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Section S1

Phytoplankton pigment

At each station other than those from the PB21 cruise, between 200 and 2000 mL of surface seawater was filtered onto
polycarbonate membrane or nylon mesh filters (20, 10, 5, and 2 um pore size) and GF/F filters (0.7 pm pore size) under low
vacuum pressure (<0.013 MPa), with various combinations of pore sizes used to separate water samples for different
Chlorophyll a (Chl a) size fractionations (Table 2). Filters for size-fractionated measurements with fluorometric analysis
were immediately soaked in N, N-dimethylformamide, and size-fractionated Chl a (Chl asiz obs) concentrations were
determined using the non-acidification technique (Welschmeyer, 1994) after a 24 h extraction in the dark at —20 °C (Suzuki
and Ishimaru, 1990). During the PB21 cruise, the filter samples for Chl asize obs measurements were obtained by filtering
between 500 and 1000 mL of surface seawater using the same method as with the other cruises but were promptly frozen in

liquid nitrogen and then stored in a deep freezer (—80 °C).

Across all cruises, between 500 and 5000 mL of bulk, unfractionated surface seawater samples were filtered onto GF/F
filters to determine the concentrations of major phytoplankton pigments. These filters were promptly frozen in liquid
nitrogen and stored in a deep freezer (—80 °C) until analysis. Pigment extraction for the filters (including those of Chl asize obs
samples obtained during the PB21 cruise) and the subsequent HPLC analysis were conducted at multiple labs using several
HPLC systems, following the method of (Van Heukelem and Thomas, 2001): at Hokkaido University using a CLASS VP
system (Shimadzu Corporation) for samples collected in 2007-2013, at Japan Agency for Marine-Earth Science and
Technology (JAMSTEC) using an Agilent 1300 series (Agilent Technologies) for samples collected in 2016 and 2017, and
at NASA Goddard Space Flight Center (GSFC) using an Agilent 1200 series (Agilent Technologies) for samples collected
during the PB21 cruise.

Section S2

Absorption coefficient

Particles in surface seawater samples (between 500 and 5000 mL) were collected on a GF/F filter until the filter had
sufficient coloration to measure the absorption coefficient of phytoplankton (a@ph obs(4)). The absorption coefficient of
particles (ap_obs(4)) on the filter was measured in the spectral range from 300 to 850 nm at 1 nm intervals using an MPS-2400
(Shimadzu Corporation), MPS-2450 (Shimadzu Corporation) or Cary 100 (Agilent Technologies) spectrophotometer. The
quantitative filter technique (QFT) was used to determine aph obs(4) for samples measured with the MPS-2400 and MPS-2450
instruments (i.e., all cruises but PB21), following the procedure described by Mitchell (Mitchell, 1990), whereas aph obs(1) for
the PB21 samples was determined with GF/F filters placed inside a 15-cm integrating sphere connected to the Cary 100
(IOCCQG, 2018). Following the measurement for ap obs(4), the absorption coefficient of NAP (anap obs(4)) was measured after

soaking the filter in 95% methanol or sodium hypochlorite, and aph obs(4) Was finally obtained by subtracting anap obs (1)
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from ap_obs (4). The absorption coefficient of CDOM (acpom_obs (4)) at wavelengths from 250 to 750 nm at 1 nm intervals was
measured using the same spectrophotometers as for the particulate absorption measurements, with the exception of the PB21
samples, which were analyzed using a Cary 300 (Agilent Technologies) spectrophotometer with 5-cm quartz cuvettes. The
summed measurements of individual constituent absorption coefficients allow estimation of the total absorption coefficient

of seawater, defined as:

Qtotal_obs (/1) = aph,obs (/1) + ANAP_obs (/1) + AcpoM_obs (/1) + Ay (/1): (Sl)

where aw(4) is the spectral absorption coefficient of pure water (Pope and Fry, 1997).

