025). However, no modeling study to date has in-
vestigated the contrasting impacts of cyclonic and anticy-
clonic eddies on air—sea CO; fluxes across the entire South-
ern Ocean, while also considering regional differences.

This distinction may be important because cyclonic and
anticyclonic eddies possess contrasting physical structures
that are expected to influence air-sea CO, fluxes differ-
ently. Anticyclonic eddies are high-pressure systems char-
acterized by positive vorticity in the Southern Hemisphere,
which causes isopycnals to be pushed downward. This in-
duces water downwelling, resulting in higher surface temper-
atures compared to surrounding waters, a mechanism known
as eddy-pumping. Higher temperature reduces the solubil-
ity of CO, but the downwelling effect may transport car-
bon to deeper ocean layers. The opposite pattern occurs in
cyclonic eddies, which are characterized by negative vortic-
ity in the Southern Hemisphere, uplifted isopycnals, and wa-
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ter upwelling (McGillicuddy, 2016; Jones et al., 2017; Ford
et al., 2023).

The regional differences within the Southern Ocean add
another layer of complexity when attempting to generalize
eddy behavior (McGillicuddy, 2016). For instance, the Agul-
has Current system, south of Africa, is highly energetic and
contributes significantly to the global thermohaline circula-
tion via eddies and filaments involved in the Agulhas leak-
age (Richardson, 2007; Biastoch et al., 2009; Beal et al.,
2011; Haarsma et al., 2011). The Brazil-Malvinas Conflu-
ence Zone, located where the Brazil and Malvinas Currents
meet, is characterized by strong temperature and salinity gra-
dients, which create high-energy eddies and thermohaline
fronts (Barré et al., 2006; Mason et al., 2017; Souza et al.,
2021). In contrast, the region South of Tasmania is mostly in-
fluenced by the Antarctic Circumpolar Current (ACC), which
produces a complex frontal system and robust eddy activity,
influencing the water mass exchange between major ocean
basins and the deep ocean (Rintoul and Sokolov, 2001).
These distinct regional settings suggest that eddies impacts
on CO, fluxes may not be uniform across the Southern
Ocean, highlighting the need to investigate how mesoscale
eddies operate in different oceangraphic contexts.

Our objective in this work is to determine how anticy-
clonic and cyclonic eddies, periphery, and the surrounding
background waters modulate air-sea CO, fluxes, to iden-
tify the physical and biogeochemical mechanisms driving
these fluxes, and to examine how these mechanisms vary
across different eddy-rich regions and the entire Southern
Ocean. To achieve this, we use a global eddy-resolving
ocean—-biogeochemical model. Our model simulation is long
enough to study the influence of eddies on CO, fluxes across
timescales ranging from daily to decadal.

2 Methods
2.1 Model description

We use the ocean model ICON-O (Korn, 2017; Korn
et al., 2022) incorporating the ocean biogeochemistry model
HAMOCC (Six and Maier-Reimer, 1996; Ilyina et al., 2013).
ICON-O solves the hydrostatic Boussinesq equations of the
large-scale ocean dynamics with a free surface. The horizon-
tal grid is composed of triangular cells with an Arakawa C-
type staggering of variables. The grid is generated by sub-
dividing the 20 triangular faces of an icosahedron inscribed
into the sphere. The model computes tracer advection using
a flux-corrected algorithm, which combines a low-order up-
wind scheme for stability with a higher-order scheme for ac-
curacy. Vertical mixing is parametrized using a prognostic
equation for turbulent kinetic energy, where the mixing effi-
ciency is determined by a variable mixing length that adapts
to local ocean conditions (Korn, 2017; Korn et al., 2022).
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HAMOCC computes biological and chemical sources and
sinks of biogeochemical tracers in the water column and sed-
iment (Six and Maier-Reimer, 1996; Ilyina et al., 2013). Pri-
mary producers are represented by bulk phytoplankton and
cyanobacteria, with growth limited by temperature, light, and
nutrient availability. Grazing by zooplankton is restricted to
bulk phytoplankton. Organic matter is divided into sinking
particulate detritus and dissolved organic matter. All marine
organic compounds are assumed to share a uniform elemen-
tal composition, based on a modified Redfield ratio. The bio-
geochemical tracers are advected and diffused by the ocean
model. The ocean model also provides temperature, salinity
and sea ice concentration to compute transformation rates,
constants and fluxes. Atmospheric pressure, wind speed, and
shortwave radiation are prescribed.

The air—sea exchange of CO; depends on the surface layer
piston velocity (Wanninkhof, 2014), solubility factor (Weiss,
1974), and pCO, (see Appendix A). The pCO, is determined
from the total dissolved inorganic carbon (DIC), total alka-
linity, temperature, and salinity. Total DIC is taken as the
sum of all dissociated inorganic carbon species concentra-
tions. Changes of DIC are driven by photosynthesis, grazing,
zooplankton excretion, remineralization of dissolved organic
matter and detritus, carbonate calcium production and disso-
lution, and air-sea flux.

