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S1. Supplementary Figures
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Figure S1. Climographs for four regions of the ACA: Azerbaijan, Uzbekistan Mongolia and China. The climate parameters were extracted
from interpolated climate data from worldclim?2 .1 (Fick and Hijmans, 2017) at the sample location of the ACADB sites. The estimated
Growth Season (GS) was roughly determined with T > 5 °C and P > 2 x T. Climate data represent averages over the period ca. 1970-2000
(Fick and Hijmans, 2017).
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Figure S2. Graphical determination of the more efficient pH threshold affecting the bimodal distribution of CBT” against pH for soil samples.
The pH threshold values were implemented from 4 to 11 for each 0.01 step. The maximum multiple R? is found for pH = 7.3. The lower
panel shows the number of samples for each cluster. In blue are given the results for the acidic soils (i.e., the samples below the threshold),
in orange the alkaline soils (above the threshold), and in black the overall multiple R2.
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Figure S3. Effect of the salinity and the aridity on the sum of 5-, 6-, 7-methyl and 6+7-methyl FAs for soil and lacustrine samples.
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Figure S4. Boxplot for the main brGDGT-based ratios presented in this study clustered by the four grouping factors (i.e., alkalinity, aridity,
salinity, and sample type). This figure is associated with the MANOVA and ANOVA results of Table 3.
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Figure S5. Relationships between the Aridity Index (AI) and Methylation indices, i.e. MBTf5y,. (A), MBTgy. (B), and
A(MBT5p6, MBTp o) (C) linear relationships with Al The regressions were tested for soil (orange) and lacustrine (blue) samples. Solely,
the R? for significant regression (p-value < 0.001) were displayed.
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Figure S6. Sensitivity analyses to determinate the salinity threshold values affecting the bimodal distribution of IRgne (A) and IR7nve (B)
for lacustrine samples. The salinity threshold values were implemented from 30 to 15,000 mg.L " for each 100 mg.L . The lower panels
shows the number of samples for each cluster. In blue are given the results for the samples below the threshold), in orange the samples above
the threshold), and in black the overall multiple R
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Figure S7. Effect of the alkalinity (i.e., the pH of each surface sample) on the linear relation between temperature (here MAAT) and the
MBT%y .. Based on the alkalinity classes (i.e., acid, neutral, and alkaline), different temperature calibration MBT%,.-based are proposed
following MAAT = a x MBTj,, + b. Using the z-statistic with its p-value (Clogg et al., 1995), the significance of the difference between
the slopes (a) of the linear regression is evaluated. Similarly, the z-statistic was used for the intercept (b) differences. For the p-values we
have *** for p < 0.01, ** for p < 0.05 and * for p < 0.1.
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Figure S8. Effect of the aridity (i.e. the AI of each surface sample) on the linear relation between temperature (here MAAT) and the MBT% ...
Based on the aridity classes (i.e., hyper-arid, arid, semi-arid, dry sub-humid, and humid), different temperature calibration MBT5,;.-based
are proposed following MAAT = a x MBT%y, +b. Using the z-statistic with its p-value (Clogg et al., 1995), the significance of the difference
between the slopes (a) of the linear regression is evaluated. Similarly, the z-statistic was used for the intercept (b) differences. For the p-values
we have *** for p < 0.01, ** for p < 0.05, and * for p < 0.1.
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Figure S9. Effect of the sample type on the linear relation between temperature (here MAAT) and the MBTY%,,,. Based on the sample types
(i.e., soil or lacustrine), different temperature calibration MBT%,;.-based are proposed following MAAT = a x MBT5y,, + b. Using the
z-statistic with its p-value (Clogg et al., 1995), the significance of the difference between the slopes (a) of the linear regression is evaluated.
Similarly, the z-statistic was used for the intercept (b) differences. For the p-values we have *** for p < 0.01, ** for p < 0.05, and * for p <
0.1.



Table S1: Geographical and biological presentation of the surface sites of the ACADB analysed in this study and previously
published in (Dugerdil et al., 2025).

