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Abstract. Forests play a crucial role in the Earth System,
providing essential ecosystem services and sustaining bio-
logical diversity. However, forest ecosystems are increas-
ingly impacted by disturbances, which are often integral to
their dynamics but have been exacerbated by climate change.
Despite the growing concern about these trends, the lack of
consistent and temporally continuous data on forest distur-
bances at large spatial scales hinders our ability to accurately
characterize changes in disturbance regimes and respond to
these changes.

In this study, we evaluate the consistency in spatial distri-
bution and extent, disturbance timing and causal agent (when
available), of five forest disturbance datasets available for the
conterminous United States, to identify advantages as well
potential shortcomings and inaccuracies of different map-
ping approaches. Consistency refers to the extent to which
different forest disturbance datasets report similar timings
and causal agents for overlapping disturbance events, reflect-
ing their level of agreement. Specifically, we compare data
from the Forest Inventory and Assessment (FIA), the In-
sect Disease Survey (IDS), both regularly conducted by the
U.S. Department of Agriculture (USDA), the literature sur-
vey by the International Tree Mortality Network ITMN) and
two satellite-based datasets, the Global Forest Change (GFC)
and North American Forest Dynamics Forest Loss Attribu-
tion (NAFD). All datasets report disturbance timing with a
temporal granularity of one year, FIA and ITMN are point-
based, and IDS, GFC and NAFD are spatially explicit. FIA,
IDS, ITMN and NAFD report on disturbance agent, with dif-
ferent classification groupings.

We find a moderate spatial agreement between the spa-
tially explicit datasets and the point-based ones, with IDS,

GFC and NAFD overlapping with 24 %, 58 % and 42 % of
FIA disturbed patches, and on average 35 % of the ITMN
reported mortality events. The datasets show similar trends
in total disturbed extent over conterminous USA (CONUYS)
for the common period of 2001-2010, but with more pro-
nounced differences at smaller scales, and when accounting
for disturbance agents. The datasets agree well in disturbance
timing: the mean difference is less than one year, while the
variability in differences ranges from about 1 to 4 years. For
FIA, we find better agreement with other datasets when the
disturbance timing coincides with the inventory year, com-
pared to disturbances reported as occurring in years between
inventories. The satellite-based datasets tend to show an ear-
lier detection of disturbance events, compared to the other
datasets, possibly due to the inconsistent revisiting times of
the inventory datasets (FIA and IDS).

Our results show that although the datasets exhibit reason-
ably good agreement in disturbance timing, their spatial cor-
respondence is considerably lower. Furthermore, the datasets
show low agreement in terms of disturbance agent, which re-
sults from differences in grouping but also potentially on the
methodology used to report causes. Our findings thus under-
score the importance of careful data quality assessment and
consideration of their inherent uncertainty when using single
forest disturbance datasets for further applications. Specifi-
cally, for smaller scales and for disturbance agent attribution,
we recommend careful comparison of more than a single
dataset. Our study further highlights the need for improved
data integration to advance the understanding of changes in
forest disturbance regimes and their drivers.

Published by Copernicus Publications on behalf of the European Geosciences Union.
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1 Introduction

Forests play an important role in the Earth System as they
provide ecosystem functioning and services, serve as a car-
bon sink and support biodiversity (Bonan, 2008; Lindner
et al., 2010). These services — including provision of food
and water, climate regulation, and cultural services — are es-
sential for society and help preserve the biological diversity
of forests (Thom and Seidl, 2016).

Forest disturbances such as forest fires or insect infesta-
tions, are integral parts of forest ecosystems and have signif-
icant impacts on forest functioning, structure, composition
and dynamics (Turner, 2010). Ecosystem disturbances have
been defined in various ways in the literature, with one of the
most widely cited definitions provided by White and Pickett
(1985), who describe disturbance as “any relatively discrete
event in time that disrupts ecosystem, community, or popu-
lation structure and changes resources, substrate availability,
or the physical environment”. In the inventory datasets used
here, disturbances encompass not only tree death, but also
early indicators such as discoloration and crown dieback.
For comparability across datasets, here, we consider distur-
bance as any event that causes tree mortality. Thom and Seidl
(2016) found that the impacts of disturbances on ecosystem
services are generally negative across all categories of ser-
vices. Given their impact on forest productivity, growth, mor-
tality and composition, disturbances can further feed-back to
climate through changes in forest carbon balance (Bowman
et al., 2009; Hicke et al., 2012). At the same time, Thom
and Seidl (2016) also reported that disturbances can have
beneficial effects on biodiversity, showing neutral to posi-
tive impacts on species diversity, species richness, and habi-
tat quality. These findings highlight the complex nature of
disturbances, which can simultaneously compromise ecosys-
tem services and support biodiversity.

The 2000s have seen an increase in hotter and prolonged
droughts due to climate change (Allen et al., 2015; Masson-
Delmotte et al., 2021), along with reported increases in
climate-driven forest disturbances such as bark beetle out-
breaks, storms and fires, impacting forest ecosystems across
all forested continents (Seidl et al., 2017; Patacca et al., 2023;
Hartmann et al., 2022). Changes in the frequency, size, and
severity of these disturbances driven by climate change can
alter forest functioning, affect the provision of forest services
(Turner, 2010; Meigs et al., 2017; Seidl et al., 2017; Kautz
et al., 2017) and threaten forest stability (McDowell et al.,
2020; Seidl and Turner, 2022). Beyond the effects of climate
change, anthropogenic factors also play a key role in shap-
ing disturbance patterns. Changes in land-use practices, for-
est management, and afforestation efforts modify forest ex-
tent, composition, and age structure, ultimately influencing
how forests respond to disturbance (Seidl et al., 2011).

Disturbance impacts can intensify when extreme climatic
events coincide with high forest susceptibility or other pre-
conditioning factors (Seidl et al., 2011; Bastos et al., 2021).
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Understanding and quantifying the combined effects of com-
pound drivers is essential for predicting and mitigating future
changes in disturbance regimes and their impacts on forest
ecosystems (Bastos et al., 2023). However, we currently lack
globally consistent and temporally continuous data over pe-
riods sufficiently long to characterize changes in disturbance
regimes, especially when it comes to biotic disturbances and
wind (Kautz et al., 2017). Multiple datasets record and doc-
ument multiple natural and human disturbances, often in the
same state/continent, but with different methods. Current for-
est disturbance information is based on sparse and discontin-
uous data (Kautz et al., 2017; FAO, 2010, 2015, 2020; Ham-
mond et al., 2022), although more comprehensive datasets
have been compiled for certain regions (Hicke et al., 2012;
Patacca et al., 2023; Forzieri et al., 2023; Senf and Seidl,
2021b, a).

Forest disturbance datasets currently available can be
grouped into two groups: ground survey and inventory data
(Forzieri et al., 2023; Patacca et al., 2021; Forest Service U.S.
Department of Agriculture, 2024, 2023) and remote-sensing
based datasets (Hansen et al., 2013; Senf et al., 2020). Ex-
isting forest disturbance data differ in the attribution of dis-
turbances, the details in information/records and the acquisi-
tion methods. Inventories provide detailed information about
the disturbance location, extent, timing and agents, collected
through aerial detection and ground surveys, but are sparse
in space and time, and suffer from several uncertainties, e.g.,
due to differences in reporting methods, sampling strategies,
human errors, etc. (Hammond et al., 2022; Coleman et al.,
2018; Tinkham et al., 2018). Remote sensing, in turn, offers
the possibility to monitor large regions (up to the globe) in
a spatially and temporally consistent manner. However, the
accuracy of satellite-based disturbance mapping depends on
the spatiotemporal resolution of the sensor, on the intensity
of the disturbances, as well as the disturbance size and un-
derlying forest structure (McDowell et al., 2015). Therefore,
large-scale datasets typically consider stand-replacing distur-
bances (Senf et al., 2020; Hansen et al., 2013) and attribution
to specific agents is limited (Senf and Seidl, 2021b). Attri-
bution of satellite-based disturbances to specific agents re-
quires, however, high-quality ground data for calibration and
validation, underscoring the importance of inventory data
in supporting the development of disturbance classification
and prediction models (Forzieri et al., 2023; Andresini et al.,
2024; Barta et al., 2021; Hawryto et al., 2018; Gibson et al.,
2020).

Characterizing the uncertainty of these different datasets
is crucial given their wide range of applications, e.g., carbon
cycle, forest productivity and growth, forest health, and cli-
mate (Harris et al., 2016; Tinkham et al., 2018; Knott et al.,
2023; Cohen et al., 2016; Schleewesis et al., 2020; Schroeder
et al., 2014; Thompson, 2009). For example, Hicke et al.
(2020) used data from the Insect and Disease Survey (IDS)
by the Forest Service of the U.S. Department of Agriculture
(USDA) to characterize bark beetle outbreaks in the west-
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ern United States. They highlighted that uncertainties and
inconsistencies in the records arise due to variations in sur-
veyor methods, survey locations, and flying conditions. They
partially addressed these issues by incorporating specific as-
sumptions into their analytical framework, but they could not
account for example for the year-to-year variability. Coleman
et al. (2018) investigated the accuracy of the IDS data by
comparing aerial detection survey data with ground survey
records and high-resolution satellite imagery (WorldView-
3). They used error matrices to assess accuracy across dif-
ferent categories. Their findings indicated variable accuracy
among damage types and damage agent genera, with bark
beetles, the most abundant genera, exhibiting some of the
largest errors. Overall, they found that 75 % of the damage
was mapped correctly. However, the aerial detection survey
polygons only overlapped with 44 ( &= 0.06) % of ground ob-
servations.

Uncertainties in aerial detection, such as year-to-year vari-
ability (Hicke et al., 2020) and accuracy limitations (Cole-
man et al., 2018), highlight two needs. First, integrating
ground-based observations with high-resolution satellite im-
agery might improve the consistency, accuracy, and detail of
agent information of disturbance detection through data fu-
sion. Second, a better quantification and understanding of
the uncertainties within existing ground-based datasets re-
mains essential, particularly as these datasets are used to train
machine learning models that extrapolate disturbance pat-
terns across broader regions (Senf et al., 2015; Forzieri et al.,
2021, 2023; Patacca et al., 2023; Schleeweis et al., 2020).