2.2 [Experiment design

We performed 27 years (1995-2022) of global simulations,
saving daily average output. The nominal grid resolution
varies between 8.4 and 10 km. The vertical grid is structured
and non-uniform. We use 72 vertical layers, the thickness of
the layers growing gradually with depth. The upper 300 m are
represented by 29 layers. ERAS is used as atmospheric forc-
ing (Hersbach et al., 2020). The atmospheric pCO, used in
the model was prescribed from the global CO; concentration
dataset prepared by the Global Carbon Project (Friedling-
stein et al., 2022). As this is an ocean-only configuration
without coupling to the atmosphere, eddy-induced feedbacks
on surface winds are not represented.

Due to the substantial computational time required for
spin-up at high resolution and the complexity of HAMOCC,
a direct spin-up at 10 km resolution was impractical. There-
fore, a cascade strategy was implemented. First, the spin-up
was conducted at a lower resolution of 40 km. A long spin-up
of approximately 3000 years was performed for the ocean’s
physical conditions with ICON-O only. The spin-up for the
HAMOCC biogeochemistry model at pre-industrial condi-
tions was carried out for around 900 years, until the upper
ocean drift stabilized. The 40 km resolution model was then
run for the transient period until the year 1990. The physical
and biogeochemical results from the coarser resolution were
then used to initialize the 10 km resolution model. To allow
the ocean conditions to adapt, only the ocean model was run
for 5 years. After this adaptation period, the biogeochemi-
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cal conditions were added. A tuning of the biogeochemical
components in the 10 km resolution model was performed
before the production phase of the simulation. This cascade
strategy ensures an adequate representation of upper ocean
mesoscale and regional processes, which are the main focus
of this study. Furthermore, all model drifts in the 10 km res-
olution control run remain sufficiently small in accordance
with the CMIP6 protocol (Jones et al., 2016).

2.3 Eddy detection method

To detect mesoscale eddies and deformation-dominated areas
(Figs. 1b and 2a), we implemented an algorithm based on the
Okubo-Weiss parameter (OW) (Okubo, 1970; Weiss, 1991).
OW measures the relative dominance of rotation (vorticity)
against deformation (strain):

2 2 2
0 a a a 0 0
oW = w9 + v oouy _|ov_ou (1)
ax dy dx  dy dx  dy
NormalStrain ShearStrain Vorticity

Four flow regimes were defined using OW: anticyclonic
eddy cores, cyclonic eddy cores, periphery, and quiescent
“background”. The “background” regime is defined using
a threshold equal to 0.3 of the temporal mean of the spa-
tial standard deviation of the OW (oow) corresponding to
4+0.5 x 10719572, encompassing all OW values within this
range. The most common approach in the literature is to
define the threshold as 0.2o00w (Schiitte et al., 2016a; Vu
et al., 2018), with some studies adopting more relaxed val-
ues around 0.logw (Beech et al., 2025). However, in this
study we chose to apply a slightly stricter criterion in or-
der to isolate more robust and well-defined eddy structures
(see Appendix C). Vorticity-dominated regions (eddy flow
regimes) are identified as closed contours with negative OW
values smaller than —0.5 x 10719572, Relative vorticity is
then used to distinguish between anticyclonic and cyclonic
eddy cores. Deformation-dominated regions, referred to here
as the periphery regime, are defined as areas with positive
OW values exceeding 0.5 x 10719s~2. These regions occur
at the interacting regions between eddies and between eddies
and large-scale currents, or along meanders and filaments,
where the flow is stretched or compressed rather than ro-
tating. Figure 2a provides a snapshot illustrating the defined
flow regimes.

Eddies were not tracked, so the daily eddy-covered areas
may represent either the persistence of the same eddies or
the appearance of new ones from one day to the next. Addi-
tionally, the eddy lifetime was not considered in the analysis.
Composites of each flow regime were generated for study-
ing the overall effect of the flow regimes on the CO; flux.
Here, a composite refers to the area-weighted average of rel-
evant variables across all identified instances of a given flow
regime, providing a representative picture of the typical con-
ditions associated with each flow regime.

Biogeosciences, 22, 7519-7534, 2025
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The net CO; flux is influenced by processes operating
across different timescales (Gu et al., 2023). To determine the
frequency range at which mesoscale eddies have the greatest
impact on CO, flux, we first applied a Fourier analysis to
the full spatial variable fields to decompose it into distinct
frequency bands. This approach ensures that the spatial and
temporal coherence of the field is preserved before the iden-
tification of eddies. The analysis yielded five filtered fields
corresponding to (1) intra-annual variations above 16 months
and up to 27 years (M16), (2) annual variations between 8
and 16 months (M8-M16), (3) intra-annual variations be-
tween 4 and 8 months (M4-MS), (4) intra-annual variations
between 1 and 4 months (M1-M4), and (5) submonthly vari-
ations shorter than 1 month, down to daily changes (M1).
Subsequently, eddy composites were computed for each fil-
tered field using the criterion described above.

3 Results and discussion
3.1 Simulated mesoscale eddy characteristics

Our 10 km resolution simulation captures mesoscale eddy ac-
tivity (Fig. l1a and b) in the Southern Ocean, which is de-
fined here as the ice-free ocean south of 30°S. The model
simulates high vorticity values (positive and negative) in the
ACC region, the Agulhas Retroflection region, the Brazil-
Malvinas Confluence region, and the coast and south of Aus-
tralia. Those regions also present the largest vorticity vari-
ability, highlighting intense mesoscale dynamics (Fig. 1a).
The detected eddies cannot be directly compared with ed-
dies tracked from observations. However, our model’s eddy
counts are consistent with the distribution of eddy kinetic en-
ergy attributed to eddies reported by Chelton et al. (2011b).
Moreover, the distribution of detected eddies aligns with the
Southern Ocean’s eddy hotspots reported by Frenger et al.
(2015) (Fig. 1b).

