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Section S1 

Phytoplankton pigment 
At each station other than those from the PB21 cruise, between 200 and 2000 mL of surface seawater was filtered onto 

polycarbonate membrane or nylon mesh filters (20, 10, 5, and 2 μm pore size) and GF/F filters (0.7 μm pore size) under low 

vacuum pressure (<0.013 MPa), with various combinations of pore sizes used to separate water samples for different 

Chlorophyll a (Chl a) size fractionations (Table 2). Filters for size-fractionated measurements with fluorometric analysis 

were immediately soaked in N, N-dimethylformamide, and size-fractionated Chl a (Chl asize_obs) concentrations were 

determined using the non-acidification technique (Welschmeyer, 1994) after a 24 h extraction in the dark at −20 °C (Suzuki 

and Ishimaru, 1990). During the PB21 cruise, the filter samples for Chl asize_obs measurements were obtained by filtering 

between 500 and 1000 mL of surface seawater using the same method as with the other cruises but were promptly frozen in 

liquid nitrogen and then stored in a deep freezer (−80 °C). 

Across all cruises, between 500 and 5000 mL of bulk, unfractionated surface seawater samples were filtered onto GF/F 

filters to determine the concentrations of major phytoplankton pigments. These filters were promptly frozen in liquid 

nitrogen and stored in a deep freezer (−80 °C) until analysis. Pigment extraction for the filters (including those of Chl asize_obs 

samples obtained during the PB21 cruise) and the subsequent HPLC analysis were conducted at multiple labs using several 

HPLC systems, following the method of (Van Heukelem and Thomas, 2001): at Hokkaido University using a CLASS VP 

system (Shimadzu Corporation) for samples collected in 2007–2013, at Japan Agency for Marine-Earth Science and 

Technology (JAMSTEC) using an Agilent 1300 series (Agilent Technologies) for samples collected in 2016 and 2017, and 

at NASA Goddard Space Flight Center (GSFC) using an Agilent 1200 series (Agilent Technologies) for samples collected 

during the PB21 cruise. 

Section S2 

Absorption coefficient 
Particles in surface seawater samples (between 500 and 5000 mL) were collected on a GF/F filter until the filter had 

sufficient coloration to measure the absorption coefficient of phytoplankton (aph_obs(λ)). The absorption coefficient of 

particles (ap_obs(λ)) on the filter was measured in the spectral range from 300 to 850 nm at 1 nm intervals using an MPS-2400 

(Shimadzu Corporation), MPS-2450 (Shimadzu Corporation) or Cary 100 (Agilent Technologies) spectrophotometer. The 

quantitative filter technique (QFT) was used to determine aph_obs(λ) for samples measured with the MPS-2400 and MPS-2450 

instruments (i.e., all cruises but PB21), following the procedure described by Mitchell (Mitchell, 1990), whereas aph_obs(λ) for 

the PB21 samples was determined with GF/F filters placed inside a 15-cm integrating sphere connected to the Cary 100 

(IOCCG, 2018). Following the measurement for ap_obs(λ), the absorption coefficient of NAP (aNAP_obs(λ)) was measured after 

soaking the filter in 95% methanol or sodium hypochlorite, and aph_obs(λ) was finally obtained by subtracting aNAP_obs (λ) 



3 
 

from ap_obs (λ). The absorption coefficient of CDOM (aCDOM_obs (λ)) at wavelengths from 250 to 750 nm at 1 nm intervals was 

measured using the same spectrophotometers as for the particulate absorption measurements, with the exception of the PB21 

samples, which were analyzed using a Cary 300 (Agilent Technologies) spectrophotometer with 5-cm quartz cuvettes. The 

summed measurements of individual constituent absorption coefficients allow estimation of the total absorption coefficient 

of seawater, defined as: 

!!"!#$_"&'(#) = !()_"&'(#) + !*+,_"&'(#) + !-./0_"&'(#) + !1(#), (S1) 

where aw(λ) is the spectral absorption coefficient of pure water (Pope and Fry, 1997). 