In this study, we focus on the conterminous USA
(CONUS), a region where multiple forest disturbance
datasets are available. We aim to quantify the robustness
of the information on disturbance extent, timing and re-
spective agents, and to identify advantages, potential short-
comings and inaccuracies of different approaches, includ-
ing widely used remote-sensing based datasets and more
detailed ground-based inventories. Specifically, we compare
the temporal and spatial consistency of five different forest
disturbance datasets in the time period from 2001 to 2010.
Most datasets include information on broad groups of dis-
turbance agents such as wind, fire, insects, drought, although
with different thematic foci. These datasets are grouped into
two categories based on their spatial representation: spatially
explicit datasets — including the Insect and Disease Survey
(IDS) by USDA (Forest Service U.S. Department of Agri-
culture, 2024), the Global Forest Watch (GFC) tree cover
loss product (Hansen et al., 2013), and the North American
Forest Dynamics Forest Loss Attribution dataset (NAFD)
(Schleeweis et al., 2020) — and point-based datasets, which
comprise the Forest Inventory and Analysis (FIA) program
by USDA (Forest Service U.S. Department of Agriculture,
2023) and tree mortality records from the International Tree
Mortality Network (ITMN, Hammond et al., 2022).

This grouping reflects fundamental differences in dataset
types. Spatially explicit datasets based on remote sensing,
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such as GFC and NAFD, provide pixel-level information,
enabling detailed mapping of disturbance extent and loca-
tion with broad geographic coverage and temporal consis-
tency. However, optical remote sensing data have reduced ca-
pacity to capture small-scale or subtle disturbances, such as
low-intensity selective logging that removes only a few trees.
These minor canopy openings are spatially diffuse and short-
lived, making them difficult to detect from spectral signatures
in satellite imagery. Sub-canopy structural changes likewise
remain largely invisible to optical sensors (Gao et al., 2020).
Point-based datasets, including FIA and ITMN, consist of
plot-level observations that capture ground-level details of
disturbance agents and timing, though with coarser spatial
coverage and uneven sampling. IDS combines elements of
both approaches, offering detailed spatial inventories from
ground surveys and aerial detection, with attribution of dis-
turbance agents. The complementary strengths and limita-
tions of these dataset groups motivate their combined use.
Inventory data — both spatially explicit (IDS) and point-based
(FIA, ITMN) — are critical for agent attribution and for val-
idating remote sensing products. At the same time, differ-
ences in data collection protocols, revisit intervals, agent def-
initions, and property ownership can introduce uncertainties,
which are explored in this study.

By comparing these five forest disturbance datasets, we
aim to highlight the variability and underlying uncertainties
associated with different observation systems. Our goal is to
provide a systematic assessment of their consistency in dis-
turbance extent, timing, and agent attribution. Through this
comparison, we seek to identify dataset-specific limitations
and offer guidance on their use, for instance, by incorpo-
rating uncertainty ranges for disturbance timing or by com-
bining complementary datasets to improve spatial reliability.
Although our analysis focuses on the conterminous United
States, the approach is transferable to other regions and can
inform the design of more robust, uncertainty-aware forest
monitoring and classification frameworks (European Com-
mission: Directorate-General for Environment et al., 2020).

2 Data
2.1 Study area

This study focuses on the conterminous USA due to the
availability of various forest disturbance datasets. Alaska is
excluded because of limited data coverage. Figure 1 shows
the study area in panel (A) (CONUS), with panels (B)-(E)
providing a detailed view of a selected region (highlighted as
a square in panel A) to illustrate the spatio-temporal charac-
teristics of the different datasets.

We provide an overview of the five datasets used in this
study (see Table 1), including the information in each dataset,
their data format and additional characteristics in the sections
below.

Biogeosciences, 23, 1291-1325, 2026
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Table 1. General overview of the five datasets used in this study, including the type of information provided, data format, collection methods

and temporal availability.

L. Eifler et al.: Consistency of forest disturbance datasets in continental USA

Point-based

Spatially-explicit

FIA ITMN IDS GFC NAFD
Information Tree mortality and Observations of tree | Tree damage and mor-  Forest loss from 2000— Annual forest distur-
damage in the USA  mortality due to | tality data for the USA, 2021, change from for- bance drivers across
on a plot level with drought and heat from | with a primary focus est to non-forest state CONUS derived from
further information on literature review on insect and disease- Landsat imagery and
e.g. growth, biomass, related  disturbances, classified into nine
ownership  (to  de- but also including a categories using a
termine the extent, range of other distur- Random Forest model.
condition, volume, bance agent types as
growth and use of trees detailed below and in
of timber) Table S1
Data Tables per state as csv  Supplementary Data of | Geodatabase with data  GeoTiff files with the GeoTiff files in four
files Hammond et al. (2022) | as grid cells, points and  information of the separate layers: type
as csv files polygons, here polygon  lossyear per pixel, 30m  of event, year, dom-
data used showing the spatial resolution inance and diversity,
affected area qualitative confidence
metrics (model-based),
information per pixel,
30 m spatial resolution
Data basis Ground surveys 1303 plots from litera- | Surveys (aerial and Results from time Landsat images from
ture review collection ground) using applica-  series analysis from the 1984-2011 (Land-

tions like digital mobile
sketch maps (DMSM)

Landsat 7 and Landsat
8 OLI images since
2000, the loss year is
identified by the max-
imum annual decline
in percent tree cover
and the maximum
annual decline in the
minimum growing
season Normalized
Difference Vegetation
Index (NDVI) for each
pixel

sats 4-7 Thematic
Mapper), based on over
7000 visually inter-
preted plots, FIA and
LANDFIRE project
data, and spectral time
series from multiple
Landsat-based vegeta-
tion indices, Random
forest model outputs
to classify disturbance
agents, rule-based
approach to determine
disturbance year

Temporal cov-  1957-2022 1970-2018 1997-2023 2000-2021 1986-2010
erage
Sampling rates ~ Annually since 1999, Non continuous Updated regularly Updated annually Annually in respective

before that on a peri-
odic basis

temporal coverage

Disturbance 13 categories (e.g., in-  Primarily drought; bark | Highly detailed, often No agent information Six disturbance classes
agents sect, disease, wind, fire, beetle and others in- | with species-level  available (removal, stress, wind,
animal, vegetation, hu-  ferred from literature resolution and specific fire, conversion, other)
man activity) (see Ta- agent types, 29 broad (see Table S6)
ble S5) categories like bark
beetles, defoliators,
sucking and boring
insects, rust and foliage
diseases, wild and do-
mestic animal attacks,
human activity, wind,
fire, drought, multi
damage, competition
(see Table S1)
Comments Plot coordinates are Information on distur- | Revisiting times are not — -
fuzzed and partly bance agents extracted | annually but regularly
swapped (explained by reading the papers | every 5-10 years
below), revisiting by the author; Most

times are not annually
but regularly every
5-10 years

plots in the Northern
Hemisphere and lim-
ited to selected publica-
tions
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Figure 1. Study area and illustration of the different datasets used in this study for a representative area. Panel (A) shows the study area of this
study (CONUS), with an inset outlining a representative area where all five datasets report disturbances in the common period 2001-2010,
shown in panels (B)-(E). All datasets use a consistent color scheme, with disturbance events in 2001 in purple to events in 2010 in yellow.
Panel (B) illustrates the point-based datasets, with FIA represented by triangles and ITMN by diamonds. Panels (C), (D), and (E) display
the spatially explicit datasets individually to facilitate comparison: IDS disturbance polygons in panel (C), GFC in panel (D), and NAFD in

panel (D).

2.2 Forest Inventory and Analysis

The Forest Inventory and Analysis (FIA) program of the
USDA Forest Service Research and Development Branch,
started in 1929 when data on the extent, condition, volume,
growth and the use of trees in the Nation’s forest land was
collected on a periodic basis. In 1999 the program moved
to an annualized inventory system. Since then, data is col-
lected and compiled in a consistent tabular format, span-
ning all states and inventories. The current table structure
is derived from the National Information Management Sys-
tem (NIMS) to process and store annual inventory data. The
data is captured at various levels, including broad informa-
tion such as location, tree species, invasive species and pop-
ulation, along with more detailed tables that provide specific
information on conditions, plot and tree measurements, dis-
turbances, agents, and ground cover (Burrill et al., 2021). The
tables and columns of interest for this analysis are presented
in Tables S2—-S4 in the Supplement.

https://doi.org/10.5194/bg-23-1291-2026

The FIA data provides information on plot ownership
(public vs. private forests) as well as the year of tree mor-
tality, measurement, and inventory, allowing to assess how
these variables contribute to the discrepancies observed be-
tween datasets. For our analysis, we used the reported mor-
tality year, which represents the estimated year a measured
tree died or was cut. The inventory year is a reporting vari-
able that denotes the year best representing when a group of
plots was sampled at the program level, whereas the mea-
surement year refers to the calendar year in which field mea-
surements for an individual plot were completed during a
site visit. Sampling intensity and measurement rates can vary
across and within FIA regions, states, and measurement years
due to operational and budgetary constraints (Burrill et al.,
2021; Hou et al., 2021). Consequently, while plots may be
repeatedly measured within less than a year, the revisiting
frequency for FIA plots could range from 5 to 10 years
(Schroeder et al., 2014).

Biogeosciences, 23, 1291-1325, 2026
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Data are sampled in 1-acre plots, each typically containing
four 7.3 m (24.0 ft) radius subplots, where trees with a diam-
eter at breast height (DBH) over 12.7cm (5.0in) are mea-
sured. To protect landowner privacy, plot coordinates are in-
tentionally imprecise. The FIA applies a “fuzzing and swap-
ping” method: coordinates are shifted within a 0.8 to 1.6 km
radius (fuzzing), and up to 20 % of private plots are swapped
with another similar plot within the same county. This main-
tains county-level summaries and ownership class but intro-
duces spatial uncertainty. To assess the impact of this un-
certainty, we evaluate whether swapping affects results and
compare FIA data with other datasets using buffer zones of
800 and 1600 m.

