Supplement of Biogeosciences, 22, 8031–8046, 2025 https://doi.org/10.5194/bg-22-8031-2025-supplement © Author(s) 2025. CC BY 4.0 License.

Supplement of

Dynamics and environmental drivers of methane and nitrous oxide fluxes at the soil and ecosystem levels in a wet tropical forest

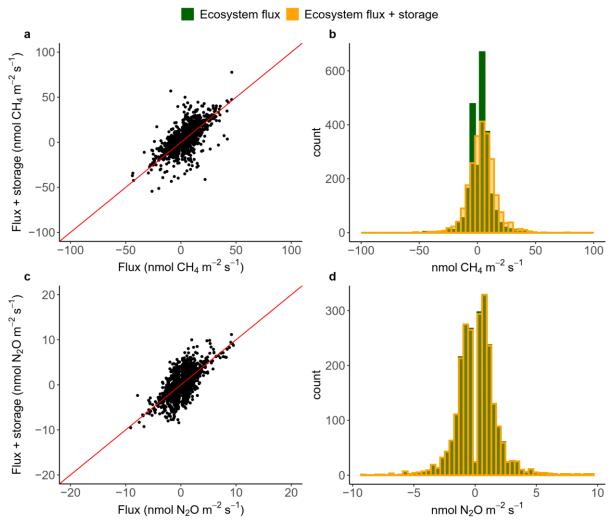
Laëtitia M. Bréchet et al.

Correspondence to: Laëtitia M. Bréchet (laeti.brechet@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

 Table S1. Results of the Kolmogorov-Smirnov tests comparing CH_4 and N_2O flux distributions at ecosystem and upland-soil level between wettest and driest seasons. Significant terms at p level < 0.05 are shown in bold. Corresponding data are presented in Figure 3.

	CH ₄		N ₂ O			
	Alternative hypothesis	p value	Alternative hypothesis	p value		
	Ecosystem fluxes					
Driest vs. Wettest	Greater	< 0.001	Less	0.051		
	Upland soil fluxes					
Driest vs. Wettest	Greater	< 0.001	Greater	< 0.001		


Table S2. Fluxes from Table 1 transformed into the most commonly used units in the literature for data contextualisation. Means, standard deviations (SD) and medians of ecosystem and upland soil CH_4 and N_2O fluxes per season (wettest and driest) in the Guyaflux tropical forest, French Guiana.

Conversion factors: from nmolCH₄ to mgCH₄ x 1.604 x 10^{-5} , from nmolN₂O to mgN₂O x 4.4013 x 10^{-5} .

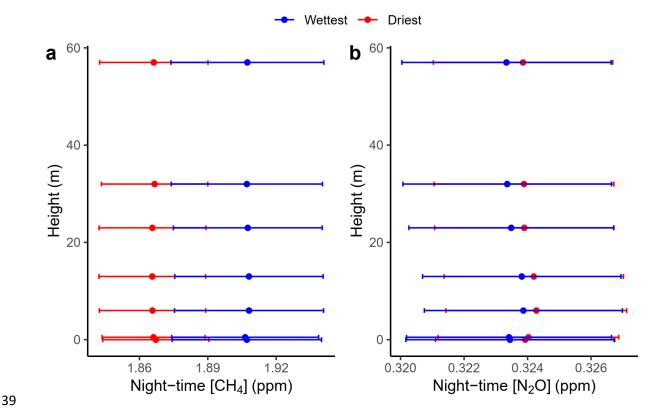

	Ecosystem flux										
Fluxes	Wettest			Driest			Global average				
	Mean	SD	Median	Mean	SD	Median	Mean	SD	Median		
	nmol m ⁻² s ⁻¹										
CH ₄	4.9	11.2	3.5	-1.6	6.4	-1.7	2.5	9.8	2.0		
N ₂ O	0.6	1.0	0.5	0.5	1.3	0.7	0.7	1.3	0.5		
				m	g m ⁻² day	-1	T				
CH ₄	6.7	15.6	4.8	-2.2	8.9	-2.4	3.5	13.6	2.7		
N ₂ O	0.8	1.5	0.7	0.7	1.8	1.0	0.9	1.8	0.7		
				k	g ha ⁻¹ yr ⁻¹		T				
CH ₄	24.6	56.4	17.8	-8.2	32.5	-9.0	12.8	49.7	9.9		
N ₂ O	2.9	5.3	2.4	2.7	6.4	3.7	3.3	6.6	2.7		
				Up	land soil	flux					
	nmol m ⁻² s ⁻¹										
CH ₄	-0.4	0.9	-0.6	-1.4	1.2	-1.8	-0.7	1.5	-0.7		
N ₂ O	0.3	0.3	0.3	0.2	0.3	0.2	0.3	0.3	0.3		
				n	ng m ⁻² da	y -1					
CH ₄	-0.6	1.2	-0.9	-2.0	1.7	-2.5	-0.9	2.1	-1.0		
N ₂ O	0.4	0.4	0.4	0.3	0.4	0.2	0.4	0.4	0.4		
					kg ha ⁻¹ yr	-1					
CH ₄	-2.2	4.4	-3.2	-7.1	6.1	-9.2	-3.3	7.6	-3.8		
N ₂ O	1.6	1.3	1.5	1.2	1.6	0.8	1.6	1.4	1.4		