Section S3 

Remote sensing reflectance 
In situ spectral radiance and irradiance measurements were acquired using a PRR-800/810 (Biospherical Instruments), C-

OPS (Biospherical Instruments), or HyperPro (Satlantic) spectroradiometer. The PRR-800/810 and C-OPS measured 

underwater downward spectral irradiance (Ed(λ, z)) and upward spectral radiance (Lu(λ, z)) at 17 (380 to 765 nm) and 19 

wavelengths (320 to 875 nm), respectively. The HyperPro was deployed as a surface buoy and acquired Ed(λ, +0) and Lu(λ, 

−0.24) between 400 and 800 nm at approximately 3 nm intervals. Remote sensing reflectance (Rrs_obs(λ)) was calculated as 

the ratio of the water-leaving radiance (Lw(λ)) to the above-water downward spectral irradiance (Es(λ)): 

(2'_"&'(#) = )1(#) *'(#)⁄ . (S2) 

For PRR-800/810 and C-OPS data, Lw(λ) was estimated from Lu(λ, z) just beneath the water surface (Lu(λ, −0)) following 

(Gordon et al., 1983), which was determined by extrapolating near-surface Lu(λ, z) between 0.5–3 and 10 m deep to the 

surface. Lu(λ, −0) was propagated through the water-air interface by applying the multiplicative factor 0.544 (Darecki and 

Stramski, 2004) to get Lw(λ) as follows: 

)3(#,−0) = )3(#, -) × exp(−33(#) × -), (S3) 

)1(#) = 0.544 × )3(#,−0), (S4) 

where z and Ku(λ) are the depth and diffuse attenuation coefficients of Lu(λ, z), respectively. For the HyperPro data, Es(λ) was 

propagated through the water surface and down to the depth of the radiometer (0.24 m) using the diffuse attenuation for 

downwelling light, Kd(λ), derived from in situ measurements of total absorption and light scatter. Remote sensing reflectance 

was then computed as: 
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(2'_"&'(#) =
0.5282'_"&'(#)

1.0 − 1.782'_"&'(#)
	, (S5) 

where 845_675(#) is the sub-surface reflectance, calculated as: 

82'_"&'(#) = )8(#, −0.24)/=(1 − >5)*9(#, +0)	?:;.=>	@!(B)@. (S6) 

The surface reflectance (ρs) was computed as a weighted sum of surface reflectance due to the direct sunlight (ρsun), 

computed as Fresnel reflectance with water refractive index set equal to 1.34, and sunlight reflected from clouds (ρcloud), 

which was assumed to be 0.05.  Weights for ρsun and ρcloud were based on observed estimates of fractional cloud cover (Fc) as 

follows: 

>5 = (1 − AD)>58E + AF>F$"3G	. (S7) 

Since Kd(λ) was not measured directly, it was estimated as an average between the surface and 0.24 m depth using the 

Hydrolight radiative transfer model (Mobley, 1995). 

Rrs_obs(λ) was resampled at ten MODIS bands in the visible range (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667, and 

678 nm) from the original wavelengths of each instrument using spline interpolation (Wang et al., 2015). Note that, based on 

hyperspectral Rrs_obs(λ) data at wavelengths from 350 and 900 nm at 1 nm intervals measured by a HR-512i handheld 

spectroradiometer (Spectra Vista Corporation) during the PB21 cruise (N = 10), the spline interpolation showed median 

percent differences between the observed and resampled Rrs_obs (λ) at ten MODIS bands were 0.15%, 0.00%, and 0.01% for 

the PRR-800/810, C-OPS, and HyperPro data, respectively. This supports the robustness of using spline interpolation to 

resample Rrs_obs(λ) values at MODIS wavelengths from spectroradiometer data with slightly different observation 

wavelengths. Finally, a modified version of the Quasi-Analytical Algorithm (QAA; Lee et al., 2002) for the Pacific Arctic 

(Fujiwara et al., 2016) was used to estimate aph(λ) (aph_QAA(λ)) from in situ Rrs(λ) (Rrs_obs(λ)) and satellite Rrs(λ) (Rrs_sat(λ)). 

