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Abstract. Surface chlorophyll from satellite remote sensing
is a common predictor variable in marine animal habitat stud-
ies but fails to capture deep chlorophyll maxima (DCMs)
that are unambiguous in persistently stratified water columns.
DCMs are also present within the meso-oligotrophic marine
environment of Western Australia and have been hypothe-
sised to be an important feature for the growth and main-
tenance of regional krill populations on which locally en-
dangered pygmy blue whales feed. This study used ∼ 8500
vertical ocean glider profiles collected between 2008 and
2021 to better understand the broad-scale temporal pres-
ence of DCMs and their characteristics in Western Aus-
tralian waters. Our results show that DCMs are predomi-
nantly present from September to April, with a high propor-
tion of biomass maxima within the euphotic zone in Septem-
ber and March. In summer, DCMs deepen and settle below
the euphotic zone. The latter results in a balanced presence
of biomass and photo-acclimation maxima, placing Western
Australian waters in a unique biogeographical biome. In ad-
dition, since DCMs in summer contribute over 50 % to water-
column-integrated chlorophyll below the euphotic zone, our
results are in support of hypotheses regarding the impor-
tance of the DCM for local krill and highlight the need to
develop methods to include water-column-integrated chloro-
phyll estimates in habitat models. Linear regression anal-
yses show that this could be achieved through the exten-
sion of previously known relationships between surface and
water-column-integrated chlorophyll over the euphotic zone
to twice the euphotic zone depth (i.e. deep depth-integrated
chlorophyll). While using water-column-integrated chloro-
phyll estimates from satellite remote sensing has its chal-
lenges, it is currently the only means to include DCMs in

habitat models fitted to large temporal- or spatial-scale ani-
mal presence data.

1 Introduction

Phytoplankton are instrumental in providing energy to higher
trophic levels of aquatic ecosystems. Their biomass is mostly
quantified in terms of chlorophyll-a (hereafter called chloro-
phyll), from which primary productivity is derived, and ar-
eas with potentially high prey availability for higher trophic
levels are identified (Huot et al., 2007; Hobday and Hartog,
2014). Indeed, several studies identified chlorophyll as a sig-
nificant predictor variable of foraging habitat and hot spots
for primary consumers (e.g. Schmidt et al., 2012; Hellessey
et al., 2020) and higher trophic levels (e.g. Suryan et al.,
2012; Palacios et al., 2019; Salgado Kent et al., 2020; Speak-
man et al., 2020).

While chlorophyll levels can be quantified using several
techniques (i.e. visual assessment of ocean colour, spec-
trophotometry, fluorometry, and chromatography; Parsons
and Strickland, 1963; Yentsch and Menzel, 1963; Jeffrey,
1974; Gieskes and Kraay, 1977; Jeffrey et al., 1999), phy-
toplankton biomass and productivity studies flourished with
the launch of the first satellite remote sensing ocean colour
mission in 1978 (Hovis et al., 1980; McClain, 2009). Not
only has satellite remote sensing generated a near-continuous
chlorophyll dataset with high spatial resolution (Groom et
al., 2019), the data are also widely accessible, resulting in
the inclusion of satellite-derived chlorophyll – almost as a
default – in studies aiming to identify crucial marine animal
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foraging areas. Yet, satellite remote sensing is restricted to
the upper water column (2–39 m; Organelli et al., 2017) and
likely excludes deep chlorophyll maxima (DCMs; Gordon
and McCluney, 1975; Smith, 1981), which may – at least in
some areas – be an essential feature to support higher-order
foraging efforts (Rennie et al., 2009a; Scott et al., 2010).

DCMs are observed throughout the global oceans, with
a year-round and consistent presence in tropical and most
subtropical regions (Mignot et al., 2014; Bock et al., 2022;
Quartly et al., 2023). Seasonal patterns of occurrence be-
come more evident from temperate to high-latitude regions
(Cornec et al., 2021), during which DCMs are present in
summer but tend to break down or occur less frequently in
winter (e.g. Mignot et al., 2014; Baldry et al., 2020; Bock
et al., 2022). In well-studied tropical and temperate regions,
DCM formation has been linked to permanent or season-
ally stable stratified water conditions (Cornec et al., 2021),
with light and nutrient availability driving the formation of
true phytoplankton biomass maxima (i.e. deep biomass max-
ima, DBMs) and deep photo-acclimation maxima (DAMs;
Mignot et al., 2014; Cullen, 2015). While DAMs result from
an increased chlorophyll-to-carbon ratio because of low-
light adaption rather than an increase in transferrable carbon
(Steele, 1962, 1964), both DBMs and DAMs may contribute
to water column productivity adequately enough to be of rel-
evance to higher trophic levels (e.g. Weston et al., 2005; Fer-
nand et al., 2013; Mignot et al., 2014; Marañón et al., 2021).

The marine habitat of Western Australia is characterised
by a cross-shelf gradient in surface chlorophyll values de-
creasing from winter maxima of ∼ 1mgm−3 along the coast
to ∼ 0.4mgm−3 in offshore waters (i.e. > 300m deep;
Lourey et al., 2006; Fearns et al., 2007; Hanson et al.,
2007a; Koslow et al., 2008). However, surface chlorophyll
values vary seasonally and, offshore, generally do not exceed
0.1 mgm−3 in summer (Hanson et al., 2005a, b; Lourey et al.,
2006; Koslow et al., 2008). These intermittent oligotrophic
conditions result from the poleward-flowing Leeuwin Cur-
rent, which transports warm, low-salinity and low-nutrient
water along the continental shelf break (Cresswell and Gold-
ing, 1980). Despite seasonal variation in current strength
with minimum geostrophic flow in January–February (Feng
et al., 2003), the Leeuwin Current generally suppresses nu-
trient upwelling by strong southwesterly winds that blow in
spring and summer (i.e. September–February; Rennie et al.,
2006, 2009b). Stratification weakens or may break down in
late autumn and winter, which has been linked to an ini-
tial deepening of the mixed layer by an intensification of
the Leeuwin Current strength (i.e. peak strength in June–
July; Feng et al., 2003) and subsequent maintenance of tur-
bulent conditions by northwesterly winter storms and en-
hanced eddy kinetic energy (Koslow et al., 2008; Rennie
et al., 2006).