Sites Longitude  Latitude  Altitude  Date  Country Sample type  Ecosystem pH Salinity
MAZT1C02 46.99 40.99 109 2021 Azerbaijan Lacustrine Halophytic desert 8.11 124839.00
MAZT1C06 45.77 41.19 550 2021 Azerbaijan Lacustrine Shrub desert 8.53 2016.95
MAZTIMO1 46.99 40.99 112 2021  Azerbaijan Soil Halophytic desert 8.37 2249.00
MAZTIMO03 47.00 41.01 138 2021 Azerbaijan Soil Halophytic desert 8.41 1001.00
MAZT1M04 45.77 41.18 597 2021 Azerbaijan Soil Shrub desert 5.82 2314.00
MAZTIMO7 45.74 41.06 246 2021  Azerbaijan Soil Shrub desert 7.18 3185.00
MAZTIMO8 45.79 41.01 288 2021  Azerbaijan Soil Shrub desert 7.34 2522.00
MAZTIMO09 47.78 40.71 222 2022 Azerbaijan Soil Thermophilous woodland 7.61 2008.50
MAZTIMI10 46.91 41.21 391 2022  Azerbaijan Soil Thermophilous woodland 7.09 1111.50
MAZTIM11 46.05 40.70 668 2022  Azerbaijan Soil Thermophilous woodland 6.81 2405.00
MAZT1S05 45.77 41.19 552 2021 Azerbaijan Soil Shrub desert 7.67 1612.00
MAZT2C02 46.26 40.37 1722 2021 Azerbaijan Lacustrine Deciduous forest 6.81 507.00
MAZT2C05 46.59 40.64 273 2021 Azerbaijan Lacustrine Halophytic desert 7.57 3302.00
MAZT2MO01 46.28 40.40 1412 2021 Azerbaijan Soil Deciduous forest 6.79 1469.00
MAZT2MO03 46.27 40.37 1820 2021  Azerbaijan Soil Deciduous forest 6.49 1313.00
MAZT2MO04 46.36 40.46 1232 2021  Azerbaijan Soil Deciduous forest 7.50 1274.00
MAZT2MO06 46.96 40.55 96 2021 Azerbaijan Soil Shrub desert 7.96 1092.00
MAZT2MO07 45.75 40.54 1660 2022  Azerbaijan Soil Grasslands 7.11 1229.80
MAZT3C01 47.76 40.11 -10 2021 Azerbaijan Lacustrine Halophytic desert 7.96 4399.20
MAZT3C03 47.61 39.89 15 2021 Azerbaijan Lacustrine Halophytic desert 8.98 90530.05
MAZT3M04 47.61 39.90 15 2021  Azerbaijan Soil Halophytic desert 7.45 877.50
MAZT3MO06 47.28 39.97 86 2022  Azerbaijan Soil Halophytic desert 7.26 2620.15
MAZT3MO07 47.99 39.88 -2 2022 Azerbaijan Soil Halophytic desert 9.11 4134.00
MAZT3S02 47.59 40.09 -4 2021 Azerbaijan Soil Halophytic desert 8.90 16705.00
MAZT3S05 47.60 39.90 12 2021  Azerbaijan Soil Halophytic desert 9.05 23029.50
MAZT4MO1 48.88 40.70 846 2022  Azerbaijan Soil Steppe 7.80 942.50
MAZT4MO02 48.57 40.85 1485 2022  Azerbaijan Soil Steppe 7.63 926.90
MAZT4MO03 47.97 40.87 522 2022 Azerbaijan Soil Deciduous forest 7.74 1072.50
MAZT4M04 47.90 41.05 1956 2022  Azerbaijan Soil Deciduous forest 8.21 1638.00