The average daily number of eddies varies across regions,
ranging from 11 to 38 eddies present each day. There is lit-
tle to no difference between the number of anticyclonic and
cyclonic eddies within each region. In terms of spatial cover-
age, mesoscale flow regimes occupy between 10 %-20 % of
the regions (Table 1). Satellite observations suggest this field
typically covers 25 %—30 % of the ocean surface, regardless
of the size of the region (Chaigneau et al., 2009). It is impor-
tant to consider that the model has a limited ability to simu-
late the full eddy activity in the highest latitudes, where the
deformation radii are well below 10 km.

Based on eddy spatial density in the model, we define
three eddy-rich regions: the Brazil-Malvinas Confluence re-
gion, the Agulhas Retroflection region and the South of Tas-
mania region (Fig. 1b, orange rectangles). The selection is
made due to the heterogeneous nature of the Southern Ocean
which makes it difficult to generalize the effect of eddies in
the CO; flux. For instance, the eddy intensity differs between

Biogeosciences, 22, 7519-7534, 2025

M. Salinas-Matus et al.: Mesoscale eddies heterogeneously modulate CO; fluxes in the Southern Ocean

regions and is expected to modulate air—sea CO fluxes, as
stronger eddies enhance both lateral and vertical transport of
water properties, including temperature and DIC. The Ag-
ulhas Retroflection region presents the strongest and most
persistent anticyclonic and cyclonic eddy intensity. Eddies
in the Brazil-Malvinas Confluence region are less intense but
with higher variability. Anticyclones in the Tasmania region
are the least intense among the three regions but with the
smallest variability, while cyclonic intensity is similar to the
Brazil-Malvinas Confluence region but with persistent inten-
sity (Fig. 1c). Frenger et al. (2015) showed that the inten-
sity is stronger in the Agulhas Retroflection, followed by the
Brazil-Malvinas Confluence, and weakest south of Tasmania.

3.2 Heterogeneous dissolved inorganic carbon and
temperature patterns across flow regimes in
eddy-rich regions

The selected regions exhibit distinct characteristics, influ-
enced by their latitudinal positions, ocean current, and frontal
systems, and mesoscale activity. In the Agulhas Retroflec-
tion and Brazil-Malvinas Confluence regions, both situated
at similar latitudes, a pronounced spatial pattern emerges
(Fig. 3a). The pronounced spatial pattern is marked by
warmer temperatures, higher salinity, and lower pCO, and
DIC concentrations to the north, contrasting sharply with
colder, fresher, and carbon-rich waters to the south. The Tas-
mania region, located farther south, experiences water up-
welling that brings carbon-rich waters from the deep to the
surface, resulting in colder temperatures and high DIC con-
centrations throughout the year (Fig. 3a). The overall behav-
ior of the simulated temperature and DIC is consistent with
the oceanographic knowledge of the Southern Ocean (Talley
et al., 2011). Mesoscale activity plays a substantial role in
modulating carbon and temperature patterns (Fig. 2b—d).

In our simulations, flow regimes exhibit distinct character-
istics that influence the CO; flux (Fig. 2b—d), with contrast-
ing vertical structures of cyclonic and anticyclonic eddies
emerging (Fig. 3b), consistent with previous findings (Kep-
pler et al., 2024). Anticyclones, which tend to induce wa-
ter downwelling, exhibit higher temperatures and lower DIC
concentrations. In contrast, cyclones exhibit lower tempera-
tures and higher DIC concentrations, mostly driven by water
upwelling. The periphery regime shows intermediate proper-
ties, representing the transition zones surrounding both an-
ticyclonic and cyclonic eddies (Fig. 3b). While this general
pattern is evident across all three regions, the magnitude of
the differences varies with latitude and local dynamics, re-
flecting the influence of regional circulation.

The strong relationship between temperature, DIC, and
gas solubility directly influences the exchange of CO; be-
tween the ocean and the atmosphere. The Southern Ocean’s
overall CO; uptake capacity is evident in our simulation. An
outgassing band between 40 and 55°S, particularly in the
Atlantic and Indian sectors, is associated with the high DIC
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Table 1. Summary of eddy statistics for each region. Mesoscale flow regimes include anticyclonic eddies, cyclonic eddies, and periphery.
For the entire Southern Ocean, mesoscale flow regimes cover 9.31 % of the total area of 106.1 x 106 km?.

