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S1. Study Area 19 

The study region (Fig. S1) was defined by all boreal forest or taiga ecoregions, as well as a selection of immediately 20 

adjacent temperate conifer forests and tundra regions predominantly surrounded by boreal forest or taiga (Dinerstein 21 

et al., 2017). 22 

 23 

 24 

Fig. S1. Study area extent and inclusion of boreal forests/taiga with a selection of immediately adjacent temperate conifer 25 
forests and tundra from Dinerstein et al. (2017). 26 

S2. Boreal calibration of MODIS VCF tree-cover input data 27 

Downscaling and extension of the high-resolution, 36-year historical time series of tree cover estimates was based on 28 

the MODIS Vegetation Continuous Fields (VCF) Collection 6 Tree Canopy product (MOD44B; Carroll et al., 2011), 29 

following calibration to the boreal region (Fig. S2). The 250-m MODIS VCF data were acquired from NASA’s Land 30 

Processes Distributed Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/tools/data-pool/) and masked using 31 

the MODIS Cropland Probability layer (Pittman et al., 2010) (https://glad.umd.edu/dataset/gce/modis-global-crop-32 

extent-discrete-croplandnot-cropland-data) to exclude agricultural lands. 33 

To improve characterization of boreal tree cover, the original MODIS tree cover estimates were calibrated to 34 

a region-wide sample of airborne LiDAR-based reference measurements (Montesano et al., 2016). Calibration 35 

stratified by topographic and climatic gradients, including elevation, slope, and aspect derived from ASTER GDEM 36 

v3 (Abrams et al., 2020) and bioclimatic variables from WorldClim v2 (Fick and Hijmans, 2017). Calibration models 37 

were trained using the Cubist regression tree algorithm, with reference data partitioned into independent training and 38 

testing sets via stratified random sampling across the range of observed tree cover values. Multiple Cubist models 39 

were fit to the training sample and subjected to iterative variable selection to reduce overfitting. At each iteration, the 40 

https://lpdaac.usgs.gov/tools/data-pool/
https://glad.umd.edu/dataset/gce/modis-global-crop-extent-discrete-croplandnot-cropland-data
https://glad.umd.edu/dataset/gce/modis-global-crop-extent-discrete-croplandnot-cropland-data
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lowest-ranked predictor was removed and the model rebuilt. After 23 iterations, the model achieving the highest 41 

coefficient of determination (R²) on the test sample was selected for application. 42 

The calibrated MODIS VCF estimates were then rescaled to 30-m resolution and extended to the full Landsat 43 

archive (1984-2020), producing an annual, high-resolution record of tree cover suitable for biome-wide change 44 

detection. 45 

 46 

 47 

 48 

Fig. S2. Regression-tree calibration of tree cover (TCC) for the boreal ecoregion.  49 

 50 

S3. Reference measurements of tree cover 51 

Calibration and posterior validation of tree-cover estimates were based on two sources of independent reference data 52 

(Fig. S3). The first source comprised waveform LiDAR measurements collected in 2017 across Alaska and western 53 

Canada by NASA’s Land, Vegetation, and Ice Sensor Facility (LVISF; Blair et al., 1999). For each 10-m LVISF 54 

footprint, tree cover was defined as the fraction of returned energy originating above a 1.37-m height threshold—a 55 

convention commonly used to distinguish trees from shrubs and ground vegetation. These footprint-level estimates 56 

were aggregated to 30-m resolution by averaging all returns whose centroids fell within each 30-m grid cell. The 57 

resulting gridded dataset (Montesano et al., 2021) provided a continuous, structure-based reference for calibrating 58 

MODIS VCF estimates across the full gradient of boreal vegetation density. The second reference source consisted of 59 

425 visually interpreted observations of tree cover derived from very high-resolution spaceborne imagery, primarily 60 

from QuickBird (~0.6 m resolution), in Google Earth. Interpretation focused on identifying individual tree crowns 61 

from pan-sharpened color-infrared images, acquired circa 2008, and distributed across the northern boreal zones of 62 

North America and Eurasia (Montesano et al., 2009; 2016; 2020). To reduce spatial misregistration errors, 63 

interpretation was restricted to homogeneous 500 × 500 m scenes where tree cover could be confidently assessed. 64 

