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S1. Study Area

The study region (Fig. S1) was defined by all boreal forest or taiga ecoregions, as well as a selection of immediately
adjacent temperate conifer forests and tundra regions predominantly surrounded by boreal forest or taiga (Dinerstein

etal., 2017).

Boreal Forests/Taiga
Temperate Conifer Forests

B tundna

Fig. S1. Study area extent and inclusion of boreal forests/taiga with a selection of immediately adjacent temperate conifer
forests and tundra from Dinerstein et al. (2017).

S2. Boreal calibration of MODIS VCF tree-cover input data

Downscaling and extension of the high-resolution, 36-year historical time series of tree cover estimates was based on
the MODIS Vegetation Continuous Fields (VCF) Collection 6 Tree Canopy product (MOD44B; Carroll et al., 2011),
following calibration to the boreal region (Fig. S2). The 250-m MODIS VCF data were acquired from NASA’s Land
Processes Distributed Active Archive Center (LP DAAC) (https://Ipdaac.usgs.gov/tools/data-pool/) and masked using

the MODIS Cropland Probability layer (Pittman et al., 2010) (https://glad.umd.edu/dataset/gce/modis-global-crop-

extent-discrete-croplandnot-cropland-data) to exclude agricultural lands.

To improve characterization of boreal tree cover, the original MODIS tree cover estimates were calibrated to
a region-wide sample of airborne LiDAR-based reference measurements (Montesano et al., 2016). Calibration
stratified by topographic and climatic gradients, including elevation, slope, and aspect derived from ASTER GDEM
v3 (Abrams et al., 2020) and bioclimatic variables from WorldClim v2 (Fick and Hijmans, 2017). Calibration models
were trained using the Cubist regression tree algorithm, with reference data partitioned into independent training and
testing sets via stratified random sampling across the range of observed tree cover values. Multiple Cubist models

were fit to the training sample and subjected to iterative variable selection to reduce overfitting. At each iteration, the
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lowest-ranked predictor was removed and the model rebuilt. After 23 iterations, the model achieving the highest
coefficient of determination (R?) on the test sample was selected for application.

The calibrated MODIS VCF estimates were then rescaled to 30-m resolution and extended to the full Landsat
archive (1984-2020), producing an annual, high-resolution record of tree cover suitable for biome-wide change

detection.

Input variables
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Reference TCC s
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Fig. S2. Regression-tree calibration of tree cover (TCC) for the boreal ecoregion.

S3. Reference measurements of tree cover

Calibration and posterior validation of tree-cover estimates were based on two sources of independent reference data
(Fig. S3). The first source comprised waveform LiDAR measurements collected in 2017 across Alaska and western
Canada by NASA’s Land, Vegetation, and Ice Sensor Facility (LVISF; Blair et al., 1999). For each 10-m LVISF
footprint, tree cover was defined as the fraction of returned energy originating above a 1.37-m height threshold—a
convention commonly used to distinguish trees from shrubs and ground vegetation. These footprint-level estimates
were aggregated to 30-m resolution by averaging all returns whose centroids fell within each 30-m grid cell. The
resulting gridded dataset (Montesano et al., 2021) provided a continuous, structure-based reference for calibrating
MODIS VCF estimates across the full gradient of boreal vegetation density. The second reference source consisted of
425 visually interpreted observations of tree cover derived from very high-resolution spaceborne imagery, primarily
from QuickBird (~0.6 m resolution), in Google Earth. Interpretation focused on identifying individual tree crowns
from pan-sharpened color-infrared images, acquired circa 2008, and distributed across the northern boreal zones of
North America and Eurasia (Montesano et al., 2009; 2016; 2020). To reduce spatial misregistration errors,
interpretation was restricted to homogeneous 500 x 500 m scenes where tree cover could be confidently assessed.
The LVIS canopy cover reference was evaluated relative to NASA G-LiHT airborne LiDAR, which was
assumed as reference. Montesano et al. (2023) reported agreement between LVIS and G-LiHT canopy heights with
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R? values up to 0.87 and RMSE values in the 1-2 m range. No comparable independent validation exists for the high-
resolution optical imagery interpretations; these are based on expert identification of crowns in QuickBird scenes,

which have been used extensively in boreal validation but without published quantitative their own error estimates.