2.3 International Tree Mortality Network

The International Tree Mortality Network, in the following
referred to as ITMN, was created to advance the development
of methods for combining, harmonizing, and integrating var-
ious data repositories and data types to provide comprehen-
sive information on global tree mortality rates (International
tree mortality network, 2022). This effort involves both ter-
restrial and remote-sensing data sources. It therefore also re-
lies on the contributions of other scientists to enrich the net-
work with diverse data and expertise. The ITMN first compi-
lation of heat and drought induced tree mortality is based on a
literature review of 154 peer-reviewed studies since 1970 and
data requests as described by Hammond et al. (2022). The
dataset has been published in a geo-referenced database with
records of tree mortality events (International tree mortality
network, 2022) and includes 1303 plots of recorded tree mor-
tality from 1970 to 2018 as point data. Each record includes
the reported mortality year, along with location, reference
publication, continent, number of sites and plots, and biome
information. The study notes a potential bias in the dataset, as
itis based solely on available peer-reviewed studies, which in
the case of the USA predominantly report drought- and heat-
induced tree mortality events.

2.4 Insect and Disease Detection Survey by USDA

The Insect and Disease Detection Survey the U.S. De-
partment of Agriculture (USDA) is a database on forest
damage and mortality due to different disturbance caus-
ing agents (Forest Service U.S. Department of Agriculture,
2024). While it primarily focuses on insect and disease-
related impacts, it also includes other categories such as abi-
otic damage from fire, wind, drought, and geological causes,
as well as disturbances linked to human activities, animals,
and competition. In the following, we refer to this dataset
simply as IDS (Insect and Disease Survey).

In the IDS dataset, the continental United States is divided
into nine major regions, which are surveyed annually through
both aerial detection and ground observations. Data collec-
tion relies on applications such as the Digital Mobile Sketch
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Mapping (DMSM) and the Southern Pine Beetle (SPB) Col-
lector Map. In the DMSM, forest disturbances are docu-
mented by sketching the extent of tree injuries and mortal-
ity, storing the data as geo-referenced points or polygons. In
addition to mapping the affected areas, surveyors record key
attributes, including tree species, disturbance agents, damage
types (e.g., defoliation, mortality, discoloration), and distur-
bance severity. The IDS dataset includes 29 broad categories
of disturbance agents, as shown in more detail in Table S1.
These categories encompass various insect types (e.g., bark
beetles, defoliators, sucking and boring insects, fruit insects,
gallmakers, and predatory insects), multiple disease classes
(such as rusts, cankers, root diseases, and general diseases),
and a range of other disturbance agents. These include abi-
otic and biotic damage, animal impacts (from both wild and
domestic animals), fire, wind, drought, competition, human
activities, multiple damage types, and unknown causes. Dur-
ing aerial surveys, geo-referenced base layers such as aerial
photographs, topographic maps, and near-infrared imagery
are used to track surveyor positions, improve disturbance de-
tection, and avoid duplicate mapping of previously recorded
damage. The database contains vector data in the form of
both polygons and points representing recorded disturbances.
We focus specifically on polygon data and use the survey
year — the year in which the aerial survey was conducted — as
the disturbance year for all records, since no explicit mortal-
ity year is provided in the dataset.

2.5 Global Forest Change

The Global Forest Change (GFC) provides annual maps
of global forest change (net, gains and loss) at approxi-
mately 30m spatial resolution since 2001 (Hansen et al.,
2013, 2024). Here, we focus on the loss year variable. For-
est loss is defined as a stand-replacement disturbance or the
complete removal of tree cover canopy at the Landsat pixel
scale (Hansen et al., 2013). Based on time series from Land-
sat 7 and Landsat 8 OLI images, the year of tree loss is iden-
tified by the maximum annual decline in percent tree cover
and the maximum annual decline in the minimum growing
season Normalized Difference Vegetation Index (NDVI) for
each pixel.

The data are provided in georeferenced raster files or-
ganized in 10 x 10° latitude/longitude tiles (Hansen et al.,
2024). They calculate time-series spectral metrics and apply
a decision tree model that links these metrics to observed
canopy changes. Forest loss is disaggregated to annual time
steps by identifying the maximum yearly decline in percent
tree cover and in minimum growing season NDVI. The pixel
values range from O to 21, indicating the year of forest loss,
whereas 0 is no change (year 2000 as initial year), therefore
the first year with changes can be 2001. The dataset does
not specify the causes of forest loss, but it includes all dis-
turbances that result in stand-replacing changes. For exam-
ple the tropics are predominantly affected by the prevalence
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of deforestation dynamics due to shifting agriculture and
commodity-driven deforestation (Hansen et al., 2013; Cur-
tis et al., 2018; DeFries et al., 2010). In extratropical regions
(temperate, boreal), tree cover loss is determined by forestry,
fires, logging, diseases, and storms, at more moderate rates
(Hansen et al., 2013; Curtis et al., 2018; Potapov et al., 2008;
Sommerfeld et al., 2018).

2.6 North American Forest Dynamics Forest Loss
Attribution

A second dataset based on Landsat satellite data used in this
study is the North American Forest Dynamics Forest Loss
Attribution (NAFD-ATT) based on Landsat imagery and
spanning the conterminous United States from 1986 to 2010
(Schleeweis et al., 2020). This dataset is part of the North
American Carbon Program (NACP), a multidisciplinary re-
search initiative focused on carbon dynamics across North
America. The NAFD-ATT dataset includes four data layers,
of which the first two — disturbance type and year of distur-
bance — are most relevant to this analysis. NAFD-ATT esti-
mates the drivers of forest canopy cover loss on an annual
basis using a machine learning model and Landsat imagery
at a 30 m spatial resolution. The disturbances are classified
into nine categories, six of which represent actual causes of
canopy loss. The NAFD disturbance agents include Removal,
Fire, Other, Stress, Wind, and Conversion. Removal and Con-
version both represent human-driven clearing, with Conver-
sion specifically indicating a subsequent change in land cover
or land use. Stress can be “any event resulting in slow grad-
ual loss of forest canopy, including insect damage, drought
and disease” (Schleeweis et al., 2020). The authors used
training data from over 7000 plots across the United States,
where forest change was visually labeled using annual Land-
sat image time series and TimeSync software. Additional
training data came from FIA ground data, the LANDFIRE
project — a database about fuel treatment, restoration, and
suppression planning — and expert interpretation using the
TimeSync software. They used change detection algorithms
to capture different types of forest disturbance (e.g., abrupt
clearings, gradual declines, fire). These algorithms were ap-
plied to Landsat time series stacks derived from various spec-
tral indices, including the Normalized Difference Vegetation
Index (NDVI), Band 5 surface reflectance, the Forestness
Index (FI), and the Normalized Burn Ratio (NBR). These
outputs, along with environmental and vegetation data, were
used as predictor variables in a Random Forest model to clas-
sify disturbance agents, and a rule-based approach was ap-
plied to determine disturbance year and duration. The data
are provided as individual GeoTIFF files covering the entire
CONUS region (Schleeweis et al., 2020). In the following we
refer to this dataset simply as NAFD.

https://doi.org/10.5194/bg-23-1291-2026

2.7 Digital Elevation Model

We use the U.S. Geological Survey (USGS) 1 arcsec Digital
Elevation Model (DEM) (U.S. Geological Survey, 2025) to
evaluated whether the temporal agreement between dataset
comparisons depend on topographic effects on the remote-
sensing signal. The DEM provides a bare-earth representa-
tion of terrain at approximately 30 m resolution. We use the
most current elevation files from the staged product series,
with publication dates ranging from 2013 to 2023 depending
on the file.

3 Methods

The following flowchart (Fig. 2) shows the steps per dataset
from pre-processing to the final tables, which will be fur-
ther explained below. All calculations are done in Python us-
ing the packages pandas, numpy, geopandas, scipy.stats. The
code will be made publicly available upon acceptance.

3.1 Data pre-processing

In order to be compared, the datasets are pre-processed in-
dividually, depending on the type, complexity and detail of
the information within each dataset. The GFC dataset did not
require any pre-processing given that it is a georeferenced
raster dataset with only one layer of information.

3.1.1 Disturbance agent classification

To enable consistent comparison of disturbance causing
agents (DCAs) across datasets, we grouped different dis-
turbance types into a unified coding system. This standard-
ized classification accommodates the varying levels of de-
tail present in the original DCA data from FIA, IDS, and
NAFD (see Tables S1, S5 and S6). In the case of ITMN, we
manually assigned the agent information to each event. The
harmonized scheme comprises nine major disturbance cate-
gories, as shown in Table 2. In this study, we focus on natural
forest disturbances and classify them into separate, detailed
categories, while grouping animal-related causes, human ac-
tivities, and other non-natural drivers into the broader Other
categories. Drought is retained as an individual disturbance
category because it is explicitly reported as a cause of mortal-
ity in FIA, IDS and ITMN, even though it often contributes
to mortality in combination with other agents (Allen et al.,
2015). For FIA, the mapping between original agent codes
and the new classification is provided in Table S5. IDS pro-
vides detailed information on disturbance agents, including
both general agent types and, in some instances, species-level
identification. The original IDS classification comprises 26
distinct agent categories. Their mapping to the unified cod-
ing scheme is presented in Table S2. The NAFD disturbance
types are similarly mapped to the new coding scheme, with
the correspondence outlined in Table S6.
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Insect and Disease Survey (IDS) _ Forest Inventory and Analysis (FIA)

i Assign broader Reading through papers Group by Plot number, Agent
disturbance agent code reporting disturbances in Extract DCA Code and Mortality year
coding system l USA
Exclude areas > 2000km2

l Assign disturbance agent code
Dissolve data by survey
year, DCA and cluster ID < Add buffer (500 m and 1000

m) around points

Add buffer (800 m and 1800 m)

Final IDS dataset -

Global Forest Change (GFC)

Final FIA dataset

Extract lossyear raster files
for USA

North American Forest Dynamics (NAFD)

Combine files of type and year to
one multi-band raster file

Paired comparison of datasets Calculate lag year
based on geometry

Temporal agreement: Disturbance agents Trend analysis:
Lag between reported agreement: Trend in event count
mortality years Spatial and general and area relative to

assignment of agents decadal mean per
l dataset and agent in
western and easter
Usa
Uncertainty determination

ownership, reparted years,
uncertainty modelling

Figure 2. Flowchart of dataset-specific preprocessing, harmonization, and analysis steps used to compare forest disturbance timing, location,
and attribution.