The LVIS canopy cover reference was evaluated relative to NASA G-LiHT airborne LiDAR, which was 65 

assumed as reference. Montesano et al. (2023) reported agreement between LVIS and G-LiHT canopy heights with 66 
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R² values up to 0.87 and RMSE values in the 1–2 m range. No comparable independent validation exists for the high-67 

resolution optical imagery interpretations; these are based on expert identification of crowns in QuickBird scenes, 68 

which have been used extensively in boreal validation but without published quantitative their own error estimates. 69 

S4. Validation metrics 70 

Accuracy of tree-cover and other continuous estimates was quantified by Mean Bias Error (MBE), and their precision 71 

was quantified by Root-Mean-Squared Error (RMSE) (Willmott, 1982): 72 

 73 
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 76 

where Li and Mi are values from the Landsat-based model and the reference data, respectively, at a sample location i, 77 

and n is the count of joint observations in the sample. After modeling the relationship between L and M, the (squared) 78 

difference between L and M were disaggregated into systematic error (MSES) and unsystematic error (MSEU): 79 

 80 
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 83 

where 𝐿.*  is a cover, age, or year value predicted by the modeled relationship (Y = a + b X) between L and M. Ordinary 84 

least squares (OLS) regression was applied to fit the parameters a (intercept), b (slope), and R2 (Sokal and Rohlf, 85 

1994). 86 

Reference datasets provide spatial coverage but not temporal continuity; therefore, stability (bias change 87 

through time) cannot be quantified here. We note this explicitly and highlight the need for sustained reference time 88 

series in future validation efforts. Calibration and validation were conducted using stratified random partitions of 89 

reference data drawn across ecological and topographic gradients, with independent test samples withheld at each 90 

stratum to guard against overfitting. This design reduces—but does not eliminate—the possibility of unincorporated 91 

variance at ecotonal boundaries. A full “leave-tile-out” validation would require exclusion of entire LVIS flightlines 92 

and/or high-resolution imagery tiles during calibration and subsequent reprocessing of the Landsat time series across 93 

the boreal biome. Such an analysis was beyond the scope of the present study and not feasible within the short revision 94 

period, but we identify it as an important avenue for future refinement. 95 
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 96 

Fig. S3. Distribution of high-resolution satellite images (HRSI) and 2017 Land and Vegetation Imaging Sensor “Facility” 97 
version (LVISF) derived measurements for calibration and validation of boreal tree cover estimates. 98 

S5. Historical retrieval of tree cover 99 

Calibrated MODIS VCF tree cover estimates were downscaled and extended to Landsat spatial resolution and 100 

temporal extent through a nonparametric, machine learning regression-tree model f (Sexton et al., 2013): 101 

 102 

𝑐., = 𝑓.𝑋; 𝛽23 + 𝜀         (S5)  103 

 104 

where 𝑐.,  is the percentage of a pixel (i)’s area covered by woody vegetation taller than 3 to 5 meters; 𝛽2  is a 105 

set of empirically estimated parameters; ε is residual error or uncertainty; 𝑋 is a set of Landsat measurements of 106 

surface reflectance, derived indices, image acquisition date, and sensor identification (Fig. S4). The model was fit to 107 

spatiotemporally coincident values of calibrated MODIS VCF as response and Landsat images as covariates and then 108 

applied to each complete Landsat image to produce the map of estimates.  109 

Model parameters were fit in 3×3 moving windows of WRS-2 tiles by a gradient-boosted regression tree 110 

(Dorogush et al., 2018) and applied to the center tile of the window to map tree-cover estimates across the Landsat 111 

images in the center tile. Each model’s training sample was pooled from 2000 to 2019 to minimize overfitting to inter-112 

annual noise, thus conservatively incorporating phenological and atmospheric variability into ε. Each WRS-2 tile’s 113 
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fitted model was applied to all Landsat images from 1984 to 2020 within the tile to retrieve a time series of tree-cover 114 

estimates at 30-m spatial resolution. The median estimate of cover and its uncertainty within each year was reported 115 

as the estimate (c, ε) for that pixel in that year. In addition to minimizing inter-annual noise, this compositing filled 116 

gaps due to clouds, snow, and cloud shadows. 117 

  118 

Fig. S4. Process for estimating tree cover (TCC) and forest probability, change, and age. 119 