DCMs form in the vertically stratified water column of
Western Australia in summer at a depth between 50 and
120 m offshore, shoaling to the surface or seabed on the con-

tinental shelf (Hanson et al., 2005a, 2007a; Twomey et al.,
2007; Koslow et al., 2008; Rennie et al., 2009a; Chen et al.,
2019). While DCMs tend to break down around the shelf
edge in late autumn and winter (Chen et al., 2019), they
may persist offshore at shallower depths (15–70 m; Hanson
et al., 2005a; Koslow et al., 2008). Previous studies have con-
firmed that the DCM is often a biomass maximum (Hanson
et al., 2005a, 2007a; Rennie et al., 2009a), responsible for
30 %–70 % of total water column productivity (Hanson et al.,
2007a). More importantly, the DCM may be a vital feature
for Euphausia recurva, the most abundant krill species along
the southwest Australian coast, including the Perth Canyon
(Sutton and Beckley, 2016). E. recurva, in turn, is the com-
mon prey for locally endangered pygmy blue whales (Bal-
aenoptera musculus brevicauda), known to feed around the
Perth Canyon head, northern rim, and plateau in waters 300–
600 m deep (McCauley et al., 2004; Rennie et al., 2009a)
and along the continental shelf break (200 m contour line;
Owen et al., 2016) from February to June (peak presence
February–March; McCauley et al., 2004; Erbe et al., 2015).
Acoustic backscatter data from the Perth Canyon in late
summer (February) suggest that krill gather at 300–500 m
depth during the day, rising to the DCM at night to feast
on phytoplankton prey (Rennie et al., 2009a). Rennie et al.
(2009a) highlighted the fact that pygmy blue whales can
only be expected to forage in areas where the metabolic gain
from foraging supersedes the energy expenditure related to
lunge feeding. Based on conductivity, temperature, and depth
(CTD) analyses and numerical and phytoplankton studies,
the authors hypothesised that the krill population of Western
Australia is maintained throughout the year by increased pro-
ductivity in both winter (related to surface blooms) and sum-
mer (related to subsurface blooms near the DCM). Sutton
(2015) supported this observation with fatty acid and stable
isotope analysis of krill caught in the Perth Canyon in April
(i.e. prior to the annual increase in surface phytoplankton in
May), which did not reflect a diet of surface phytoplankton.
Its apparent significance highlights the need to gain a better
understanding of the broad-scale seasonal patterns in DCM
formation and potential underlying processes and to consider
the inclusion of DCMs in phytoplankton biomass estimates
and marine animal habitat models.

While it is known that DCMs form in Western Aus-
tralian waters, our knowledge of their seasonal presence and
characteristics (e.g. DCM depth, type and width, maximum
chlorophyll concentration at depth, etc.) is limited to cross-
continental shelf time series (e.g. Fearns et al., 2007; Koslow
et al., 2008; Chen et al., 2019) and broad-scale temporally
restricted analyses (e.g. Hanson et al., 2005a, 2007; Twomey
et al., 2007; Thompson et al., 2011). This study used 14
years of ocean glider data to assess broad-scale temporal
patterns in water column characteristics, DCM formation,
and DCM characteristics in the meso-oligotrophic marine
environment of Western Australia, focusing on the area be-
tween 27.5 and 33.8° S where the Perth Canyon lies. In ad-
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dition, while several studies have shown that surface chloro-
phyll values measurable by satellite remote sensing can esti-
mate water-column-integrated chlorophyll over the euphotic
zone (the depth over which photosynthetically active radia-
tion, PAR, decreases to 1 % of its surface value ZPAR

1 % , here-
after referred to as “depth-integrated chlorophyll”; Morel and
Berthon, 1989; Uitz et al., 2006; Frolov et al., 2012), these
studies were based on samples from open oceanic regions
or a regional eutrophic continental margin. We, therefore,
assessed whether relationships between surface and water-
column-integrated chlorophyll values were similarly present
in the waters of Western Australia for potential use in habitat
models.

2 Methods

2.1 In situ ocean glider data retrieval

We downloaded in situ ocean glider data from the Australian
Ocean Data Network (AODN) portal. Data were collected
between 21 June 2008 and 12 July 2022 by the Integrated
Marine Observing System Australian National Facility for
Ocean Gliders (IMOS-ANFOG; IMOS, 2023) within an area
extending from 27.5 to 33.8° S and 109.7 to 115.4° E (Fig. 1).
Within this area, the Perth Canyon is located at ∼ 32° S.
Ocean glider missions were conducted each year but with
varying intensity between years and concentrated around the
continental shelf, shelf break, and deeper waters surround-
ing the Perth Canyon (see Figs. S1 and S2 in the Supple-
ment for illustrations of temporal and spatial coverage). Con-
sequently, after the filtering process described below and in
Sects. 2.2 and 2.3, data were spatially clustered between 31.6
to 32.1° S and 114.9 to 115.3° E, collected between 25 July
2008 and 13 December 2021, and obtained from waters with
a mean water depth of 422 m (Fig. 1). All ocean gliders were
equipped with a Sea-Bird CTD sensor (models CTD41CP,
GPCTD, or SBE_CT) and a Wet Labs ECO Puck optical
sensor pack (models BBFL2S, BBFL2VMT, FLBBCDSLK,
or FLBBCDSLC), including a fluorometer and backscatter-
ing sensor (650–700 nm, 117° centroid angle). All down-
loaded data were pre-processed and quality-controlled by
IMOS, which included the conversion of raw sensor counts
into chlorophyll and particle backscatter coefficient (bbp)
parameters with instrument-specific calibration coefficients
and dark-count values (Mantovanelli and Thomson, 2016;
Woo and Gourcuff, 2023). Chlorophyll dark-count values
were corrected for any mission with > 1% of negative val-
ues (Woo and Gourcuff, 2023). Quality control processes in-
cluded automatic sensor drift corrections; automatic flagging
of impossible location, date, and range values; manual flag-
ging of measurements affected by biofouling or sensor mal-
function; and manual flagging of near-surface measurements
(< 0.5m). Further data processing was done in MATLAB
(Version 2022b; The MathWorks Inc., 2022), while statis-

tical analyses were performed in R and the RStudio statisti-
cal software (V4.2.0 and V2023.03.0, respectively; R Core
Team, 2022).