MAZT4MO05 47.81 41.09 1732 2022 Azerbaijan Soil Deciduous forest 7.83 390.00
MAZT4MO06 47.43 41.06 517 2022  Azerbaijan Soil Thermophilous woodland 7.39 1519.05
MAZT4MO07 47.13 41.30 898 2022  Azerbaijan Soil Deciduous forest 6.18 1318.20
MAZT4MO08 46.56 41.70 626 2022 Azerbaijan Soil Deciduous forest 8.58 2496.00
MAZT4MO09 46.47 41.63 242 2022 Azerbaijan Soil Deciduous forest 6.86 1462.50
MAZT4M10 46.77 41.58 643 2022  Azerbaijan Soil Deciduous forest 6.57 1092.65
MAZT4M11 46.79 41.31 204 2022 Azerbaijan Soil Deciduous forest 6.48 741.00
MAZT4M12 48.14 41.18 2150 2022 Azerbaijan Soil Steppe 6.96 487.50
MAZT4M13 48.44 41.26 900 2022  Azerbaijan Soil Deciduous forest 7.39 2262.00
MAZT4M14 48.71 40.81 1382 2022  Azerbaijan Soil Steppe 7.93 936.00
MAZT5MO03 49.15 39.42 -28 2022 Azerbaijan Soil Shrub desert 7.51 1209.00
MAZT5M04 48.91 39.88 <22 2022 Azerbaijan Soil Halophytic desert 7.96 955.50
MAZT5MO5 48.95 40.08 58 2022 Azerbaijan Soil Shrub desert 7.51 682.50
MAZT5S01 48.48 39.27 19 2022  Azerbaijan Soil Shrub desert 7.56 799.50
MAZT5S02 49.21 39.28 -28 2022 Azerbaijan Soil Halophytic desert 7.75 14872.65
MAZT5S06 49.34 40.90 -24 2022 Azerbaijan Soil Halophytic desert 7.28 7936.50
MAZT5S07 49.22 40.57 493 2022 Azerbaijan Soil Shrub desert 4.17 4368.00
MAZT6MO1 48.66 38.86 85 2022 Azerbaijan Soil Hyrcanian forest 6.11 546.00
MAZT6MO02 48.74 38.77 84 2022  Azerbaijan Soil Hyrcanian forest 6.35 390.00
MCNTIMO1 100.54 36.32 3012 2016  China, Qinghai  Soil Achnatherum splendens steppe 5.98 2262.00
MCNTI1MO04 100.59 36.41 3545 2016 China, Qinghai  Soil Kobresia pygmaea alpine meadow 7.17 1917.50
MCNTIMO5 100.47 36.54 3736 2016  China, Qinghai  Soil Stipa breviflora desert steppe 7.01 3861.00
MCNTI1MO06 100.47 36.55 3519 2016  China, Qinghai  Soil Stipa breviflora desert steppe 7.21 5660.20
MCNTIMO7 100.47 36.55 3519 2016  China, Qinghai  Soil Stipa breviflora desert steppe 7.76 1622.40
MCNTIMO09 100.72 36.54 3205 2016 China, Qinghai  Soil Achnatherum splendens steppe 7.75 1501.50
MCNTIM11 100.79 36.81 3240 2016  China, Qinghai  Soil Achnatherum splendens steppe 791 745.55
MCNTIM13 100.62 37.09 3329 2016  China, Qinghai  Soil Kobresia pygmaea alpine meadow 7.89 1625.65
MCNTIMI14 100.64 37.25 3393 2016  China, Qinghai  Soil Stipa purpurea alpine steppe