 120 

S6. Landsat time series 121 

Tree cover (TC) estimation was based on the Landsat Collection 1, Level-1 Terrain Corrected (L1T) archive covering 122 

the period from 1984 to 2020, including images from the Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced 123 

Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) sensors. All images were downloaded 124 

from the USGS Earth Resources Observation and Science (EROS) Center (http://landsat.usgs.gov). Each image was 125 

converted to units of surface reflectance; the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) 126 

(Schmidt et al., 2013) was used for TM and ETM+ images, and the Landsat Surface Reflectance (LaSRC) (Vermote 127 

et al., 2018) was used for OLI images. Clouds and their shadows were removed following Zhu and Woodcock (2012). 128 

Leveraging the high degree of image overlap in the high latitudes, a total of 2,189 World Reference System 129 

2 (WRS-2) tiles was selected to cover the region. A maximum of four Landsat images within the growing season of 130 

each year and WRS-2 tile were chosen to avoid errors from clouds, snow, and phenological variation. All images were 131 

scored by cloud coverage, seasonality, and image quality flags (e.g., SLC-off, Landsat collection 1 processing levels), 132 

and images with the highest scores in each year were selected for analysis: 133 

 134 

score = ((1 - c) * (1 - ws) + (s * ws)) * wq,       (S6) 135 
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 136 

where c is the ratio of cloudiness in an image (0 = clear, 1 = fully cloudy); s represents the seasonality of the image 137 

calculated as the number of days of an image acquisition to the mid-summer day:  138 

 139 

s = cos (abs (d - ds) * 2 / 366),        (S7) 140 

 141 

where d is the Julian day of the acquisition and ds is the value of Julian day of mid-summer; ws is a seasonality weight 142 

(higher in high latitudes and lower in low latitudes):  143 

 144 

ws = sin (latitude),         (S8) 145 

 146 

and wq is an image quality weight, which is 0.1 for Landsat 7 ETM+ SLC-off images collected after May 31, 2003, 147 

when the Scan Line Corrector (SLC) failed, and 1.0 for all other images. 148 

Images with the highest composite scores were retained, allowing a maximum of 148 images per tile across 149 

the study period. In total, 224,026 images were selected, including 110,407 TM images, 59,791 ETM+ images, and 150 

53,828 OLI images (Fig. S5). Image density varied spatially due to historical archive limitations (Wulder et al., 2016). 151 

Of the 2,189 WRS-2 tiles, 72.6% had at least 90 images available. Persistent data gaps—particularly in central and 152 

eastern Russia—reflect limited ground-based reception capabilities during the 1980s and 1990s for Landsat 4 and 5 153 

(Fig. S6). 154 

 155 

Fig. S5. Number of Landsat TM, ETM+, and OLI images selected in each year. 156 

This biome-specific calibration and rescaling improved characterization of the complex gradient of boreal 157 

tree-cover across the region (Fig. S7). Calibration increased accuracy, decreased uncertainty, and improved the linear 158 

correlation of tree-cover estimates to reference measurements (Fig. S8). MAE decreased to 11.13%, RMSE decreased 159 

to 16.44%, and the coefficient of determination (R2) of the linear model between estimated and measured data 160 

increased to 0.60. The residual bias of the rescaled Landsat-based estimates relative to the LiDAR reference was slight 161 

(~2%). All subsequent analyses, including region-wide summaries, change detection, and forest-age estimation, were 162 

based on the calibrated, rescaled dataset. 163 
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 164 

Fig. S6. Sampling density of Landsat images across the study region from 1984 to 2020.  165 

 166 

 167 

 168 

Fig. S7. Spatial distribution (a) and histogram (b) of RMSE across the boreal region in the Landsat-derived tree cover for 169 
2020. 170 
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 171 

 172 

Fig. S8. Effect of calibration on estimates of tree cover. Scatterplots show the joint distribution of uncalibrated (a) versus 173 
calibrated (b) tree-cover estimates relative to LiDAR-based reference measurements. 174 

S7. Example retrievals of tree-cover disturbance and regrowth 175 

Three examples of forest disturbance and regrowth illustrate the wide variability in post-disturbance recovery 176 

trajectories across the boreal biome (Fig. S9). In Two Creeks, Alberta, Canada (54°21′20.2″N, 116°20′03.8″W), 177 

extensive timber harvesting in 1988 removed mature forest stands. Tree cover declined abruptly from dense pre-178 

disturbance values to below 20% in 1988, followed by steady regrowth to approximately 80% by 2020. In Gorod 179 