Region Total area Area covered by Daily number of eddies
(106 kmz) mesoscale flow regimes %  Anticyclones  Cyclones
Agulhas Retroflection 14.3 16.7 38 32
Brazil-Malvinas Confluence 10.2 9.9 14 11
South Tasmania 4.8 19.7 23 22
le-6
a) Mean vorticity [s~1] 1.0 C) Relative vorticity composites [s71]
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Figure 1. Overview of modeled mesoscale eddies in the simulation period (1996-2022): (a) Mean and standard deviation of vorticity, with
an approximate location of the ACC, plotted based on surface height, (b) Locations of detected anticyclonic and cyclonic eddy centroids,
defined regions (orange rectangles), and eddy centroids census within 1° x 1° grid cells, and (c) Relative vorticity composites for anticyclonic

and cyclonic eddies within selected regions.

concentration in the Southern Ocean upwelling region. North
of 60° S, the CO; flux exhibits relatively low variability com-
pared to the polar region but with notable localized signals
influenced by mesoscale structures (Fig. 3c).

In the Agulhas Retroflection and Brazil-Malvinas Conflu-
ence regions, all four regimes show a mean distribution in-
dicating carbon uptake, with a wider spread toward stronger
uptake in both cyclonic and anticyclonic eddies. However,
the distribution of cyclonic eddies and “background” shifts
slightly toward carbon outgassing events (Fig. 3c).

In contrast, the Tasmania region presents a different pat-
tern. The “background” shows a mean data distribution close
to zero CO, flux, while cyclonic, anticyclonic, and periph-
ery regimes indicate carbon release. Cyclonic eddies exhibit

https://doi.org/10.5194/bg-22-7519-2025

the highest outgassing. However, all regimes present a broad
spread extending towards higher carbon uptake (Fig. 3c). The
outgassing pattern might be associated with the predomi-
nance of eddies in zones influenced by upwelling carbon-rich
waters (Fig. 3a) and the overall lower eddy intensity in the
region (Fig. 1c).

3.3 Enhanced CO; uptake by anticyclonic eddies

The integrated CO, flux over the 27 analyzed years indi-
cates that, in most regions, mesoscale flow regimes (anticy-
clones, cyclones, and periphery) exhibit a greater efficiency
in carbon uptake compared to the “background”, although
this pattern is not consistent across the entire Southern Ocean
(Fig. 4a). When accounting for the area they occupy, these

Biogeosciences, 22, 7519-7534, 2025
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Figure 2. Snapshot of the identified mesoscale dynamics and tracer or tracer flux anomalies in the Agulhas Retroflection region (defined in
Fig. 1b) on 3 June 2014. (a) Okubo—Weiss parameter, delineating three flow regimes: vorticity-dominated (green), deformation-dominated
(violet), and “background” (grey). (b) Sea Surface Temperature (SST) anomaly, (c) air—sea CO, flux anomaly, and (d) Surface DIC anomaly.
Anomalies represent deviations from the climatological state, computed as the difference between the instantaneous value and the long-term
mean at each grid point. The air—sea CO, flux is defined as positive for outgassing (flux from the ocean to the atmosphere) and negative for
uptake (flux from the atmosphere to the ocean). Therefore, a positive flux anomaly indicates increased outgassing relative to the mean, while
a negative anomaly indicates increased uptake relative to the mean. In all panels, contours outline anticyclonic and cyclonic eddies.
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Figure 3. Overview of sea surface temperature (SST), surface DIC, and CO, flux in the Southern Ocean and composite quantities for flow
regimes within the defined regions: (a) Mean and standard deviation of SST and DIC; (b) Vertical temperature and DIC profile composites
for the flow regimes within the defined regions, (¢) Mean and standard deviation of CO; flux, along with composite CO, fluxes for the flow
regimes within the defined regions.
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regimes are responsible for 15 %—22 % of the carbon uptake
within the defined regions, and 10 % of the total carbon up-
take in the entire Southern Ocean (Table 2). However, when
considering the anomalous contribution, i.e., the additional
or reduced carbon uptake relative to “background” condi-
tions, the percentage contribution decreases substantially,
depending on the local efficiency of the mesoscale struc-
tures. This anomalous contribution is largest in the Agulhas
Retroflection region, where mesoscale regimes enhance up-
take by about 10 %, while in the South Tasmania region, the
flux is approximately 17 % lower than under “background”
conditions. Across the entire Southern Ocean, the anomalous
contribution is strongly reduced to less than 1 %. This low
relative value primarily reflects the large spatial extent of the
domain, where the “background” conditions dominate and
contribute substantially to the total carbon uptake, thereby
diluting the relative impact of mesoscale regimes (Table 2).

It is noteworthy that overall anticyclonic eddies show
higher efficiency in taking up CO; (Fig. 4a). In particular, in
the Agulhas Retroflection and Brazil-Malvinas Confluence
regions, anticyclonic eddies exhibit the highest carbon up-
take capacity, whereas the “background” has the lowest car-
bon uptake per unit area. In these two regions, cyclonic ed-
dies also exhibit an enhanced ability to take up carbon com-
pared with the “background”, although not as intense as an-
ticyclonic eddies (Fig. 4a). Anticyclonic and cyclonic eddies
have the ability to take up more, or outgas less, carbon com-
pared to the “background” (Fig. 4c). This is explained by
the stronger eddy-intensity (Fig. 1¢) and the stronger vertical
gradient in those two regions, as indicated by the temperature
and DIC profiles (Fig. 3b).