Table 2. Coding system for major disturbance agent groups used in this study. The individual classes for each dataset are given in Tables S1,
S5 and S6.

Code Name Description

0 No agent No agent was assigned

1 Insect Insects like bark beetles and defoliators

2 Disease General diseases, rotting, foliage disease, stem decay

3 Fire Fire

4 Drought Drought

5 Wind ‘Wind, hurricane events

6 Multi Damage  Multiple agents causing the damage, especially in IDS and ITMN
7 Other biotic Biotic damage through other animals, parasites, competition

8 Other abiotic Abiotic causes except the above three, geologic causes, avalanches
9 Other Other causes, such as human activity (removal, silviculture)
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3.1.2 FIA

The FIA data includes information on different levels, like
location, tree, plot, invasive species, ground cover and down
woody material. Each level contains multiple database tables
in csv format per state with detailed information for exam-
ple about the condition, tree biomass, the plots itself. In this
study, the Tree, Plot and Condition tables per state were used.
The three tables are merged based on the plot sequence num-
ber, which is a unique number to identify a plot record, re-
ported in each database table. The data is subset to only in-
clude forest land (COND_STATUS_CD == 1). The condition
codes distinguish accessible forest (1), non-forest land (2),
water bodies (3—4), and unsampled areas that may include
forest (5). To ensure that only confirmed forest land with at
least 10 % canopy cover by live tree species is included, we
restrict the analysis to condition code 1. In some cases, multi-
ple records correspond to the same disturbance event; there-
fore, the data is aggregated according to the plot sequence
number, the disturbance agent, and the year of mortality.

The FIA data is provided as georeferenced point data, but
the method of “fuzzing and swapping” due to privacy regula-
tions described in Sect. 2.2 creates uncertainties to the loca-
tions of the plots. Therefore, we apply two buffer sizes — 800
and 1600 m — representing the 0.5 and 1 mile fuzzing radii,
to account for possible uncertainties regarding the location
precision when comparing with other datasets.

3.1.3 ITMN

The ITMN dataset is compiled from records of tree mortality
attributed primarily to drought and heat in the literature and
based on data requests (Hammond et al., 2022). However,
tree mortality is a complex process, often caused by multiple
factors which can, themselves be influenced by drought and
heat (Allen et al., 2015). For example, biotic disturbances can
benefit from heat and water stress, so that defoliator or bark-
beetle outbreaks tend to occur during or following drought
events (Allen et al., 2015). Such interactions between dis-
turbances need to be considered when comparing with other
datasets. To address this, we reviewed all publications in the
ITMN dataset that document tree mortality in the USA to
identify other possible disturbance agents. Specifically, we
searched for additional disturbance agents reported in each
original publication, and added this layer of information fol-
lowing our developed IDS coding system Table 2. Our com-
pilation of disturbance agents based on the original litera-
ture from ITMN includes main three classes, namely Insects,
Drought, and Multi damage. Since the ITMN data is point-
based, two buffers of 500 and 1000 m were applied around
the points to account for potential inaccuracies when com-
paring with other datasets.

https://doi.org/10.5194/bg-23-1291-2026

3.14 IDS

The IDS data contain many different levels of informa-
tion, including disturbance (type, intensity, percent affected),
stand (tree species) and measurement details (survey year,
month). The raw data table structured each event as a sepa-
rate polygon with additional layers of information.

In some regions, IDS includes polygon shapes encompass-
ing extensive non-forest areas and covering unrealistically
large extents that seem to follow administrative borders (see
Fig. Al). To address this, the area of each polygon is calcu-
lated and those exceeding a threshold of 2000km? are ex-
cluded. The data is dissolved based on identical survey years
and disturbance agents to create multipolygons recording the
same year and agent. Additionally, IDS includes various dis-
turbance intensities, such as defoliation, topkill, and mortal-
ity. To ensure better compatibility with the other datasets,
which are limited to reporting tree mortality, IDS data is fil-
tered to include only mortality events.

3.2 Spatial comparison

We perform a pair-wise comparison on disturbed patches be-
tween each group of datasets, to compare the spatial agree-
ment between the different datasets. In the point-based com-
parisons, a buffer is added to FIA and ITMN, further treating
them as polygons, allowing for direct intersection with the
polygonal records in IDS. For comparisons with the raster-
based datasets (GFC and NAFD)), raster pixels located within
the buffered FIA or ITMN areas are extracted. The most
common mortality year among these pixels is assigned as
the representative disturbance year of the GFC and NAFD.
In the case of NAFD, the associated disturbance type is also
recorded. Spatially explicit comparisons follow a similar pro-
cedure, where the spatial overlap between each disturbed
patch is calculated. We calculate the total number of distur-
bance events across CONUS for each dataset, along with the
number of unique events identified in each pairwise compar-
ison. For the spatially explicit datasets, we additionally com-
pute the proportion of each individual disturbance patch that
overlaps with another dataset. This allows us to assess both
the overall spatial agreement and the correspondence in dis-
turbance size and extent at the patch level.

3.3 Temporal comparison

We calculate the temporal lag between datasets as the differ-
ence between the recorded mortality years in each pair. A lag
value of zero indicates perfect temporal agreement between
datasets. Further, we analyse the temporal differences in dis-
turbance date between datasets by fitting Gaussian Probabil-
ity Density Functions (PDFs) to the time lags across over-
lapping pairs for individual events. The mean difference in
mortality year detection between the two datasets provides an
indication of potential systematic biases, while the standard
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deviation provides insight into the dispersion or variability in
detection timing.

Understanding sources of disagreement is important to
evaluate how uncertainties relating to dataset-specific char-
acteristics might affect their applicability to certain prob-
lems. Here, we analyse the influence of FIA aspects con-
tributing to uncertainty, namely land ownership, the timing
and potential differences across states of data collection and
reporting. We compare the differences in disturbance timing
between FIA and the three spatially explicit datasets—IDS,
GFC and NAFD. The distributions of temporal lags are as-
sessed for different sub-sets of the data: (i) events in public
and privately-owned land reported by FIA, (ii) events in FIA
with coincident inventory/measurement and mortality year,
and events where these do not coincide, (iii) events in differ-
ent states. Additionally, temporal disagreement with remote-
sensing datasets (GFC and NAFD) can also be due to limita-
tions of disturbance detection due to topographic effects.

3.4 Disturbance agent comparison

We evaluate the agreement of disturbance-causing agent
(DCA) classifications from IDS with those reported in FIA,
ITMN, and NAFD for spatially and temporally overlapping
events. Specifically, for each DCA category recorded in IDS,
we evaluated the corresponding category assigned in the
comparison datasets. We perform the analysis at the state
level, reporting the accuracy metric as the proportion of di-
rect matches between disturbance agent codes in each state.
Additionally, we summarize DCA agreement across CONUS
in a confusion matrix, using IDS as the reference dataset.
The resulting heatmaps illustrate how frequently each IDS-
assigned DCA category corresponds to classifications in the
comparison datasets, with values normalized by IDS cate-
gories. Each row represents the proportional distribution of
an IDS class across the comparison classes. In FIA, 42 %
(811951 events) of overlapping events within the study pe-
riod lack reported agent information. We exclude these cases
from the analysis, as they do not allow for categorical com-
parison. We also exclude Utah, since all overlapping events
in this state occur after 2010, which is beyond the study pe-
riod. FIA reports on wind and drought, but all 3423 wind
events and all 7513 drought events lack the reported mortal-
ity year. Because this increases the uncertainty of timing and
these events could appear outside the respected study period,
they are excluded in the analysis.

3.5 Uncertainty modelling

Based on the previous analysis of temporal lags for FIA, the
contribution of different uncertainty factors to the temporal
lags with other datasets are analysed, specifically: ownership
status (ownership), timing of inventory/measurement relative
to reported mortality (meas_lag), administrative differences
in data collection, in this case per state. These factors can
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affect the detection timing, but also might result in accuracy
errors, which are then reflected in temporal lags in co-located
disturbances. To quantify the effect of these variables on the
temporal lags with FIA, a set of linear mixed effects models
with the above mentioned factors as predictors are consid-
ered. For each pair of datasets, we fit a set of models in a
step-wise manner with increasing number of predictors. We
compare the models using an AIC-based comparison imple-
mented in the ANOVA function of the 1me4 package in R,
and select the best-performing model based on these com-
parisons. The models follow the general equation:

L=(Bo+bo+bs+bp)+piX+e 1)

where L corresponds to the temporal lag between each
dataset pair (FIA-IDS, FIA-GFC, FIA-NAFD, shown in
Fig. 4), Bo corresponds to the mean lag, with bg, bs and
bp random effects contributing to the intercept: ownership,
state and DCA, respectively. The interaction between own-
ership and state is included to account for state-dependent
differences in the sampling of private vs. public plots. 81 ;
(i =[1,2]) are coefficients for the two variables considered
as fixed effects (X, with size 2 x n): elevation and meas_lag.
The term € corresponds to the residuals. Models with differ-
ent numbers of random effects (1-4) and their combinations
are fit to the data. Then, models with both fixed and random
effects, including all combinations of 1-2 fixed effects (ele-
vation and meas_lag) and random effects (State, ownership,
DCA) are fit. Afterwards, all models are compared through
ANOVA and the best model is selected as the one with the
lowest AIC. Finally, the same procedure is repeated, but only
for the sub-set of events where the measurement and the mor-
tality year coincide, i.e. meas_lag is zero.

3.6 Trend analysis

We conduct a case study analysing disturbance trends across
the western and eastern United States (West and East) from
2001 to 2010, with the aim of identifying regional pat-
terns and differences among datasets. The West includes
the states of Washington, Oregon, California, Idaho, Mon-
tana, Wyoming, Colorado, New Mexico, Arizona, Utah, and
Nevada, while all other states are assigned to the East. We
apply the non-parametric Mann—Kendall test (Mann, 1945;
Kendall and Gibbons, 1990) along with Sen’s slope estima-
tor (Sen, 1968) to assess trend magnitude, direction, and sta-
tistical significance. To express the trend over the decade, we
multiply the slope by 10, providing a decadal trend relative
to the 10-year mean. We analyse both the number of distur-
bance events in all datasets and the total affected area (in
hectares) for spatially explicit datasets. We compute overall
trends for each dataset and region (West and East), consid-
ering the number of events for all five datasets and the total
affected area for IDS, GFC, and NAFD. We then calculate
trends by disturbance agent for FIA, IDS, and NAFD, com-
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paring both event counts and, for IDS and NAFD, total af-
fected area per agent and region.