Ivdel’, Sverdlovsk Oblast, Russia (60°34′47.6″N, 61°56′54.5″E), clear-cut logging occurred in 1986 and again in 180 

2011. Tree cover declined sharply to near zero in 1987, recovered to over 60% by 2010, and then declined again to 181 

around 20% following the second harvest. By 2020, partial regrowth had restored tree cover to over 40%. In northern 182 

Saskatchewan, Canada (57°44′21.7″N, 104°34′05.4″W), a wildfire in 2009 interrupted a trend of gradual tree-canopy 183 

growth. Tree cover had increased from the mid-1980s to approximately 40% by 2008 before dropping below 20% in 184 

2010. A slow trajectory of recovery followed in the ensuing decade. 185 
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 186 

Fig. S9. Historical retrieval of tree cover collected at three locations across the boreal biome. (a): the forests of Two Creeks, 187 
Alberta, Canada (54°21'20.2"N, 116°20'03.8"W) recorded an anthropogenic disturbance for timber harvest in 1988 and 188 
subsequent recovery over 30 years; (b) the forests in Gorod Ivdel', Sverdlovsk Oblast, Russia (60°34'47.6"N 61°56'54.5"E) 189 
records two timber harvests in 1987 and 2010 and subsequent recoveries. (c): the sparse forests in northern Saskatchewan, 190 
Canada (57°44'21.7"N 104°34'05.4"W) recorded a slow increase of tree cover until a fire disturbance in 2009 and 191 
subsequent recovery afterward. The annual tree cover records are presented in the bottom panel for each location. The 192 
true-color Landsat images are presented in the top panel to show the location (in blue balloon symbol) and historical 193 
landscapes in representative years around the location. 194 

  195 
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S8. Trend analysis of tree cover 196 

The rate (slope), coefficient of determination (R²), and significance (p-value) of tree-cover change over time were 197 

estimated for each pixel using ordinary least squares (OLS) regression. Annual estimates of tree cover were 198 

summarized as pan-boreal means and medians to assess overall trends across the entire study area over the 36-year 199 

period (Fig. 2). To examine spatial variability in these trends, annual mean and median tree cover values were also 200 

aggregated by degree of latitude for the circumpolar boreal domain (47°N to 70°N), and separately for North America 201 

and Eurasia (Fig. S10). This enabled quantification of latitudinal patterns in tree-cover changes at both global and 202 

continental scales. Pixels with 30 or fewer valid annual observations were excluded from the trend analysis to avoid 203 

geographic bias due to gaps in Landsat image availability, particularly in central and northeastern Siberia. In addition, 204 

data from 1984 were excluded because of incomplete spatial coverage during the first operational year of Landsat 5 205 

(Wulder et al., 2016). 206 

Most of the boreal region exhibited minimal change in tree cover, with approximately 70% of the area 207 

showing trends smaller than ±0.5% per year. Tree-cover increases exceeding 0.5% per year occurred in 19.75% of the 208 

region, while decreases greater than 0.5% per year were observed in 9.74% of the region (Fig. S11). 209 

 210 

Fig. S10. Linear regression slope of latitude-stratified tree cover change over time for the entire boreal region (a) as well as 211 
for the region where no disturbance (b) or disturbance (c) was detected during the study period (1984-2020) separately. 212 

 213 
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 214 

 215 

Fig. S11. Frequency distribution of local rates of tree cover change from 1984 to 2020. 216 

 217 

Beginning in 1999 with the addition of Landsat 7 ETM+ to the Landsat fleet, the USGS adopted a 218 

comprehensive global acquisition strategy that greatly increased sampling intensity across the boreal region (Wulder 219 

et al., 2016). To test the possible effect of the increased data availability, trend analyses were conducted on pre- and 220 

post-1999 subsets of the time series, as well as the entire series from 1985 to 2020. Although significance decreased 221 

due to shortening of the temporal span, trends of all pan-boreal regressions for both mean and median tree cover in 222 

both pre- and post-1999 periods remained positive and significant at p < 0.05 (Fig. S12). 223 