Section S3

Remote sensing reflectance

In situ spectral radiance and irradiance measurements were acquired using a PRR-800/810 (Biospherical Instruments), C-
OPS (Biospherical Instruments), or HyperPro (Satlantic) spectroradiometer. The PRR-800/810 and C-OPS measured
underwater downward spectral irradiance (Ed(4, z)) and upward spectral radiance (Lu(4, z)) at 17 (380 to 765 nm) and 19
wavelengths (320 to 875 nm), respectively. The HyperPro was deployed as a surface buoy and acquired Ea(4, +0) and Lu(4,
—0.24) between 400 and 800 nm at approximately 3 nm intervals. Remote sensing reflectance (R obs(1)) was calculated as

the ratio of the water-leaving radiance (Lw(4)) to the above-water downward spectral irradiance (Es(4)):

Rrs,obs(/l) =Ly (’D/Es AD. (52)

For PRR-800/810 and C-OPS data, Lw(4) was estimated from Lu(4, z) just beneath the water surface (Lu(4, —0)) following
(Gordon et al., 1983), which was determined by extrapolating near-surface Lu(4, z) between 0.5-3 and 10 m deep to the
surface. Lu(4, —0) was propagated through the water-air interface by applying the multiplicative factor 0.544 (Darecki and
Stramski, 2004) to get Lw(4) as follows:

L,(4,—0) =L,(4,2) X exp(—K,(4) X 2), (S3)
L, (1) = 0.544 x L,(1,—0), (S4)

where z and Ku(4) are the depth and diffuse attenuation coefficients of Lu(4, z), respectively. For the HyperPro data, Es(1) was
propagated through the water surface and down to the depth of the radiometer (0.24 m) using the diffuse attenuation for
downwelling light, K4(1), derived from in situ measurements of total absorption and light scatter. Remote sensing reflectance

was then computed as:



0-52rrs,obs (/1) (SS)

Ris obs(A) = '
rsiobS( ) 1.0 — 1.7rrsiob5(l)

where 7y ops(4) is the sub-surface reflectance, calculated as:
Trs obs(A) = Lu(A, —0.24)/[(1 = p)Eq4(A, +0) e702*KaD], (S6)

The surface reflectance (ps) was computed as a weighted sum of surface reflectance due to the direct sunlight (psun),
computed as Fresnel reflectance with water refractive index set equal to 1.34, and sunlight reflected from clouds (pcioud),
which was assumed to be 0.05. Weights for psun and peioud Were based on observed estimates of fractional cloud cover (£¢) as

follows:

ps = (1 — F)psun + FePeioud - (57

Since Ku(A) was not measured directly, it was estimated as an average between the surface and 0.24 m depth using the

Hydrolight radiative transfer model (Mobley, 1995).

Ris obs(4) was resampled at ten MODIS bands in the visible range (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and
678 nm) from the original wavelengths of each instrument using spline interpolation (Wang et al., 2015). Note that, based on
hyperspectral Ris obs(4) data at wavelengths from 350 and 900 nm at 1 nm intervals measured by a HR-512i handheld
spectroradiometer (Spectra Vista Corporation) during the PB21 cruise (N = 10), the spline interpolation showed median
percent differences between the observed and resampled Ris obs (1) at ten MODIS bands were 0.15%, 0.00%, and 0.01% for
the PRR-800/810, C-OPS, and HyperPro data, respectively. This supports the robustness of using spline interpolation to
resample Ris obs(A) values at MODIS wavelengths from spectroradiometer data with slightly different observation
wavelengths. Finally, a modified version of the Quasi-Analytical Algorithm (QAA; Lee et al., 2002) for the Pacific Arctic
(Fujiwara et al., 2016) was used to estimate apn(4) (aph Qaa(4)) from in situ Ris(1) (Ris obs(4)) and satellite Ris(L) (Rrs sat(4)).
Here, aph aa(4) estimated from Ris obs(4) and Ris sat(4) is denoted as aph aacbs(4) and aph gaasa(4), respectively. To avoid the
retrieval of negative aph Qaa(4), the modified version of QAA uses an optimized spectral slope of the absorption coefficient
of combined CDOM and non-algal particles (Sd¢g) obtained by reconstructing the Si¢g based on a dataset collected in the
Pacific Arctic (Fujiwara et al., 2016). The aph gascbs(4) was used to validate the performance of the modified version of the

QAA by comparing it with aph_obs(4).



Section S4

Pigment-based identification of phytoplankton taxonomic composition

An open-source R software package, phytoclass (ver 1.0.0), was used to determine the Chl a biomass of different
phytoplankton groups from their accessory pigments (Hayward et al., 2023). The phytoclass package is a Chl a taxonomic
partitioning software package similar to the widely used CHEMTAX software (Mackey et al., 1996). However, phytoclass
has been shown to be more accurate and does not rely on initial assumptions of pigment to Chl a ratios for each

phytoplankton group (Hayward et al., 2023).