Tasmania region exhibits a contrasting pattern, as the
“background” has the highest CO; uptake (Fig. 4a). Here,
both anticyclonic and cyclonic eddies take up less or out-
gas more carbon (Fig. 4c). This pattern is influenced by the
weaker eddy intensity (Fig. 1c) and the characteristics of the
region. Most eddies in the Tasmania region are located in
the high-DIC band, which limits the ocean’s capacity for
CO; uptake (Fig. 3b). Nevertheless, anticyclonic and cy-
clonic eddies take up carbon in the entire analyzed period
(Fig. 4a), a pattern influenced by sporadic but intense car-
bon uptake events occurring across all flow regimes in the
region (Fig. 3c). These events may be associated with periods
of reduced upwelling activity, which limit the vertical trans-
port of DIC-rich subsurface waters to the surface, thereby al-
lowing enhanced CO; uptake (Pardo et al., 2017). However,
since the efficiency of CO; uptake in mesoscale flow regimes
is lower than in the “background”, the anomalous contribu-
tion is negative. Mesoscale regimes take up approximately
17 % less carbon compared to what would be expected under
“background” conditions (Table 2).

The periphery regime displays an intermediate carbon up-
take between anticyclonic and cyclonic eddies. However,
when considering the area it covers, the periphery regime
is the mesoscale regime that contributes the most to net
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CO, uptake, accounting for around 60 %-70 % of the car-
bon uptake generated by the mesoscale flow regimes, and a
comparable percentage of the anomalous contribution (Ta-
ble 2). Given this substantial contribution, understanding
the physical and biogeochemical drivers of CO; uptake in
the periphery regime is an important direction for future
research. Meanwhile, the combined contribution of anticy-
clonic and cyclonic eddies represents about 20 %—30 % of the
mesoscale regimes’ carbon uptake, and a similar proportion
of the anomalous contribution (Table 2). This is particularly
relevant given the observed trend of increasing eddy kinetic
energy (EKE) in the Southern Ocean over recent decades
(Hogg et al., 2015). If this trend continues, it could lead to
a more eddy-active Southern Ocean, with an expansion of
the area influenced by mesoscale features. Such changes may
potentially enhance or reduce the ocean’s capacity for CO,
uptake in the future depending on the region, as larger re-
gions become dominated by eddies.

The influence of mesoscale eddies on CO, flux has been
identified through in situ data. Previous studies have shown
that Agulhas anticyclonic eddies have a stronger CO; uptake
ability than their surrounding water (Orselli et al., 2019b),
which contributes to the faster acidification of the region
(Orselli et al., 2019a). In the Tasmania region, Jones et al.
(2017) identified eddies as hotspots for carbon uptake. In
the Brazil-Malvinas Confluence region, a single anticyclonic
eddy was identified as a CO; source to the atmosphere (Pezzi
et al., 2021).

Our model results are generally consistent with these ob-
servational findings. We observe a notably enhanced carbon
uptake by anticyclones in the Agulhas region compared to
the other regions, and eddies in the Tasmania region also act
as persistent CO, sinks. In the Brazil-Malvinas Confluence,
a direct comparison is not possible since our analysis focuses
on the overall eddy effect over time rather than on individual
eddy events. However, it is worth mentioning that both an-
ticyclonic and cyclonic eddies do exhibit episodes of CO»
outgassing, although such events are more frequently in cy-
clonic eddies (Fig. 3c).

Despite regional heterogeneity, anticyclonic eddies take up
more or outgas less carbon than the “background”, while
cyclonic eddies exhibit the opposite pattern (Fig. 4c). This
is consistent with studies using observation-based datasets
(Keppler et al., 2024; Li et al., 2025). This contrasting be-
havior may be attributed to eddy-pumping. In anticyclonic
eddies, this mechanism facilitates the transfer of carbon to
deeper ocean layers, enhancing the ocean’s capacity for car-
bon uptake over time. In contrast, cyclonic eddies may act
to reduce carbon uptake by limiting this downward trans-
port. While this opposition leads to a partial compensation
between positive and negative flux anomalies over the entire
Southern Ocean, such compensation is not observed at the
regional scale, where both anticyclonic and cyclonic eddies
exhibit flux anomalies of the same sign (Table 2).
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The strong agreement between the model and observations
underscores the critical role of mesoscale eddies in modu-
lating CO, fluxes. This agreement indicates that the model
is effectively capturing the key physical and biogeochemical
processes involved. Moreover, the model provides a more de-
tailed and continuous representation of eddy dynamics, offer-
ing a more robust signal than observations alone, which may
be spatially or temporally limited.

The frequency analysis suggest that eddies act as a persis-
tent carbon sink on decadal timescales (M16) (Fig. 4d—f). In
the Agulhas Retroflection and Brazil-Malvinas Confluence
regions, both anticyclonic and cyclonic eddies exhibit en-
hanced CO; uptake relative to the “background” (Fig. 4d and
e). In contrast, eddies in the Tasmania region do not absorb
more carbon than the “background” (Fig. 4f). Nevertheless,
since the integrated CO; flux in this region remains an over-
all carbon uptake, these eddies persistently take up carbon
despite the high concentrations of DIC in that region. This
is particularly important since the recent trend has proposed
increased eddy activity in the Southern Ocean (Hogg et al.,
2015; Martinez-Moreno et al., 2021) and the growing influ-
ence of eddies on heat distribution in a warming ocean (He
et al., 2023).