S4. Validation metrics
Accuracy of tree-cover and other continuous estimates was quantified by Mean Bias Error (MBE), and their precision
was quantified by Root-Mean-Squared Error (RMSE) (Willmott, 1982):

Li—M;

MBE = Y., —— (S1)
RMSE = [Ei=m&it)® (S2)
n

where Li and M; are values from the Landsat-based model and the reference data, respectively, at a sample location

and n is the count of joint observations in the sample. After modeling the relationship between L and M, the (squared)

difference between L and M were disaggregated into systematic error (MSEs) and unsystematic error (MSEv):
(L=M;)?

MSE; = ¥ i (S3)

n

2
MSE, =y Gizt)” (S4)

n

where L, is a cover, age, or year value predicted by the modeled relationship (Y= a + b X) between L and M. Ordinary
least squares (OLS) regression was applied to fit the parameters a (intercept), b (slope), and R’ (Sokal and Rohlf,
1994).

Reference datasets provide spatial coverage but not temporal continuity; therefore, stability (bias change
through time) cannot be quantified here. We note this explicitly and highlight the need for sustained reference time
series in future validation efforts. Calibration and validation were conducted using stratified random partitions of
reference data drawn across ecological and topographic gradients, with independent test samples withheld at each
stratum to guard against overfitting. This design reduces—but does not eliminate—the possibility of unincorporated
variance at ecotonal boundaries. A full “leave-tile-out” validation would require exclusion of entire LVIS flightlines
and/or high-resolution imagery tiles during calibration and subsequent reprocessing of the Landsat time series across
the boreal biome. Such an analysis was beyond the scope of the present study and not feasible within the short revision

period, but we identify it as an important avenue for future refinement.
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Fig. S3. Distribution of high-resolution satellite images (HRSI) and 2017 Land and Vegetation Imaging Sensor “Facility”
version (LVISF) derived measurements for calibration and validation of boreal tree cover estimates.

S5. Historical retrieval of tree cover

Calibrated MODIS VCF tree cover estimates were downscaled and extended to Landsat spatial resolution and

temporal extent through a nonparametric, machine learning regression-tree model /' (Sexton et al., 2013):

&=f(X;B)+e (S5)

where ¢, is the percentage of a pixel (/)’s area covered by woody vegetation taller than 3 to 5 meters; /3 is a
set of empirically estimated parameters; ¢ is residual error or uncertainty; X is a set of Landsat measurements of
surface reflectance, derived indices, image acquisition date, and sensor identification (Fig. S4). The model was fit to
spatiotemporally coincident values of calibrated MODIS VCF as response and Landsat images as covariates and then
applied to each complete Landsat image to produce the map of estimates.

Model parameters were fit in 3x3 moving windows of WRS-2 tiles by a gradient-boosted regression tree
(Dorogush et al., 2018) and applied to the center tile of the window to map tree-cover estimates across the Landsat
images in the center tile. Each model’s training sample was pooled from 2000 to 2019 to minimize overfitting to inter-

annual noise, thus conservatively incorporating phenological and atmospheric variability into €. Each WRS-2 tile’s
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fitted model was applied to all Landsat images from 1984 to 2020 within the tile to retrieve a time series of tree-cover
estimates at 30-m spatial resolution. The median estimate of cover and its uncertainty within each year was reported
as the estimate (c, ¢) for that pixel in that year. In addition to minimizing inter-annual noise, this compositing filled
gaps due to clouds, snow, and cloud shadows.
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Fig. S4. Process for estimating tree cover (TCC) and forest probability, change, and age.