2.2 Ocean glider depth profile extraction

Information extracted from ocean glider data samples in-
cluded UTC date and time, latitude (decimal degrees, DD),
longitude (DD), sampling depth (m), chlorophyll concentra-
tion (mgm−3), temperature (°C), practical salinity (‰), pres-
sure (dbar), profile phase (i.e. descent, inflexion, or ascent)
and, where available, particle backscattering coefficient data
(m−1). We filtered ocean glider data based on IMOS qual-
ity control flags to retain data points where each variable
was flagged as good data, probably good data, value ad-
justed by the quality control centre, or interpolated value (i.e.
flags 1, 2, 5, and 8, respectively; Woo and Gourcuff, 2023).
Data were interpolated between each decent and subsequent
ascent phase to extract one vertical profile to the deepest
recorded depth. Only profiles with at least one observation
within the first 10 m of the water column were retained (Uitz
et al., 2006). We then calculated the Sun’s angle relative
to the horizon for each profile with the suncalc R package
(Thieurmel and Elmarhraoui, 2022) and removed all profiles
obtained with the sun above the horizon (i.e. daytime pro-
files) from further analyses to avoid underestimating surface
chlorophyll concentrations because of non-photochemical
quenching (Roesler and Barnard, 2013). Finally, bathymetry
data extracted from the Australian bathymetry and topogra-
phy grid (Whiteway, 2009) were used to omit all samples
from waters < 100 and > 3000m deep. This was done to en-
sure that data analyses were focused on a section of the conti-
nental margin over which pygmy blue whales have been ob-
served (McCauley et al., 2004; Double et al., 2014; Thums
et al., 2022). After this initial filtering process, 21 303 pro-
files were kept for further processing.

2.3 Temporal patterns in water column conditions

The prevalence of DCMs and the relationship between sur-
face and depth-integrated chlorophyll concentrations differ
between mixed and stratified water columns (Morel and
Berthon, 1989; Uitz et al., 2006; Cullen, 2015). We, there-
fore, split profiles between mixed and stratified water condi-
tions based on the euphotic zone depth (i.e. Zeu = ZPAR

1 % ; see
Table 1 for a list of symbols) and mixed-layer depth (MLD)
as positive values below the surface. Following Uitz et al.
(2006), we classified waters as mixed when Zeu < MLD and
stratified when Zeu > MLD. The euphotic zone depth for
each profile was derived from the vertical chlorophyll dis-
tribution by progressive trapezoidal integration of chloro-
phyll over depth (Z; Morel and Berthon, 1989). For each
sampling depth (Zi), we converted depth-integrated chloro-
phyll concentrations to euphotic zone depth using formulae
from Morel and Maritorena (2001) until Zeu < Zi (Morel
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Figure 1. Ocean glider nighttime vertical profile samples (grey circles) collected between the 100 and 3000 m bathymetry contour lines off
southwestern Australia, with the Perth Canyon situated at 32° S (within the green square). Bathymetry contour lines delineate isobaths at
100, 200, and 500–4000 m in 500 m increments.

and Berthon, 1989). The exact euphotic zone depth was then
calculated by interpolating Zeu between Zi and Zi−1 to find
where Z equalled Zeu (Morel and Berthon, 1989). Profiles
that did not reach the euphotic zone depth were discarded,
leaving 8486 profiles for statistical analyses.

Raw temperature, salinity, and pressure data were con-
verted to potential temperature and density values with the
Gibbs-SeaWater (GSW) Oceanographic Toolbox (IOC et al.,
2010; McDougall and Barker, 2020) to calculate the mixed-
layer depth. Here, we define the mixed-layer depth as the
first depth at which either the potential temperature differed
by 0.2 °C from the reference potential temperature or the po-
tential density exceeded the reference potential density by
0.03 kgm−3, with samples taken at a 10 m depth as refer-
ence values (de Boyer Montégut et al., 2004; Boettger et al.,
2018).

2.4 Temporal patterns in DCM presence, classification,
and characteristics

Cornec et al. (2021) identified values and depths of max-
imum chlorophyll and particle backscatter coefficient data
from smoothed vertical profiles before locating the near-
est equivalent maximum chlorophyll (Chlmax) and particle
backscatter coefficient (Bbpmax) on the unsmoothed profiles.
Maxima values from the unsmoothed profiles were then com-
pared to values within the top 15 m to identify whether a
DCM was present (i.e. Chlmax exceeded twice the median
chlorophyll concentration over the top 15 m) and whether

a DCM was a DBM (i.e. Bbpmax exceeded 1.3 times the
minimum particle backscattering coefficient in the top 15 m)
or a DAM. Our methods followed those of Cornec et al.
(2021), with a minor modification to the smoothing pro-
cess. Chlorophyll profiles were smoothed with a 5-, 7-, or
11-point moving median corresponding to median profile
depth resolutions of ≥ 3, < 3 but > 1, and ≤ 1m, respec-
tively (Schmechtig et al., 2023). Particle backscatter coeffi-
cient profiles were smoothed with an 11-point moving me-
dian, followed by an 11-point moving mean. The depth of
Chlmax (Zdcm; DCM peak depth), shallow half-peak depth
(Zdcm50u), and deep half-peak depth (Zdcm50d) were also ex-
tracted. The DCM width (DCMwidth) was calculated as the
depth range between the shallow and deep half-peak depths
(i.e. Zdcm50d−Zdcm50u). Trends in the position of the DCM
peak and width relative to the euphotic zone were assessed
by calculating their relative positions as Chlmax/Zeu and
Zdcm50d/Zeu, respectively, where values < 1 were indicative
of a peak chlorophyll value or a full half-peak width within
the euphotic zone.

2.5 Relationships between surface and
water-column-integrated chlorophyll

Relationships between surface and water-column-integrated
chlorophyll concentrations were assessed based on methods
described in earlier publications (Morel and Berthon, 1989;
Uitz et al., 2006; Frolov et al., 2012). We calculated surface
chlorophyll values – assumed to be measurable by satellite –
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Table 1. List of symbols used in this study and their denotation.