 224 

 225 

 226 

Fig. S12. Northward shift of mean and median latitudes of boreal tree cover in periods pre- and post-1999. 227 

 228 

To evaluate the potential influence of forest disturbance on long-term tree-cover trends, we repeated the trend 229 

analysis (Fig. 2) using subsets of disturbed and undisturbed forest. The total study area spanned 17,694,070.5 km², 230 

comprising 575,461,722,221 valid pixel-year observations from 1984 to 2020. Within this subset, 1,746,167,768 231 

pixel-years (0.303%) were classified as disturbed, corresponding to 1,576,707 km²—approximately 10% of the study 232 

area. Using the forest disturbance map (Fig. 3) as a spatial mask, the full pixel population (N = 575,461,722,221) was 233 

partitioned into disturbed (N = 57,819,280,985) and undisturbed (N = 517,642,441,236) subsets. 234 
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Trend analysis revealed a slight but confirmatory effect of disturbance: tree cover in undisturbed areas 235 

exhibited lower interannual variability than in disturbed areas but closely tracked pan-boreal trends across nearly all 236 

latitudes. The exception occurred between 58° and 61°N, where total and undisturbed tree-cover trends diverged. This 237 

difference was attributable to extensive wildfires in Siberia during the observation period and is corroborated by 238 

regional studies (Kukavskaya et al., 2016; Ponomarev et al., 2021).  239 

S9. Forest categorization, change detection, and estimation of forest age 240 

To estimate the timing of forest disturbance and establishment, we defined “forest” as a pixel-level condition where 241 

tree cover c exceeds a predefined threshold c∗	= 30%, following Sexton et al. (2015). Accordingly, the probability of 242 

a pixel being forested, p(F), is the probability that c > c∗, given the estimated tree cover distribution: 243 

 244 

𝑝(𝐹) ≝ 𝑝(𝑐 > 𝑐∗) = ∫ 𝑝(𝑐)𝑑𝑐'00
1∗ .       (S9) 245 

 246 

Tree cover c is modeled as a normally distributed variable: 247 

 248 

𝑝(𝑐) ≝ 𝑁(𝑐̂, 𝜎2) = '
3√25

𝑒"
()*)+)"

"-"        (S10) 249 

 250 

where 𝑐̂  is the estimated tree cover and σ is the root-mean-square error (RMSE) of the estimate, treated as its 251 

uncertainty σ = ε. 252 

Using the resulting 37-year time series of 30-m, annual-resolution forest probabilities p(F), forest disturbance 253 

and establishment events were identified as statistically significant transitions across the 50% forest-probability 254 

threshold. A two-sample z-test was applied in a moving temporal kernel to detect such changes: 255 

 256 

𝑧 = 6%"	6"
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"

#%
	"	
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"

#"

          (S11) 257 

 258 

where 𝑥' and 𝑥2 are antecedent and trailing means, respectively, 𝜎' and 𝜎2 are their standard deviations, and 𝑛' and 259 

𝑛2 are the number of forest-probability estimates contributing to the values in all years.  260 

The test was applied with the kernel centered on each forest-probability value of 50% in the series that was 261 

also increasing over time—i.e., 𝑝.𝐹9%3 = 𝑥' < 50% and 𝑝.𝐹9"3 = 𝑥2 >= 50%. If a statistically significant (p <= 0.05) 262 

difference was identified between the two ascending groups, the focal year was labeled as a forest gain or loss. If 263 

multiple significant losses or gains were detected in a pixel over the 36 years (1985-2020), up to three events were 264 

recorded. The detected forest disturbance was categorized as “incomplete” if its input annual tree cover had records 265 

missing at more than 7 years over the observable period (1985-2020); otherwise, “complete”. The “incomplete” 266 

disturbance mainly occurred after 1999 due to the limited coverage of Landsat data before Landsat ETM+ (Fig. 3). 267 
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 268 

Fig. S13. Time-series of derived forest probability and division of groups for forest gain identification. C* defines the 269 
minimum tree cover for a forest. 270 

