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Abstract. In response to recent advances in satellite ocean
color remote sensing, we have developed a chlorophyll a
size distribution (CSD) model using machine learning (ML)
approaches for optically complex Pacific Arctic waters. Pre-
vious CSD models have used principal component analysis
(PCA) to retrieve spectral features from satellite-estimated
phytoplankton absorption coefficient (aph(λ)) by assuming a
strong correlation between the spectral features and phyto-
plankton size structure determined from the exponent of the
CSD (η). A weakness of such approach is that it relies on
satellite retrievals of aph(λ), which can be highly uncertain
due to the optical effects of water constituents other than phy-
toplankton. In this study, we have developed a method based
on ML to use remote sensing reflectance (Rrs(λ)) for directly
retrieving η, thus avoiding uncertainties due to the inversion
of aph(λ) from Rrs(λ). Results show superior performance
of the ML-based CSD models compared to the PCA-based
model utilizing bothRrs(λ) and aph(λ) as predictors of η. For
direct Rrs(λ)-based retrievals, a CSD model based on mul-
tivariable linear regression produced the best performance
among all models considered. Nevertheless, models using in-
situ aph(λ) yielded better accuracy, reflecting a closer optical
linkage between η and aph(λ) than between η and Rrs(λ).

Our choice of an Rrs(λ)-based model for satellite application
is therefore practical, motivated by the limitations and uncer-
tainty of aph(λ) inversions in optically complex waters. An-
other key finding is that more complex ML approaches do not
always produce more effective models than standard linear
regression. Indeed, multivariable linear regression outper-
formed other ML approaches for retrieving η directly from
Rrs(λ), whereas support vector machine performed the best
among diverse ML approaches in the case of aph(λ). Overall,
this study found benefits in using Rrs(λ) with ML to improve
the retrieval accuracy of η for Pacific Arctic waters.

1 Introduction

Satellite remote sensing is a cost-effective tool that can pro-
vide observations across a range of temporal and spatial
scales. One of the primary parameters retrieved from ocean
color satellite data is the mass concentration of chlorophyll a
(Chl a; see Table 1 for symbols, definitions, and units), the
primary pigment associated with photosynthesis and a key
indicator of phytoplankton biomass. Satellite-derived Chl a
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observations have revolutionized our understanding of cli-
mate systems, marine ecosystems, and biogeochemical pro-
cesses (McClain, 2009). However, Chl a alone does not pro-
vide a full description of the fundamental ecosystem func-
tions of phytoplankton, such as nutrient uptake and cycling,
energy transfer through marine food webs, deep-ocean car-
bon export, and gas exchange with the atmosphere (Mouw et
al., 2017).

Due to the significance of phytoplankton community com-
position in ocean biogeochemical processes, continuous re-
search and innovation in satellite ocean color techniques have
extended our capabilities from routinely estimating Chl a
concentration to retrieving phytoplankton functional types
(PFTs) (Gordon et al., 1980; Mouw et al., 2017). PFTs are
conceptual groupings of phytoplankton species that have
similar biogeochemical functions (e.g., nitrogen fixers, cal-
cifiers, dimethylsulfide producers, and silicifiers) and other
characteristics such as cell size (pico-, nano-, and micro-
phytoplankton). PFTs are often defined based on phytoplank-
ton size class (PSC), phytoplankton taxonomic composition
(PTC), or particle size distribution (PSD), and the choice
of partitioning depends on the question at hand (Mouw et
al., 2017), with no universally accepted standard (Reynolds
et al., 2002). In particular, PSC serves as a useful index of
the trophic state, carbon export efficiency, and productivity
(Hood et al., 2006; Le Quéré et al., 2005) and, therefore,
comprises the majority of PFT research.

A wide range of satellite-based methods for global es-
timations of PFTs have been developed to date (IOCCG,
2014). Mouw et al. (2017) provide a “user guide” for apply-
ing remote sensing techniques to monitor PFTs, explaining
details of various PFT algorithms and their associated un-
certainties and discussing the advantages and disadvantages
of different approaches. Satellite estimation of PFTs gener-
ally exploit spectral features in remote sensing reflectance
(Rrs(λ)), absorption coefficient of phytoplankton (aph(λ)),
and/or backscattering coefficient of particles (bbp(λ)) caused
by variations in PFT composition (Fujiwara et al., 2011;
Kostadinov et al., 2010; Li et al., 2013; Roy et al., 2017).
The ocean color variables used in these spectral approaches
are grouped into two categories: apparent optical properties
(AOPs, e.g., Rrs(λ)) and inherent optical properties (IOPs,
e.g., aph(λ)). Remotely sensed IOPs are derived from spec-
tral inversion of Rrs(λ) (Mobley, 1994), thereby introducing
additional uncertainties for IOP-based methods compared to
Rrs(λ)-based methods.

For global estimation of PSC, Waga et al. (2017) devel-
oped a Chl a size distribution (CSD) model that retrieves the
synoptic size structure of the phytoplankton community by
determining the exponent of CSD (CSD slope; η). As op-
posed to other PSC approaches, η represents the size struc-
ture of the phytoplankton community with a single value;
thus, the output of the approach can be easily incorpo-
rated into ocean biogeochemical models. Akin to the PSD
(Kostadinov et al., 2010; Roy et al., 2017), the arbitrariness

of the arrangement of the size range is another advantage of
this approach, where other methods generally adopt a fixed
target group or size class (e.g., < 2, 2–20, and > 20 µm for
pico-, nano-, and micro-phytoplankton, respectively). More
specifically, once η is determined, fractional contributions
of phytoplankton biomass at diverse size ranges can be es-
timated from η. Moreover, there is flexibility in computing η
with different combinations of size-fractionated Chl a, gen-
erating a comparable variable across datasets that often com-
prise various size ranges of size-fractionated Chl a data.

The spectral features of aph(λ) can reveal specific in-
formation regarding variations in the composition and size
structure of phytoplankton assemblage (Bricaud and Morel,
1986a). For example, how pigments are distributed within
a phytoplankton cell affects the magnitude of aph(λ), while
pigment composition influences the spectral shape of aph(λ).
Waga et al. (2017) applied principal component analysis
(PCA) to normalized aph(λ) spectra derived from in situ
measurements at seven wavelengths (412, 443, 469, 488,
531, 547, and 555 nm) that are consistent with spectral
bands of the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). This method assumes that PCA captures spec-
tral features of aph(λ) as a simpler set of principal compo-
nent (PC) scores while still maintaining significant patterns
and trends. The relationship between η and the resulting PC
scores was then quantified by ordinary least squares regres-
sion, enabling η to be estimated from satellite derivations of
aph(λ) (Waga et al., 2017). In order to investigate spatiotem-
poral variations in the size structure of phytoplankton com-
munities and its impacts on the marine ecosystems in the Pa-
cific Arctic, the CSD model was subsequently optimized for
the Pacific Arctic based on a regional in situ dataset (Waga et
al., 2019a). However, in Arctic coastal waters, phytoplankton
absorption is typically low (only 16 % of non-water absorp-
tion at 443 nm) relative to colored dissolved organic matter
(CDOM) and non-algal particles (NAP) and, as a result, IOP
inversion algorithms for estimating aph(λ) are characterized
by high uncertainty (Matsuoka et al., 2007). Therefore, di-
rect approaches to estimate η utilizing Rrs(λ) may be advan-
tageous in Arctic coastal environments, even though Rrs(λ)

itself is not solely influenced by phytoplankton.
The present study develops the CSD model for the Pacific

Arctic utilizing diverse supervised machine learning (ML)
approaches, ranging from simple linear regression to convo-
luted methods such as neural networks (Chen et al., 2015,
2018; Li et al., 2020, 2023; Waga et al., 2022), support vec-
tor machines (Deng et al., 2019; Selvaraju et al., 2021; Su
et al., 2015), Gaussian processes (Pasolli et al., 2010), and
ensemble methods (Bao et al., 2023; Qi et al., 2022; Qiao et
al., 2022; Zhang et al., 2023). A main advantage of ML is
the ability to parameterize general relationships from train-
ing data without predefined or explicit equations (Marzban,
2009). To date, a variety of ML models have been used for
retrieval of various ocean parameters, including the diffuse
attenuation coefficient (Chen et al., 2015), particle backscat-
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tering coefficient (Sauzède et al., 2016), Chl a concentration
(Chen et al., 2021; Hu et al., 2021; Kolluru and Tiwari, 2022;
Mukonza and Chiang, 2022; Syariz et al., 2020), and recon-
structions of ocean color data (Chen et al., 2019; Fasnacht et
al., 2022; Krasnopolsky et al., 2016). The current study aims
to (1) parameterize CSD models for the Pacific Arctic us-
ing spectral features of Rrs(λ) and aph(λ), (2) assess satellite
algorithm performance using an in situ dataset, and (3) com-
pare newly developed models with the previously developed
PCA-based CSD model. The updated CSD model provides
accurate estimates of spatiotemporal variations in PSC in the
Pacific Arctic, providing key information on how recent en-
vironmental changes are affecting the foundation of marine
food webs in a changing Arctic.