Symbol Denotation Unit

Bbpmax Maximum particle backscattering coefficient within 20 m of the deep chlorophyll maximum. m−1

Bbpmin Minimum particle backscattering coefficient within the top 15 m of the water column. m−1

Chlmax Maximum chlorophyll concentration within the top 300 m of the water column. mgm−3

Chlzeu Total chlorophyll concentration integrated over the euphotic layer. mgm−2

Chlzeu2 Total chlorophyll concentration integrated over twice the euphotic layer depth. mgm−2

Chlzpd Average chlorophyll concentration within the first optical depth. mgm−3

DCMwidth Width of the deep chlorophyll maximum, calculated as the difference in depth between the shallow and deep
half-peak depths.

m

Z Depth below the water surface (positive). m
ZPAR

1 % Depth at which the photosynthetically active radiation (PAR) is 1 % of its surface value. m
ZDCM Depth of Chlmax. m
ZDCM50d Closest depth to ZDCM at which chlorophyll concentration decreased to 50 % of Chlmax, i.e. the deep

half-peak width.
m

ZDCM50u Closest depth to ZDCM at which chlorophyll concentration increased to 50 % of Chlmax, i.e. the shallow
half-peak width.

m

Zeu Bottom depth of the euphotic layer (in this study equal to ZPAR
1 % ). m

MLD Bottom depth of the water column mixed layer. m

as the average chlorophyll concentration over the first opti-
cal depth (i.e. Chlzpd; Uitz et al., 2006), where the first optical
depth refers to Zeu/4.6 (Gordon and McCluney, 1975). Since
ZPAR

1 % may underestimate the biological compensation depth
at which the rate of photosynthesis equals that of autotrophic
respiration and, thus, the depth of the productive layer, we
integrated chlorophyll concentrations via trapezoidal integra-
tion over the euphotic zone (i.e. depth-integrated chlorophyll;
Chlzeu) and where possible, twice the euphotic zone depth
(hereafter referred to as “deep depth-integrated chlorophyll”;
Chlzeu2). The latter differs from that of Uitz et al. (2006),
who integrated chlorophyll over a maximum of one-and-a-
half times the euphotic zone depth because preliminary anal-
ysis indicated that 34.8 % of DCM half-peak widths extended
beyond that limit (see Fig. S3 in the Supplement for a DCM
full-width inclusion curve).

Relationships were quantified using linear regression anal-
yses on log10 transformed data, conducted separately for
mixed and stratified water conditions. Previous publications
used two regression lines to quantify the relationship in strat-
ified waters because of a change in slope at surface chloro-
phyll values of ∼ 1 mgm−3 (Morel and Berthon, 1989; Uitz
et al., 2006; Frolov et al., 2012). While preliminary data
analysis revealed a similar change in slope in this study, the
change appeared to be seasonal and related to a change in the
shape of vertical chlorophyll profiles from ones with low sur-
face chlorophyll values and a pronounced DCM to ones with
higher surface chlorophyll values without a DCM (Fig. 2).
Thus, we carried out one regression analysis for stratified wa-
ter conditions from September until April and one for strat-
ified water conditions from May until August. For brevity,
the two seasons will be referred to as summer–transition
and midwinter, respectively. We evaluated all models with

Figure 2. Median vertical chlorophyll profiles for the (a) strati-
fied summer-transition (September–April), (b) stratified midwinter
(May–August), and (c) mixed-water conditions.

the mean absolute error (MAE) and bias metrics because of
tailed distributions in model residual plots (Chai and Draxler,
2014; Seegers et al., 2018; Hodson, 2022). Both metrics were
transformed from linear to multiplicative values for ease of
interpretation (Seegers et al., 2018). The slope and inter-
cept of the linear regression were converted into a power-
law regression to describe the non-linear relationship be-
tween non-transformed surface and water-column-integrated
chlorophyll values.
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Figure 3. Number of profiles extracted for each month (black bars
in a) overlain with the number of profiles for which the mixed-layer
depth (MLD) was reached (grey bars in a). For each month, the
proportion of vertical profiles extracted from mixed (solid pink line)
and stratified (solid blue line) water conditions is provided in panel
(b), along with the proportion of profiles characterised by a DCM
(dashed red line in b) and the seasonal change in median (with the
25th and 75th quartiles as shaded areas) euphotic zone (Zeu) and
mixed-layer depth (c). Panel (d) shows the monthly median vertical
chlorophyll profiles.

3 Results

3.1 Temporal patterns in water column conditions

We extracted 5543 and 2943 profiles from stratified and
mixed water conditions, respectively. Stratified water con-
ditions dominated over the warm late-spring, summer, and
early-autumn months (October–March; ≥ 85% of profiles),
declining to < 39% over May–July when mixed water condi-
tions prevailed (Fig. 3b). Transition conditions were present
in April, August, and September, with an approximate 50 : 50
occurrence of stratified and mixed water conditions. The
change in the prevailing water condition was predominantly
caused by a deepening of the median mixed-layer depth from
30.5 m (IQR 21.0 m) in February to 65.5 m (IQR 51.0 m) in
July (Fig. 3c). In contrast, the euphotic zone depth moved
closer to the surface from a median of 73.3 m (IQR 12.5 m)
in December to 46.3 m (IQR 10.9 m) in May (Fig. 3c).

3.2 Temporal patterns in DCM presence, classification,
and characteristics

DCMs were predominantly found in stratified water condi-
tions (56.5 % of stratified profiles vs. 3.3 % of mixed pro-
files; 3133/5543 vs. 97/2943); thus, the seasonal presence of
DCMs followed the seasonal pattern in water column strat-
ification, with a peak presence from October until March
(> 64%; Fig. 3b). However, despite stratification in at least
30 % of profiles in winter, DCMs practically disappeared in
May–July (< 3% of profiles; Fig. 3b), changing the verti-
cal chlorophyll distribution into a sigmoid shape (Fig. 3d).
Overall, DCMs formed between the surface and 167.1 m
deep, at a median depth of 75.3 m (IQR 29.3 m). How-
ever, median DCM depths varied seasonally, with shallow-
ing events in January (68.6 m; IQR 19.8 m), April (38.6 m;
IQR 19.7 m), and September (65.4 m; IQR 38.4 m). Sea-
sonal maxima depths were reached in February (75.2 m; IQR
32.3 m), July (95.9 m; IQR 130.8 m), and December (83.0 m;
IQR 31.1 m), although DCMs in July appeared to form ei-
ther close to the surface or at great depths (Fig. 4a). From
June until December, there was an overall deepening trend
during which the chlorophyll maximum moved further away
from the mixed layer while remaining at an approximate con-
stant relative distance from the euphotic zone (∼ 1.1 times
the euphotic zone depth; Fig. 4b). Median DCM half-peak
widths concurrently narrowed (Fig. 4c), while the maxi-
mum chlorophyll concentration showed a modest increase
(Fig. 4d). The exception to this trend was a brief shallow-
ing to just above the bottom of the euphotic zone in Septem-
ber (0.99; IQR 0.45), characterised by a rapid increase in
peak chlorophyll levels at the DCM. A contrasting shallow-
ing trend can be discerned from December until April, po-
sitioning the chlorophyll maximum at a nearly constant rela-
tive distance from the bottom of the mixed layer (∼ 2.0 times
the mixed-layer depth) but elevating the chlorophyll maxi-
mum to well within the euphotic zone in April (0.75; IQR
0.19). Despite this shallowing trend, DCMs remained of a
similar width as in December, and modest intensification of
the chlorophyll maximum continued until a sudden deepen-
ing, widening, and weakening of the DCM in May.