MCNTIMI15 100.68 37.33 3511 2016  China, Qinghai  Soil Dasiphora fruticosa scru 7.52 4395.30
MCNTIM16 100.75 37.32 3613 2016  China, Qinghai  Soil Dasiphora fruticosa scrub

MCNTIMI17 100.80 37.33 3724 2016 Chma, Qinghai Soil Dasiphora fruticosa scrub 7.81 4894.50
MCNTIMI18 100.80 37.36 3811 2016  China, Qinghai Soil Dasiphora fruticosa scrub 7.53 5005.00
MCNTIMI19 100.82 37.38 4038 2016 China, Qinghai Soil Saussurea spp. sparse vegetation 7.45 2496.00
MCNTI1M20 100.82 37.39 4038 2016  China, Qinghai  Soil Saussurea spp. sparse vegetation

MCNTIM21 100.82 37.39 4038 2016  China, Qinghai Soil Saussurea spp. sparse vegetation

MCNTI1M22 101.10 37.48 4012 2016  China, Qinghai  Soil Dasiphora fruticosa scrub

MCNTIM23 101.10 37.48 3936 2016  China, Qinghai Soil Dasiphora fruticosa scrub

MCNTIM24 101.11 37.49 3936 2016  China, Qinghai Soil Dasiphora fruticosa scrub 4.41 9607.65
MCNTI1M25 101.11 37.50 3814 2016  China, Qinghai  Soil Dasiphora fruticosa scrub 5.34 5239.00
MCNTIM26 101.12 37.51 3670 2016 China, Qinghai Soil Kobresia pygmaea alpine meadow 6.40 3744.00
MCNTIM27 101.15 37.51 3541 2016  China, Qinghai  Soil Kobresia pygmaea alpine meadow 6.00 4430.40
MCNTI1M28 101.19 37.50 3326 2016  China, Qinghai  Soil Kobresia pygmaea alpine meadow 6.15 9701.25
MCNTIM31 101.32 37.66 3322 2016  China, Qinghai Soil Dasiphora fruticosa scrub 7.10 8927.10
MCNTIM32 101.20 37.77 3418 2016  China, Qinghai  Soil Dasiphora fruticosa scrub 6.87 5265.00
MCNTI1M33 101.14 37.83 3671 2016  China, Qinghai  Soil Kobresia pygmaea alpine meadow 7.64 5705.70
MCNTIM34 101.11 37.84 3758 2016  China, Qinghai Soil Kobresia pygmaea alpine meadow 6.82 4664.40
MCNTIM35 101.07 37.86 3590 2016  China, Qinghai Soil Kobresia pygmaea alpine meadow 6.55 9272.25
MCNT1M36 100.94 38.16 3049 2016  China, Qinghai  Soil Salix gilashanica scrub 6.96 7616.70
MCNTI1M37 100.93 38.19 3005 2016  China, Qinghai  Soil Salix gilashanica scrub 7.18 6674.20
MCNT1M38 100.93 38.25 2780 2016  China, Qinghai Soil Kobresia spp., Carex spp. alpine meadow 8.20 1131.00
MCNTI1M39 100.94 38.30 2646 2016  China, Qinghai  Soil Stipa breviflora, S.bungeana steppe 7.40 4290.00
MCNTI1M40 100.91 38.37 2492 2016 China, Qinghai Soil Stipa breviflora, S.bungeana steppe 8.50 1657.50
MCNTIM41 101.04 38.39 2420 2016  China, Qinghai Soil Stipa breviflora, S.bungeana steppe 7.75 12421.50
MCNT1M42 101.09 38.46 2265 2016  China, Qinghai  Soil Stipa breviflora, S.bungeana steppe 7.94 1565.20
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Table S2: List of the different references compiled mainly from Raberg et al. (2022) plus other studies; to build the ACADB
and the WDB used in this study.

DB Reference Nisite Niac. Nsoil GeographicalCitation
area
ACA  Chenetal. (2021) 53 0 53 Tajikistan

Chen, C., Bai, Y., Fang, X., Zhuang, G., Khodzhiev, A., Bai, X., and Murodov, A.: Evaluating
the Potential of Soil Bacterial Tetraether Proxies in Westerlies Dominating Western Pamirs, Tajik-
istan and Implications for Paleoenvironmental Reconstructions, Chemical Geology, 559, 119908,
https://doi.org/10.1016/j.chemgeo.2020.119908, 2021

ACA D tal. (2018 10 10 O Chi
ang et al. ( ) na Dang, X., Ding, W., Yang, H., Pancost, R. D., Naafs, B. D. A., Xue, J.,, Lin, X., Lu, J., and Xie, S.:
Different Temperature Dependence of the Bacterial brGDGT Isomers in 35 Chinese Lake Sediments
Compared to That in Soils, Organic Geochemistry, 119, 72-79, https://doi.org/10/gdfs3x, 2018
ACA Cromartie et al. (2025) 22 0 22 Armenia

Cromartie, A., De Jonge, C., Ménot, G., Robles, M., Dugerdil, L., Peyron, O., Rodrigo-Gdmiz, M.,
Camuera, J., Ramos-Roman, M. J., Jiménez-Moreno, G., Colombié, C., Sahakyan, L., and Joannin,
S.: Utilizing Probability Estimates from Machine Learning and Pollen to Understand the Depositional
Influences on Branched GDGT in Wetlands, Peatlands, and Lakes, https://doi.org/10.5194/egusphere-