2 Material and methods

An updated CSD model is proposed in this study to enable
reasonable estimation of spatiotemporal variations in PSC
for optically complex Pacific Arctic waters. See Sects. S1–
S4 in the Supplement for complete materials and methods.

2.1 In situ data

Multiple research cruises were conducted in the Pacific Arc-
tic during the summer months from 2007 to 2021 (Table 2).
A total of 177 open ocean and coastal sampling locations
were visited in the sub-Arctic Bering Sea and the west Beau-
fort Sea, including the Stefansson Sound near Prudhoe Bay
along the northern coast of Alaska (Fig. 1). A companion
map, color-coded by cruise year, is provided in Fig. S1 in the
Supplement. At each station, spectral radiometric measure-
ments were made during daylight hours, and water samples
were collected for aph(λ) and size-fractionated Chl a (here-
after referred to as aph_obs(λ) and Chl asize_obs, respectively).

2.1.1 Phytoplankton pigments

Chl asize_obs was determined using a 10 AU fluorometer
(Turner Designs), except for ten samples from the 2021
cruise in Prudhoe Bay (PB21), for which Chl asize_obs was
determined using high performance liquid chromatography
(HPLC). HPLC analysis provides the concentration of not
only Chl a but also other major phytoplankton pigments
(i.e., fucoxanthin, peridinin, 19′-hexanoyloxyfucoxanthin,
19′-butanoylofucoxanthin, alloxanthin, chlorophyll b, neox-
anthin, prasinoxanthin, violaxanthin, lutein, and zeaxanthin).
At each station in all the cruises, both fractionated and un-
fractionated (i.e., without filtration using filters of different
pore sizes for size fractionation) samples were collected. Un-
fractionated HPLC samples were collected at each station in
all the cruises.

Figure 1. Sampling locations of in situ data used in this study. Col-
ors of each plot indicate the exponent of chlorophyll a (Chl a) size
distribution (CSD slope; ηobs), whereas background color represent
the bathymetry.

2.1.2 Absorption coefficient

Particles in surface seawater samples were collected on a
GF/F filter until the filter had sufficient coloration to measure
aph_obs(λ). The absorption coefficient of particles (ap_obs(λ))
on the filter was measured in the spectral range from 300 to
850 nm at 1 nm intervals using an MPS-2400 (Shimadzu Cor-
poration), MPS-2450 (Shimadzu Corporation) or Cary 100
(Agilent Technologies) spectrophotometer. The quantitative
filter technique (QFT) was used to determine aph_obs(λ) for
samples measured with the MPS-2400 and MPS-2450 instru-
ments (i.e., all cruises but PB21), following the procedure de-
scribed by Mitchell (1990), whereas aph_obs(λ) for the PB21
samples was determined with GF/F filters placed inside a
15 cm integrating sphere connected to the Cary 100 (IOCCG,
2018). Following the measurement for ap_obs(λ), the absorp-
tion coefficient of NAP (aNAP_obs(λ)) was measured after
soaking the filter in 95 % methanol or sodium hypochlorite,
and aph_obs(λ) was finally obtained by subtracting aNAP_obs
(λ) from ap_obs (λ). The absorption coefficient of CDOM
(aCDOM_obs(λ)) at wavelengths from 250 to 750 nm at 1 nm
intervals was measured using the same spectrophotometers
as for the particulate absorption measurements, with the ex-
ception of the PB21 samples, which were analyzed using
a Cary 300 (Agilent Technologies) spectrophotometer with
5 cm quartz cuvettes.

2.1.3 Remote sensing reflectance

In situ spectral radiance and irradiance measurements were
acquired using a PRR-800/810 (Biospherical Instruments),
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Table 1. Definitions and units of all symbols used in the text, figures, and equations.

Symbol Definition Unit

Chl a Chlorophyll a concentration mg m−3

Chl a0 Chl a at reference diameter D0 mg m−3

Chl atotal Total Chl a mg m−3

Chl asize Size-fractionated Chl a in within a size bin from D1 to D2 mg m−3

Chl asize_obs In situ Chl asize mg m−3

η Exponent of the CSD –
ηobs In situ η retrieved from in-situ Chl asize_obs –
ηMDLobs Estimated η using the CSD model from in situ data –
ηMDLsat Estimated η using the CSD model from satellite data –
Fsize Fractional contribution of pico-, nano-, micro-plankton to Chl atotal –
Fsize_obs In situ Fsize retrieved from Chl atotal and Chl asize_obs –
Fsize_MDL Estimated Fsize using the CSD model –
D0 Reference diameter (0.7 µm) µm
Dmin Lower bound for size integration (0.7 µm) µm
Dmax Upper bound for size integration (200 µm) µm
D1 Lower size limit of Chl asize µm
D2 Upper size limit of Chl asize µm
λ Wavelength nm
Rrs(λ) Remote sensing reflectance at λ sr−1

Rrs_obs(λ) In situ Rrs(λ) sr−1

Rrs_sat(λ) Satellite Rrs(λ) sr−1

R̂rs_obs (λ) In situ Rrs(λ) normalized with Eq. (5) –
aph(λ) Absorption coefficient of phytoplankton at λ m−1

aph_obs(λ) In situ aph(λ) m−1

aph_QAA(λ) aph(λ) estimated using modified QAA m−1

aph_QAAobs(λ) Estimated aph_QAA(λ) from in situ Rrs(λ) m−1

aph_QAAsat(λ) Estimated aph_QAA(λ) from satellite Rrs(λ) m−1

âph_obs (λ) In situ Rrs(λ) normalized with Eq. (5) –
ap(λ) Absorption coefficient of particles at λ m−1

ap_obs(λ) In situ ap(λ) m−1

aNAP(λ) Absorption coefficient of NAP at λ m−1

aNAP_obs(λ) In situ aNAP(λ) m−1

aCDOM(λ) Absorption coefficient of CDOM at λ m−1

aCDOM_obs(λ) In situ aCDOM(λ) m−1

aw(λ) Absorption coefficient of pure water at λ m−1

Sdg Spectral slope of the absorption coefficient of combined CDOM and NAP nm−1

Lw(λ) Water-leaving radiance at λ W m−2 sr−1 nm−1

Es(λ) Downwelling irradiance above surface at λ W m−2 nm−1

β0 Intercept in PCA-based CSD model –
Cj Coefficients in PCA-based CSD model at wavelength j –

C-OPS (Biospherical Instruments), or HyperPro (Satlantic)
spectroradiometer. Each spectroradiometer has different
spectral resolutions and ranges: the PRR-800/810 and C-OPS
collected at 17 (380 to 765 nm) and 19 wavelengths (320 to
875 nm), respectively, whereas the HyperPro acquired data
between 400 and 800 nm at approximately 3 nm intervals.
Remote sensing reflectance (Rrs_obs(λ)) was calculated as
the ratio of the water-leaving radiance (Lw(λ)) to the above-
water downward spectral irradiance (Es(λ)):

Rrs_obs (λ)= Lw (λ)/Es (λ) . (1)

Rrs_obs(λ) was resampled at ten MODIS bands in the vis-
ible range (i.e., 412, 443, 469, 488, 531, 547, 555, 645,
667, and 678 nm) from the original wavelengths of each in-
strument using spline interpolation (Wang et al., 2015). Fi-
nally, a modified version of the Quasi-Analytical Algorithm
(QAA; Lee et al., 2002) for the Pacific Arctic (Fujiwara et
al., 2016) was used to estimate aph(λ) (aph_QAA(λ)) from in
situRrs(λ) (Rrs_obs(λ)) and satelliteRrs(λ) (Rrs_sat(λ)). Here,
aph_QAA(λ) estimated from Rrs_obs(λ) and Rrs_sat(λ) is de-
noted as aph_QAAobs(λ) and aph_QAAsat(λ), respectively. To
avoid the retrieval of negative aph_QAA(λ), the modified ver-
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Table 2. Details of cruises, number of samples (N) obtained during each cruise, and filter pore sizes used to collect size fractionated
chlorophyll a samples. Note that the cruise period indicates the date span of in situ data collected.