Particle backscatter data were available for 1551 pro-
files, of which 95.8 % were collected in September–March
(1487/1551). Over this time, the proportion of DBMs gradu-
ally declined from 69.7 % in September to 46.2 % in January,
which is also shown by a disproportional change in max-
imum particle backscatter and chlorophyll amplitudes (see
Fig. S4 in the Supplement for temporal patterns in DBM
and DAM characteristics). As the DCM became shallower
in late summer, DBMs became more prevalent again, with a
peak presence in March (81 %). However, the sudden deep-
ening, widening, and weakening of the DCM in May pivoted
DCM-type classifications to a prevalence of DAMs (70 %),
which generally dominated in winter (i.e. 66.1 %). Over-
all, DAMs were moderately weaker, wider, and positioned
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Figure 4. Median monthly true DCM depth (Zdcm; a) and relative
depth in relation to the bottom of the mixed-layer (Zdcm/MLD; b)
and euphotic zone (Zdcm/Zeu; b). Panels (c) and (d) reflect the sea-
sonal change in DCM width and maximum chlorophyll concentra-
tion at the DCM. The shaded ribbons in panels (b) and (d) indicate
the 25th and 75th quartiles.

deeper in the water column than DBMs, yet the position of
the maximum chlorophyll relative to the euphotic zone depth
remained within 1.2 times the euphotic zone depth.

3.3 Relationships between surface and
water-column-integrated chlorophyll

Surface chlorophyll concentrations (Chlzpd) ranged be-
tween 0.04 and 1.58 mgm−3 (median 0.44 mgm−3, IQR
0.38 mgm−3), with marked seasonal changes (Fig. 5a).
Monthly median surface chlorophyll values peaked in May
(0.77 mgm−3, IQR 0.37 mgm−3; Fig. 5a), remained >

0.5mgm−3 in winter, but rapidly decreased over Septem-
ber to minimum median levels of ∼ 0.20mgm−3 in Novem-
ber and December. A subsequent increase can be discerned
for January (0.27 mgm−3, IQR 0.13 mgm−3), although val-
ues remained < 0.33mgm−3 throughout early autumn be-
fore rapidly transitioning to peak levels over April. A simi-
lar seasonal pattern was present in depth-integrated chloro-
phyll values, albeit less pronounced (Chlzeu; Fig. 5b). In-
terestingly, monthly median deep depth-integrated chloro-
phyll similarly peaked in May (Chlzeu2; 62.2 mgm−2, IQR

17.3 mgm−2), but a secondary increase can be discerned in
August (53.9 mgm−2, IQR 14.1 mgm−2), after which lev-
els declined less rapidly to the seasonal minimum in De-
cember (48.7 mgm−2, IQR 9.2 mgm−2; Fig. 5b). In Jan-
uary, deep depth-integrated chlorophyll increased more ev-
idently than depth-integrated values and subsequently re-
mained relatively constant from February until April (i.e. ∼
52.0mgm−2). Overall, chlorophyll below the euphotic zone
depth accounted for 50 %–60 % of deep depth-integrated val-
ues from October until March, declining to a minimum of
44 % in April, May, and July.

Profiles collected from stratified water conditions in
summer-transition months showed a significant linear rela-
tionship between surface and depth-integrated chlorophyll
concentrations (R2

= 0.72, F(1,4002) = 10420, p < 0.001;
Fig. 6a). A stronger relationship with a steeper slope and less
scatter was seen for the stratified midwinter months (R2

=

0.87, F(1,1533) = 10080, p < 0.001; Fig. 6b) and mixed
water columns (R2

= 0.97, F(1,2940) = 90400, p < 0.001;
Fig. 6c). Scatter around the regression line resulted from the
presence of DCMs, with no apparent difference between the
contribution of DBMs and DAMs. Thus, the mean relative
error was highest (8.9 %; MAE= 1.089) for estimates of ob-
served depth-integrated chlorophyll from surface chlorophyll
values under stratified water conditions in summer-transition
months, when DCMs were more common. Under stratified
water conditions in winter and mixed water conditions, the
mean relative error reduced to 5.6 % and 1.7 %, respectively
(i.e. MAE= 1.056 and 1.017, respectively). Scatter in the
data increased for deep depth-integrated values, resulting
in a weak linear relationship in stratified summer-transition
months (R2

= 0.15, F(1,2729) = 498.5, p < 0.001; Fig. 6d)
and a moderate relationship in both stratified midwinter
months (R2

= 0.48, F(1,1351) = 1232, p < 0.001; Fig. 6e)
and mixed water columns (R2

= 0.63, F(1,2512) = 4239, p <

0.001; Fig. 6f). As a result, mean relative errors increased
to 15.7 %, 15.2 %, and 8.6 %, respectively. All derived non-
linear relationships are summarised in Table 2.