For this study, eight target taxonomic groups (diatoms, chrysophytes, dinoflagellates, prymnesiophytes, chlorophytes,
prasinophytes, cryptophytes, and cyanobacteria) and 11 marker pigments for each taxonomic group (peridinin, 19’-
butanoyloxyfucoxanthin, fucoxanthin, 19’-hexanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, alloxanthin,
lutein, zeaxanthin, and chlorophyll b) were selected following (Zhuang et al., 2016), as these groupings have been used
previously for CHEMTAX analysis in the Chukchi Sea shelf region. Before calculating group-specific Chl a biomass using
phytoclass, a hierarchical cluster analysis on the pigment concentrations normalized to Chl a was conducted using the Ward
method (Punj and Stewart, 1983) to partition the dataset into similar pigment compositions. This clustering is recommended
by Hayward et al. (Hayward et al., 2023) because pigment ratios can change at the phytoplankton genus or species level and

with environmental conditions (Henriksen et al., 2002; Schliiter et al., 2000).



Figure S1

-500

-1000

-1500

-2000

Bathymetry (m)

Beaufort 8 : N 2500
-3000
-3500

-4000

2021
2017
2016

2013

Year

. 2012
Bering

2010
2009

2007

1507w
Figure S1. Sampling locations of in situ data used in this study. Colors of each plot indicate cruise years, whereas

background color represent the bathymetry.
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Figure S2. Loading factors derived from spectral variations of ﬁrs,obs(ll The (a) first, (b) second, (c) third, and (4) fourth
modes of principal component analysis (PCA). PVEs and CVEs indicate the proportion of variance and cumulative variance

explained by each mode, respectively.
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Figure S3. Loading factors derived from spectral variations of dpp ons(4). The (a) first, (b) second, (c) third, and (4) fourth
modes of PCA.



Figure S4
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Figure S4. Light absorption by each water constituent. Fractional contributions to the total absorption coefficient (atotal obs(4))

by (a) phytoplankton (aph obs(4)), (b) non-algal particles (anap_obs(4)), () colored dissolved organic matter (acpom obs(4)), and
(d) pure water (aw(4)) at ten MODIS-A wavebands. Values that are more than 1.5 times the interquartile range away from the

bottom or top of the box are marked as outliers.



Figure S5
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Figure S5. Monthly climatology of sea surface temperature (SST) values in (a) June, (b) July, (c) August, and (d) September

in the Pacific Arctic for 2002-2022.
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Table S1

Table S1. Pigment to Chl a ratios for each phytoplankton taxa used for the phytoclass analyses. Abbreviations: Peri,
peridinin; But, 19’-butanoylofucoxanthin; Fuco, fucoxanthin; Hex, 19’-hexanoyloxyfucoxanthin; Neo, neoxanthin; Pras,
prasinoxanthin; Viola, violaxanthin; Allo, alloxanthin; Lut, lutein; Zea, zeaxanthin; Chl b, chlorophyll b; Chryso,
chrysophytes; Dino, dinoflagellates; Prym, prymnesiophytes; Chloro, chlorophytes; Pras, prasinophytes; Crypto,
cryptophytes; Cyano, cyanobacteria.
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Table S2.

Table S2. Comparison of aph-obs(4) and aph Qaachs(A) values estimated from Ris obs(4) using the quasi-analytical algorithm

(QAA) for the Pacific Arctic. MAE stands for mean absolute error.

Wavelength (nm)
412 443 469 488 531 547 555 645 667 678
MAE 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.08 0.13 0.13
Bias 1.03 1.04 1.03 1.01 0.99 0.97 0.97 1.19 1.29 1.31
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Table S3

Table S3. Model parameters (fo and C; in Egs. (8) and (9)) for the CSD models optimized with the principal component analysis (PCA)-based

approach. Model parameters are indicated for each predictor: i.e., R,s(4) and @yn (A), with the further threshold for @y, (A).