Cruise period Cruise ID Vessel N Filter pose size
(mm/dd/yyyy)

07/25–08/14/2007 OS180 T/S Oshoro-maru 20 20, 5, and 0.7 µm
09/11–10/10/2009 MR09-03 R/V Mirai 12 10, 5, and 0.7 µm
09/04–10/13/2010 MR10-05 R/V Mirai 28 10, 5, and 0.7 µm
09/13–10/02/2012 MR12-E03 R/V Mirai 12 20, 2, and 0.7 µm
06/06–07/17/2013 OS255 T/S Oshoro-maru 34 20, 2, and 0.7 µm
08/31–10/04/2013 MR13-06 R/V Mirai 32 20, 2, and 0.7 µm
08/30–09/22/2016 MR16-06 R/V Mirai 18 20, 2, and 0.7 µm
07/09–07/21/2017 OS040 T/S Oshoro-maru 11 20, 2, and 0.7 µm
08/13–08/15/2021 PB21 R/V Ukpik 10 20, 2, and 0.7 µm

sion of QAA uses an optimized spectral slope of the absorp-
tion coefficient of combined CDOM and NAP (Sdg) obtained
by reconstructing the Sdg based on a dataset collected in the
Pacific Arctic (Fujiwara et al., 2016). The aph_QAAobs(λ) was
used to validate the performance of the modified version of
the QAA by comparing it with aph_obs(λ).

2.1.4 Pigment-based identification of phytoplankton
taxonomic composition

An open-source R software package, phytoclass (ver-
sion 1.0.0), was used to determine the Chl a biomass of
different phytoplankton groups from their accessory pig-
ments (Hayward et al., 2023). The phytoclass package is
a Chl a taxonomic partitioning software package simi-
lar to the widely used CHEMTAX software (Mackey et
al., 1996). However, phytoclass has been shown to be
more accurate and does not rely on initial assumptions
of pigment to Chl a ratios for each phytoplankton group
(Hayward et al., 2023). Eight target taxonomic groups
(diatoms, chrysophytes, dinoflagellates, prymnesiophytes,
chlorophytes, prasinophytes, cryptophytes, and cyanobac-
teria) and 11 marker pigments for each taxonomic group
(peridinin, 19′-butanoyloxyfucoxanthin, fucoxanthin, 19′-
hexanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, vio-
laxanthin, alloxanthin, lutein, zeaxanthin, and chlorophyll b)
were selected following Zhuang et al. (2016), as these group-
ings have been used previously for CHEMTAX analysis in
the Chukchi Sea shelf region.

2.2 Satellite data

The MODIS sensor onboard NASA’s Aqua satellite
(MODIS-A), operational since 2002, provides the longest
time series among all currently operational ocean color sen-
sors, which is an attractive advantage for decadal-scale mon-
itoring and retrospective analyses. Level-3 standard mapped
images of 4 km spatial resolution monthly climatological
Rrs_sat(λ) at ten bands in the visible range (i.e., 412, 443,
469, 488, 531, 547, 555, 645, 667, and 678 nm) and day-

time sea surface temperature (SST) derived by MODIS-A
(version R2022.0) were downloaded from NASA’s Ocean
Color website. TheRrs_sat(λ) data were then used to compute
aph_QAAsat(λ) by using the modified QAA algorithm (Fuji-
wara et al., 2016).

2.3 Chlorophyll a size distribution model

The exponent of the CSD (η), representing the size struc-
ture of phytoplankton communities, was determined follow-
ing the method of Waga et al. (2017). Assuming the CSD
follows a Junge-type power law distribution, the total Chl a
(Chl atotal) and Chl asize in a size range from D1 to D2 can
be expressed as follows:

Chl atotal =

Dmax∫
Dmin

Chl a0

(
D

D0

)−η
dD, (2)

Chl asize =

D2∫
D1

Chl a0

(
D

D0

)−η
dD, (3)

where Chl a0 is the Chl a at a reference diameter D0 (here,
0.7 µm). In this study, Dmin and Dmax were defined as 0.7
and 200 µm, respectively. η was derived as the slope of the
linear regression in log-space computations between the in-
verse log-transformed median diameters (from D1 to D2),
and Chl asize normalized by the bin width. An advantage of
the CSD model is its robustness when using different sets of
Chl asize to retrieve η (Waga et al., 2017).

A large η indicates a greater contribution of smaller-sized
phytoplankton, whereas a small η suggests that larger-sized
phytoplankton dominate. The fraction of Chl asize can be de-
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rived using η as follows:

Fsize =
Chl asize

Chl atotal
=

D2∫
D1

Chl a0

(
D
D0

)−η
dD

Dmax∫
Dmin

Chl a0

(
D
D0

)−η
dD

=
D

1−η
2 −D

1−η
1

2001−η
− 0.71−η (4)

In this study, the size ranges for pico-, nano-, and micro-
phytoplankton were defined as 0.7–2, 2–20, and 20–200 µm,
respectively. To estimate the fraction of Chl a within the
size ranges for pico- (Fpico), nano- (Fnano), and micro-
phytoplankton (Fmicro), D1 and D2 in Eq. (4) were set as
the lower and upper limits of each size range. For clarifi-
cation purposes, the size fractions determined from in situ
Chl asize observations are denoted as Fsize_obs, whereas those
estimated through a CSD model with Eq. (4) using η were
represented as Fsize_MDL.

2.4 Model development

The CSD model was trained using 70 % of the entire dataset
(i.e., training subset), randomly determined using the MAT-
LAB randsample function (R2025b), while the remaining
30 % was used for final validation (i.e., validation subset).
The details of model development based on the PCA and
supervised ML approaches are described in Sect. 2.4.1 and
2.4.2, respectively.

2.4.1 PCA approach

The previous version of the CSD model for the Pacific Arctic
(Waga et al., 2019a) used the spectral shape of aph(λ) to esti-
mate η. To capture the spectral features of aph(λ), PCA was
applied to normalized aph_obs(λ) (âph_obs (λ)) at ten MODIS-
A bands. The formula for âph_obs (λ) is:

âph_obs (λ)= [aph_obs (λ)

−mean(aph_obs (λ))]/SD(aph_obs (λ)) (5)

where mean(aph_obs(λ)) and SD(aph_obs(λ)) are the arith-
metic mean and standard deviation calculated across the
ten wavelengths for each individual aph_obs(λ) spectrum, re-
spectively. The input values for the PCA comprise a matrix
(m×N ) composed of âph_obs (λ) values, where m and N are
the number of the wavelengths and number of samples, re-
spectively. Assuming the resulting PC scores correlate with
η, η was estimated as follows:

η =

[
β0+ exp

k∑
i=1

βiSi

]−1

(6)

Si =

m∑
j=1

wi,j âph_obs
(
λj
)
, (7)

where Si andwi,j are the ith PC score and the loading factors
for ith PC at wavelength j . In addition,m and k represent the
number of wavelengths and the number of PCs (k = 4 in this
study). The model parameters β0 and βi are the regression
coefficients between η and PC scores.

By substituting for the calculation of Si in Eq. (6), we ob-
tained new equations as follows:

η =

[
β0+ exp

m∑
j=1

Cj âph_obs
(
λj
)]−1

(8)

Cj =

k∑
i=1

βiwi,j , (9)

where β0 and Cj are the final model parameters. Once the
model parameters were determined based on aph_obs(λ), the
same coefficients were used in the case of aph_QAAobs(λ)

and aph_QAAsat(λ) to produce estimates of η. For the Rrs-
based models, normalized Rrs_obs(λ) (R̂rs_obs (λ)) was cal-
culated in the same manner as Eq. (5), and η was deter-
mined by employing R̂rs_obs (λ) in Eqs. (6)–(9) in place of
âph_obs (λ). Note that η determined by Chl asize_obs, esti-
mated through the CSD model using in situ measurements
âph_obs (λ) or R̂rs_obs (λ) and satellite products (âph_QAAsat (λ)

or R̂rs_sat (λ)) are denoted as ηobs, and ηMDLobs and ηMDLsat,
respectively.