Table S3. Results of generalised additive models (GAM) assessing the relationships between environmental variables, i.e. global radiation (Rg), soil water content (SWC), soil temperature (Ts), and 1^{st} - 99^{th} percentile range of daily mean ecosystem and upland soil CH₄ and N₂O fluxes during the wettest and driest seasons from 17 May, 2016 to 2 August, 2018 in the Guyaflux tropical forest, French Guiana. The effective degrees of freedom (edf) and the reference number of degrees of freedom (Ref. df) of the fitted models, with values for each spline term, are shown. Significant terms at p level < 0.05 are shown in bold. See Figure S6 for the 1^{st} - 99^{th} percentile range of data.

	Fluves	Best model predictors	R ²	lutouss:-t	Coe	fficients	- F value	p value
	Fluxes			Intercept	edf	Ref. df		
		-	Ecosys	tem level		·	_	
Daily	CH ₄		0.15	2.613				
		Rg: Wettest			1.2	9	1.00	0.001
		Rg: Driest			0.6	8	0.19	0.113
		Ts: Wettest			0.9	9	0.14	0.226
		Ts: Driest			0.0	8	0.00	0.955
		SWC: Wettest			1.2	9	0.71	0.006
		SWC: Driest			0.7	6	0.36	0.079
Daily	N ₂ O		0.03	0.933				
		Rg: Wettest			0.8	9	0.43	0.024
		Rg: Driest			0.4	8	0.09	0.193
		Ts: Wettest			0.3	9	0.04	0.251
		Ts: Driest			0.0	9	0.00	0.892
		SWC: Wettest			2.2	9	0.90	0.012
		SWC: Driest			0.0	6	0.01	0.306
			Upland	l soil level				
Daily	CH ₄		0.20	-0.760				
		Rg: Wettest			0.0	9	0.00	1.000
		Rg: Driest			1.2	8	0.81	0.006
		Ts: Wettest			0.0	9	0.00	0.427
		Ts: Driest			0.0	8	0.01	0.287
		SWC: Wettest			1.2	9	5.14	< 0.001
		SWC: Driest			1.5	7	1.56	< 0.001
Daily	N_2O		0.05	0.310				
		Rg: Wettest			0.2	9	0.02	0.293
		Rg: Driest			0.9	7	1.42	0.001
		Ts: Wettest			0.0	9	0.00	1.000
		Ts: Driest			0.6	7	0.20	0.123
		SWC: Wettest			0.0	9	0.00	0.721
		SWC: Driest			0.0	6	0.00	0.539