4 Discussion

4.1 Seasonality in water column characteristics and
DCM formation

The marine environment of Western Australia is governed
by the warm, poleward-flowing Leeuwin Current of tropi-
cal origin, with signatures from the higher salinity subtropi-
cal Indian central waters (Waite et al., 2007; Woo and Pat-
tiaratchi, 2008). Because of generally low surface chloro-
phyll values beyond the continental shelf and a broad win-
ter increase in surface chlorophyll from May until Septem-
ber, Western Australian waters are often labelled as olig-
otrophic (e.g. Twomey et al., 2007; Feng et al., 2009; Rennie
et al., 2009a; Chen et al., 2019), with a surface productiv-
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Figure 5. Monthly median surface (Chlzpd; a), depth-integrated (Chlzeu; solid orange line in b), and deep depth-integrated (Chlzeu2; solid
purple line in b) chlorophyll values with their 25th and 75th quartiles as shaded areas.

Figure 6. Relationship between surface (Chlzpd) and depth-integrated (Chlzeu) vs. deep depth-integrated (Chlzeu2) chlorophyll values for
stratified water conditions in summer-transition months (i.e. September–April; a, d), stratified water conditions in midwinter months (i.e.
May–August; b, e), and mixed water conditions (c, f). Dots are coloured according to whether a DCM was absent (grey), present but of
unknown type (turquoise), a DBM (green), or a DAM (dark red). Black dashed lines indicate the derived regression lines. Note the change in
y axis range between panels (a–c) and (d–f) and the change in x axis range between stratified (Zeu > MLD) and mixed water (Zeu < MLD)
conditions.

ity regime comparable to subtropical gyres (Koslow et al.,
2008). These subtropical areas are characterised by either
permanently stratified water columns or brief (∼1 month)
mixing periods, resulting in a (near-)permanent DCM pres-
ence (Mignot et al., 2014; Quartly et al., 2023). Our re-
sults show that stratification in winter (May–August) is in-

termittent and that DCM formation is the exception rather
than the norm (i.e. < 3% of profiles). The disappearance of
DCMs from vertical profiles corresponds to a period of in-
tense Leeuwin Current strength, which is known to weaken
stratification (i.e. May–July; Koslow et al., 2008; Feng
et al., 2003, 2009). In addition, northwesterly downwelling-
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Table 2. Summary of non-linear relationships between surface (Chlzpd) and depth-integrated (Chlqzeu) vs. deep depth-integrated (Chlzeu2)
chlorophyll under stratified and mixed water conditions. Relationships in stratified waters are given for both summer–transition (September–
April) and midwinter months (May–August).

Water condition Integration depth Regression R2 MAE Bias

Stratified

Summer–transition Zeu Chlzeu = 37.1×Chl0.337
zpd 0.72 1.089 1.00

Midwinter Zeu Chlzeu = 38.4×Chl0.440
zpd 0.87 1.056 1.00

Summer–transition Zeu2 Chlzeu2 = 61.8×Chl0.149
zpd 0.15 1.157 1.00

Midwinter Zeu2 Chlzeu2 = 65.0×Chl0.387
zpd 0.48 1.152 1.00

Mixed

Year-round Zeu Chlzeu = 40.3×Chl0.522
zpd 0.97 1.017 1.00

Year-round Zeu2 Chlzeu2 = 71.5×Chl0.436
zpd 0.63 1.086 1.00

favourable storms (wind speeds > 15ms−1; most frequent in
June–August) and concomitant surface cooling mix the wa-
ter column down to 200 m depth, breaking down the strat-
ified layer and the DCM (Rennie et al., 2006; Chen et
al., 2020). While re-stratification has been shown to occur
during subsequently calm post-storm southwesterly winds
(wind speeds < 7m s−1; Rennie et al., 2006), our data re-
veal that these re-stratification periods often do not persist
long enough for DCMs to reform. This is likely because of
the additive effect of increased eddy kinetic energy, which
peaks in July (Feng et al., 2005). Warm-core eddies, in par-
ticular, are frequent in late autumn and winter between 28
and 31° S, generating well-mixed layers extending beyond
the euphotic zone depth (Thompson et al., 2007; Waite et al.,
2007). Consequently, our area experiences a mixing period
of approximately 3 months, which is more comparable to the
duration of mixing periods in the Mediterranean (Mignot et
al., 2014; Barbieux et al., 2019) and oligotrophic subtropical
open oceans (Chiswell et al., 2022).

4.2 DCM characteristics

Leeuwin Current strength significantly drops (Feng et al.,
2003), and winter storms settle in September (Pearce et al.,
2015), which is when stratified water columns return. How-
ever, eddy kinetic energy remains persistent (Feng et al.,
2009). Warm-core eddies have been hypothesised to facili-
tate phytoplankton blooms through the injection of nitrogen
into surface waters (Lourey et al., 2013) and the formation of
a shallow nutricline (∼ 60m depth) under a relaxed Leeuwin
Current after eddies detach from the shelf (Koslow et al.,
2008). Our data support this hypothesis, with a reappear-
ance of DCMs, which were predominantly biomass max-
ima, in September at a median depth of 65.4 m. The sub-
sequently observed deepening of the DCM through spring
and summer is common for oligotrophic regions (Mignot

et al., 2014; Chiswell et al., 2022). In our study area, as the
DCM deepened and intensified, backscatter vertical profiles
changed disproportional to chlorophyll vertical profiles, re-
flecting the decreased occurrence of DBMs until biomass
and photo-acclimation maxima occurred in approximately
equal proportions from December until February. DCM for-
mation is always at least in part caused by photo-acclimation
of phytoplankton to low-light conditions (Cullen, 2015), but
deep DCMs in summer may approach the nutricline, al-
lowing for phytoplankton growth and, thus, DBM forma-
tion (Mignot et al., 2014). DCM settlement within a nearly
constant distance from the euphotic zone depth (i.e. ∼ 1.1
times the euphotic zone depth), regardless of DCM type, sug-
gests photo-acclimation processes in response to light limi-
tation as the main driver of DCM formation from Septem-
ber until late summer. However, the balanced presence of
photo-acclimation and biomass maxima in our study indi-
cates that access to nutrients is indeed available throughout
summer. These findings fit the equal occurrence of upwelling
and downwelling days detected in temperature time series
by Rennie et al. (2006) and the positioning of the summer
DCM just above the nutricline in earlier studies (e.g. Han-
son et al., 2007a, b; Koslow et al., 2008). In addition, Rennie
et al. (2006) detected a concentration of upwelling events in
late February–early March, which temporally matches an ini-
tial weakening of stratification as the Leeuwin Current starts
to intensify (Feng et al., 2003; Koslow et al., 2008) and, in
our study, matches the timing of DCM shallowing and in-
tensification and a rapid increase in biomass maxima. Thus,
while the DCM formation is first-order light-driven, nutrient
limitation in the upper water column in autumn and at depth
in summer likely drives the balance between biomass and
photo-acclimation maxima until upwelling and increased wa-
ter turbidity potentially synergistically increase nutrient lev-
els within the bottom layer of the euphotic zone. Our results
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suggest that DCMs in Western Australian waters form via
bio-optical mechanisms that match neither pattern observed
in subtropical oceanic (Mignot et al., 2014; Chiswell et al.,
2022; Quartly et al., 2023) and more productive temperate
regions (Mignot et al., 2014; Barbieux et al., 2019) but in-
stead are similar to the mid-Mediterranean Sea, which forms
a transition between the meso-oligotrophic western and olig-
otrophic eastern basins (Barbieux et al., 2019). However, a
broad-scale long-term study, including nutrient and irradi-
ance parameters, is required to elucidate our hypothesis.