At intra-annual frequencies (M1 to M8-M16), the carbon
flux anomalies are generally smaller but comparable to the
“background” fluxes, and they exhibit greater variability at
higher frequencies, indicating rapid events of carbon uptake
and release. However, a pattern emerges: anticyclones tend
to absorb more carbon or release less carbon than the “back-
ground”, while cyclones typically absorb less or release more
carbon. This pattern is the most pronounced in the Agulhas
region, followed by the Brazil-Malvinas Confluence, and is
much weaker in the Tasmania region. The contrast between
cyclones and anticyclones is particularly distinguishable in
the M1-M4 and M4-MS bands. These frequency bands are
linked to seasonal differences or rapid events such as phyto-
plankton blooms (Fig. 4d—f). Keppler et al. (2024) identified
a clear seasonal pattern, with cyclonic eddies in the ACC ex-
hibiting outgassing in fall and carbon uptake in spring, while
anticylonic eddies north of the ACC showed enhanced uptake
during spring.

3.4 DIC as the key regulator of oceanic pCO, and its
main role on CO; flux

The CO» flux is influenced by three components: (1) solubil-
ity factor (Sc), driven by temperature and salinity, (2) pis-
ton velocity (ky), driven by wind speed and temperature,
and (3) the air-sea pCO, difference (ApCO, = pCO***" —
pCO3™). Appendix A details how each term (Sc, ky, and
ApCO,) is isolated for the analysis.

Among these factors, k,, and ApCO, are the dominant
contributors to the total CO; flux (Fig. 4a). In the Agulhas
Retroflection and Brazil-Malvinas Confluence regions, the
influence of ApCO, is larger in cyclonic eddies, periphery,
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and “background”. However, in anticyclonic eddies, k,, has
a stronger impact. This may result from reduced variability
in surface ApCO,, as anticyclones contain warmer, lower-
nutrient water, which limits biological activity and reduces
pCO, disequilibrium with the atmosphere. By contrast, in
the Tasmania region ApCO, consistently dominates across
all flow regimes. The contribution of Sc remains minimal
across all regions and flow regimes, ranging from 10 %—13 %
(Fig. 4a).

The time-frequency analysis of the effect of the CO, flux
terms reveals a shift in the relative importance of these
drivers. At higher frequencies, k,, becomes the dominant fac-
tor influencing CO; flux, while at lower frequencies, the in-
fluence of ApCO, increases (Fig. 4b). Despite these varia-
tions, ApCO, remains a key driver of the total flux (Fig. 4a).
Our results align with those of Gu et al. (2023), which re-
ported that, at higher frequencies (subseasonal timescales),
wind explains the majority of the global CO; flux anomaly,
while at lower frequencies (seasonal, interannual and decadal
timescales) ApCO, is the dominant factor. Our study ex-
pands on the factors that control the CO, flux in eddies,
showing that k,, tends to play a greater or comparable role
in eddies than in the “background” regime.

In our simulation, the pCO3™ is prescribed, thus variations
in ApCO, are primarily driven by changes in pCO5**". The
pCO3°*" is driven by changes in DIC, alkalinity, sea sur-
face salinity, and SST. To decompose the contributions of
these factors, we applied a decomposition method (Takahashi
etal., 1993), detailed in Appendix B. In the three selected re-
gions, DIC and SST were the primary drivers of ApCO5°**".
The contributions of alkalinity and salinity were relatively
small; therefore, salinity was grouped with SST to represent
the physical drivers, and alkalinity was grouped with DIC
to represent the biogeochemical drivers. Because the salin-
ity contribution was minor, the combined SST and salinity
component is referred to as the thermal component, while
the DIC and alkalinity component is referred to as the non-
thermal component.

The regression of the pCO3°*" on the non-thermal com-
ponent, primarily driven by DIC, exhibits high R* values
(Fig. 5), indicating that a larger proportion of pCO5“**" vari-
ability is explained by this component. Its dominance is
present in the total signal as well across almost all frequency
bands (except M4—MS8) and regions. In contrast, the thermal
component shows consistently low R? values (Fig. 5a, b),
suggesting a less relevant role in explaining the variability. It
is worth mentioning that the thermal component counteracts
the influence of the non-thermal component.

Other studies have found that DIC is the dominant driver
of oceanic ApCO, in the Southern Ocean (Landschiitzer
et al., 2016; Lerner et al., 2021). Our results reinforce this
finding and further show that the drivers of oceanic pCO,
in eddies are largely consistent with those in the surround-
ing “background” waters. Our results show that DIC is the
dominant contributor to the non-thermal component of the
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Figure 4. (a) Time-integrated CO, flux composites for flow regimes across the defined regions, including relative contributions of CO, flux
drivers (solubility, pCO, and, piston velocity) to the variability. (b) For the Agulhas Retroflection region, though the other regions follow
the same pattern, relative contributions of these drivers across different frequency bands (M16: interannual variations above 16 months,
M8-M16: annual variations between 8 and 16 months, M4-M8: intra-annual variations between 4 and 8 months, M1-M4: intra-annual
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Composite anomalies of total CO, flux relative to the “background”

for anticyclonic and cyclonic eddies. (d-f) Composite anomalies of CO; flux across different frequency bands in three regions: (d) Agulhas
Retroflection, (e) Brazil-Malvinas Confluence, and (f) south of Tasmania.

pCO5*", which in turn exerts the strongest influence on air—
sea CO; fluxes. However, Smith et al. (2023) reported con-
trasting behavior in the South-East Atlantic Ocean, where
temperature was identified as the main driver of pCO, in ed-
dies. Consequently, they observed enhanced CO; uptake in
cyclonic eddies compared to anticyclonic eddies. These find-
ings highlight the spatial heterogeneity of eddy-related pro-
cesses across the Southern Ocean and underscore the impor-
tance of regional processes in modulating air—sea CO; fluxes.