S6. Landsat time series

Tree cover (TC) estimation was based on the Landsat Collection 1, Level-1 Terrain Corrected (L1T) archive covering
the period from 1984 to 2020, including images from the Landsat 4 and 5 Thematic Mapper (TM), Landsat 7 Enhanced
Thematic Mapper Plus (ETM+), and Landsat 8 Operational Land Imager (OLI) sensors. All images were downloaded
from the USGS Earth Resources Observation and Science (EROS) Center (http://landsat.usgs.gov). Each image was

converted to units of surface reflectance; the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS)
(Schmidt et al., 2013) was used for TM and ETM+ images, and the Landsat Surface Reflectance (LaSRC) (Vermote
et al., 2018) was used for OLI images. Clouds and their shadows were removed following Zhu and Woodcock (2012).

Leveraging the high degree of image overlap in the high latitudes, a total of 2,189 World Reference System
2 (WRS-2) tiles was selected to cover the region. A maximum of four Landsat images within the growing season of
each year and WRS-2 tile were chosen to avoid errors from clouds, snow, and phenological variation. All images were
scored by cloud coverage, seasonality, and image quality flags (e.g., SLC-off, Landsat collection 1 processing levels),

and images with the highest scores in each year were selected for analysis:

score = ((1 - ¢) * (1 - ws) + (s * ws)) * wq, (S6)


http://landsat.usgs.gov/

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

155

156

157
158
159
160
161
162
163

where c is the ratio of cloudiness in an image (0 = clear, 1 = fully cloudy); s represents the seasonality of the image

calculated as the number of days of an image acquisition to the mid-summer day:

s =cos (abs (d - ds) * 2/ 366), (S7)

where d is the Julian day of the acquisition and ds is the value of Julian day of mid-summer; ws is a seasonality weight

(higher in high latitudes and lower in low latitudes):

ws = sin (latitude), (S8)

and wq is an image quality weight, which is 0.1 for Landsat 7 ETM+ SLC-off images collected after May 31, 2003,
when the Scan Line Corrector (SLC) failed, and 1.0 for all other images.

Images with the highest composite scores were retained, allowing a maximum of 148 images per tile across
the study period. In total, 224,026 images were selected, including 110,407 TM images, 59,791 ETM+ images, and
53,828 OLI images (Fig. S5). Image density varied spatially due to historical archive limitations (Wulder et al., 2016).
Of the 2,189 WRS-2 tiles, 72.6% had at least 90 images available. Persistent data gaps—particularly in central and
eastern Russia—reflect limited ground-based reception capabilities during the 1980s and 1990s for Landsat 4 and 5
(Fig. S6).
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Fig. S5. Number of Landsat TM, ETM+, and OLI images selected in each year.

This biome-specific calibration and rescaling improved characterization of the complex gradient of boreal
tree-cover across the region (Fig. S7). Calibration increased accuracy, decreased uncertainty, and improved the linear
correlation of tree-cover estimates to reference measurements (Fig. S8). MAE decreased to 11.13%, RMSE decreased
to 16.44%, and the coefficient of determination (R?) of the linear model between estimated and measured data
increased to 0.60. The residual bias of the rescaled Landsat-based estimates relative to the LIDAR reference was slight
(~2%). All subsequent analyses, including region-wide summaries, change detection, and forest-age estimation, were

based on the calibrated, rescaled dataset.
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Fig. S8. Effect of calibration on estimates of tree cover. Scatterplots show the joint distribution of uncalibrated (a) versus
calibrated (b) tree-cover estimates relative to LIDAR-based reference measurements.