2.4.2 Supervised ML approach

In addition to the PCA approach used in prior work (Waga
et al., 2017, 2019a, b, 2021b), CSD models were trained
with various ML approaches. Since we know both the in-
put (i.e., R̂rs_obs (λ) or âph_obs (λ)) and corresponding out-
put (i.e., ηobs) values, supervised ML was used to train CSD
models. To this end, we leveraged the Regression Learner
App in the MATLAB Statistics and Machine Learning tool-
box, a user-friendly resource that enables simple data explo-
ration, feature selection, specification of validation schemes,
model training, and model evaluation. This application in-
cludes commonly used regression methods, e.g., linear re-
gression models, regression trees, Gaussian process regres-
sion models, support vector machines, kernel approximation
models, ensembles of regression trees, and neural network
regression models.

To avoid the possibility of missing certain representa-
tive samples and/or overfitting the models, repeated five-fold
cross-validation (ten repeats) was carried out by randomly di-
viding the training subset into five equally sized sets (or five-
folds). Evaluation of the trained models was performed five
times, each time excluding one-fold from the training subset
and using it for validation. Each observation in the training
subset was assigned to an individual group and stayed in that
group for the duration of the procedure so that each obser-
vation was allowed to be used one time for testing and four
times for training the model. Finally, the performance of the
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trained models was determined as the average of the perfor-
mance metrics from the five iterations.

The MATLAB Regression Learner App returns three other
statistical metrics besides the coefficient of determination
(r2): the root mean square error (RMSE), mean squared er-
ror (MSE), and mean absolute error (MAE) between the ob-
served and predicted values, defined as:

RMSE=

√√√√ N∑
n=1

(Xn−Yn)
2/N (10)

MSE=
N∑
n=1

(Xn−Yn)
2/N (11)

MAE=
N∑
n=1

|Xn−Yn|/N (12)

where Xn and Yn represent the nth observed and predicted
values, respectively. Once CSD models based on each ML
method were finalized, the best ML-based CSD model for
each predictor (i.e., R̂rs_obs (λ) and âph_obs (λ)) was deter-
mined based on the four aforementioned statistical met-
rics. Once the best-performing models for R̂rs_obs (λ) and
âph_obs (λ) among diverse regression methods were deter-
mined, they were used for final validation and further analy-
sis.

2.5 Model validation metrics

The performance of the resulting PCA-based CSD models
and the best-performing ML-based CSD models were com-
pared using the validation subset. Bias is a key metric for the
performance assessment of satellite products (Seegers et al.,
2018), defined as:

Bias= 10
(∑N

n=1(Xn−Yn)/N
)

(13)

Following recommended validation procedures for satellite
ocean color algorithms (Seegers et al., 2018), the perfor-
mance of the CSD models, as well as the modified QAA,
was evaluated based on MAE (Eq. 12) and bias.

3 Results

3.1 Phytoplankton size structure and taxonomic
composition

The measured exponent of CSD (ηobs) values ranged from
0 to 2.24 with corresponding Chl atotal_obs values of 18.84
and 0.05 mg m−3, respectively (Table 3). Figure 2 depicts
the Chl atotal_obs and ηobs values with regard to the relative
contributions of Fsize_obs. High Chl atotal_obs was character-
ized by communities having a predominant contribution of
Fmicro_obs and correspondingly lower contributions of both
Fpico_obs and Fnano_obs. A similar but opposite pattern was

found in ηobs, with small ηobs values clearly associated with
largeFmicro_obs. This opposite pattern resulted from the fact
that small ηobs values represent significant contributions of
Fmicro_obs essentially associated with high Chl atotal_obs. In
addition, Fmicro_obs and Fpico_obs ranged between 0.01–0.94
and 0.00–0.80, respectively, suggesting that our dataset cov-
ered a wide range of PSCs in the Pacific Arctic. According
to Eq. (4), the smallest ηobs corresponded to 0.9, 0.09, and
0.01 of Fsize_MDL for micro-, nano-, and pico-phytoplankton,
whereas the largest ηobs corresponded to 0.02, 0.26, and 0.73,
respectively.

Figure 3 illustrates the biomass and fractional contribution
to total Chl a of phytoplankton taxa determined by phyto-
class, with respect to ηobs. The pigment ratios used in this
study are detailed in Table S1 in the Supplement. Diatoms
dominated in terms of both biomass and fractional contribu-
tion for small ηobs values and gradually decreased as the ηobs
value increased (p < 0.01). A similar but opposite pattern
was observed for prymnesiophytes, indicating a gradual in-
crease in the fractional contribution with increasing ηobs val-
ues (p < 0.01). Interestingly, diatoms and prymnesiophytes
were the only taxa that dominated the phytoplankton com-
munities, while other taxa remained only minor contribu-
tors across the ηobs range. More specifically, prasinophytes
and cryptophytes showed slight increases in their fractional
contribution up to > 0.30 at ηobs values ranging from 0.70–
2.00, while their Chl a biomass in all cases remained less
than 0.20 mg m−3. Other taxa showed negligible variations
in biomass, whereas their fractional contributions fluctuated
in response to reduced Chl a for the entire phytoplankton
community but was statistically insignificant (p ≥ 0.01).

3.2 Phytoplankton absorption and remote sensing
reflectance spectra

Since the Pacific Arctic is characterized as optically complex,
i.e., the contributions of different water constituents (phyto-
plankton, NAP, and CDOM) are highly variable, the frac-
tional contribution of each constituent to the total absorption
by seawater (atotal_obs(λ)) was investigated using in situ data
(Fig. S4). The ratio of aph_obs(λ) to atotal_obs(λ)was typically
< 0.30, even at wavelengths of maximum pigment absorp-
tion (i.e., 443, 469, and 488 nm) and weak pure water absorp-
tion (aw(λ)), whereas aCDOM_obs(λ) comprised 0.66± 0.15
(mean±SD) of atotal_obs(412). At longer wavelengths (i.e.,
645, 667, and 678 nm), aw(λ) contributed significantly to to-
tal absorption, with average values of > 0.95. Overall, phy-
toplankton was the dominant constituent to atotal_obs(443) for
only 30 of the 177 samples, suggesting that estimations of
aph(λ) from Rrs(λ) using the QAA algorithm are likely to
have large uncertainties for the majority of samples due to the
significant contributions to absorption by other water con-
stituents.

Figure 4 shows spectral variations in Rrs_obs(λ),
aph_obs(λ), R̂rs_obs (λ), and âph_obs (λ) at ten MODIS-A

https://doi.org/10.5194/bg-23-1043-2026 Biogeosciences, 23, 1043–1064, 2026



1050 H. Waga et al.: Machine learning for estimating phytoplankton size structure

Table 3. Summary statistics of primary variables used in this study. Note that these variables were determined by in situ observations.
Abbreviation: Chl a, chlorophyll a; η, exponent of Chl a size distribution (CSD); Fsize, fractional contribution of micro-, nano-, and pico-
plankton; aph(443) phytoplankton absorption coefficient at 443 nm; aNAP(443), absorption coefficient of non-algal particles (NAP) at 443 nm;
aCDOM(443), absorption coefficient of colored dissolved organic matter (CDOM) at 443 nm; and Rrs(443), remote sensing reflectance at
443 nm.