Predictor Threshold Model parameters
Lo Ci &) G Cs Cs Cs C7 Cs Co Cio
a,n () aph(412) > apn(469) 0.05 0.65 —0.50 098 -1.62 257 027 -1.79 - - -
aph(412) < apn(469) -0.18 036 041 —0.67 0.71 2.15 -040 —-1.74 - - -
R..(D) - -0.08  0.21 -0.06 —-0.14 —-0.15 —0.01 0.13 020 —-047 002 0.27
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Table S4

Table S4. Training results of the CSD models based on the diverse machine learning approaches (i.e., model type and preset) using

R.s(A) as the predictor. The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE), coefficient of

determination (%), and mean absolute error (MAE), are given as mean + std derived from ten repeats of five-fold cross-validation.

Rank  Model type Preset RMSE MSE R2 MAE
1 Linear Regression Linear 0.16 =+ 0.01 0.03 =+ 0.00 0.76 =+ 0.02 0.12 = 0.01
2 Linear Regression Robust Linear 0.16 =+ 0.01 0.03 =+ 0.00 0.76 =+ 0.02 0.12 + 0.00
3 SVM Linear SVM 0.17 =+ 0.01 0.03 =+ 0.00 0.74 =+ 0.03 0.13 =+ 0.00
4  Stepwise Linear Regression Stepwise Linear 0.18 =+ 0.02 0.03 =+ 0.01 0.70 =+ 0.08 0.13 + 0.01
5 Efficient Linear Effiicient Linear SVM 0.18 =+ 0.00 0.03 =+ 0.00 0.69 =+ 0.01 0.14 + 0.00
6  Efficient Linear Efficient Linear Least Squares 020 =+ 0.00 0.04 =+ 0.00 0.63 =+ 0.01 0.15 + 0.00
7  Gaussian Process Regression ~ Exponential GPR 021 =+ 0.01 0.05 =+ 0.00 0.59 =+ 0.02 0.16 =+ 0.00
8 SVM Medium Gaussian SVM 024 + 0.01 0.06 =+ 0.00 048 + 0.03 0.18 =+ 0.00
9  Gaussian Process Regression ~ Squared Exponential GPR 025 =+ 0.04 0.06 =+ 0.02 041 =+ 0.18 0.15 = 0.01
10 Gaussian Process Regression ~ Rational Quadratic GPR 025 =+ 0.04 0.07 =+ 0.02 041 =+ 0.19 0.15 =+ 0.01
11 Ensemble Bagged Trees 026 =+ 0.01 0.07 = 0.00 040 =+ 0.02 0.19 =+ 0.00
12 Gaussian Process Regression ~ Matern 5/2 GPR 027 =+ 0.04 0.07 =+ 0.02 035 =+ 0.17 0.15 =+ 0.01
13 Ensemble Boosted Trees 027 =+ 0.01 0.07 =+ 0.01 036 =+ 0.05 0.19 =+ 0.01
14 SVM Coarse Gaussian SVM 027 + 0.00 0.07 =+ 0.00 033 =+ 0.0l 021 =+ 0.00
15 SVM Fine Gaussian SVM 028 + 0.00 0.08 =+ 0.00 030 =+ 0.02 020 =+ 0.00
16  Kernel Least Squared Regression Kernel 028 =+ 0.01 0.08 = 0.00 029 =+ 0.04 020 =+ 0.01
17 Kernel SVM Kernel 029 =+ 0.01 0.08 =+ 0.01 024 + 0.06 021 =<+ 0.01
18  Tree Coarse Tree 030 =+ 0.00 0.09 =+ 0.00 021 =+ 0.02 023 =+ 0.00
19  Tree Medium Tree 030 =+ 0.01 0.09 =+ 0.01 0.19 =+ 0.07 021 =+ 0.01
20 Tree Fine Tree 031 =+ 0.02 0.10 =+ 0.01 0.14 =+ 0.12 022 =+ 0.01
21 Neural Network Narrow Neural Network 038 =+ 0.11 0.15 =+ 0.09 -037 £ 0.77 020 <+ 0.02
22 Neural Network Bi-layered Neural Network 040 =+ 0.07 0.16 =+ 0.06 -0.46 =+ 0.56 023 + 0.02
23 Neural Network Tri-layered Neural Network 047 =+ 0.20 025 =+ 0.25 -1.29 £ 226 025 = 0.04
24 Neural Network Medium Neural Network 064 =+ 0.21 045 <+ 0.31 -3.09 =+ 287 027 <+ 0.03
25 SVM Quadratic SVM 071 =+ 0.41 0.66 =+ 0.93 -493 =+ 837 025 + 0.07
26  Neural Network Wide Neural Network 0.84 =+ 0.36 0.82 =+ 0.65 -6.35 =+ 588 032 + 0.05
27  Linear Regression Interactions Linear 321 =+ 1.26 11.74 =+ 9.11 -104.16 =+ 80.99 055 + 0.13
28 SVM Cubic SVM 24.10 + 32,60 153737 £ 3416.27 -13771.77 + 30640.37 2.69 + 3.08
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Table S5

Table S5. Training results of the CSD models based on the diverse machine learning approaches (i.e., model type and preset) using @, (A) as

the predictor. The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE), coefficient of

determination (%), and mean absolute error (MAE), are given as mean + std derived from ten repeats of five-fold cross-validation.