S7. Example retrievals of tree-cover disturbance and regrowth

Three examples of forest disturbance and regrowth illustrate the wide variability in post-disturbance recovery
trajectories across the boreal biome (Fig. S9). In Two Creeks, Alberta, Canada (54°2120.2"N, 116°20'03.8"W),
extensive timber harvesting in 1988 removed mature forest stands. Tree cover declined abruptly from dense pre-
disturbance values to below 20% in 1988, followed by steady regrowth to approximately 80% by 2020. In Gorod
Ivdel’, Sverdlovsk Oblast, Russia (60°34'47.6"N, 61°56'54.5"E), clear-cut logging occurred in 1986 and again in
2011. Tree cover declined sharply to near zero in 1987, recovered to over 60% by 2010, and then declined again to
around 20% following the second harvest. By 2020, partial regrowth had restored tree cover to over 40%. In northern
Saskatchewan, Canada (57°44'21.7"N, 104°34'05.4"W), a wildfire in 2009 interrupted a trend of gradual tree-canopy
growth. Tree cover had increased from the mid-1980s to approximately 40% by 2008 before dropping below 20% in

2010. A slow trajectory of recovery followed in the ensuing decade.
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Fig. S9. Historical retrieval of tree cover collected at three locations across the boreal biome. (a): the forests of Two Creeks,
Alberta, Canada (54°21'20.2"'N, 116°20'03.8""W) recorded an anthropogenic disturbance for timber harvest in 1988 and
subsequent recovery over 30 years; (b) the forests in Gorod Ivdel', Sverdlovsk Oblast, Russia (60°34'47.6"N 61°56'54.5"E)
records two timber harvests in 1987 and 2010 and subsequent recoveries. (¢): the sparse forests in northern Saskatchewan,
Canada (57°44'21.7"N 104°34'05.4"W) recorded a slow increase of tree cover until a fire disturbance in 2009 and
subsequent recovery afterward. The annual tree cover records are presented in the bottom panel for each location. The
true-color Landsat images are presented in the top panel to show the location (in blue balloon symbol) and historical
landscapes in representative years around the location.
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S8. Trend analysis of tree cover

The rate (slope), coefficient of determination (R?), and significance (p-value) of tree-cover change over time were
estimated for each pixel using ordinary least squares (OLS) regression. Annual estimates of tree cover were
summarized as pan-boreal means and medians to assess overall trends across the entire study area over the 36-year
period (Fig. 2). To examine spatial variability in these trends, annual mean and median tree cover values were also
aggregated by degree of latitude for the circumpolar boreal domain (47°N to 70°N), and separately for North America
and Eurasia (Fig. S10). This enabled quantification of latitudinal patterns in tree-cover changes at both global and
continental scales. Pixels with 30 or fewer valid annual observations were excluded from the trend analysis to avoid
geographic bias due to gaps in Landsat image availability, particularly in central and northeastern Siberia. In addition,
data from 1984 were excluded because of incomplete spatial coverage during the first operational year of Landsat 5
(Wulder et al., 2016).

Most of the boreal region exhibited minimal change in tree cover, with approximately 70% of the area
showing trends smaller than +0.5% per year. Tree-cover increases exceeding 0.5% per year occurred in 19.75% of the

region, while decreases greater than 0.5% per year were observed in 9.74% of the region (Fig. S11).
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Fig. S10. Linear regression slope of latitude-stratified tree cover change over time for the entire boreal region (a) as well as
for the region where no disturbance (b) or disturbance (c) was detected during the study period (1984-2020) separately.

11



214

215

216

217
218
219
220
221
222
223
224
225

226

227

228
229
230
231
232
233
234

80
70
60
= 50
o 40
<30
20 14.69

6.91
4.6
10 0.05 0.35 243 04 0.06

7051

<4 -4~ -3 -3~-15 -1.5~ 0.5 -0.5~0.5 0.571.5 1573 3~4 =4
Tree-canopy cover change rate (%/year)

Fig. S11. Frequency distribution of local rates of tree cover change from 1984 to 2020.