4 Summary and conclusion

The purpose of our analysis was twofold: to characterize
the role of mesoscale oceanographic features in modulat-
ing CO, fluxes across three eddy-rich regions of the South-
ern Ocean, and to investigate the physical and biogeochem-
ical drivers that control these fluxes. We present a 27-year
long high-resolution simulation, which is notably long for
an ocean-biogeochemical model of this kind. Our simula-
tion enables, for the first time, to assess the influence of ed-
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dies on CO, fluxes across a broad range of timescales, from
daily to decadal variability. The model successfully captures
mesoscale activity, reproducing the distinct characteristics of
eddies: anticyclones associated with higher temperatures and
lower DIC concentration, while cyclones exhibit lower tem-
peratures and higher DIC concentrations.

We find that eddies act as a persistent carbon sink at
decadal scales. At shorter timescales, mean flux anoma-
lies are smaller but exhibit higher variability, with anticy-
clonic and cyclonic eddies displaying distinct behaviors. An-
ticyclones typically enhance carbon uptake or suppress out-
gassing, whereas cyclones more often reduce uptake or pro-
mote outgassing. This opposing behavior leads to a partial
compensation between positive and negative flux anomalies,
particularly at the basin scale, where enhanced CO, uptake
by anticyclonic eddies tends to be offset by reduced uptake
within cyclonic structures. Such compensation dampens the
net contribution of mesoscale activity to the overall Southern
Ocean carbon sink. These highlight the importance of eddy
type in shaping short-term air—sea CO; fluxes.

Biogeosciences, 22, 7519-7534, 2025
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Table 2. Area-integrated total and anomalous carbon uptake contributions by region and mesoscale flow regime. The “Total” rows correspond
to the absolute uptake, and the “Anomalous” rows show the deviation relative to “background” conditions. Values in parentheses denote the
contribution as a percentage, first relative to the total uptake (in bold), and second relative to the combined uptake from all mesoscale flow
regimes (eddies + periphery). All values are mean =+ standard deviation.

Carbon uptake [Pg C yr—!]

Disentangling Mesoscale flow regimes

Region Type Mesoscale total
Anticyclones Cyclones Periphery
Agulhas Retroflection  Total 0.032+0.016 0.009 +0.003 0.003 +0.002 0.0204+0.010
0.14+0.08 (22+11%) 27+11%) (10+7%) (62+31%)
Anomalous 0.0115£0.009 0.00428 4+ 0.00030 0.00056 +0.00134 0.00614 4+ 0.00507
(10+8%) 37+2%) 5£12%) (53 +44 %)
Brazil-Malvinas Total 0.0134+0.009 0.002 +0.001 0.001 £ 0.001 0.010 £ 0.007
Confluence (13+9%) (15£7%) (7+7%) (74 £51 %)
0.10+£0.07 Anomalous 0.00348 +0.006 0.00091 +0.00138 0.00017 4 0.00080 0.00240 4+ 0.00388
(4£0.06 %) 26 £39%) (5+23%) 69+£111%)
South Total 0.003 +£0.010 0.0006 £ 0.001 0.0002 £0.001 0.002 4+ 0.006
Tasmania (1550 %) 20+ 62%) (8 £60%) (71 £206 %)
0.02+0.05 Anomalous  —0.00298 £0.002 —0.00059 £0.00053 —0.00074 £0.00061 —0.00165+£0.00110
(—17+11%) (=20+18%) (—25+20%) (—55+36%)
Entire Total 0.118 = 0.063 0.0204+0.010 0.010 £ 0.008 0.086 +0.045
Southern Ocean (10+£5%) (18£9%) 9+7%) (72 £38 %)
1.17£0.60 Anomalous 0.00946 + 0.027 0.00313 £0.00531 —0.00136 +0.00414 0.00769 £+ 0.0180
(1£2.5%) (B33+£56%) (—14+43 %) (81 £190 %)
Coefficient of determination (R?) for the linear regression
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Figure 5. Contribution of the thermal and non-thermal components to the total oceanic ApCO, across flow regimes in the defined regions.
The coefficient of determination (R2) was calculated from linear regressions between each component (thermal and non-thermal) and the
total ApCO,, quantifying the proportion of variability explained by each. Regressions were performed separately for each component using

time series of the composites within each region.

Beyond these temporal dynamics, our results show that the
mesoscale flow regimes (anticyclones, cyclones, and periph-
ery) are more effective in taking up carbon than the “back-
ground”, accounting for about 10 % of the total carbon up-
take in the Southern Ocean and 1 % of the anomalous con-
tribution. The relatively small overall value primarily reflects

Biogeosciences, 22, 7519-7534, 2025

the large spatial extent of the domain, where “background”
conditions dominate and contribute substantially to the total
carbon uptake. However, in eddy-rich regions, the mesoscale
contribution becomes much more important. Anticyclonic
eddies are especially effective, emerging as the flow regime
with the highest carbon uptake per unit area. These results are
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relevant given current trends suggesting that eddies may be-
come more widespread in the future in the Southern Ocean.