Chl atotal_obs ηobs Fmicro_obs Fnano_obs Fpico_obs aph_obs(443) aNAP_obs(443) aCDOM_obs(443) Rrs_obs(443)
(mg m−3) (m−1) (m−1) (m−1) (×102 sr−1)

Mean 0.54 1.02 0.36 0.32 0.32 0.04 0.03 0.09 0.30
Median 0.40 1.08 0.35 0.32 0.30 0.02 0.01 0.06 0.30
SD 3.62 0.50 0.27 0.11 0.20 0.05 0.11 0.08 0.11
Min 0.05 0.00 0.01 0.02 0.00 0.00 0.00 0.01 0.05
Max 18.84 2.24 0.94 0.51 0.80 0.32 1.18 0.40 0.66

Figure 2. Ternary diagrams depicting phytoplankton size composition. Each diagram illustrates fractional contribution of micro- (Fmicro_obs),
nano- (Fmicro_obs), and picophytoplankton (Fmicro_obs) to total phytoplankton biomass, colored with (a) total Chl a (Chl atotal_obs) and
(b) ηobs, respectively.

bands, with respect to ηobs. Larger spectral variations in
Rrs_obs(λ), with a distinct peak at green wavelengths (i.e.,
531, 547, and 555 nm), were found for smaller ηobs values,
whereas larger ηobs values corresponded to relatively flat
spectral shapes, with only small peaks at shorter wave-
lengths (i.e., 469 and 488 nm). aph_obs(λ) also showed
similar differences in spectral shape and magnitude with
ηobs values, except with peaks at blue wavelengths. In
contrast, R̂rs_obs (λ) and âph_obs (λ) emphasize only spectral
shape by normalizing the range of variability in Rrs_obs(λ)

and aph_obs(λ) (Fig. 6c, d). Regarding âph_obs (λ), sharper
peaks at blue wavelengths (i.e., 412, 443, and 469 nm) with
the maximum value at 443 nm were observed for large
ηobs. Moreover, âph_obs (λ) increased more prominently
with increasing wavelength from its minimum near 550 nm
at smaller ηobs, whereas larger ηobs corresponded to less
pronounced increases in âph_obs (λ) over this spectral range.
Overall, the spectral features of R̂rs_obs (λ) and âph_obs (λ)

exhibited clear variations associated with ηobs values, with
R̂rs_obs (λ) exhibiting larger variations associated with
ηobs across the wide range of wavelengths compared to
âph_obs (λ). âph_obs (λ) also exhibited larger spectral vari-
ations, but differences associated with ηobs were smaller
in magnitude. The performance of the modified QAA for
MODIS-A bands, determined by comparing aph_QAAobs(λ)

with aph_obs(λ), is shown in Table S2. According to the
validation results, aph(λ) values at longer wavelengths (645,
667, and 678 nm) exhibited poor QAA estimation accuracy
and were removed from the model development based on
PCA and ML approaches. It is noteworthy that the MAE
for these wavelengths represents between 25 % and 30 %
of the pure water values (Pope and Fry, 1997). While this
might appear large in an absolute sense, the red portion
of the spectrum contains limited phytoplankton taxonomic
information outside of the chlorophyll absorption band at
678 nm (Huot et al., 2005).
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Figure 3. Variations in major phytoplankton groups with reference to CSD slope. (a) Biomass and (b) fractional contribution of each
phytoplankton taxa to total phytoplankton biomass (Chl a) determined by phytoclass, with respect to ηobs value. Plots and vertical bars denote
the average and standard deviations of each value within the respective ηobs bins. Abbreviations: Chryso, chrysophytes; Dino, dinoflagellates;
Prym, prymnesiophytes; Chloro, chlorophytes; Pras, prasinophytes; Crypto, cryptophytes; Cyano, cyanobacteria.

3.3 CSD model development: PCA approach

The spectral features of R̂rs_obs (λ) and âph_obs (λ) captured
by PCA were used to develop the CSD model. Variations in
the loading factors, which describe how much each variable
contributes to a particular principal component at ten wave-
lengths (i.e., 412, 443, 469, 488, 531, 547, 555, 645, 667,
and 678 nm) and seven MODIS-A bands (i.e., 412, 443, 469,
488, 531, 547, and 555 nm) for R̂rs_obs (λ) and âph_obs (λ),
respectively, are shown in Figs. S2 and S3.

The spectral features captured by PCA demonstrate opti-
cal signatures of R̂rs_obs (λ) and âph_obs (λ). The regression
coefficients β0 and βi of the logistic-type function (Eqs. 8
and 9) were therefore determined by least squares regression
between the first four PC scores of R̂rs_obs (λ) or âph_obs (λ)

and ηobs. The resulting regression coefficients were then used
to compute the model parameter Cj (Eq. 8). Here, PCA
and subsequent procedures for βi and Cj retrievals were
conducted separately for two sample groups exhibiting ei-

ther aph(412)≥ aph(469) or aph(412) < aph(469) regarding
âph_obs (λ), whereas the procedures for R̂rs_obs (λ) were per-
formed on the entire dataset (unpartitioned) for model train-
ing. The partitioning of the model parameters for âph_obs (λ)

was based on the trial-and-error approach (Waga et al., 2017)
because a single combination of regression coefficients can-
not capture the entire variations in the spectral shape of
âph_obs (λ) in response to changing ηobs. The partitioning se-
quence aimed to avoid underestimation that was observed
for higher ηobs (Waga et al., 2017). Since no specific pat-
tern in ηobs estimation was identified for R̂rs_obs (λ), this
study did not exploit the portioning approach for R̂rs_obs (λ).
The resulting model parameters are summarized in Table S3.
The resulting PCA-based CSD models for R̂rs_obs (λ) and
âph_obs (λ) were hereafter denoted as CSDmodelPCA−R̂rs(λ)
and CSDmodelPCA−âph(λ), respectively.
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Figure 4. Spectral variations in key optical properties. Spectral variations in (a) remote sensing reflectance (Rrs_obs(λ)), (b) aph_obs(λ),
(c) normalized Rrs_obs(λ) (R̂rs_obs (λ)), and (d) normalized aph_obs(λ) (âph_obs (λ)) with respect to ηobs. Vertical bars represent the standard
deviations at each wavelength for each ηobs range.

3.4 CSD model development: supervised ML approach

Additional CSD models were developed using a supervised
ML approach through MATLAB’s Regression Learner App,
setting R̂rs_obs (λ) or âph_obs (λ) as input and ηobs as output.
Performance statistics for the top five and bottom five mod-
els are presented in Table 4. Comprehensive results for the 28
models appear in Tables S4 (R̂rs_obs (λ)) and S5 (âph_obs (λ)).
The best model for R̂rs_obs (λ) was a linear regression with
linear preset, whereas that for âph_obs (λ) was a support vec-
tor machine (SVM) with medium Gaussian preset. These
models achieved the best performance on the majority of
four statistical metrics (i.e., RMSE, MSE, r2, and MAE)
relative to the other candidates and were thus selected as
the ML-based CSD models for R̂rs_obs (λ) and âph_obs (λ);
hereafter, CSDmodelLR−R̂rs(λ)

and CSDmodelSVM−âph(λ),
respectively. The model parameters for CSDmodelLR−R̂rs(λ)
is reported in Table S6.

Upon statistical evaluation, we found random patterns
in relationships between model performance and regression
methods. For example, the linear regression with linear inter-
action preset showed the second worst performance while the
standard linear preset showed the best performance among

all 28 models tested with R̂rs_obs (λ) as input. The SVM
showed the best (medium Gaussian preset) and worst (cu-
bic preset) performance for âph_obs (λ). The models trained
with the neural network method tended to show poor estima-
tion accuracy for both R̂rs_obs (λ) and âph_obs (λ). Overall, the
performance of the CSD models developed by the supervised
ML approach varied largely among the regression methods
used in the training process, indicating that care should be
taken when choosing a regression method for model devel-
opment.

3.5 CSD model validation

Validation results of the four CSD models,
i.e., CSDmodelPCA−R̂rs(λ)

, CSDmodelPCA−âph(λ),
CSDmodelLR−R̂rs(λ)

, and CSDmodelSVM−âph(λ) are shown
in Fig. 5, with respect to the fractional contribution of
aph_obs(443) to atotal_obs(443). The âph_obs (λ)-based models
performed relatively well for both PCA and ML approaches,
whereas, the PCA-based R̂rs_obs (λ) model underestimated
ηobs, with the range of estimated values (∼ 0.4–1.3)
much lower than the measured range (∼ 0.2–2.2). In
addition, the ML-based models (CSDmodelLR−R̂rs(λ)

and
CSDmodelSVM−âph(λ)) showed better performance com-
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pared to the PCA-based models (CSDmodelPCA−R̂rs(λ)
and

CSDmodelPCA−âph(λ)). Overall, the CSDmodelSVM−âph(λ)

performed the best among the four CSD models developed in
this study. However, satellite retrieval of aph(λ) in optically
complex waters amplifies uncertainty in retrieving ηMDLsat
for the CSD models exploiting aph(λ). Validation results
of the CSD model using the aph_QAAobs(λ), estimated from
Rrs_obs(λ) through the modified QAA, showed diminished
performance, especially for the CSDmodelSVM−âph(λ)

(Fig. 5f). In this sense, the best-performing model for
applications with Rrs_sat(λ) is CSDmodelLR−R̂rs(λ)

. The
CSDmodelLR−R̂rs(λ)

yielded statistical measures of 0.21
and 1.16 for MAE and bias, respectively. Out of the 53
samples in the validation dataset, estimates for 44 samples
(i.e., 83 %) were within ±35 % of the in situ measured
values. The associated average and median percent errors
with respect to in situ values were 28.0 % and 16.2 %,
respectively.