Beginning in 1999 with the addition of Landsat 7 ETM+ to the Landsat fleet, the USGS adopted a
comprehensive global acquisition strategy that greatly increased sampling intensity across the boreal region (Wulder
et al., 2016). To test the possible effect of the increased data availability, trend analyses were conducted on pre- and
post-1999 subsets of the time series, as well as the entire series from 1985 to 2020. Although significance decreased
due to shortening of the temporal span, trends of all pan-boreal regressions for both mean and median tree cover in

both pre- and post-1999 periods remained positive and significant at p < 0.05 (Fig. S12).
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Fig. S12. Northward shift of mean and median latitudes of boreal tree cover in periods pre- and post-1999.

To evaluate the potential influence of forest disturbance on long-term tree-cover trends, we repeated the trend
analysis (Fig. 2) using subsets of disturbed and undisturbed forest. The total study area spanned 17,694,070.5 km?,
comprising 575,461,722,221 valid pixel-year observations from 1984 to 2020. Within this subset, 1,746,167,768
pixel-years (0.303%) were classified as disturbed, corresponding to 1,576,707 km>—approximately 10% of the study
area. Using the forest disturbance map (Fig. 3) as a spatial mask, the full pixel population (N = 575,461,722,221) was
partitioned into disturbed (N = 57,819,280,985) and undisturbed (N = 517,642,441,236) subsets.
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Trend analysis revealed a slight but confirmatory effect of disturbance: tree cover in undisturbed areas
exhibited lower interannual variability than in disturbed areas but closely tracked pan-boreal trends across nearly all
latitudes. The exception occurred between 58° and 61°N, where total and undisturbed tree-cover trends diverged. This
difference was attributable to extensive wildfires in Siberia during the observation period and is corroborated by

regional studies (Kukavskaya et al., 2016; Ponomarev et al., 2021).

S9. Forest categorization, change detection, and estimation of forest age

To estimate the timing of forest disturbance and establishment, we defined “forest” as a pixel-level condition where
tree cover ¢ exceeds a predefined threshold c¢* = 30%, following Sexton et al. (2015). Accordingly, the probability of

a pixel being forested, p(F), is the probability that ¢ > c*, given the estimated tree cover distribution:

. . 100
p(F) Ep(c>c") = [. p(c)de. (89)
Tree cover ¢ is modeled as a normally distributed variable:

_(c=0)?

mqgwwﬁﬂ:;%ezﬂ (S10)

where ¢ is the estimated tree cover and o is the root-mean-square error (RMSE) of the estimate, treated as its
uncertainty o= ¢.

Using the resulting 37-year time series of 30-m, annual-resolution forest probabilities p(F), forest disturbance
and establishment events were identified as statistically significant transitions across the 50% forest-probability

threshold. A two-sample z-test was applied in a moving temporal kernel to detect such changes:

, Bt s

where X, and X, are antecedent and trailing means, respectively, g; and g, are their standard deviations, and n, and
n, are the number of forest-probability estimates contributing to the values in all years.

The test was applied with the kernel centered on each forest-probability value of 50% in the series that was
also increasing over time—i.e., p(Ft 1) =x; < 50% and p(th) = X, >= 50%. If a statistically significant (p <= 0.05)
difference was identified between the two ascending groups, the focal year was labeled as a forest gain or loss. If
multiple significant losses or gains were detected in a pixel over the 36 years (1985-2020), up to three events were
recorded. The detected forest disturbance was categorized as “incomplete” if its input annual tree cover had records
missing at more than 7 years over the observable period (1985-2020); otherwise, “complete”. The “incomplete”

disturbance mainly occurred after 1999 due to the limited coverage of Landsat data before Landsat ETM+ (Fig. 3).
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Fig. S13. Time-series of derived forest probability and division of groups for forest gain identification. C* defines the
minimum tree cover for a forest.