 271 

Forest age, in years, at any year t* and location (x, y) was calculated by subtracting the year of the most recent 272 

significant forest gain t+ from the focal year: 273 

 274 

𝐹𝑜𝑟𝑒𝑠𝑡	𝐴𝑔𝑒 = 𝑡∗ − 𝑡:.        (S12) 275 

   276 

While insensitive to the early stages of seedling establishment and growth, this formalization is logically 277 

consistent with the definition of forest and enabled consistent measurement across the entire boreal domain. Forested 278 

pixels were further categorized into “new” and “recovering” forests: “new” forests were identified as pixels with forest 279 

cover following a gain but no prior forest cover or loss earlier in the time series within a 150-m radius (5 pixels) over 280 

the observable period (1985 – 2020); “recovering” forests were identified as pixels with forest cover following a gain 281 

where a forest loss had been observed previously in the series.  282 

S10. Validation of forest changes 283 

Detected forest changes were validated using a two-tier, stratified sampling design. In the first tier, 41 WRS-2 tiles in 284 

North America and 43 in Eurasia were selected to represent the diversity of bioclimatic conditions, topographic 285 

gradients, and forest characteristics across the region. Within each selected tile, a second-tier sample was drawn 286 

consisting of 60 points in the posterior “change” stratum and 30 points in the “no change” stratum, which included 287 

both persistent forest and persistent non-forest. After excluding pixels with invalid observations and removing 288 

duplicates from overlapping WRS-2 tiles, a total of 4,320 unique sample points were retained (Fig. S14). These were 289 

randomly divided into 12 equally sized groups and assigned to 12 expert interpreters. For each point, interpreters 290 

assessed annual forest status (forest or non-forest) and identified the timing of any disturbance events using time series 291 

of Landsat NDVI and, where available, time-serial high-resolution imagery from Google Earth. Each interpretation 292 

was assigned a confidence score ranging from 0 (uninformative) to 3 (high confidence): 0 = uninterpretable, 1 = low, 293 

2 = medium, and 3 = high. A total of 2,404 points received medium or high confidence scores and were retained for 294 

validation analyses. 295 

 296 
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 297 

Fig. S14. Spatial distribution of the visually interpreted reference sample of forest change. 298 

 299 

Estimates of the year of most recent forest loss showed strong agreement with visually interpreted reference 300 

data, with R2 = 0.79, mean bias of 1.45 years, and dispersion (RMSE) of 4.66 years (Fig. S15Fig. S15a). The densest 301 

concentration of paired values occurred along the 1:1 line, and errors were skewed toward later detection of change 302 

by the algorithm, likely due to the preference of expert interpreters to earlier changes.  Estimated year of the most 303 

recent forest gain showed a weaker linear relationship (R2 = 0.20) to visually identified reference data (Fig. S15Fig. 304 

S15b); RMSE was 8.9 years, and MBE was 2.49 years. As with forest-loss year, estimated forest-gain years were 305 

higher than reference observations, likely due to the same cause. The error was dominated by unsystematic noise 306 

(MSEU > MSES) in all three variables, i.e., forest-loss year, forest-gain year, and forest age (Table S1Table S1). 307 

The accuracy assessment of forest age yielded an RMSE of 17.96 years and bias of –3.27 years. These values 308 

indicate high uncertainty in stand age retrieval. Accordingly, the forest age dataset should be interpreted as a broad-309 

scale indicator of age distribution rather than an exact estimator at individual pixels. We recommend caution in map 310 

interpretation and highlight the need for further work to better characterize regional and class-specific errors. 311 

 312 

 313 

 314 
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 315 
Fig. S15. Scatterplots and linear regression of estimated forest loss (a), gain (b), and age (c) relative to visually identified 316 
reference observations. 317 

Table S1. Validation of forest loss, gain, and age estimates against visually identified reference observations. 318 

Estimate n MBE MSEs MSEu MSE RMSE 

Forest Loss 

(year) 
231 1.45 4.08 17.67 21.76 4.66 

Forest Gain 

(year) 
178 2.49 21.23 58.05 79.28 8.90 

Forest Age 

(years) 
1,648 -3.27 67.41 255.29 322.70 17.96 

 319 

  320 
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S11. Estimation of carbon in aboveground biomass by stand age 321 

Aboveground biomass carbon was modelled as a function of forest age (Cook-Patton et al., 2020) (Fig. S16Fig. S16), 322 

estimating for each age a range of possible carbon estimates by applying ±1 standard deviation from the intercept 323 