Here, aph_QAA(λ) estimated from Rrs_obs(λ) and Rrs_sat(λ) is denoted as aph_QAAobs(λ) and aph_QAAsat(λ), respectively. To avoid the 

retrieval of negative aph_QAA(λ), the modified version of QAA uses an optimized spectral slope of the absorption coefficient 

of combined CDOM and non-algal particles (Sdg) obtained by reconstructing the Sdg based on a dataset collected in the 

Pacific Arctic (Fujiwara et al., 2016). The aph_QAAobs(λ) was used to validate the performance of the modified version of the 

QAA by comparing it with aph_obs(λ).  
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Section S4 

Pigment-based identification of phytoplankton taxonomic composition 
An open-source R software package, phytoclass (ver 1.0.0), was used to determine the Chl a biomass of different 

phytoplankton groups from their accessory pigments (Hayward et al., 2023). The phytoclass package is a Chl a taxonomic 

partitioning software package similar to the widely used CHEMTAX software (Mackey et al., 1996). However, phytoclass 

has been shown to be more accurate and does not rely on initial assumptions of pigment to Chl a ratios for each 

phytoplankton group (Hayward et al., 2023).  

For this study, eight target taxonomic groups (diatoms, chrysophytes, dinoflagellates, prymnesiophytes, chlorophytes, 

prasinophytes, cryptophytes, and cyanobacteria) and 11 marker pigments for each taxonomic group (peridinin, 19’-

butanoyloxyfucoxanthin, fucoxanthin, 19’-hexanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, violaxanthin, alloxanthin, 

lutein, zeaxanthin, and chlorophyll b) were selected following (Zhuang et al., 2016), as these groupings have been used 

previously for CHEMTAX analysis in the Chukchi Sea shelf region. Before calculating group-specific Chl a biomass using 

phytoclass, a hierarchical cluster analysis on the pigment concentrations normalized to Chl a was conducted using the Ward 

method (Punj and Stewart, 1983) to partition the dataset into similar pigment compositions. This clustering is recommended 

by Hayward et al. (Hayward et al., 2023) because pigment ratios can change at the phytoplankton genus or species level and 

with environmental conditions (Henriksen et al., 2002; Schlüter et al., 2000). 

  



6 
 

Figure S1 

Figure S1. Sampling locations of in situ data used in this study. Colors of each plot indicate cruise years, whereas 

background color represent the bathymetry.  
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Figure S2 

Figure S2. Loading factors derived from spectral variations of (B2'_"&'(#). The (a) first, (b) second, (c) third, and (4) fourth 

modes of principal component analysis (PCA). PVEs and CVEs indicate the proportion of variance and cumulative variance 

explained by each mode, respectively.  
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Figure S3 

Figure S3. Loading factors derived from spectral variations of !C()_"&'(#). The (a) first, (b) second, (c) third, and (4) fourth 

modes of PCA. 
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Figure S4 

Figure S4. Light absorption by each water constituent. Fractional contributions to the total absorption coefficient (atotal_obs(λ)) 

by (a) phytoplankton (aph_obs(λ)), (b) non-algal particles (aNAP_obs(λ)), (c) colored dissolved organic matter (aCDOM_obs(λ)), and 

(d) pure water (aw(λ)) at ten MODIS-A wavebands. Values that are more than 1.5 times the interquartile range away from the 

bottom or top of the box are marked as outliers. 
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Figure S5 

Figure S5. Monthly climatology of sea surface temperature (SST) values in (a) June, (b) July, (c) August, and (d) September 

in the Pacific Arctic for 2002–2022. 
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Table S1 

Table S1. Pigment to Chl a ratios for each phytoplankton taxa used for the phytoclass analyses. Abbreviations: Peri, 

peridinin; But, 19’-butanoylofucoxanthin; Fuco, fucoxanthin; Hex, 19’-hexanoyloxyfucoxanthin; Neo, neoxanthin; Pras, 

prasinoxanthin; Viola, violaxanthin; Allo, alloxanthin; Lut, lutein; Zea, zeaxanthin; Chl b, chlorophyll b; Chryso, 

chrysophytes; Dino, dinoflagellates; Prym, prymnesiophytes; Chloro, chlorophytes; Pras, prasinophytes; Crypto, 

cryptophytes; Cyano, cyanobacteria.  