3.6 CSD slope distribution in the Pacific Arctic

Seasonal variations in climatological ηMDLsat distribution
derived by the CSDmodelLR−R̂rs(λ)

from Rrs_sat(λ) in the
Pacific Arctic are shown in Fig. 6. The ηMDLsat values
were persistently low in the western side of the Bering
Strait, whereas those on the eastern side were generally
high throughout the season. Such west-east contrast was
also found on the Bering Sea shelf, with low ηMDLsat val-
ues in the west and high ηMDLsat values in the east. These
spatial dynamics in the ηMDLsat would likely reflect current
patterns in the Pacific Arctic. Indeed, SST shows coinci-
dent patterns with such spatial variations in ηMDLsat values
(Fig. S5), with relatively higher water temperatures tend-
ing to contain higher ηMDLsat as well. The climatological
mean ηMDLsat in the Pacific Arctic decreased from 1.88 to
1.52 from July to September (Fig. 7), suggesting an over-
all shift from smaller to larger phytoplankton communities
over the season. More specifically, the fractional contribution
of micro-phytoplankton (pico-phytoplankton) to total phyto-
plankton biomass changed from 0.04 to 0.13 (0.61 to 0.44)
between July and September.

4 Discussion

4.1 Taxonomic composition and size structure of
phytoplankton community

Numerous studies have reported that the size struc-
ture of phytoplankton communities has strong link-
ages with the taxonomic composition (Finkel et al.,
2010). Diatoms and dinoflagellates are generally clas-
sified as micro-phytoplankton; prymnesiophytes, chryso-
phytes, chlorophytes, and cryptophytes are classified as
nano-phytoplankton; and prasinophytes and cyanobacteria
are grouped into pico-phytoplankton. According to pigment-

based taxonomic identification, diatoms and prymnesio-
phytes were the main phytoplankton taxa contributing to
variations in the size structure of the phytoplankton commu-
nities (Fig. 3b). More specifically, a higher fractional con-
tribution of diatoms was associated with smaller ηobs val-
ues, suggesting a large-sized phytoplankton-dominated con-
dition. In contrast, a higher fractional contribution of prym-
nesiophytes resulted in larger ηobs values, indicating a small-
sized phytoplankton dominated condition. Overall, shifts in
the relative fractions of micro- and nano-size classes drove
the change in ηobs, while pico-plankton had less impact.

4.2 Responses of optical signatures to phytoplankton
size structure

The absolute concentration of phytoplankton pigments in
seawater typically affects first-order variability in the mag-
nitude of Rrs(λ), with secondary impacts on Rrs(λ) spec-
tral shape associated with diversity in dissolved and par-
ticulate properties, such as phytoplankton community com-
position (Ciotti et al., 2002). Therefore, spectral variations
in the magnitude-normalized R̂rs (λ) can be reasonably as-
sumed to coincide with changes in the size structure of
the phytoplankton community. Indeed, the spectral shape of
R̂rs_obs (λ) showed a transition of the peak wavelength from
green to blue with increasing ηobs values (Fig. 4b). Likewise,
the magnitude of aph(λ) is related to pigment composition
and concentration, whereas size information is contained in
the shape of the absorption spectrum due to pigment pack-
aging within cells (Bricaud and Morel, 1986b). For exam-
ple, we found a sharp absorption peak in âph_obs (λ) around
443 nm that appeared to be positively correlated with CSD
slope (Fig. 4d). Overall, our study demonstrated strong in-
fluences of the size structure of phytoplankton communities
on R̂rs_obs (λ) and âph_obs (λ), as reported in previous stud-
ies (Mouw et al., 2017). Although we found clear linkages
in the spectral shape of R̂rs_obs (λ) and âph_obs (λ) with ηobs,
it is important to note that R̂rs_obs (λ) is influenced not solely
by phytoplankton but also by CDOM and NAP. Since Chl a
is generally uncorrelated with CDOM and NAP in coastal
waters, the combined impact of absorption and scattering by
all water constituents on water-leaving radiance likely ac-
counts for the somewhat poorer performance of the remote
sensing-based models compared to the in situ pigment ab-
sorption based ML models.

4.3 Comparison of PCA- and ML-based approaches

The output from PCA consisted of two terms: loading fac-
tors and PC scores. Loading factors define the rotations of
the axes. PC scores are linearly uncorrelated variables that
represent the positions of samples in the new rotated axes,
and each is the linear combination of original spectra with
corresponding loading factors (Wang et al., 2015). The PCA-
based approach adopted here assumes that PC scores are cor-
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Figure 5. Validation results of the developed models. Comparison between measured (ηobs) and model-estimated η values (ηMDLobs) with
respect to the fractional contribution of aph_obs(443) to atotal_obs(443). Upper (a–c) and lower panels (d–f) show CSD models developed by
PCA- and ML-based approaches, respectively. Panels (c) and (f) show the results of the same CSD models in panels (b) and (e) but using
âph_QAAobs (λ), whereas panels (b) and (c) use âph_obs (λ) determined from in situ observations. MAE denotes the median absolute error.

related with η values, yet this assumption would not have
been necessarily valid in this study. Indeed, the PCA-based
CSD model showed a degraded performance compared to
that of the ML-based model particularly for R̂rs_obs (λ), sug-
gesting that the PCA could have added uncertainties in the
retrieval of η. In fact, simple and direct linear regression re-
sulted in better performance of the CSD model in the case
of utilizing R̂rs_obs (λ). In addition, the first two PC modes
explained about 95 % of spectral variations in R̂rs_obs (λ) and
âph_obs (λ). This fact suggests that the other two PC modes
(i.e., PC modes 3 and 4) contribute little to explaining the
entire spectral variation but may have added uncertainties,
especially considering the relatively small dataset used in the
current study. Note that the PCA-based approach is a dimen-
sionality reduction method often used to reduce the dimen-
sionality of large data sets by transforming a large set of vari-
ables into a smaller one that still contains most of the infor-
mation in the large set (Corte-Real, 2020). In the case of hy-
perspectral data, the input variables can easily be hundreds
of wavelengths, which imposes a significant computational
cost. The PCA can aggregate important spectral features into
PC scores and may prove beneficial for developing robust re-
mote sensing algorithms based on hyperspectral data. How-
ever, because we are using multispectral data with limited

number of predictor variables, this potential benefit of PCA
is not realized in our study.

While the conventional least square regression has been
used for decades in the development of satellite ocean
color algorithms (Fujiwara et al., 2011; Hirata et al., 2011;
O’Reilly et al., 1998; Waga et al., 2017, 2019a), more com-
plex ML methods are increasingly being applied and many
studies have reported their capability for improved ocean
color product retrievals (Chen et al., 2019; Hu et al., 2021,
2018). The least square regression is a statistical method that
fits a pre-defined equation to specific data. Due to is rela-
tive simplicity, it cannot fully extract hidden patterns in data
and/or elicit a deep characterization of intricate relationships
between a number of interdependent variables (Martens and
Dardenne, 1998). However, the ML approach of learning re-
lationships between the input values and the corresponding
output values without predefined or explicated equations re-
quires an extensive dataset that covers complex behaviors
in the data and a wide range of environmental conditions
(Marzban, 2009). Once trained, ML approaches are power-
ful tools for the fast and efficient processing of large datasets,
such as geospatial satellite data (Paul and Huntemann, 2021;
Waga et al., 2022).
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Figure 6. Monthly climatology of ηMDLsat values in (a) June, (b) July, (c) August, and (d) September in the Pacific Arctic for 2002–2022
(derived from Rrs_sat(λ) using the CSDmodelLR−R̂rs(λ)

). White areas indicate no valid retrievals due to cloud and/or sea-ice cover.