(µ = -35.7, σ = 12.6) and  slope coefficients (µ = 23.2, σ = 3.2):  324 

 325 

Mg	C	ha"# = (−35.7 ± 12.6)	 + 	(23.2 ± 3.2) × ln(𝑠𝑡𝑎𝑛𝑑	𝑎𝑔𝑒) . 	    (S13) 326 

 327 

Because the average age of forests older than 36 years could not be directly determined from the satellite 328 

record, total aboveground carbon stocks for these undated stands were bracketed using three hypothetical scenarios. 329 

These assumed mean stand ages of 36, 100, and 300 years, corresponding to estimated AGB carbon stocks of 19.1–330 

58.4 Pg C, 35.8–80.5 Pg C, and 42.4–89.2 Pg C, respectively. The range of estimates accounts for parametric 331 

uncertainty in the growth model as well as variation in the assumed age structure of undated forest. However, these 332 

estimates do not incorporate potential variability related to changes in soil moisture or other edaphic factors. 333 

 334 

 335 
Fig. S16. Cumulative forest aboveground biomass (AGB) as a function of forest age.  The area under the curves is calculated 336 
as a cumulative sum of AGB stand age × Area stand age for new forest, regrow forest, and both.  337 

S12. Estimation of a potential range in ecosystem respiration from realistic temperatures 338 

To assess the role of young and recovering forests in offsetting temperature-driven increases in boreal respiration, we 339 

compared their carbon sink potential against both empirical and modeled estimates of terrestrial ecosystem respiration 340 

(TER). Upscaled flux estimates from Jung et al. (2011), based on eddy covariance data for the late 1990s and early 341 

2000s and applied to the 1982–2008 period, yield a mean annual boreal TER of 7.37 Pg C yr⁻¹. During this interval, 342 

TER increased at a rate of 0.021 Pg C yr⁻² (r = 0.52, p < 0.005). Extrapolated across the 1984-2020 period under a 343 

linear trend assumption, this corresponds to a cumulative efflux of approximately 9.87 Pg C (Wei et al., 2014; Dee et 344 

al., 2011; Forkel et al., 2016). In contrast, a higher-end model estimate using Q₁₀-based respiration dynamics projects 345 

28.36 Pg C over the same interval (Mahecha et al., 2010). 346 

To independently estimate the cumulative effect of warming on respiration, we applied a first-order Q₁₀ 347 

model assuming constant baseline respiration and a linear 1.5°C increase in temperature over the 36-year period: 348 

 349 
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 351 

where Ti is the temperature departure from the average (Tavg) based on a 1.5°C/36-yr trend, Q10 is the temperature 352 

sensitivity of TER, and Tref is the reference temperature.  353 

Depending on the values of Q10 (1.4 to 2.2) and Tref (5°C to 15°C), from more conservative (lower Q10, higher 354 

Tref) to more aggressive (large Q10, low Tref), the cumulative respiration fluxes from the temperature trend can range 355 

between 5 Pg C and 25 Pg C for the 36 years. The trend in tree cover could dampen 18% (percentile 10), or even 356 

exceed by twofold (percentile 90) the increase in TER only driven by temperature. Considering a Tref of 15°C and a 357 

Q10 of 1.4 ± 0.1, as derived from eddy covariance data (Mahecha et al., 2010), the expected (median) buffering effect 358 

would represent 65% of the temperature-driven increase in TER, ranging between 15% and 125%. 359 

Temperature trends were derived from two independent sources: the Climate Research Unit (CRU) dataset 360 

(1979–2016; Wei et al., 2014) and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-361 

Interim reanalysis (1979–2016; Dee et al., 2011). Both records show significant warming trends over the boreal region 362 

during the study period: 0.038°C yr⁻¹ (r = 0.69, p < 1 × 10⁻⁵) in the CRU dataset and 0.035°C yr⁻¹ (r = 0.73, p < 1 × 363 

10⁻⁶) in ERA (Fig. S17Fig. S17). 364 

 365 

 366 
Fig. S17. Trends in air temperature in the boreal zone (orange: ERA, blue: CRU). We checked the consistency of the trend 367 
for several other temperature products and found a trend of 0.032 ± 0.006 (N=7) across them. Data sources: CERES/GPCP, 368 
CRU-JRA, CRUNCEP v6 and v8, GSWP3, WFDEI, and ERA5. 369 

  370 
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