  Pigment:Chl a ratio 
  Peri But Fuco Hex Neo Pras Viola Allo Lut Zea Chl b Chl a 
Cluster 1 Diatom 0 0 0.45 0 0 0 0 0 0 0 0 1 
 Chryso 0 0.83 1.32 0.37 0 0 0 0 0 0 0 1 
 Dino 0.77 0 0 0 0 0 0 0 0 0 0 1 
 Prym 0 0 0 0.20 0 0 0 0 0 0 0 1 
 Chloro 0 0 0 0 0.30 0 0.98 0 1.48 1.01 1.14 1 
 Pras 0 0 0 0 0.20 0.21 0.20 0 0.20 0 1.37 1 
 Crypto 0 0 0 0 0 0 0 0.20 0 0 0 1 
 Cyano 0 0 0 0 0 0 0 0 0 1.49 0 1 
Cluster 2 Diatom 0 0 0.36 0 0 0 0 0 0 0 0 1 
 Chryso 0 1.49 0.21 0.21 0 0 0 0 0 0 0 1 
 Dino 0.48 0 0 0 0 0 0 0 0 0 0 1 
 Prym 0 0 0 0.35 0 0 0 0 0 0 0 1 
 Chloro 0 0 0 0 1.49 0 0.21 0 0.37 0.24 1.17 1 
 Pras 0 0 0 0 0.20 0.20 0.20 0 0.20 0 1.42 1 
 Crypto 0 0 0 0 0 0 0 0.36 0 0 0 1 
 Cyano 0 0 0 0 0 0 0 0 0 0.86 0 1 
Cluster 3 Diatom 0 0 0.39 0 0 0 0 0 0 0 0 1 
 Chryso 0 1.50 0.21 0.21 0 0 0 0 0 0 0 1 
 Dino 1.50 0 0 0 0 0 0 0 0 0 0 1 
 Prym 0 0 0 0.36 0 0 0 0 0 0 0 1 
 Chloro 0 0 0 0 0.96 0 0.71 0 0 1.49 1.36 1 
 Pras 0 0 0 0 0.20 0.55 0.26 0 0 0 1.49 1 
 Crypto 0 0 0 0 0 0 0 0.20 0 0 0 1 
 Cyano 0 0 0 0 0 0 0 0 0 0.20 0 1 
Cluster 4 Diatom 0 0 0.40 0 0 0 0 0 0 0 0 1 
 Chryso 0 0.25 0.20 0.20 0 0 0 0 0 0 0 1 
 Dino 1.49 0 0 0 0 0 0 0 0 0 0 1 
 Prym 0 0 0 0.59 0 0 0 0 0 0 0 1 
 Chloro 0 0 0 0 0.20 0 1.05 0 0.20 0.20 0.20 1 
 Pras 0 0 0 0 0.69 0.20 0.26 0 0.21 0 0.20 1 
 Crypto 0 0 0 0 0 0 0 0.32 0 0 0 1 
 Cyano 0 0 0 0 0 0 0 0 0 1.49 0 1 
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Table S2. 

Table S2. Comparison of aph–obs(λ) and aph_QAAobs(λ) values estimated from Rrs_obs(λ) using the quasi-analytical algorithm 

(QAA) for the Pacific Arctic. MAE stands for mean absolute error. 

 Wavelength (nm) 

 412 443 469 488 531 547 555 645 667 678 

MAE 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.08 0.13 0.13 

Bias 1.03 1.04 1.03 1.01 0.99 0.97 0.97 1.19 1.29 1.31 
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Table S3 

Table S3. Model parameters (β0 and Cj in Eqs. (8) and (9)) for the CSD models optimized with the principal component analysis (PCA)-based 

approach. Model parameters are indicated for each predictor: i.e., (B2'(#) and !C()(#), with the further threshold for !C()(λ).  
Predictor Threshold Model parameters 

β0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 
!C()(λ) aph(412) > aph(469) 0.05 0.65 −0.50 0.98 −1.62 2.57 −0.27 −1.79 - - - 

aph(412) ≤ aph(469) −0.18 0.36 −0.41 −0.67 0.71 2.15 −0.40 −1.74 - - - 
(B2'(λ) - −0.08 0.21 −0.06 −0.14 −0.15 −0.01 0.13 0.20 −0.47 0.02 0.27 
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Table S4 

Table S4. Training results of the CSD models based on the diverse machine learning approaches (i.e., model type and preset) using 	
(B2'(λ) as the predictor. The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE), coefficient of 

determination (r2), and mean absolute error (MAE), are given as mean ± std derived from ten repeats of five-fold cross-validation. 