4 Results

4.1 Forest disturbance patterns in CONUS across
datasets

The characteristics and differences of the datasets in terms of
forest disturbance patterns in the CONUS region are summa-
rized in Fig. 3. We excluded ITMN due to its limited number
of recorded events. The figure highlights differences in tem-
poral coverage, with FIA providing the longest record, span-
ning from 1957 to 2022. The datasets also differ in data for-
mat: FIA reports point-based counts of disturbance events,
while IDS, GFC, and NAFD represent the spatial extent of
disturbances. The figure also reveals notable differences in
spatial coverage among the three spatially explicit datasets
(IDS, NAFD, GFC). For the common period, IDS reports av-
erage disturbance extents that are 2—4 times larger than those
captured by the remote-sensing products GFC and NAFD.
The datasets show distinct temporal patterns in disturbance
occurrence. Over the study period from 2001 to 2010, FIA
shows a steady increase in the number of events, rising from
about 96 000 in 2001 to 209 000 in 2010. IDS exhibits an ini-
tially high disturbed area (9.1 Mha in 2003), followed by a
decline to a minimum of 6.1 Mha in 2005 and a subsequent
increase to 9.6 Mha in 2009. NAFD remains relatively stable
at approximately 3.6 Mha in the early years before decreas-
ing to a minimum of 2.3 Mha, while GFC reports generally
consistent disturbance extents with a mean of 1.9 Mha. Fur-
thermore, for those datasets reporting disturbance agents, this
first comparison already shows large differences, with IDS
reporting predominantly insect disturbances (consistent with
their mandate to survey insects and diseases) and FIA and
NAFD reporting predominantly Other and Other Abiotic.
Figure 1 further illustrates these differences within a fo-
cused subset region. In this area, FIA reports 249 disturbed
plots, whereas ITMN records only 10 events. The subset area
covers 3613.3km?. Among the spatially explicit datasets,
IDS detects 9782 disturbance events and maps the largest to-
tal affected area (4831.8 km?). Because in IDS disturbances
can overlap, the total affected area can exceed the subset
region area. GFC identifies 35280 events, while NAFD re-
ports the highest number of disturbances with 221 153 indi-
vidual records — reflecting its finer spatial granularity com-
pared to GFC. Despite the differences in event counts, GFC
and NAFD both show similar spatial disturbance coverage,
with 510.9 and 408.3 km?, respectively. However, NAFD has
a higher number of smaller disturbance patches. Within the
subset region, NAFD has a median patch area of 0.9ha,
with an interquartile range (IQR) of 0.0ha. The median
patch area of GFC is significantly larger, with 489.06 ha
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(IQR = 1477.3 ha), due to the aggregation method for GFC.
IDS patches have a median area of 5.1 ha (IQR =29.3 ha).
The total affected area per state and dataset (Fig. A2)
also shows regional differences between the spatially explicit
datasets. In general, GFC and NAFD have similar patterns,
with lower disturbed area in the center of the USA and larger
areas in the Southeast and West. IDS shows different pattern,
especially in the West the affected area is the largest.

4.2 Spatial agreement

The distinct characteristics of each dataset and their pro-
portional overlap in event counts and area are summarized
in Table 3. Point-based comparisons show moderate agree-
ment between FIA and the spatially explicit products: around
25 %-30 % of FIA mortality events overlap with IDS, 58 %
with GFC, and 42 % with NAFD (with larger buffers increas-
ing the overlap slightly). In contrast, the overlap with ITMN
is very limited due to the small number of monitored plots.
For spatially explicit datasets, we compare: (i) the number of
disturbed patches common to both datasets and (ii) the frac-
tion of each individual disturbed patch in a given spatially
explicit dataset that overlaps with another. IDS shares the
largest number of its disturbance events with GFC, whereas
GFC and NAFD show the strongest spatial overlap fraction
with IDS (83 % and 92 % respectively). The spatial agree-
ment between GFC and NAFD is rather low with 22 % and
39 % respectively. Contrary, only a small fraction of IDS area
is shared with either product.

4.3 Temporal agreement

The temporal agreement between dataset pairs, shown as
Gaussian distributions of their mortality year differences,
is presented in Fig. 4. The corresponding mean and stan-
dard deviation of each curve are given in the Table B1. The
comparison between the two point-based datasets, FIA and
ITMN, can be seen in the Fig. A3.

The comparison of FIA with the spatially explicit datasets
(Fig. 4a) shows that FIA tends to report disturbances on av-
erage 0.7 years later than IDS and 0.5 years later than GFC
and NAFD, but with large spread across individual disturbed
patches, with standard deviations of 3.7 years for IDS and
3.9 years for GFC and NAFD. The larger buffer size does
not reduce the lag between FIA and the other datasets, and
increases slightly the lag with IDS (0.8 years). In contrast,
ITMN (500 m buffer) reports disturbances earlier than the
spatially explicit datasets — 0.1, 0.6, and 1.7 years earlier than
IDS, GFC, and NAFD, respectively — with standard devia-
tions of 2.4 years (IDS and GFC) and 1.2 years (NAFD).
Increasing the buffer size results in larger mean lags with
IDS and NAFD (differences of —0.4 and —1.9 years, re-
spectively), but better agreement with GFC (differences of
0.1 years on average). The standard deviation in disturbance
timing increases with buffer size for GFC and decreases for
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Figure 3. Time series of disturbance records from the original datasets, showing event counts for FIA and disturbance area (in million
hectares, Mha) for IDS, NAFD, and GFC. Where available, disturbances are categorized by DCA type; GFC data do not include this
classification. The full temporal coverage of each dataset is displayed to illustrate their respective time ranges, with the study period from
2001 to 2010 highlighted. ITMN is excluded due to the limited number of disturbance events within the CONUS region. Note the differences

in metric (event count vs. affected area).

NAFD, but it is worth noting the small number of overlap-
ping events for each dataset (Table 3).

The comparison between FIA and ITMN (Fig. A3) shows
that FIA reports disturbances later than ITMN, with an aver-
age lag of 1.3 years for the 800 m (FIA) and 500 m (ITMN)
buffers. Temporal agreement improves with larger buffers:
using a 1000 m buffer for ITMN reduces the lag to 0.3 years,
and increasing the FIA buffer to 1600m yields a lag of
0.4 years. When both larger buffers are applied simultane-
ously, the mean lag decreases to 0.2 years with the lowest
standard deviation (2.3 years). However, these results are
based on small sample sizes: only 6 overlapping events for
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FIA and 3 for ITMN at the smaller buffers, and even at the
largest buffers, overlaps remain limited (33 for FIA and 6 for
ITMN, see Table 3).

Among the spatially explicit datasets, IDS generally
records disturbances later than the satellite-based datasets,
with average delays of 0.5 years compared to GFC and 1.9
years compared to NAFD. In both cases, the temporal un-
certainty across individual patches remains high, with stan-
dard deviations of +3.7 and £3.2 years for IDS-GFC and
IDS-NAFD. The two remote sensing datasets have a smaller
spread of +2.9 years and notably a negative mean lag of
—0.5, indicating that NAFD detects disturbances earlier than
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Table 3. Unique overlapping disturbance events across all dataset comparisons. Point-based datasets are evaluated using different buffer
sizes. For point-based datasets, the numbers indicate the total number of events per dataset overlapping with another. For spatially explicit
datasets, the first row in each block reports the total number of overlapping disturbance events, while the second row gives the proportion of
each dataset’s disturbed area that overlaps with the dataset in the respective column (i.e., percentages refer to the dataset of that row). For
example, among the overlapping events, only 2 % of the total IDS area overlaps with the GFC-affected area. The right column 7oral presents
the total number of events from the original datasets in the study period.

FIA \ ITMN IDS GFC ~ NAFD Total
800m  1600m | 500m  1000m

Point-based (number of events)

FIA 800 m - - 6 25 37574 88157 64 064 151936
FIA 1600 m - - 27 33 45237 88157 64537 151936
ITMN 500 m 3 6 - - 7 6 6 17
ITMN 1000 m 6 6 - - 7 8 6 17

Spatially explicit (number of events & spatial overlap fraction [%])

IDS 268685 788052 | 115 269 ~ 265233 292827 1626707
- - - - - 2 0.6 -
GFC 142412 142412 8 14 1148087 — 4502884 14531108
_ _ - - 83 - 2 -
NAFD 65365 65952 51 59 822258 793063 ~ 6811055
- - - - 92 39 - -
(a) (b)

—— FIA (800m) - IDS
~—— FIA (1600m) - IDS
0.5 === FIA (800m) - GFC 0.14
===+ FIA (1600m) - GFC
----- FIA (800m) - NAFD
FIA (1600m) - NAFD
ITMN (500m) - IDS
0.4 ITMN (1000m) - IDS
==+ ITMN (500m) - GFC
ITMN (1000m) - GFC 0.10
~ ITMN (500m) - NAFD
ITMN (1000m) - NAFD

~=- IDS - GFC
—— DS - NAFD.
NAFD - GFC

=15 -5.0 —2.5 0.0 25 5.0 2.4 ~75 =5.0 —25 0.0 25 5.0 7.5

Lag in years Lag in years
Figure 4. Gaussian probability density function of differences in mortality years across CONUS for each pair of datasets, for the five datasets
used in this study. The differences are analysed separately for pairs of point-based and spatially explicit datasets (a) and for pairs of spatially
explicit datasets (b). Comparisons with the GFC data are represented as dashed lines, comparisons with IDS as solid lines. Negative values

indicate an earlier disturbance detection of the dataset which stands first, compared to the second one. The values of the mean and standard
deviation can be found in Table B1.