4.3 Water-column-integrated productivity

Seasonal surface chlorophyll fluctuations followed the com-
monly observed pattern of a winter surface chlorophyll in-
crease, albeit with our observed peak in May preceding
the June–July winter bloom previously described by Lourey
et al. (2006) and Koslow et al. (2008). This shift could be re-
lated to changing trends in environmental and oceanographic
drivers. Long-term data series from IMOS national refer-
ence stations around Australia have shown, for example, that
mixed-layer and euphotic zone depth follow an overall deep-
ening trend from 2008 to 2018 by 1.02 and 1.7 myr−1, re-
spectively (van Ruth et al., 2020). The seasonal pattern in
depth-integrated chlorophyll levels showed a flatter annual
cycle but remained largely similar in shape. This flattening
originates from the inclusion of DCMs in depth-integrated
values in summer. Since DCMs predominantly formed be-
low our defined euphotic zone depth, contributing > 50%
to water-column-integrated values in summer, the seasonal
cycle diminished even further when integrating over twice
the euphotic zone depth (i.e. deep depth-integrated chloro-
phyll). Interestingly, deep depth-integrated values showed
chlorophyll increases in May, August, and January, which
correspond to previously identified temporal peaks in water-
column integrated net primary productivity (Koslow et al.,
2008), albeit again with an apparent 1-month advance. These
findings support our hypothesis that deep depth-integrated
values may be a better predictor variable to include in ma-
rine animal habitat models for ocean regions where DCMs
are present. However, there are currently no means to include
water-column-integrated chlorophyll levels in habitat mod-
els that aim to relate large spatiotemporal animal presence
datasets with environmental variables such as chlorophyll.
While ocean glider and biogeochemical Argo float datasets
have greatly advanced our ability to study subsurface bio-
geochemical processes, the spatiotemporal extent of these
data often does not align with animal presence data from
land-based, boat-based, and underwater acoustic platforms.
It is, therefore, pivotal to develop our knowledge of poten-
tial methods that facilitate depth-integrated chlorophyll esti-
mates from openly available data sources, such as satellite
remote sensing.

The lack of existing methods and presence of a DCM
with potential importance to migrating locally endangered

pygmy blue whales were the main driving factors for us
to assess whether known relationships between surface and
depth-integrated chlorophyll in open ocean and mesotrophic
regions (Morel and Berthon, 1989; Uitz et al., 2006; Frolov
et al., 2012) were also present in the unique marine envi-
ronment of Western Australia. Our results confirm that sim-
ilar relationships are present within the nutrient-deprived
western boundary current system of Western Australia, al-
beit with a replacement of the traditional two-part regres-
sion line for stratified water columns with a seasonally de-
pendent regression line. This seasonal change reflects the
seasonal patterns in water stratification and DCM forma-
tion. Low surface chlorophyll levels and deeper DCMs char-
acterised the stratified water column in summer-transition
months, while alternating periods of increased winter mix-
ing and weak re-stratifications from May until August pre-
dominantly break down the DCM. Graff and Behrenfeld
(2018) found that deep-water entrainment followed by re-
stratification in the North Atlantic rapidly increased surface
chlorophyll (and phytoplankton biomass) over the 3 d af-
ter the entrainment event, while chlorophyll decreased at a
much slower rate at depth. Hence, changes in surface chloro-
phyll contributed more strongly to changing depth-integrated
values. The sigmoid vertical chlorophyll profiles in winter
suggest that similar processes may be at play during calm
winter periods in our study area, accounting for the steeper
slope derived from stratified water profiles in midwinter (i.e.
0.440). The strong relationship with an even steeper slope
(0.522; R2

= 0.97) and little error in mixed water conditions
reflect the even more extensive homogenous vertical distri-
bution of chlorophyll present under these conditions (Morel
and Berthon, 1989; Uitz et al., 2006). Extending chlorophyll
integrations to twice the euphotic zone depth showed simi-
lar functional relationships, albeit with a higher MAE, espe-
cially in summer-transition months. Scatter in the data at low
surface chlorophyll values was predominantly attributable to
the inclusion of full DCM widths in deep depth-integrated
values, confirming earlier statements by Morel and Berthon
(1989) and Uitz et al. (2006). However, despite the increased
scatter, the MAEs for relationships over twice the euphotic
zone depth remained low for all three conditions (i.e. 16.3 %,
15.7 %, and 8.6 %).