Rank Model type Preset RMSE MSE R2 MAE 
1 Linear Regression Linear 0.16 ± 0.01 0.03 ± 0.00 0.76 ± 0.02 0.12 ± 0.01 
2 Linear Regression Robust Linear 0.16 ± 0.01 0.03 ± 0.00 0.76 ± 0.02 0.12 ± 0.00 
3 SVM Linear SVM 0.17 ± 0.01 0.03 ± 0.00 0.74 ± 0.03 0.13 ± 0.00 
4 Stepwise Linear Regression Stepwise Linear 0.18 ± 0.02 0.03 ± 0.01 0.70 ± 0.08 0.13 ± 0.01 
5 Efficient Linear Effiicient Linear SVM 0.18 ± 0.00 0.03 ± 0.00 0.69 ± 0.01 0.14 ± 0.00 
6 Efficient Linear Efficient Linear Least Squares 0.20 ± 0.00 0.04 ± 0.00 0.63 ± 0.01 0.15 ± 0.00 
7 Gaussian Process Regression Exponential GPR 0.21 ± 0.01 0.05 ± 0.00 0.59 ± 0.02 0.16 ± 0.00 
8 SVM Medium Gaussian SVM 0.24 ± 0.01 0.06 ± 0.00 0.48 ± 0.03 0.18 ± 0.00 
9 Gaussian Process Regression Squared Exponential GPR 0.25 ± 0.04 0.06 ± 0.02 0.41 ± 0.18 0.15 ± 0.01 

10 Gaussian Process Regression Rational Quadratic GPR 0.25 ± 0.04 0.07 ± 0.02 0.41 ± 0.19 0.15 ± 0.01 
11 Ensemble Bagged Trees 0.26 ± 0.01 0.07 ± 0.00 0.40 ± 0.02 0.19 ± 0.00 
12 Gaussian Process Regression Matern 5/2 GPR 0.27 ± 0.04 0.07 ± 0.02 0.35 ± 0.17 0.15 ± 0.01 
13 Ensemble Boosted Trees 0.27 ± 0.01 0.07 ± 0.01 0.36 ± 0.05 0.19 ± 0.01 
14 SVM Coarse Gaussian SVM 0.27 ± 0.00 0.07 ± 0.00 0.33 ± 0.01 0.21 ± 0.00 
15 SVM Fine Gaussian SVM 0.28 ± 0.00 0.08 ± 0.00 0.30 ± 0.02 0.20 ± 0.00 
16 Kernel Least Squared Regression Kernel 0.28 ± 0.01 0.08 ± 0.00 0.29 ± 0.04 0.20 ± 0.01 
17 Kernel SVM Kernel 0.29 ± 0.01 0.08 ± 0.01 0.24 ± 0.06 0.21 ± 0.01 
18 Tree Coarse Tree 0.30 ± 0.00 0.09 ± 0.00 0.21 ± 0.02 0.23 ± 0.00 
19 Tree Medium Tree 0.30 ± 0.01 0.09 ± 0.01 0.19 ± 0.07 0.21 ± 0.01 
20 Tree Fine Tree 0.31 ± 0.02 0.10 ± 0.01 0.14 ± 0.12 0.22 ± 0.01 
21 Neural Network Narrow Neural Network 0.38 ± 0.11 0.15 ± 0.09 -0.37 ± 0.77 0.20 ± 0.02 
22 Neural Network Bi-layered Neural Network 0.40 ± 0.07 0.16 ± 0.06 -0.46 ± 0.56 0.23 ± 0.02 
23 Neural Network Tri-layered Neural Network 0.47 ± 0.20 0.25 ± 0.25 -1.29 ± 2.26 0.25 ± 0.04 
24 Neural Network Medium Neural Network 0.64 ± 0.21 0.45 ± 0.31 -3.09 ± 2.87 0.27 ± 0.03 
25 SVM Quadratic SVM 0.71 ± 0.41 0.66 ± 0.93 -4.93 ± 8.37 0.25 ± 0.07 
26 Neural Network Wide Neural Network 0.84 ± 0.36 0.82 ± 0.65 -6.35 ± 5.88 0.32 ± 0.05 
27 Linear Regression Interactions Linear 3.21 ± 1.26 11.74 ± 9.11 -104.16 ± 80.99 0.55 ± 0.13 
28 SVM Cubic SVM 24.10 ± 32.60 1537.37 ± 3416.27 -13771.77 ± 30640.37 2.69 ± 3.08 
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Table S5 

Table S5. Training results of the CSD models based on the diverse machine learning approaches (i.e., model type and preset) using !C()(λ) as 

the predictor. The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE), coefficient of 

determination (r2), and mean absolute error (MAE), are given as mean ± std derived from ten repeats of five-fold cross-validation. 