GFC (Table B1). Across all datasets, the remote sensing 4.4 Disturbance agents

datasets tend to detect disturbances earlier than the other

datasets on average, except for the few events overlapping

with ITMN, although with large temporal uncertainty across Next, we compare the agreement between datasets in terms

individual events (3—4 years). of their reported disturbance agent for FIA, ITMN, IDS
and NAFD for the CONUS region and per state. Figure 5
shows results for IDS-FIA and IDS-NAFD, the comparison
of IDS-ITMN is shown in Appendix A (Fig. A4), given the
small number of samples for comparison. Since GFC does
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not report causes of tree loss, it is not included in this analy-
sis.

In general, agreement between IDS and FIA tends to be
higher in the western CONUS (26 %-52 %, excluding Cal-
ifornia with 14 %), and lower in the South and Northeast
(0 %—22 %), reflecting the proportion of overlapping events
where both datasets assign the same disturbance agent, see
Fig. 5a). The highest agreement between the two datasets
is found in Montana, with 52 % of overlapping disturbances
sharing the same DCA, mostly due to good agreement on in-
sect disturbances (53 %, Fig. A5). For CONUS, the DCA cat-
egories with the highest agreement between IDS and FIA are
Insects (37 %), Disease (36 %) and Other (37 %), as shown
by the confusion matrix (Fig. 5a). However, Insect events in
IDS are frequently labeled as Disease in FIA (27 %), pos-
sible explaining the low consistency between datasets. Fur-
thermore, there is greater spatial variability in the agreement
between the two datasets for these disturbance types, with
generally higher agreement in the western states for Insects
and Disease, and higher agreement in the Other category for
the midwestern states (Fig. AS). The category Multi-damage
in IDS corresponds primarily to Insects and Disease in FIA
(36 % and 37 %, respectively). The agreement for Fire and
Other Biotic events is relatively low, 26 % and 32 % respec-
tively, and with variable agreement across states (0 %—53 %
and 0 %-100 %, respectively), without a clear spatial pattern.
Drought events in IDS are often classified as Insects (34 %)
or Other (20 %), even though FIA includes a drought cate-
gory. However, this category was excluded from our analysis
because FIA does not report a specific mortality year. Simi-
larly, wind disturbances identified by IDS tend to be classi-
fied as Other (46 %) or Other Abiotic (29 %) in FIA, but are
also omitted here for the same reason — lack of associated
mortality year data.

NAFD shows higher spatial agreement with IDS in the
southern and northeastern states (Fig. 5d). The highest agree-
ment is found in New York State, with 66 % of overlapping
disturbances sharing the same DCA, mostly due to the agree-
ment on Other (100 %, Fig. A6). The NAFD uses a limited
set of DCA categories — namely Fire, Wind, Other Biotic,
and Other, broader than the ones provided by IDS. Figure S5c
shows the heatmap of disturbance agent agreement between
the two datasets. Insect disturbances in IDS are predomi-
nantly classified as Other Biotic in NAFD (72 %), while Dis-
ease tend to be attributed to Other (63 %), followed by Other
Biotic (34 %) in NAFD. Fire events in IDS are either identi-
fied as Fire (43 %) or Other (43 %) in NAFD. Drought events
reported IDS tend to be classified as Fire in NAFD (46 %),
followed by Other (36 %). By contrast, Wind shows very
low agreement, with 94 % of the wind disturbances recorded
in IDS labeled as Other in NAFD instead. Table B4 shows
that, from the NAFD perspective, most wind events coincide
with IDS wind detections (56 %). However, these overlap-
ping events represent only a small fraction of all wind dis-
turbances recorded in IDS (0.36 %). Similarly, Other Biotic
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events in IDS are predominantly classified as Other in NAFD
(73 %). The Other category shows high mutual agreement
between datasets, with 89 % of events labeled as Other in
IDS also categorized as such in NAFD. The agreement for
disturbance types in NAFD varies regionally, with a strong
spatial agreement for the Other category predominantly in
the eastern and southern United States (52 %—-100 %). Con-
trary, Fire and Other Biotic show higher agreement in the
western regions (9 %—82 % and 13 %—100 % respectively).

Overlapping disturbance events between IDS and ITMN
are found in only five states (Fig. A4). In Montana, all
four overlapping events show 100 % agreement between the
datasets, which attribute the disturbances to Insect agents.
In Arizona, two overlapping events, reported as Insects and
Drought in IDS and as Drought in ITMN, result in a 50 %
agreement.

4.5 Sources of uncertainty
4.5.1 Ownership and timing records

First, the effect of data collection in privately-owned vs. pub-
lic forests on the agreement between FIA with IDS, GFC and
NAFD (Fig. 6a and Table B2), is analysed. Therefore, the
comparison results with small buffer of 800 m are used, be-
cause of better results in the overall comparison (see Fig. 4
and Table B1). In the study period (2001 to 2010) the share
is 64 % (100 620 plots) to 36 % (57 613 plots) of private and
public plots in FIA respectively. In the FIA events overlap-
ping with IDS, a total of 268 685 events were recorded, with
37204 (14 %) occurring in privately owned plots and 231 481
(86 %) in public plots. We find that public forests tend to
show similar differences in the reported timing of distur-
bance, than privately owned forests, with mean differences
of 0.8 and 1.0 years respectively, which is similar to the tem-
poral agreement overall without separating private and pub-
lic plots (as analysed in Sect. 4.3). The uncertainty for both
categories is around +4 years.

In contrast, comparisons of FIA with GFC and NAFD re-
veal a pattern opposite to that observed with IDS and to the
overall distribution in the FIA dataset. The majority of over-
lapping events occur on privately owned plots, accounting
for 63 % in GFC and 66 % in NAFD. Within these private
plots, the mean lag is relatively low, at 0.3 years for both
GFC and NAFD, respectively. This lag increases in public
forests, reaching a mean of 0.8 and 0.9 years for GFC and
NAFD, respectively. The standard deviations are compara-
ble to those observed in the FIA and IDS comparisons, as
well as the overall comparison in Sect. 4.3, with approxi-
mately 4 years. A per-state comparison of lags for private
and public forests (Figs. A7, A8, A9) shows generally consis-
tent patterns across the US, but also highlights state-specific
differences and a clear contrast in the magnitude of timing
differences between the western and central—eastern states.
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Four distinct groups of FIA timing measurements are con-
sidered, based on whether the recorded mortality year aligns
with the inventory or measurement year. The resulting differ-
ences in disturbance timing between FIA and the IDS, GFC,
and NAFD datasets are analysed and presented in Fig. 6b. In
Appendix B, Table B3 presents the classification of events
based on whether the timing of recorded disturbances is the
same or different across the three datasets, along with the
corresponding mean lag, uncertainty, and the proportion of
events in each category. Disturbances recorded in the same
year exhibit a smaller mean lag compared to those recorded
in different years, as well as compared to the overall mean
lag reported in Sect. 4.3. The lowest mean lag, 0.0 years,
occurs for overlapping events between FIA and GFC when
the mortality year matches the inventory year in FIA. De-
spite this close alignment, all same-year events still exhibit
an uncertainty of approximately +4 years, consistent with
the previous comparisons shown in Tables B1 and B2. Over-
all, when FIA reports mortality in the same year as the inven-
tory and measurement, agreement with the spatially explicit
datasets improves. However, such cases are relatively rare —
only 2 %—4 % of overlapping events fall into the same-year
category. In most cases, discrepancies among the mortality,
inventory, and measurement years increase the mean lag and
slightly raise the uncertainty. Nevertheless, both the mean lag
and standard deviation remain comparable to the overall re-
sults.

4.5.2 Statistical analysis of temporal lags

We analyse the uncertainty factors contributing to the spread
in temporal differences between FIA and other datasets us-
ing linear mixed effects models (Table 4). For all three pairs
of data, the best model explaining the temporal lag to FIA
corresponds to the model with two fixed effects (difference
between measurement and mortality year (meas_lag) and el-
evation) and the three individual random effects with no in-
teraction term (ownership, state, DCA).

The best fitting model in all overlapping patches (“All”
in Table 4) is the same for all three pairs of data (FIA-
IDS, FIA-GFC, FIA-NAFD), including both elevation and
meas_lag as fixed effects and all three random effects con-
sidered. The meas_lag coefficients are statistically signifi-
cant for all three groups, with negative values for FIA-GFC
and FIA-NAFD (—0.10 and —0.12, respectively), and small
positive values for FIA-IDS. Negative coefficients indicate
that the later the measurement year occurs compared to the
reported mortality year, the more negative (earlier) is the
lag between FIA and GFC. For elevation, the coefficients
are positive and statistically significant in the FIA-IDS and
FIA-NAFD comparisons. This suggests that, with increas-
ing elevation, FIA reports mortality events earlier than IDS
(by 0.49yrkm~!) and later than NAFD (by 0.21 yrkm™!).
In contrast, the effect of elevation is not statistically signifi-
cant in the FIA—GFC comparison. In all three groups of data,
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the intercept is small and non-significant, indicating that on
average the mismatches between the datasets are negligible.
However, the residuals are generally large, between 1.5 to
3.7 years (consistent with the large standard deviation in the
mean differences shown in Fig. 4 and Table B1). Random
variability across states (bg) contributes the most to the vari-
ability in the intercept (2.55, 1.83 and 1.87 years for FIA—
IDS, FIA-GFC and FIA-NAFD, respectively), followed by
variability due to different disturbance agents (bp). Owner-
ship status has a small contribution to variability in the inter-
cept.

Given that measurement lag contributes significantly to
the mismatch between FIA and the other datasets, a second
model is fit only for those events where the measurement and
the mortality year reported by FIA coincide (‘“Same” in Ta-
ble 4). This allows to control for the influence of the revisit
time to the disagreement between datasets. According to the
corresponding best fitting models, elevation is only identi-
fied as a relevant predictor for FIA-IDS, with coefficients in-
dicating that FIA reports mortality events (.76 years earlier
(coefficient —0.76) than IDS, per km of elevation. For the
two satellite-based datasets, only random effects from state
and disturbance type (DCA) are identified as relevant, the
former contributing more to the variability of the intercept
than the latter. While state is here considered as contribut-
ing to random variability in the intercept, Figs. A10, All
and A12 show an apparent west-east difference in mean tem-
poral lag, particularly for plots where the mortality and mea-
surement years differ. The observed pattern may help explain
why elevation emerged as a relevant fixed effect, despite non-
significant coefficients in some comparisons. The results are
consistent with analysis of the distributions of temporal dif-
ferences earlier, indicating a small effect of ownership status
on the mismatch between datasets.