Forest age, in years, at any year #* and location (x, y) was calculated by subtracting the year of the most recent

significant forest gain ¢ from the focal year:

Forest Age =t* —t™. (S12)

While insensitive to the early stages of seedling establishment and growth, this formalization is logically
consistent with the definition of forest and enabled consistent measurement across the entire boreal domain. Forested
pixels were further categorized into “new” and “recovering” forests: “new” forests were identified as pixels with forest
cover following a gain but no prior forest cover or loss earlier in the time series within a 150-m radius (5 pixels) over
the observable period (1985 — 2020); “recovering” forests were identified as pixels with forest cover following a gain

where a forest loss had been observed previously in the series.

S10. Validation of forest changes

Detected forest changes were validated using a two-tier, stratified sampling design. In the first tier, 41 WRS-2 tiles in
North America and 43 in Eurasia were selected to represent the diversity of bioclimatic conditions, topographic
gradients, and forest characteristics across the region. Within each selected tile, a second-tier sample was drawn
consisting of 60 points in the posterior “change” stratum and 30 points in the “no change” stratum, which included
both persistent forest and persistent non-forest. After excluding pixels with invalid observations and removing
duplicates from overlapping WRS-2 tiles, a total of 4,320 unique sample points were retained (Fig. S14). These were
randomly divided into 12 equally sized groups and assigned to 12 expert interpreters. For each point, interpreters
assessed annual forest status (forest or non-forest) and identified the timing of any disturbance events using time series
of Landsat NDVI and, where available, time-serial high-resolution imagery from Google Earth. Each interpretation
was assigned a confidence score ranging from 0 (uninformative) to 3 (high confidence): 0 = uninterpretable, 1 = low,
2 = medium, and 3 = high. A total of 2,404 points received medium or high confidence scores and were retained for

validation analyses.
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Fig. S14. Spatial distribution of the visually interpreted reference sample of forest change.

Estimates of the year of most recent forest loss showed strong agreement with visually interpreted reference
data, with R? = 0.79, mean bias of 1.45 years, and dispersion (RMSE) of 4.66 years (Fig. S15Fig-S15a). The densest
concentration of paired values occurred along the 1:1 line, and errors were skewed toward later detection of change
by the algorithm, likely due to the preference of expert interpreters to earlier changes. Estimated year of the most
recent forest gain showed a weaker linear relationship (R? = 0.20) to visually identified reference data (Fig. S15Fig:
$15b); RMSE was 8.9 years, and MBE was 2.49 years. As with forest-loss year, estimated forest-gain years were
higher than reference observations, likely due to the same cause. The error was dominated by unsystematic noise
(MSEu> MSE5) in all three variables, i.e., forest-loss year, forest-gain year, and forest age (Table S1Fable-S1).

The accuracy assessment of forest age yielded an RMSE of 17.96 years and bias of —3.27 years. These values
indicate high uncertainty in stand age retrieval. Accordingly, the forest age dataset should be interpreted as a broad-
scale indicator of age distribution rather than an exact estimator at individual pixels. We recommend caution in map

interpretation and highlight the need for further work to better characterize regional and class-specific errors.
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Table S1. Validation of forest loss, gain, and age estimates against visually identified reference observations.

Estimate n MBE MSEs MSEu MSE RMSE
Forest Loss
231 1.45 4.08 17.67 21.76 4.66
(year)
Forest Gain
178 2.49 21.23 58.05 79.28 8.90
(year)
Forest Age
1,648 -3.27 67.41 255.29 322.70 17.96
(years)
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S11. Estimation of carbon in aboveground biomass by stand age

Aboveground biomass carbon was modelled as a function of forest age (Cook-Patton et al., 2020) (Fig. S16Fie—S16),
estimating for each age a range of possible carbon estimates by applying +1 standard deviation from the intercept

(u=-35.7,0=12.6) and slope coefficients (u =23.2, 0 =3.2):
MgCha ! = (-35.7 £ 12.6) + (23.2 + 3.2) X In(stand age). (S13)

Because the average age of forests older than 36 years could not be directly determined from the satellite
record, total aboveground carbon stocks for these undated stands were bracketed using three hypothetical scenarios.
These assumed mean stand ages of 36, 100, and 300 years, corresponding to estimated AGB carbon stocks of 19.1—
58.4 Pg C, 35.8-80.5 Pg C, and 42.4-89.2 Pg C, respectively. The range of estimates accounts for parametric
uncertainty in the growth model as well as variation in the assumed age structure of undated forest. However, these

estimates do not incorporate potential variability related to changes in soil moisture or other edaphic factors.