Rank Model type Preset RMSE MSE R2 MAE 
1 SVM Medium Gaussian SVM 0.13 ± 0.01 0.02 ± 0.00 0.80 ± 0.02 0.10 ± 0.00 
2 Gaussian Process Regression Squared Exponential GPR 0.13 ± 0.00 0.02 ± 0.00 0.80 ± 0.02 0.10 ± 0.00 
3 Gaussian Process Regression Matern 5/2 GPR 0.13 ± 0.01 0.02 ± 0.00 0.80 ± 0.02 0.10 ± 0.00 
4 Gaussian Process Regression Rational Quadratic GPR 0.13 ± 0.01 0.02 ± 0.00 0.79 ± 0.02 0.11 ± 0.00 
5 Gaussian Process Regression Exponential GPR 0.14 ± 0.00 0.02 ± 0.00 0.78 ± 0.01 0.11 ± 0.00 
6 Kernel SVM Kernel 0.17 ± 0.01 0.03 ± 0.00 0.66 ± 0.04 0.13 ± 0.01 
7 Ensemble Bagged Trees 0.18 ± 0.01 0.03 ± 0.00 0.63 ± 0.03 0.14 ± 0.01 
8 Ensemble Boosted Trees 0.18 ± 0.01 0.03 ± 0.00 0.62 ± 0.02 0.14 ± 0.01 
9 Kernel Least Squared Regression Kernel 0.18 ± 0.01 0.03 ± 0.00 0.62 ± 0.03 0.14 ± 0.01 

10 SVM Coarse Gaussian SVM 0.18 ± 0.00 0.03 ± 0.00 0.62 ± 0.01 0.15 ± 0.00 
11 Efficient Linear Effiicient Linear SVM 0.20 ± 0.00 0.04 ± 0.00 0.53 ± 0.01 0.17 ± 0.00 
12 Linear Regression Linear 0.21 ± 0.01 0.04 ± 0.00 0.51 ± 0.03 0.16 ± 0.00 
13 Tree Fine Tree 0.21 ± 0.01 0.04 ± 0.00 0.50 ± 0.06 0.16 ± 0.01 
14 Linear Regression Robust Linear 0.21 ± 0.00 0.04 ± 0.00 0.50 ± 0.02 0.15 ± 0.00 
15 Tree Medium Tree 0.21 ± 0.01 0.04 ± 0.00 0.49 ± 0.06 0.17 ± 0.01 
16 SVM Linear SVM 0.21 ± 0.01 0.04 ± 0.00 0.48 ± 0.03 0.15 ± 0.00 
17 SVM Fine Gaussian SVM 0.23 ± 0.00 0.05 ± 0.00 0.39 ± 0.02 0.17 ± 0.00 
18 Efficient Linear Efficient Linear Least Squares 0.23 ± 0.00 0.05 ± 0.00 0.39 ± 0.01 0.19 ± 0.00 
19 Tree Coarse Tree 0.25 ± 0.01 0.06 ± 0.01 0.28 ± 0.07 0.19 ± 0.01 
20 Neural Network Narrow Neural Network 0.34 ± 0.12 0.13 ± 0.09 -0.48 ± 1.09 0.18 ± 0.03 
21 Neural Network Tri-layered Neural Network 0.36 ± 0.08 0.14 ± 0.07 -0.60 ± 0.78 0.22 ± 0.02 
22 Neural Network Wide Neural Network 0.37 ± 0.10 0.14 ± 0.09 -0.66 ± 0.99 0.20 ± 0.02 
23 Neural Network Medium Neural Network 0.37 ± 0.09 0.14 ± 0.08 -0.68 ± 0.97 0.23 ± 0.02 
24 Neural Network Bi-layered Neural Network 0.57 ± 0.28 0.40 ± 0.38 -3.65 ± 4.49 0.26 ± 0.03 
25 Stepwise Linear Regression Stepwise Linear 0.71 ± 0.26 0.56 ± 0.35 -5.51 ± 4.06 0.21 ± 0.03 
26 Linear Regression Interactions Linear 1.18 ± 0.36 1.50 ± 0.96 -16.46 ± 11.04 0.27 ± 0.04 
27 SVM Quadratic SVM 1.35 ± 0.28 1.91 ± 0.76 -21.18 ± 8.92 0.28 ± 0.03 
28 SVM Cubic SVM 5.10 ± 2.66 32.39 ± 34.40 -376.09 ± 402.63 0.67 ± 0.24 
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Table S6 

Table S6. Model parameters (β0 and Cj) for the CSD	modelHI:JK"#(B) optimized with the machine-learning (ML)-based approach. The formular 

is expressed as L = M; + ∑ !L(B2'O#LPM
LNO .  