Rank  Model type Preset RMSE MSE R2 MAE
1 SVM Medium Gaussian SVM 0.13 + 0.01 0.02 =+ 0.00 0.80 =+ 0.02 0.10 =+ 0.00
2 Gaussian Process Regression Squared Exponential GPR 0.13 £ 0.00 0.02 =+ 0.00 0.80 =+ 0.02 0.10 £ 0.00
3 Gaussian Process Regression Matern 5/2 GPR 0.13 + 0.01 0.02 =+ 0.00 0.80 =+ 0.02 0.10 £ 0.00
4 Gaussian Process Regression Rational Quadratic GPR 0.13 + 0.01 0.02 =+ 0.00 0.79 <+ 0.02 011 £ 0.00
5 Gaussian Process Regression Exponential GPR 0.14 £ 0.00 0.02 =+ 0.00 0.78 =+ 0.01 011 £ 0.00
6 Kernel SVM Kernel 0.17 + 0.01 0.03 =+ 0.00 0.66 =+ 0.04 0.13 + 0.01
7  Ensemble Bagged Trees 0.18 + 0.01 0.03 =+ 0.00 0.63 =+ 0.03 014 =+ 0.01
8  Ensemble Boosted Trees 0.18 + 0.01 0.03 =+ 0.00 0.62 =+ 0.02 0.14 =+ 0.01
9 Kernel Least Squared Regression Kernel 0.18 + 0.01 0.03 =+ 0.00 0.62 =+ 0.03 014 =+ 0.01
10 SVM Coarse Gaussian SVM 0.18 + 0.00 0.03 =+ 0.00 0.62 =+ 0.01 0.15 =+ 0.00
11  Efficient Linear Effiicient Linear SVM 020 <+ 0.00 0.04 =+ 0.00 0.53 <+ 0.01 017 £ 0.00
12 Linear Regression Linear 021 + 0.01 0.04 =+ 0.00 0.51 =+ 0.03 0.16 =+ 0.00
13 Tree Fine Tree 021 <+ 0.01 0.04 =+ 0.00 0.50 =+ 0.06 0.16 + 0.01
14  Linear Regression Robust Linear 021 £ 0.00 0.04 =+ 0.00 0.50 =+ 0.02 0.15 £ 0.00
15 Tree Medium Tree 021 <+ 0.01 0.04 =+ 0.00 049 =+ 006 0.17 + 0.01
16 SVM Linear SVM 021 <+ 0.01 0.04 =+ 0.00 048 =+ 0.03 0.15 =+ 0.00
17  SVM Fine Gaussian SVM 023 <+ 0.00 0.05 =+ 0.00 039 =+ 0.02 0.17 =+ 0.00
18  Efficient Linear Efficient Linear Least Squares 023 + 0.00 0.05 =+ 0.00 039 <+ 0.01 0.19 =+ 0.00
19  Tree Coarse Tree 025 + 0.01 0.06 =+ 0.01 028 =+ 0.07 0.19 + 0.01
20  Neural Network Narrow Neural Network 034 + 0.12 0.13 =+ 0.09 -0.48 =+ 1.09 0.18 =+ 0.03
21 Neural Network Tri-layered Neural Network 036 + 0.08 0.14 =+ 0.07 -0.60 =+ 078 022 £ 0.02
22 Neural Network Wide Neural Network 037 + 0.10 0.14 =+ 0.09 -0.66 =+ 099 020 £ 0.02
23 Neural Network Medium Neural Network 037 + 0.09 0.14 =+ 0.08 -0.68 097 023 £ 0.02
24 Neural Network Bi-layered Neural Network 057 + 028 040 =+ 0.38 -3.65 449 026 =+ 0.03
25  Stepwise Linear Regression Stepwise Linear 071 £ 0.26 0.56 =+ 0.35 =551 406 021 + 0.03
26 Linear Regression Interactions Linear .18 + 0.36 1.50 =+ 0.96 -16.46 + 11.04 027 <+ 0.04
27 SVM Quadratic SVM 135 £ 028 191 =+ 0.76 -21.18  + 892 028 =+ 0.03
28 SVM Cubic SVM 510 £ 266 3239 + 3440 -376.09 £ 402.63 0.67 + 0.24
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Table S6