Across all timescales and regions, ApCO, plays a central
role in modulating the CO; flux, outweighing the influence
of piston velocity (wind) and solubility factor. We identi-
fied the non-thermal component (primarily driven by DIC)
as the dominant control on oceanic ApCO,. This finding
is consistent with previous studies on the Southern Ocean
but extends our understanding by explicitly identifying the
drivers of CO, fluxes within eddies. Our results indicate that
the factors regulating oceanic ApCO, in eddies are largely
consistent with those in the surrounding “background” wa-
ters. However, given the differences we observe in CO, up-
take between eddies and the “background”, further analysis
is needed to determine the processes driving DIC variability
within eddies and their impact on carbon fluxes.

The pattern of anticyclonic and cyclonic eddies in modu-
lating CO, fluxes in the Southern Ocean in our simulation
is consistent with recent observational estimates. This con-
firms that the model realistically represents the influence of
mesoscale eddies on CO; fluxes. This agreement supports
the model’s ability to capture key physical and biogeochem-
ical processes driving carbon uptake in the Southern Ocean.
Moreover, we found that while the overall contribution of
mesoscale eddies to carbon uptake across the entire Southern
Ocean is relatively small, their influence becomes more pro-
nounced in eddy-rich regions, leaving a detectable imprint on
regional CO, fluxes.

Appendix A: Air-sea CO; flux terms effect

The air—sea CO; flux follows the empirical relationship from
Wanninkhof (1992). This is determined by the solubility fac-
tor (Sco,), the piston velocity (k,), and the air-sea pCO,
difference (ApCO, = pCO***" — pCO5™).

CO2flux = Sco,kw ApCO,

where ky, scales with wind speed and decays with tempera-
ture (Wanninkhof, 2014). The Schmidt number (Sc¢) is fitted
by the a 4th-order polynomial from Wanninkhof (2014) and
normalized by the Schmidt number for CO; at 20 °C of 660:

Sc(SST)\~1/2
kw:(l_f)”z( é60 )>

Sc=a; —ay-SST+a3 - SST? — as - SST? + a5 - SST*
ay =2116.8, ar = 136.25, a3 = 4.7353,

as = 0.092307, as = 0.0007555

and Sco, is calculated according to Weiss (1974)
InSco, = A1+ A2(100 - SST) + A31In(SST/100)

+ SSS[B1 + B2(SST/100) + B; (SST/100)2]
A; =—60.2409, A, =9345.17, A3 =23.3585,
B1 =0.023517, B = —0.00023656, B3z =0.0047036
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where SST is sea surface temperature and SSS is sea surface
salinity.

To isolate the effects of each term, we used the long-term
mean state of the system as a baseline. By keeping the base-
line constant for each driver, we could subtract its effect from
the total CO; flux to determine the individual contributions
(Chikamoto and DiNezio, 2021).

COofiux ~ Fpiston + Fsolubility + FApC02
Fpiston =ky(2) SCOZ () Apcoz(f)
— ku (tb) Sco, (1) ApCO, (1)
Fiotbility = kw (1) Sco, (t) ApCO, ()
— ku (t) Sco, () ApCO, (1)
Fapco, = k(1) Sco,(t) ApCO,(7)
— kw (t) Sco, (1) ApCO,(1p)
where ky, (), Sco,(t), and ApC O;(t,) are the respective
baseline values, defined as their long-term means.
The combined effects of each driver should approximate
the total CO, flux. The reconstruction is an approximation

because it does not account for the effects of sea ice, although
our analysis was restricted to sea-ice-free regions.

Appendix B: Decomposition of pCO5“*"

Since pCOgir is prescribed in the simulation, the primary
variations in ApCO, are driven by changes in pCO35**".
The pCOZ***" is influenced by variations in DIC, alkalin-
ity, sea surface salinity, and temperature. To decompose the
pCO3°*", we applied a widely used decomposition method
(Takahashi et al., 1993).

ApCOSe™ = ApCOYIC + ApCOZ + ApCOSST + ApCO3SS
ApCOY'€ = ADIC - ypic - pPCO,Res/DIC

ApCOZ* = Aalk - yyi - pCOg,r/alk

ApCO35S = ASSS - ysss - pPCOsges/SSS

ApCOSST = (exp™ST 7T pCO,gf) — PCORer

The values of yx refer to the Revelle factors. ysss and
ysst are 1 and 0.0423; ypic and y,k are computed daily as
(Sarmiento and Gruber, 2006):
3 alk DIC — 2 DIC?
- (2 DIC — alk) (alk — DIC)
alk?
(2 DIC — alk) (alk — DIC)

¥YDIC

Yalk =

Appendix C: Selection of the OW threshold

Figure C1 shows the OW fields for different threshold val-
ues. This comparison demonstrates that the selected thresh-
old provides the most adequate balance between capturing
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coherent eddy cores and avoiding overly extended periphery
regions.
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