Model parameters 
b0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 

1.73 −3.75 −3.13 0.00 −7.01 30.58 −94.13 55.29 −3.93 0.00 −5.13 

Table S7 

Table S7. Training results of the top-five and bottom-five CSD models based on the diverse machine learning approaches (i.e., model type and 

preset) with reduced data subset. The four statistical metrics, including the root mean square error (RMSE), mean squared error (MSE), 

coefficient of determination (r2), and mean absolute error (MAE), are given as mean ± std derived from ten repeats of five-fold cross-

validation.  

Predictor Rank Model type Preset RMSE MSE r2 MAE 
!"!"(λ) 1 Linear Regression Linear 0.18 ± 0.01 0.03 ± 0.00 0.70 ± 0.04 0.14 ± 0.01 

 2 Linear Regression Robust Linear 0.19 ± 0.01 0.04 ± 0.00 0.68 ± 0.03 0.14 ± 0.00 
 3 SVM Linear SVM 0.19 ± 0.01 0.04 ± 0.00 0.67 ± 0.03 0.15 ± 0.01 
 4 Efficient Linear Effiicient Linear SVM 0.20 ± 0.01 0.04 ± 0.00 0.63 ± 0.03 0.16 ± 0.01 
 5 Stepwise Linear Regression Stepwise Linear 0.20 ± 0.04 0.04 ± 0.02 0.62 ± 0.17 0.14 ± 0.01 
 ⋮               
 24 Neural Network Medium Neural Network 0.79 ± 0.27 0.68 ± 0.41 -5.18 ± 3.75 0.34 ± 0.05 
 25 Neural Network Wide Neural Network 0.81 ± 0.21 0.69 ± 0.35 -5.27 ± 3.08 0.34 ± 0.04 
 26 SVM Quadratic SVM 0.91 ± 0.44 1.00 ± 1.15 -8.04 ± 10.26 0.28 ± 0.05 
 27 Linear Regression Interactions Linear 2.11 ± 0.90 5.17 ± 4.68 -45.75 ± 42.15 0.65 ± 0.12 
 28 SVM Cubic SVM 14.58 ± 15.21 420.97 ± 806.34 -3795.55 ± 7262.99 1.99 ± 1.67 

'(#$(λ) 1 SVM Medium Gaussian SVM 0.13 ± 0.01 0.02 ± 0.00 0.81 ± 0.02 0.10 ± 0.01 
 2 Gaussian Process Regression Squared Exponential GPR 0.13 ± 0.01 0.02 ± 0.00 0.81 ± 0.01 0.10 ± 0.00 
 3 Gaussian Process Regression Matern 5/2 GPR 0.13 ± 0.01 0.02 ± 0.00 0.81 ± 0.02 0.10 ± 0.00 
 4 Gaussian Process Regression Rational Quadratic GPR 0.14 ± 0.00 0.02 ± 0.00 0.78 ± 0.01 0.11 ± 0.00 
 5 Gaussian Process Regression Exponential GPR 0.14 ± 0.01 0.02 ± 0.00 0.77 ± 0.02 0.11 ± 0.01 
 ⋮               
 24 Neural Network Medium Neural Network 0.61 ± 0.24 0.43 ± 0.38 -3.75 ± 4.38 0.31 ± 0.05 
 25 Stepwise Linear Regression Stepwise Linear 0.96 ± 0.40 1.05 ± 0.71 -10.63 ± 7.70 0.27 ± 0.05 
 26 SVM Quadratic SVM 1.49 ± 0.43 2.39 ± 1.44 -25.58 ± 16.35 0.35 ± 0.05 
 27 SVM Cubic SVM 1.57 ± 1.06 3.49 ± 4.72 -37.97 ± 53.38 0.35 ± 0.13 
 28 Linear Regression Interactions Linear 1.90 ± 0.39 3.74 ± 1.48 -40.26 ± 16.15 0.43 ± 0.05 
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