4.6 Trends across CONUS

The trends in event numbers for each dataset and region
are shown in Fig. 7. Disturbance event counts differ across
datasets and between the East and West. In the West, the two
point-based datasets (FIA and ITMN) show increasing event
counts, consistent with the positive trend observed in IDS.
Contrary, GFC and NAFD indicate decreases in the West,
with NAFD showing a significant decline of —105 %. Trends
in the East are less pronounced: IDS reports an increase of
+76 % relative to the decadal mean, while FIA does not ex-
hibit a detectable trend in this region. In contrast, NAFD
again shows a significant negative trend (—33 %), and GFC
shows only a slight decrease.

Similar patterns appear in the trends of total affected area
(Fig. A13). In the West, IDS shows a positive trend (+72 %),
while GFC and NAFD indicate non-significant decreases in
disturbed area of —30% and —68 %, respectively. In the
East, IDS shows the strongest decline (—130 %), followed by
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Table 4. Results of the linear mixed effects model fit for FIA-IDS, FIA-GFC, FIA-NAFD based on the step-wise model selection for all
disturbed patches (“All”) and for disturbed patches where the measurement and mortality year reported by FIA are the same (“Same”).
Belevation and Bmeas_lag indicate the coefficients of the two fixed effects variables. The stars indicate significance values of the fixed effect
coefficients (*** p < 0.001, ** p < 0.01, * p < 0.05,n.s. p > 0.05). bo, bs and bp indicate the standard deviation in the intercept associated
with random effects from ownership, state and DCA, respectively. In some cases, the best model includes fewer variables than the ones shown,
in that case, the model corresponds to the values shown. For example, for the FIA-GFC model for “Same”, the best model includes only

random effects for state and DCA.
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Figure 7. Trend in disturbance event numbers by region. Rows cor-
respond to datasets and columns to regions in the US (West and
East). Positive values show increasing trends relative to the decadal
mean. Asterisks denote significance levels (¥**: p < 0.001; **:
p <0.01; *: p <0.1). Grey boxes indicate insufficient data to cal-
culate a trend.

NAFD with a non-significant decrease of —20 %, and GFC
exhibits a slight negative trend (—10 %).

To further investigate differences in disturbance dynam-
ics, we also analyse trends by disturbance agent (Fig. 8).
ITMN is excluded from this assessment due to the low num-
ber of reported events. In the West, NAFD shows predomi-
nantly decreasing trends across the three agents present (Fire,
Other Biotic, and Other). In contrast, FIA reports increases
for the reported agents, with all trends highly significant ex-
cept for Fire. Drought, Wind, and Multi Damage are not rep-
resented in FIA. IDS exhibits a similar pattern to FIA, but
with lower magnitudes and fewer significant trends. Drought
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and Fire are the only agents with a decreasing trend in the
West in the IDS dataset. Patterns in the East differ both
among datasets and compared to the West. FIA shows signifi-
cant increasing trends for Insects (+42 %), Disease (456 %),
and Fire (+79 %) relative to the decadal mean. IDS fol-
lows the overall directional pattern seen in the West. NAFD
shows widespread declines across agents in the East, except
for Fire, which exhibits a strong increase of +157 %. Wind
disturbances occur only in the East in NAFD, with a non-
significant decline over the decade.

We observe similar patterns when examining trends in to-
tal disturbed area by agent (Fig. Al4). In the West, IDS
shows mixed responses across disturbance agents: only In-
sects, and Other Biotic disturbances show increasing affected
area, Multi Damage exhibits no trend, all other agents show
decreasing trends. In the East, IDS largely indicates declin-
ing disturbance areas, with only Other showing increases.
NAFD reveals patterns largely consistent with the event-
based trends. In the West, all agents show declines in dis-
turbed area, whereas in the East, Fire stands out with a sub-
stantial increase of 141 % relative to the mean. The remain-
ing three agents (Wind, Other Biotic, and Other) show reduc-
tions in affected area over the decade.

5 Discussion

Forest disturbances have multiple causes and affect forests
in varied ways, shaping how they can be observed and in-
terpreted. Some agents, such as windstorms, cause abrupt
structural damage (Forzieri et al., 2020), while others, such
as insects or drought, may act more gradually or interac-
tively, altering forest composition, vitality, and recovery po-
tential (Meddens et al., 2012; Kurz et al., 2008; Clark et al.,
2016). These differing disturbance mechanisms influence not
only their ecological consequences but also how readily they
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can be detected, attributed, and quantified in observational
datasets.

Overall, we observe a relatively good average agreement
(i.e. good accuracy) among the datasets in terms of dis-
turbance timing and agents, but with considerable variabil-
ity across individual events (i.e., low precision). The spatial
agreement is generally lower: while IDS captures most of
the area detected by the two remote sensing datasets, only
a small fraction of IDS area — at most 2 % — overlaps with
the remote sensing products. Between the remote sensing
datasets themselves, spatial agreement is only moderate. The
results show that differences between the datasets can be at-
tributed to inherent uncertainties in detection methods, differ-
ences in spatial and temporal scales, and varying levels of de-
tail in the disturbance records of each dataset. Below, we dis-
cuss how the uncertainties underlying the different datasets
explain these mismatches, and provide guidance for users on
how these differences might affect analyses and interpreta-
tions.

5.1 Methodological uncertainty

A number of methodological uncertainties arise from the way
the data is collected and from the algorithms used to detect
and characterize disturbances. Both FIA and IDS are used for
systematic monitoring of forest disturbances, but they differ
in scale and methodology. The FIA is distributed across the
whole CONUS region, but is based on small (< 10 m) plots
which are revisited typically every 5 or 10 years (Schroeder
et al., 2014). Aerial surveys in IDS provide large-scale in-
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formation as disturbance polygons, but typically focus on
regions where outbreaks have been known to occur. Al-
though effective in capturing major disturbance and mortal-
ity events, the IDS may miss disturbances in remote, un-
managed forests, and urban areas (Kautz et al., 2017). Addi-
tionally, aerial surveys face inherent limitations in detecting
slow-acting or long-term disturbances and in distinguishing
the primary cause of mortality in complex compound distur-
bance scenarios (McDowell et al., 2015). The subjectivity of
hand-drawn disturbance polygons further affects data qual-
ity, particularly in IDS Regions 8 and 9, where some poly-
gons cover unusually large or irregular areas, including urban
zones (see Fig. Al). These inaccuracies affect spatial com-
parisons and analyses, potentially leading to erroneous re-
sults and differences in spatial agreement (Fig. A2, Table 3).
This could be improved through post-processing. Compar-
ing the data with higher-resolution remote-sensing products
— such as Sentinel-2 or PlanetScope imagery or detailed tree-
cover maps — could help reduce spatial uncertainty (Coops
et al., 2023; Miiller et al., 2025).

The ITMN data is recognized to be inherently biased due
to the use of literature-based reports of tree mortality in the
field (Hammond et al., 2022). As a result, some regions and
forest types are underrepresented. In the US, for example,
only 17 unique mortality events were reported between 2001
and 2010 (Table 3). In addition, the point-based format intro-
duces uncertainty in the precise location and spatial extent of
each event. Reported mortality can range from single points
to dense clusters, reflecting substantial variation in event size
and making spatial interpretation challenging.
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Satellite data allows for spatially and temporally contin-
uous disturbance mapping, but the detection of a given dis-
turbance inherently depends on its size, as satellites operate
with varying spatial resolutions. Both, the GFC and NAFD
datasets are based on Landsat with a 30 m spatial resolu-
tion (Hansen et al., 2013; Schleeweis et al., 2020), so that
smaller scale events might remain undetected (Masek et al.,
2013; Cohen et al., 2016). For disturbances to be detected,
the signal must reach a detectable threshold for satellites to
identify and quantify the affected area, which standardizes
detection, but also makes disturbance severity a critical fac-
tor in satellite-based mapping (Masek et al., 2013; McDow-
ell et al., 2015). Moreover, similar disturbances can manifest
differently across ecosystem types, resulting in varying de-
tection outcomes (Cohen et al., 2017).

The approaches used to determine forest disturbances dif-
fer notably between GFC and NAFD. In GFC, using the max-
imum annual NDVI decline (Sect. 2.5) can result in grad-
ual or low-severity disturbances being missed or misclas-
sified, leading to underestimation of forest loss (McDow-
ell et al., 2015). Conversely, short-term fluctuations caused
by phenological changes or sensor noise can be erroneously
identified as loss events, even though they might be only
temporary. Due to these issues, Hansen et al. (2013) high-
light uncertainties associated with the GFC dataset and ad-
vise using a 3-year moving window to detect trends, cau-
tioning for area estimation using pixel counts of forest loss.
These methodological sensitivities help explain the tempo-
ral patterns observed in our comparison: GFC tends to reg-
ister disturbances earlier than FIA and IDS, which rely on
field-based inventories with coarser temporal resolution, but
later than NAFD, reflecting differences in the underlying de-
tection algorithms (see Fig. 4/Table B1). The relative timing
reflects differences in how each dataset detects and defines
disturbance events. In contrast, the NAFD algorithm uses a
more complex modeling approach by applying Random For-
est models (Sect. 2.6), which are well suited for capturing
complex relationships between spectral features and distur-
bance types (Prasad et al., 2006). The combination of multi-
ple decision trees increases accuracy and reduces overfitting
as the ensemble grows (Prasad et al., 2006). In our tempo-
ral comparison, NAFD detects disturbances earlier than the
other datasets — on average by about half a year (Figs. 4, B1).
This could reflect the ability of the framework to capture sub-
tle spectral changes preceding the disturbance detection by
other approaches.