One of the key findings of this study is that more com-
plex ML approaches (e.g., support vector machine, ensem-
ble, and neural network) do not always produce more effec-
tive models than simple ML approaches (e.g., standard linear
regression) (Table 4). While more complex models generally
perform better than simpler ones (Makridakis et al., 2022),
a complicated or flexible model will pose challenges for in-

terpretation and can end up overfitting random effects (i.e.,
noises) that are unique to the dataset used for training. If
these random effects are not present in new data to which the
model is applied, then the model can produce incorrect re-
sults when it uses relationships developed based on random
phenomena in the training dataset. Thus, the limited size of
our dataset (i.e., only 177 samples) likely contributed to the
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Figure 7. Histograms of monthly climatology of ηMDLsat values in (a) June, (b) July, (c) August, and (d) September in the Pacific Arctic for
2002–2022.

poor performance of the complex ML models. Nonetheless,
the CSD model trained with a support vector machine was se-
lected as the best model for âph_obs (λ). This indicates that the
poor performance of complex ML approaches for R̂rs_obs (λ)

may also be associated with other regression-related factors
(e.g., number of features, classifier hyper-parameter opti-
mization, and number of cross-validation folds) rather than
simply the number of samples used for training (Vabalas
et al., 2019). One potential explanation for the better per-
formance with the simple linear regression approach for
R̂rs_obs (λ) is that variance in R̂rs_obs (λ) for each ηobs range
was larger compared to that of âph_obs (λ) (Fig. 4c). Com-
plex ML approaches applied to R̂rs_obs (λ) likely introduced
errors related to the variance in the relationship between the
spectral features and ηobs, whereas a simple ML approach
captured only predominant features with lesser effects of the
variance. Finally, we wish to also express that the type of
batch approach employed by MATLAB’s Machine Learning
App is useful for identifying what type of model might per-
form well for the problem at hand, however it should not be
taken as canon as more complex ML approaches often re-
quire careful customization and model design.

4.4 Methodological uncertainties and limitations

A major challenge of the ML approach, with some excep-
tions, such as linear regression, is that it is difficult or im-
possible to derive a mechanistic understanding of the model-
predicted relationship between the input and output values

(Ray, 2019). For this reason, the ML approaches are some-
times called “black boxes.” This lack of transparency can
be problematic in interpreting the results generated by the
model (Vollmer et al., 2020; Wachter et al., 2017). While ML
approaches have been employed in numerous fields besides
satellite remote sensing, they have not adequately addressed
the issue of causality, which is essential to support wider dis-
semination and acceptance of the proposed models (Hall et
al., 2022). What can be said at this point is that the selec-
tion of an ML approach carries with it trade-offs between
accuracy and interpretability. Establishing procedures for in-
terpreting how ML models learn and arrive at answers is cru-
cial to not only selecting the appropriate model approach but
also for improving reliability and building confidence in the
selected approach.

The superior in-situ performance of aph(λ)-based models
reflects a stronger physical coupling between η and aph(λ)

(Fig. 5). Our preference for the Rrs(λ)-based model is opera-
tional, as it avoids uncertainties due to the inversion of aph(λ)

from Rrs(λ) in optically complex waters and yields reliable
retrievals for satellite applications; it should not be taken as
evidence that η is more fundamentally linked to Rrs(λ) than
to aph(λ). A further explanation for why the aph(λ)-based
model performed better than theRrs(λ)-based model pertains
to measurement uncertainty related to the temporal and spa-
tial scales of the input observations. Field data for the aph(λ)-
based model, including pigments and absorption, were de-
rived from analyses of well-mixed water drawn from rela-
tively small sample volumes of few liters, resulting in high
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confidence that type and concentration of material analyzed
for absorption was similar to the material extracted for pig-
ments. By comparison, in situ measurements of radiometry
for the computation of Rrs(λ) were measured away from the
ship to avoid effects on the light field, at times that were of-
ten offset from water sampling by tens of minutes, and rep-
resented signals integrated across thousands of liters of near-
surface ocean water. Therefore, uncertainty regarding sample
similarity was far greater for Rrs_obs(λ) than for aph_obs(λ).

Our outcome metric was η, computed from within-sample
size fractions rather than absolute Chl a. Prior work (Waga et
al., 2017) showed that η is insensitive to reasonable choices
of pore-size boundaries: percent differences in the resulting
ηobs were under 5 % across three different typical Chl asize
cutoffs (i.e., > 20, 2–20, and < 2 µm; > 10, 2–10, and <
2 µm; and > 20, 5–20/< 5 µm). Nevertheless, we acknowl-
edge a small residual uncertainty for cruises that used dif-
ferent filters, which could add noise in heterogeneous con-
ditions. To assess any such effect, we conducted a sensitiv-
ity check that removes cruises with differing pore-size splits
(i.e., 2007, 2009, 2010) and compared model ranking and er-
ror metrics on the reduced subset. These results are summa-
rized in Table S7, which suggests consistent findings across
the entire dataset (Table 4).

Absolute Chl a can differ across analytical methods (Wang
et al., 2025), yet our modeling targets a dimensionless out-
come (i.e., η) computed from within-sample size fractions
rather than absolute concentrations. This proportion-based
normalization places fluorometer and HPLC observations on
a common scale and helps mitigate method-specific bias in
total Chl a. The HPLC-based Chl asize subset in our com-
pilation is small, which limits our ability to estimate a sta-
ble cross-method offset in η or to perform a rigorous cali-
bration. Looking ahead, a targeted cross-calibration, paired
fluorometer- and HPLC-based Chl asize measurements col-
lected contemporaneously across key water masses, would
better quantify any residual method dependence in the re-
trieval of Chl asize and further strengthen future assessments.

Overall, our dataset is heterogeneous in time, space, and
methods, which introduces non-exchangeability among sam-
ples and elevates the risk of biased validation. We used a
standard repeated five-fold cross-validation and an external
30 % subset to validate the performance of the developed
models, but these procedures do not fully control for group-
ing by cruise, pore-size scheme, analytical approach, or re-
gion. As a result, cross-validated skill may be optimistic if
folds inadvertently mix samples that are more similar to each
other than to the broader population, and the external split
may still reflect historical or regional structure (Stock, 2022;
Stock and Subramaniam, 2022). Our purpose here is model
ranking rather than precise absolute skill; nevertheless, the
uncertainty associated with non-stratified resampling should
be borne in mind when interpreting differences among ap-
proaches. A more conservative assessment is to partition
the data into discrete “blocks” according to certain criteria,

which enables the creation of independent training and vali-
dation folds using stratified blocking (e.g., temporal and spa-
tial blocks) (Zhang et al., 2023). Such cross-validation strate-
gies are preferable for heterogeneous datasets and are recom-
mended for future work and community benchmarks.

4.5 Performance of CSD model in optically complex
Pacific Arctic waters

Considering the estimation error associated with the semi-
analytical IOP inversion algorithm (i.e., the modified QAA),
the CSDmodelSVM−âph(λ) contains large uncertainties in the
retrieval of η (Fig. 5). This is primarily because the poor
performance of the modified QAA in optically complex wa-
ters hampered the aph(λ) retrieval (Table S2), and estima-
tion errors were propagated to the âph (λ)-based CSD model
for application to satellite data. In other words, the perfor-
mance of the âph (λ)-based CSD model could be improved
if a more accurate IOP inversion algorithm were to be estab-
lished for optically complex waters. Moreover, hyperspec-
tral satellite sensors, such as the NASA Plankton, Aerosol,
Cloud, ocean Ecosystem (PACE) mission’s primary sensor,
the Ocean Color Instrument (OCI), and the planned Sur-
face Biology and Geology (SBG) and Geostationary Littoral
Imaging Radiometer (GLIMR) sensors will have the capa-
bility to capture more detailed spectral features of aph(λ)

(Dierssen et al., 2023; Werdell et al., 2018), which will
greatly benefit satellite-based monitoring of phytoplankton
communities (Isada et al., 2015).