Table S6. Model parameters (fo and Cj) for the CSD model; g_g (1) optimized with the machine-learning (ML)-based approach. The formular

is expressed as 77 = by + Y7L, a;Ri5(%;).

Model parameters

bo ai az as a4 as as ar as as aio
1.73 -3.75 —3.13 0.00 -7.01 30.58 —94.13 55.29 -3.93 0.00 -5.13
Table S7

Table S7. Training results of the top-five and bottom-five CSD models based on the diverse machine learning approaches (i.e., model type and

preset) with reduced data subset. The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE),

coefficient of determination (+%), and mean absolute error (MAE), are given as mean + std derived from ten repeats of five-fold cross-

validation.
Predictor Rank  Model type Preset RMSE MSE r MAE

R, 1 Linear Regression Linear 0.18 =+ 0.01 0.03 =+ 0.00 0.70 =+ 0.04 0.14 £+ 0.01
2 Linear Regression Robust Linear 0.19 =+ 0.01 0.04 =+ 0.00 0.68 =+ 0.03 0.14 =+ 0.00

3 SVM Linear SVM 0.19 =+ 0.01 0.04 =+ 0.00 0.67 =+ 0.03 0.15 =+ 0.01

4  Efficient Linear Effiicient Linear SVM 020 =+ 0.01 0.04 =+ 0.00 0.63 =+ 0.03 0.16 + 0.01

5 Stepwise Linear Regression Stepwise Linear 020 =+ 0.04 0.04 =+ 0.02 0.62 =+ 0.17 0.14 £+ 0.01

24 Neural Network Medium Neural Network 0.79 <+ 0.27 0.68 =+ 0.41 -5.18  + 375 034 £+ 0.05

25  Neural Network Wide Neural Network 0.81 =+ 0.21 0.69 = 0.35 =527 £ 308 034 =+ 0.04

26 SVM Quadratic SVM 091 =+ 0.44 1.00 =+ 1.15 -8.04 =+ 1026 028 <+ 0.05

27  Linear Regression Interactions Linear 2.11 + 0.90 517 % 4.68 -45.75 42.15 0.65 =+ 0.12

28  SVM Cubic SVM 1458 £ 1521 42097 + 806.34 -3795.55 + 726299 199 £ 1.67

apn) 1 SVM Medium Gaussian SVM 0.13 =+ 0.01 0.02 =+ 0.00 081 =+ 0.02 0.10 == 0.01
2 Gaussian Process Regression Squared Exponential GPR 0.13 =+ 0.01 0.02 =+ 0.00 0.81 =+ 0.01 0.10 =+ 0.00

3 Gaussian Process Regression Matern 5/2 GPR 0.13 =+ 0.01 0.02 =+ 0.00 0.81 =+ 0.02 0.10 =+ 0.00

4 Gaussian Process Regression Rational Quadratic GPR 0.14 =+ 0.00 0.02 =+ 0.00 0.78 =+ 0.01 0.11 =+ 0.00

5 Gaussian Process Regression Exponential GPR 0.14 =+ 0.01 0.02 =+ 0.00 0.77 =+ 0.02 0.11 =+ 0.01

24 Neural Network Medium Neural Network 0.61 =+ 0.24 043 <+ 0.38 375 £ 438 031 + 0.05

25  Stepwise Linear Regression Stepwise Linear 096 =+ 0.40 1.05 =+ 0.71 -10.63 =+ 7.70 027 £+ 0.05

26 SVM Quadratic SVM 149 + 0.43 239 =+ 1.44 -25.58  + 16.35 035 =+ 0.05

27 SVM Cubic SVM 1.57 + 1.06 349 + 4.72 -37.97 + 5338 035 + 0.13

28 Linear Regression Interactions Linear 190 + 0.39 3.74 + 1.48 -40.26  + 16.15 043 + 0.05
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