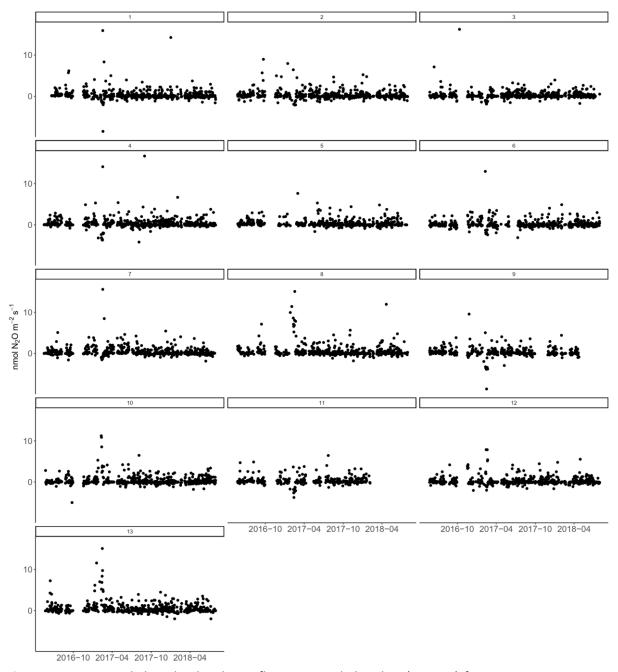

Figure S1. Relationships between the half-hourly fluxes of (a) CH_4 and (c) N_2O , as measured by the eddy covariance technique, and the same fluxes corrected by the storage term (i.e. the accumulation of CH_4 and N_2O within the forest canopy at night when Rg < 5 W m⁻²). The line represents the 1:1 relationship. Corresponding density plots of corrected and non-corrected half-hour fluxes of (b) CH_4 and (d) N_2O . Data from the Guyaflux tower from 1 January, 2017 to 11 January, 2018, French Guiana.

Figure S2. Night-time (Rg < 5 W m $^{-2}$) averaged vertical profiles for (a) [CH₄] and (b) [N₂O] measured on an upland forest near the Guyaflux tower for the wettest (blue) and driest (red) seasons from 1 January, 2017 and 11 January, 2018, French Guiana.

Figure S3. Average daily upland soil CH_4 fluxes per soil chamber (1 to 13) from 17 May, 2016 to 2 August, 2018 in the Guyaflux tropical forest, French Guiana. Fluxes were estimated with a 2-min and 25-min closure time (see Sect. 2.5, "Chamber-based CH_4 and N_2O flux computation", for more details). All panels have the same limits on the y-axis.

Figure S4. Average daily upland soil N_2O fluxes per soil chamber (1 to 13) from 17 May, 2016 to 2 August, 2018 in the Guyaflux tropical forest, French Guiana. Fluxes were estimated with a 2-min and 25-min closure time (see Sect. 2.5, "Chamber-based CH_4 and N_2O flux computation", for more details). All panels have the same limits on the y-axis.

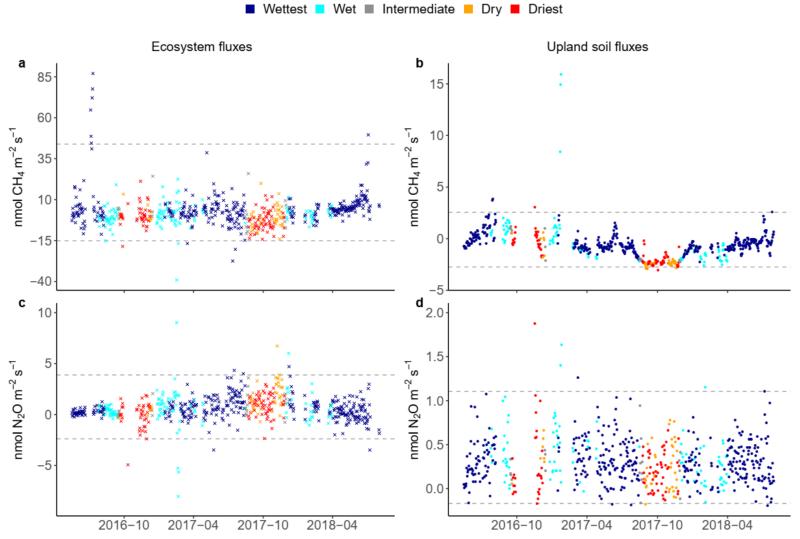
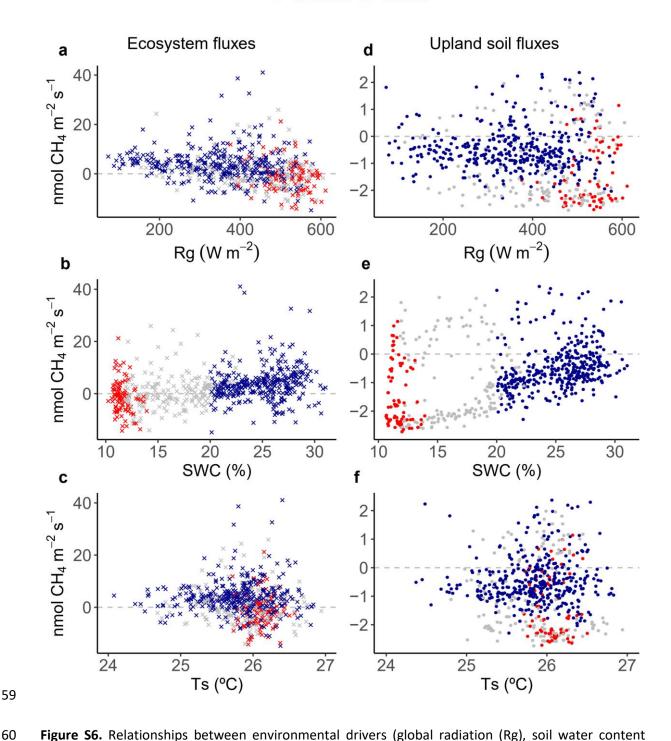