Considering that the accuracy goal for satellite-derived
Chl a is defined as within ±35 % of the true value (Hooker
and McClain, 2000), and a variety of ocean color products,
such as primary productivity (Behrenfeld and Falkowski,
1997), utilize Chl a as one of the input parameters, we con-
clude that the CSD model developed in this study performs
sufficiently well in the Pacific Arctic, presuming adequate
correction for atmospheric effects in the satellite data. Since
this region receives a large amount of freshwater contain-
ing CDOM and NAP delivered from rivers (Matsuoka et
al., 2007), it was expected that the performance of the CSD
model relying on R̂rs (λ) would be influenced by CDOM and
NAP, which often dominate the optical properties of sea-
waters in this region (Chaves et al., 2015; Mustapha et al.,
2012; Wang and Cota, 2003). However, the validation results
suggest that the CSDmodelLR−R̂rs(λ)

performed with con-
sistent accuracy regardless of the fractional contribution of
aph_pbs(λ) to atotal_obs(λ) at 443 nm (Fig. 5).

4.6 Distribution of CSD slope in the Pacific Arctic

The Pacific Arctic, with a large continental shelf extending
from the northern Bering Sea to the southern Chukchi Sea
and northwards, has been characterized by a tight pelagic-
benthic coupling (Grebmeier et al., 1988, 1989; Grebmeier
and McRoy, 1989), with up to 70 % of primary produc-
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tion ultimately reaching the seafloor (Walsh et al., 1989).
The seasonal cycle of sea-ice formation and melting pro-
vides suitable conditions for phytoplankton growth (Stabeno
et al., 2010), with large spring diatom blooms occurring at the
marginal ice edge and under the ice (Laney and Sosik, 2014;
Waga et al., 2021a). The northern Bering and Chukchi Seas
are reported to have the highest sinking particulate organic
carbon fluxes (0.8–2.5 g C m−2 d−1) within the world ocean,
and the particles collected by moored sediment traps consist
of aggregates composed of diatoms exclusively (O’Daly et
al., 2020). On the continental shelves in the Pacific Arctic,
much of the organic carbon produced in the euphotic layer is
directly transported to the seafloor with little or no grazing
by zooplankton (Campbell et al., 2009). This strong pelagic-
benthic coupling has maintained areas of persistently high
benthic biomass, also called benthic hotspots (Grebmeier et
al., 2015a), which serve as important foraging areas for up-
per trophic level benthivores, such as bearded seals, walrus,
gray whales, and diving seabirds (Grebmeier, 2006). These
hotspots are supported by influxes of organic carbon intro-
duced by vertical transport from the overlying water column
and lateral advection (Grebmeier et al., 2015b). Regarding
the vertical transport of organic carbon, Waga et al. (2019a)
reported that the size structure of phytoplankton communi-
ties has a significant relationship with Chl a concentration
in the underlying seafloor sediments, suggesting a connec-
tion between phytoplankton cell size and benthic macrofau-
nal biomass in this region.

We found clear spatial variation in the distribution of
ηMDLsat in the Pacific Arctic (Fig. 6). For example, on
the Bering Sea shelf, the Siberian coast exhibited smaller
ηMDLsat values, whereas larger values were found along the
Alaskan coast. Throughout the seasons, there were west-east
gradients showing smaller and larger ηMDLsat values on the
Siberian and Alaskan sides of the Bering Strait, respectively.
Since a small CSD slope represents a greater proportion
of larger-sized phytoplankton, this result indicates larger-
sized phytoplankton typically dominated along the Siberian
coast, and smaller-sized phytoplankton dominated along the
Alaskan coast. In the Pacific Arctic, three major water masses
prevail: i.e., the Alaskan Coastal Water, Anadyr Water, and
Bering Shelf Water (Coachman et al., 1976; Danielson et
al., 2017). The Alaskan Coastal Water is identified with rel-
atively high temperatures and low salinity due to freshwater
input flows along the western coast of Alaska out to the Beau-
fort Sea (Coachman et al., 1976). The Anadyr Water, which
flows along the eastern coast of Siberia, has low tempera-
tures and high salinity, and supplies large amounts of nutri-
ents to the Bering Sea and Bering Strait (Coachman et al.,
1976). The Bering Shelf Water flows between Anadyr Wa-
ter and Alaskan Coastal Water on the Bering Sea shelf and
forms as these two water masses mix as they pass through the
Bering Strait (Grebmeier et al., 1988). In addition to these
general current patterns, satellite images of SST (Fig. S5)
show distinct signatures of cold-water outcroppings in the

western side of the Bering Strait, particularly in July and Au-
gust. Such signatures were associated with friction between
the current and the sea floor (Kawaguchi et al., 2020) and ac-
companied by upward nutrient flux to the surface from the
nutrient-rich bottom layer of Anadyr Water (Nishioka et al.,
2021), resulting in smaller ηMDLsat around the Bering Strait.
These water mass distributions matched the spatial pattern in
the ηMDLsat in the Pacific Arctic, suggesting a tight relation-
ship between nutrient availability and phytoplankton cell size
(Ko et al., 2020; Suzuki et al., 2021).

The ηMDLsat values in the Pacific Arctic showed clear sea-
sonal changes from June to September (Fig. 7). According
to previous studies in this region (Waga et al., 2021a; Waga
and Hirawake, 2020), ice-associated spring blooms mature
primarily within 20 d after sea-ice retreat and then decay
gradually until fall blooms occur. Although the timing and
presence/absence of spring and fall blooms largely depend
on sea-ice conditions and other factors such as wind forcing
(Fujiwara et al., 2018; Nishino et al., 2015), June and July are
generally characterized as the post-bloom period and August
and September are the typical fall bloom period. Such on-
set and decay of phytoplankton blooms are strongly linked
to the size composition of phytoplankton communities in the
Pacific Arctic (Waga and Hirawake, 2020), as shown in sea-
sonal variations in ηMDLsat values.

5 Conclusions

This study developed a CSD model in optically com-
plex Pacific Arctic waters by employing machine learning
methods, which exploit hidden, complex relationships be-
tween optical signatures and phytoplankton size composi-
tion. Considering the large uncertainties in the inversion
of aph(λ) from satellite-derived Rrs(λ), we used Rrs(λ) di-
rectly as a model input instead of aph(λ), though aph(λ)

is more directly related to the size composition of phy-
toplankton communities. Neglecting the estimation errors
produced from IOP inversion and considering only re-
motely sensed radiances and phytoplankton absorption spec-
tra from water samples, the best-performing model among
the four CSD models examined in this study was the ML-
based model with normalized aph(λ) spectra used as input
(CSDmodelSVM−âph(λ)), followed by the ML-based model
with Rrs(λ) (CSDmodelLR−R̂rs(λ)

), the PCA-based model
with aph(λ) (CSDmodelPCA−âph(λ)), and finally the PCA-
based model with Rrs(λ) (CSDmodelPCA−R̂rs(λ)

). Within
our dataset, the PCA-based CSD model showed a degraded
performance compared to that of the ML-based model for
both R̂rs_obs (λ) and âph_obs (λ). Although the PCA-based ap-
proach assumes that PC scores are correlated with η values,
this assumption would not have been necessarily valid, par-
ticularly for R̂rs_obs (λ). In addition, this study utilized the
first four PC modes as representative for spectral features
of R̂rs_obs (λ) and âph_obs (λ). The first two PC modes ex-
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plained about 95 % of spectral variations in R̂rs_obs (λ) and
âph_obs (λ), whereas the latter two modes contributed little to
explaining the entire spectral variation but may have added
uncertainties associated with the PCA step. Another key find-
ing is that more complex ML approaches do not always pro-
duce more effective models than standard linear regression.
Indeed, simple linear regression outperformed other ML ap-
proaches for R̂rs_obs (λ), whereas the CSD model developed
with support vector machine was selected as the best for
aph(λ). Overall, we found benefits in using ML tools to mod-
ify and improve the retrieval accuracy of the previously de-
veloped CSD model in the Pacific Arctic. Future innovations
in machine learning, satellite (and airborne) ocean color sen-
sor capabilities, and IOP algorithms can further contribute to
robust, synoptic remote sensing monitoring of phytoplankton
size structure in optically complex waters, such as the Arctic
Ocean, where rapid change is altering the dynamics of phy-
toplankton with cascading effects on higher trophic levels,
ecosystem functioning, and marine resources.
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