4.4 From water-column-integrated chlorophyll
estimates to whales

Potential links between the physical oceanography, biogeo-
chemical processes, and pygmy blue whale presence in the
Perth Canyon have been studied previously (Rennie, 2005).
Based on numerical models (Rennie et al., 2009b), moored
temperature time series analyses (Rennie et al., 2006), and
in situ data collection during oceanic cruises (Rennie et al.,
2009a), Rennie and co-authors hypothesised that winter pro-
ductivity supports the local krill population through spring,
with sporadic summer upwelling events allowing krill to
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grow to an appropriate size for whale consumption from
February onward (Rennie et al., 2009a). Indeed, food avail-
ability is a crucial driver of Euphausiid health (i.e. lipid
content; Fisher et al., 2020; Hellessey et al., 2020; Steinke
et al., 2021), timing of reproduction (Quetin and Ross, 2001;
Schmidt et al., 2012), hatching success (Yoshida et al., 2011;
Steinke et al., 2021), and growth rate (Bahlburg et al., 2023).
Thus, a regular supply of phytoplankton prey seems crucial
for population maintenance. In addition, baleen whales show
a preference for krill > 16mm (Croll et al., 2005; Cade et al.,
2022). Consequently, peak abundances of foraging baleen
whales reportedly lag the onset or peak intensity of phyto-
plankton blooms by 1–4 months (Croll et al., 2005; Visser
et al., 2011). In the absence of a defined subsurface chloro-
phyll bloom and instead with a consistent balanced presence
of photo-acclimation and biomass maxima, we believe that
our results are in support of continuous krill population main-
tenance through DCM formation in summer. However, rather
than the winter surface bloom, we suggest that an increase in
productivity at the DCM around September (i.e. early spring)
sets the scene for krill maintenance through summer and for
sufficient prey abundance for arriving foraging pygmy blue
whales ∼ 4 months later. In addition, the sudden increased
presence of biomass maxima in March may be a crucial fea-
ture in support of pygmy blue whale foraging efforts through-
out autumn and early winter or, alternatively, support a new
spawning event (e.g. Paul et al., 1990; Feinberg and Peterson,
2003; Plourde et al., 2011).

4.5 Future habitat models and potential pitfalls

Based on our results and in the absence of other means to
include high spatiotemporal resolution subsurface chloro-
phyll data, we encourage the use of water-column-integrated
chlorophyll (over twice the euphotic zone depth) estimates
from satellite remote sensing in future marine animal habi-
tat models. Of course, we acknowledge the challenges re-
lated to potential regression biases and the translation from
fluorescence-derived relationships to satellite-derived esti-
mates. Besides scatter in the regression line being caused
by the presence of DCMs, there are other sources of po-
tential bias that deserve further investigation. For instance,
we may have introduced additional scatter in our regres-
sion lines with our definition of the euphotic zone depth
as ZPAR

1 % and simple extension to “twice the euphotic zone
depth”. At low latitudes and mid-latitudes specifically, ZPAR

1 %
likely underestimates the compensation depth, and so ZPAR

0.5 %,
ZUSR

0.9 % (i.e. depth at which 0.9 % of surface usable solar ra-
diation, USR, is available; 400–560 nm), or Z490

1.5 % (i.e. depth
at which 1.5 % of surface downwelling irradiance is avail-
able; 490 nm) have been suggested as more robust alterna-
tives (Wu et al., 2021). Euphotic zone depth estimates based
on these alternative definitions do not vary in lockstep with
those based on ZPAR

1 % (Wu et al., 2021), so using a more ap-
propriate definition of the euphotic zone may decrease the

scatter observed. In addition and as more of a general con-
cern, Roesler et al. (2017) recently found that the factory-
calibrated WET Labs ECO optical sensors used in our study
overestimated measured chlorophyll concentrations on aver-
age by a factor of 2. While a study on the northwest Western
Australian shelf, which has a similar phytoplankton commu-
nity as that found in the Perth Canyon, showed good agree-
ment between chlorophyll concentrations from optical sen-
sors and high-performance-liquid-chromatography-derived
chlorophyll from simultaneously collected water samples
(R2
= 0.75, slope factor= 1.2; Thomson et al., 2015), we

highlight the need for a similar comparative study in any area
of interest. These sources of uncertainty come on top of the
well-known inconsistency in the chlorophyll to carbon ratio
related to changing phytoplankton communities and environ-
mental effects other than photo-acclimation (Cullen, 1982).

It is also worth noting that the dataset used in this study
provided insufficiently consistent spatial and temporal cover-
age, with some years (e.g. 2008, 2019, and 2020) and some
months (e.g. January, April, and October) sampled consider-
ably less than others (see Fig. S1). This was especially true
for particle backscatter coefficient data. Inconsistencies in
spatial and temporal replication make seasonal analyses less
robust and prohibit the elucidation of potential environmen-
tal effects on seasonal patterns. Inter-annual variation in pro-
ductivity within the Western Australian marine environment
is primarily related to fluctuations in the Leeuwin Current
strength following the El Niño–Southern Oscillation (ENSO;
Feng et al., 2009; Chen et al., 2019). Three strong ENSO
events occurred during the study period (i.e. one El Niño and
two La Niñas; Australian Bureau of Meteorology, 2023), and
we recommend that their effects on the robustness of sea-
sonal patterns in DCM formation and characteristics, as well
as the linear relationships found, are further assessed. Such
assessments will require dedicated data collection, preferably
within areas of biological interest to marine animals.

5 Conclusion

To the best of our knowledge, this is the first study to
classify the productivity biome of Western Australian ma-
rine waters as an intermediate version of subtropical and
temperate (meso-)oligotrophic areas, highlighting the con-
cealing nature of traditional biogeographical classifications
(Bock et al., 2022). Our results provide evidence of phy-
toplankton biomass increases in early spring and autumn,
which, together with the consistently balanced presence of
photo-acclimation and biomass maxima in summer, likely
support the local krill population sufficiently to be of rele-
vance to foraging pygmy blue whales. Our results highlight
the potential and need to monitor deep depth-integrated pri-
mary productivity patterns via satellite remote sensing in re-
gions where DCMs occur, which can be achieved through
water-column-integrated chlorophyll estimates from surface
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chlorophyll values. We suggest including satellite-derived
deep depth-integrated chlorophyll estimates (i.e. integrations
over twice the euphotic zone depth) in future efforts to iden-
tify productivity hotspots and anomalies off Western Aus-
tralia in an attempt to help better understand the occurrence
and behaviour of marine animal species, such as pygmy blue
whales. Similar methods can be applied to other (intermit-
tent) oligotrophic areas where DCMs may be an important
feature for higher trophic levels. However, while our regres-
sion line slopes for the euphotic zone closely resemble those
previously obtained from stratified (range of 0.310–0.425 for
Chlzpd < 1mgm−3; Morel and Berthon, 1989; Uitz et al.,
2006; Frolov et al., 2012) and mixed water samples (0.551
and 0.538; Morel and Berthon, 1989; Uitz et al., 2006), it is
clear that regression parameters need to be locally tuned and
that sources of potential estimate biases need to be further
explored.
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