Figure S5. Seasonal courses of the raw average daily a) ecosystem and b) soil fluxes for CH₄ (top panels) and N₂O (bottom panels) for the full datasets from 17 May, 2016 to 2 August, 2018 in the Guyaflux tropical forest, French Guiana. The 1^{st} - 99^{th} percentile ranges of the flux values are represented by the horizontal dashed lines. Colours illustrate the wet, intermediate, and dry seasons, and for two contrasted seasons, defined as the wettest (dark blue dots) and the driest (red dots). Note that the scale of the y-axis has been adjusted for each gas and compartment to improve clarity.

■ Wettest ■ Driest

Figure S6. Relationships between environmental drivers (global radiation (Rg), soil water content (SWC) and soil temperature (Ts)) and daily average ecosystem (crosses on the left) and upland soil (solid dots on the right) CH_4 fluxes for the wettest (blue) and driest (red) seasons, with remaining data in grey, from 17 May, 2016 to 2 August, 2018 in the Guyaflux tropical forest, French Guiana. Positive fluxes above the horizontal "0" line indicate CH_4 emissions and negative fluxes below the horizontal "0" line indicate CH_4 uptake. Comparable relationships with the full range of CH_4 data are shown in Fig. 4.

■ Wettest ■ Driest

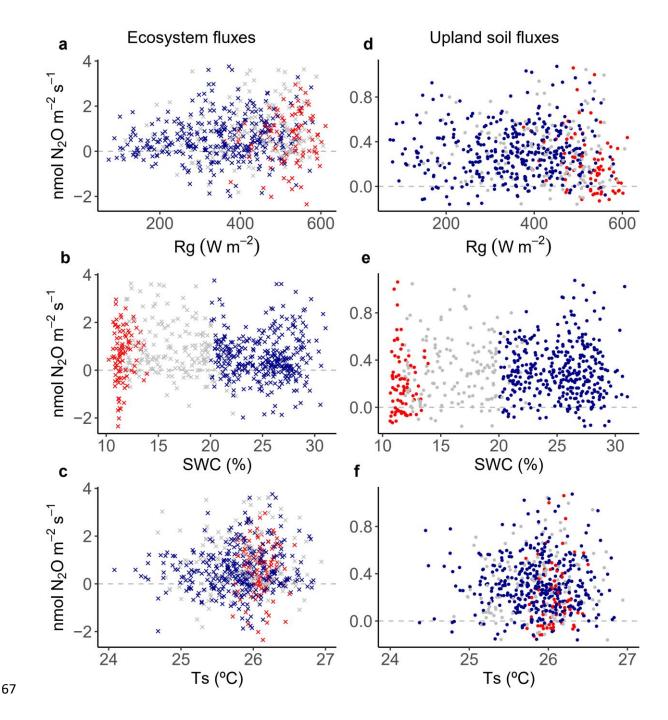



Figure S7. Relationships between environmental drivers (global radiation (Rg), soil water content (SWC) and soil temperature (Ts)) and daily average ecosystem (crosses on the left) and upland soil (solid dots on the right) N_2O fluxes for the wettest (blue) and driest (red) seasons, with remaining data in grey, from 17 May, 2016 to 2 August, 2018 in the Guyaflux tropical forest, French Guiana. Positive fluxes above the horizontal "0" line indicate N_2O emissions and negative fluxes below the horizontal "0" line indicate N_2O uptake. Comparable relationships with the full range of N_2O data are shown in Fig. 5.

Figure S8. (a) Monthly accumulated net ecosystem exchange (NEE) and (b) El Niño-Southern Oscillation Event (ENSO) anomalies: cold (blue, known as La Niña) and warm (red, known as El Niño) periods based on a threshold of +/- 0.5°C for the Oceanic Niño Index (https://origin.cpc.ncep.noaa.gov).