Boreal Carbon Stocks by Age [ New Forest [ Regrow Forest

PgC
3
3

5 10 15 20 2 30 35 5 10 15 20 25 30 3s s 10 15 20 2 30 38

Stand Age Stand Age Stand Age

Fig. S16. Cumulative forest aboveground biomass (AGB) as a function of forest age. The area under the curves is calculated
as a cumulative sum of AGB gand age X Area gand age for new forest, regrow forest, and both.

S12. Estimation of a potential range in ecosystem respiration from realistic temperatures

To assess the role of young and recovering forests in offsetting temperature-driven increases in boreal respiration, we
compared their carbon sink potential against both empirical and modeled estimates of terrestrial ecosystem respiration
(TER). Upscaled flux estimates from Jung et al. (2011), based on eddy covariance data for the late 1990s and early
2000s and applied to the 1982—2008 period, yield a mean annual boreal TER of 7.37 Pg C yr'. During this interval,
TER increased at a rate of 0.021 Pg C yr2 (r = 0.52, p < 0.005). Extrapolated across the 1984-2020 period under a
linear trend assumption, this corresponds to a cumulative efflux of approximately 9.87 Pg C (Wei et al., 2014; Dee et
al., 2011; Forkel et al., 2016). In contrast, a higher-end model estimate using Qio-based respiration dynamics projects
28.36 Pg C over the same interval (Mahecha et al., 2010).

To independently estimate the cumulative effect of warming on respiration, we applied a first-order Q1o

model assuming constant baseline respiration and a linear 1.5°C increase in temperature over the 36-year period:
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TER ym = 2201 [Qqo 17 Trer/10 — @, Tavg™Tre)/10] « TER ., (S14)

where T; is the temperature departure from the average (Tug) based on a 1.5°C/36-yr trend, Q1o is the temperature
sensitivity of TER, and T,.ris the reference temperature.

Depending on the values of Q10 (1.4 to 2.2) and Trer (5°C to 15°C), from more conservative (lower Q1o, higher
Tref) to more aggressive (large Qio, low Tre), the cumulative respiration fluxes from the temperature trend can range
between 5 Pg C and 25 Pg C for the 36 years. The trend in tree cover could dampen 18% (percentile 10), or even
exceed by twofold (percentile 90) the increase in TER only driven by temperature. Considering a Tr.r of 15°C and a
Qio0f 1.4+ 0.1, as derived from eddy covariance data (Mahecha et al., 2010), the expected (median) buffering effect
would represent 65% of the temperature-driven increase in TER, ranging between 15% and 125%.

Temperature trends were derived from two independent sources: the Climate Research Unit (CRU) dataset
(1979-2016; Wei et al., 2014) and the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-
Interim reanalysis (1979-2016; Dee et al., 2011). Both records show significant warming trends over the boreal region
during the study period: 0.038°C yr' (r = 0.69, p <1 x 107°) in the CRU dataset and 0.035°C yr ' (r=0.73,p <1 x
107¢) in ERA (Fig. S17Fie-S17).
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Fig. S17. Trends in air temperature in the boreal zone (orange: ERA, blue: CRU). We checked the consistency of the trend
for several other temperature products and found a trend of 0.032 + 0.006 (N=7) across them. Data sources: CERES/GPCP,
CRU-JRA, CRUNCEP v6 and v8, GSWP3, WFDEIL, and ERAS.
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