2025-526, 2025
ACA  Dearing Crampton-Flood 15 0 15  Global

et al. (2020) BayMBT Dearing Crampton-Flood, E., Tierney, J. E., Peterse, F., Kirkels, F. M. S. A., and Sinninghe Damsté,
: Soils J. S.: BayMBT: A Bayesian Calibration Model for Branched Glycerol Dialkyl Glycerol Tetraethers in
ACA D L (2020 5 o 18 Chi ) Soils and Peats, Geochimica et Cosmochimica Acta, 268, 142159, https://doi.org/10/gg9758, 2020
t al.
van et al. ( ) Tiz::éghan Duan, Y., Sun, Q., Werne, J. P,, Yang, H., Jia, J., Wang, L., Xie, H., and Chen, F.: Soil pH Dominates the
Distributions of Both 5- and 6-Methyl Branched Tetraethers in Arid Regions, Journal of Geophysical
AC L 0021 580 " . Research: Biogeosciences, 125, €2019JG005 356, https://doi.org/10.1029/2019jg005356, 2020
A D t al. N
van et al. ( ) Ir:n e Duan, Y. Northern Iran and Global Soil brGDGT Dataset,
ACA D dil etal (2021 u 2 o M . https://doi.org/10.11888/Paleoenv.tpdc.271742, 2021
ugerdil etal. 2 Beﬁi(lilo 1 Dugerdil, L., Joannin, S., Peyron, O., Jouffroy-Bapicot, I., Vanniére, B., Boldgiv, B., Unkelbach, J.,
Behling, H., and Ménot, G.: Climate Reconstructions Based on GDGT and Pollen Surface Datasets
from Mongolia and Baikal Area: Calibrations and Applicability to Extremely Cold—Dry Environments
over the Late Holocene, Climate of the Past, 17, 1199-1226, https://doi.org/10.5194/cp-17-1199-2021,
2021
ACA  Guoetal. (2021 32 0 32 Chinz
uo et al. ) Innl:rd, Guo, J., Ma, T,, Liu, N, Zhang, X., Hu, H., Ma, W., Wang, Z., Feng, X., and Peterse, F.: Branched
Mong Tetraether Lipids and Bacterial Communities along an Aridity Soil Transect in Inner Mongolia, North-
c | (2022 129 107 22 Ch ' ern China, https://doi.org/10.1594/PANGAEA.938067, 2021
ACA Kou et al. 107 ina, Ti-
ou etal. (2022) bet " Kou, Q. Zhu, L., Ju, I, Wang, L. Xu, T., Li, C.. and Ma, Q.: Influence of Salinity on Glycerol
Dialkyl Glycerol Tetraether-Based Indicators in Tibetan Plateau Lakes: Implications for Paleotem-
perature and Paleosalinity Reconstructions, Palacogeography, Palacoclimatology, Palacoecology, 601,
ACA Lietal 2017 0o 1 en 111 127, https://doi.org/10.1016/j.palaeo.2022.111127, 2022
ietal.( ) Inn]:r& Li, J., Naafs, B. D. A., Pancost, R. D., Yang, H., Liu, D., and Xie, S.: Distribution of Branched
Mong Tetraether Lipids in Ponds from Inner Mongolia, NE China: Insight into the Source of brGDGTs,
ACA  Naaf L2017 50 48 Glob l Organic Geochemistry, 112, 127-136, https://doi.org/10.1016/j.orggeochem.2017.07.005, 2017
aafs et al. ( 2) soi(l)sa Naafs, B., Gallego-Sala, A., Inglis, G., and Pancost, R.: Refining the Global Branched Glycerol Di-
alkyl Glycerol Tetraether (borGDGT) Soil Temperature Calibration, Organic Geochemistry, 106, 48-56,
ACA W Lin (2021 6 o 6 Chi https://doi.org/10/gbjssd, 2017a
t
ang et Liu ( ) 1na Wang, H. and Liu, W.: Soil Temperature and brGDGTs along an Elevation Gradient on the Northeast-
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ACA W L (2020 5 0 75 Chi 120079, https://doi.org/10.1016/j.chemgeo.2021.120079, 2021
ang etal. ( ) ina Wang, H., An, Z., Lu, H., Zhao, Z., and Liu, W.: Calibrating Bacterial Tetraether Distributions towards
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Table S3. Presentation of the different cuff-offs associated with each of the grouping factor used in this study.

ID Classes Cut-off Reference
1 Acid pH<7 common classification
Alkalinity 2 Neutral pH € [7;8]
3 Alkaline pH>38
1 Hyper-arid Al <1500 Nash (1999)
2 Arid AT € [1500; 3000[
Aridity 3 Semi-arid AT € [3000;3700[
4 Drysub-humid Al € [3700;5500]
5 Humid AT > 5500
1 Fresh Salinity < 700 modified from Rusydi (2018) with
Salinit 2 Hyposaline Salinity € [700;26000] a sensitivity analysis
¥ 3 Saline Salinity € [26;140000]
4 Hypersaline Salinity > 140000
Sample tvpe 1 Soil Martinez-Sosa et al. (2023)
petyp 2 Lacustrine

Table S4. Results of the Variance Factors analyses (VIF) carried out on the brGDGT FAs vs. climate parameter for model 1 (i.e., all the
available climate parameters) and model 2 (after removing the covariant climate parameters owing to only having VIFs < 10).

Climate parameters ~ VIF (model 1)  VIF (model 2)

Al 21.60 3.00
Altitude 22.20
MAAT 620.60 5.60
MAF 28.00 4.40
MAP 37.80
MPCOQ 17.80
MPWAQ 16.70 3.20
MTCOQ 159.10
MTWAQ 271.60
pH 1.70 1.70
Salinity 1.30 1.30
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Table S5. Levene’s test results for the two MANOVA models used to evaluate the grouping factors effect across brGDGT FA and indices.
The violation of the assumption of homogeneity of variance-covariance is marked by ** (p-values < 0.001) or * (p-values < 0.01)

Alkalinity  Aridity

Salinity Sample type

f(ITa)
f(IMa’)
£(I1Ib)
£(IIIb")
f(ITIc)
f(ITIc’)
f(Ila)
f(ITa)
f(1Ib)
f(IIb)
£(TIc)
f(IIc’)
f(la)
£(Ib)
f(Ic)

*

ek

ek

ek
ek *

*

ek

ek

MBT%e
MBTge

IRGMC
IR6+7Me

IRI6+71\/Ie
CBT’
CBT,S]\/IE

kek

ek

ek
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Table S6. Main GDGT indices discussed in this study with their formula, proxy interpretation and references.

Index Formula RMSE Proxy interpretation References
MAATTjk—Chen =1.1+19.2- MBT{y, 2.3 Soil, local (Tajikistan) Chen et al. (2021)
MAATY, _sun = 3.949 — 5.593 - CBT + 38.213 - MBTgMe 4.27 Lacustrine, local (China)  Sun et al. (2011)
MAAT ., —DJ =7.17+17.1-[Ia] +25.9 - [Ib] + 34.4 - [Ic] — 28.6 - [I1a] 4.6 Soil, global De Jonge et al. (2014)
MAAT ms—DJ =5.58+17.91- [Ia] — 18.77 - [I1a] 5.0 Soil, global De Jonge et al. (2014)
MAATMBT-DJ = —8.57+31.45- MBT},,, 4.8 Soil, global De Jonge et al. (2014)
MAATMBT— Peterse = 0.81 —5.67-CBT + 31 - MBT’ 5.0 Soil, global Peterse et al. (2012)
MAATMBT - Wang = 27.63 - Index; — 5.72 2.5 Soil, local (north China) Wang et al. (2016)
MAATS_MBT—Naats = —15.25 4+ 40.01 - MBTj, 5.3 Soil, global Naafs et al. (2017a)
MAATS _mr—Naafs = 4.32419.8 - [Ia] +31.1- [Ib] — 23.4 - [IIa] 4.7 Soil, global Naafs et al. (2017a)
MAATP _MBT-_Naafs = —23.05 + 52.18 - MBT%MO 4.7 Peatland, global Naafs et al. (2017b)
MAAT r—vang =20.9—-13.4-[IIa] — 17.2 - [IITa] — 17.5 - [IIb] 4+ 11.2 - [Ib] 1.7 Soil, local (arid China) Yang et al. (2014)

—20.87 — 18.04 - [I11a] + 38.88 - [I1Ib] — 12.92 - [I1a]
MAAT 1 — Thomas 1.6 Soil, local (Tibet) Thomas et al. (2017)

—20.41 - [IIb] — 30.27 - [IIc] + 12.94 - [Ib]
=92.9+463.84 [Ib]2, — 130.51 - [Ib]y, — 28.77 - [[Ia]2, — 72.28 - [IIb]2

m

MAF Meth 2.14  Soil, global Raberg et al. (2021)
—5.88 - [Ic]2, +20.89 - [I1Ta]2, — 40.54 - [ITTa]y — 80.47 - [ITTb]

= —8.06 4 37.52 - [la] — 266.83 - [Ib]? + 133.42 - [Ib]
MAFFun 1.97  Soil, global Raberg et al. (2021)

+100.85 - [I1a’]? + 58.15 - [[11a’]* 4 12.79 - [I1Ia]
_ MBT}y,, — 0.075

MAFL-Bay 0.03

0.089  Lacustrine, global Martinez-Sosa et al. (2021)
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