Additionally, disturbance events vary widely in both spa-
tial extent — from several meters to hundreds of square kilo-
meters — and temporal duration — from hours to multiple
years (Turner, 2010), so that the suitability of each approach
is also dependent on the disturbance characteristics. Method-
ological differences thus result in spatial and temporal uncer-
tainties, which we discuss below.
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5.2 Spatial uncertainty

In general, the spatial agreement of overlapping events is
low. Differences of the spatially explicit datasets in terms of
total affected area in Fig. A2 reveal substantial differences
between IDS and the two remote sensing datasets GFC and
NAFD. In IDS a strong East-West difference is shown with
higher total affected area in the West US, maybe due to more
extensive acquisition or because of more disturbances. This
is also shown by an increasing trend in the west of IDS and
a decreasing trend in the east (see Fig. A13). The patterns
of GFC and NAFD are generally similar, and their overall
trends are also comparable, showing a decreasing develop-
ment across both regions (East—West) (Figs. A2, A13).

Overall, the spatial alignment among the disturbance
datasets is low, reflecting fundamental differences in how
each dataset defines, detects, and maps affected areas. Spa-
tial uncertainty arises not only from methodological choices,
but also from regional variation in data availability and dis-
turbance characteristics. The strong contrasts visible in the
total affected area across datasets (Fig. A2) highlight these
discrepancies: IDS reports considerably larger disturbed ar-
eas in the western US than in the east, a pattern that may
reflect both higher disturbance activity in this region and
differences in acquisition intensity or mapping conventions.
These regional differences are further shown in the oppos-
ing trends shown by IDS in Fig. A13, where disturbance area
increases in the West but declines in the East. In contrast,
GFC and NAFD, which rely on similar satellite imagery and
automated detection approaches, tend to show more consis-
tent spatial patterns with each other, both decreasing trends
in both regions, demonstrating that satellite-based detection
methods have a more consistent spatial footprint.

The per-patch comparison reveals a low average spatial
overlap between IDS and the remote-sensing datasets GFC
and NAFD, with 2 % and 0.6 % respectively. This is also vi-
sually evident in Fig. 1, where IDS polygons span large ar-
eas, whereas GFC and NAFD often detect disturbances as
isolated single pixels (30 m x 30 m). The multi-layer struc-
ture of IDS, which can assign multiple disturbance agents
or years to the same area, further expands its total distur-
bance extent and influences the spatial overlap metrics. De-
spite being derived from the same Landsat imagery, GFC and
NAFD show only moderate agreement in disturbance extent,
highlighting the impact of differing detection algorithms and
classification strategies. As a US-specific product, NAFD is
likely more reliable because it is trained with system specific
training data points and employs a more specific algorithm
that accounts for additional sources of noise and uncertainty.
IDS may overestimate disturbance extent due to surveyor
bias and manually drawn delineations, whereas remote sens-
ing products may underestimate it because of their reliance
on spectral signals and algorithmic limitations, as discussed
above.
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As an additional spatial uncertainty, the IDS inventory re-
ports the total area affected by a type of disturbance agent,
rather than the precise disturbed forest area (Meddens et al.,
2012). Contrary, the FIA only reports point-based distur-
bances. Therefore, satellite imagery might more accurately
detect and delineate the exact disturbed area (Meddens et al.,
2012; Masek et al., 2013), providing a detailed spatial per-
spective.

5.3 Temporal uncertainty

Overall, the dataset comparisons reveal relatively small tem-
poral discrepancies, with an average mean lag of approx-
imately half a year (Table B1). The lowest mean lag and
spread are found in comparisons involving ITMN (Figs. 4
and A3). However, these results are based on a limited
number of overlapping events, reducing their statistical ro-
bustness and interpretability. FIA consistently reports distur-
bances later than the other datasets, as does IDS when com-
pared to ITMN, GFC, and NAFD. These delays are likely due
to their methodological uncertainties: both FIA and IDS are
subject to irregular revisit intervals — up to 10 years in some
cases (Schroeder et al., 2014; Cohen et al., 2016), which
introduces variability in disturbance timing. However, IDS
generally reports earlier than FIA, likely because it relies on
aerial detection over broad areas, allowing for earlier identi-
fication of visible disturbance symptoms.

FIA depends on in-field plot measurements, which may
only capture mortality when plots are resampled, often years
after the actual disturbance occurred. Indeed, we find that
temporal agreement of FIA with other datasets improves sub-
stantially when the mortality year aligns with both the in-
ventory and measurement year, compared to events where
the mortality year and the inventory or measurement year
differ (Fig. 6/Table B3), highlighting the importance of ac-
curate timing information. Furthermore, we find a differ-
ence between states when FIA mortality years differ from
inventory and measurement years (Figs. A10, A1l and A12),
which might be explained by accessibility challenges in high-
elevation areas in the west, which can delay field measure-
ments, while aerial or satellite-based datasets (IDS, GFC,
NAFD) are less affected and therefore detect disturbances
earlier. This pattern is also reflected in our model results
for FIA, which show a strong association with elevation (Ta-
ble 4). In situations where accessibility constrains field sur-
veys, remote sensing data can help bridge this gap by pro-
viding consistent observations even in remote areas. While
elevation and accessibility help explain broad regional differ-
ences in temporal alignment, we also investigated the effect
of swapping and fuzzing in the FIA data. The FIA’s guide-
lines suggest that swapping and fuzzing introduces only min-
imal differences in the data (Burrill et al., 2021). By testing
ownership influence, our results show that, in the FIA-IDS
comparison, privately owned plots exhibit a slightly larger
spread in reported disturbance timing than publicly owned
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plots (Table B2). In contrast, for the FIA-GFC and FIA-
NAFD comparisons, mean lags are lower on private lands
than on public lands. This might be explained by the fact
that disturbances on private lands — associated with active
management or commercial logging — lead to more abrupt
canopy changes. These processes may align more closely
with remote-sensing disturbance detection than with the sam-
pling schedule of ground-based inventories. Overall, the sta-
tistical model results support only a minor influence of own-
ership status on temporal agreement among datasets (Ta-
ble 4), confirming that anonymization procedures in FIA
do not meaningfully bias the spatial or temporal compar-
isons conducted here. However, the per-state visualizations
(Figs. A7, A8, A9) show regional variation of ownership ef-
fects, suggesting that state-level factors, such as management
practices, or methods in plot measurement, may have an in-
fluence on the observed temporal mismatches.

The Landsat-based disturbance datasets GFC and NAFD
tend to detect disturbances earlier than FIA and IDS, likely
due to their higher temporal resolution, as satellite overpasses
occur more frequently than the revisiting intervals of ground-
based inventories. Conversely, both GFC and NAFD detect
disturbances later than ITMN. However, due to the limited
number of overlapping events between ITMN and the other
datasets this comparison is less robust. Direct comparisons
between GFC and NAFD show strong overall alignment in
disturbance timing, though NAFD tends to detect distur-
bances earlier or more readily than GFC. At the state level,
agreement between GFC and NAFD varies depending on the
disturbance agent classified by NAFD (Fig. A15). Human-
activity classes (Removal and Conversion) show small lags,
whereas other agents (Stress, Fire, Wind, and Other) exhibit
larger timing differences, with differences across states. GFC
captures abrupt canopy changes well, but reports later than
NAFD for stress-related disturbances, which are more grad-
ual and subtle, posing challenges for detection with NDVI-
decline metrics. With the recommended use of a 3-year
moving window for GFC (Sect. 5.1), the uncertainty intro-
duced by the change-detection algorithm can contribute to
the larger spread in timing differences observed between
GFC and the other datasets. This highlights the influence of
algorithmic differences despite both products relying on the
same Landsat archive (see Sect. 5.1). While consistent, an-
nual remote-sensing data support close temporal agreement,
the remaining spread indicates that meaningful event-level
differences in disturbance detection still persist.

Differences in revisit frequencies between inventory based
and the remote-sensing datasets, and in the satellite detection
algorithms, are likely to explain differences in disturbance
trends across CONUS (Fig. 3) and in western and eastern
US (Figs. 7 and A13). While inventory data report positive
disturbance trends in 2001-2010 in both regions, remote-
sensing datasets report predominantly negative trends, but
less pronounced for GFC compared to NAFD. All datasets
agree, however, on more pronounced trends in western US
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than eastern US, meaning that the disagreement in distur-
bance trends between inventory based and remote-sensing
datasets is larger for the western US These differences are
found across most disturbance agents (Fig. 7), so that the
temporal uncertainty seems to be the predominant cause for
this trend mismatch. We note however, that spatial uncer-
tainty also likely plays a role, as shown in Figs. 1, A2, and
Table 3.

5.4 Disturbance agents

Our results indicate moderate to low consistency of distur-
bance agent attribution across datasets, which can be ex-
plained by several factors. A key challenge is the prevalence
of compound disturbances. For instance, drought stress can
lead to bark beetle outbreaks and eventual mortality (Bentz
et al., 2010; Seidl et al., 2017; Burton et al., 2020; Fettig
et al., 2022). Such cascading effects make it difficult to at-
tribute mortality to a single agent, and attribution can vary
between datasets depending on how interactions are inter-
preted. This ambiguity is reflected in the moderate overlap
of the IDS category Multi Damage with FIA (Fig. 5a). In
the comparison with NAFD (Fig. 5¢) Multi Damage distur-
bances in IDS mainly match Other Biotic in NAFD, referring
to the original category Stress. This includes multiple pos-
sible drivers such as insects, drought, or disease. A similar
pattern occurs for fire events: IDS may first record insect or
disease disturbances, while subsequent canopy loss from fire
is captured later in NAFD, contributing to low fire agreement
between datasets. These results highlight that the prevalence
of multi-damage disturbances, combined with differences in
classification schemes across datasets — like IDS being fo-
cused on insect and disease surveys — makes assigning a
single cause to forest damage inherently challenging. These
thematic and structural differences emphasize the need for
harmonized classification systems when integrating multi-
source disturbance data.

The granularity of agent classification and temporal reso-
lution also play critical roles. While FIA records disturbances
such as drought and wind, many of these events lack assigned
mortality years during the study period and were excluded
from our analysis. This discrepancy likely reflects the limita-
tions of field-based reporting and revisit times (see Sect. 5.3),
where certain disturbance types, despite having predefined
codes, may be under-reported or inconsistently documented
due to their subtle impacts or challenges in attributing tree
mortality to specific agents within a given time frame.

Differences in the reported agents could also arise from
temporal lags in aerial surveys (see Sect. 5.3). If, for ex-
ample, surveys are conducted after drought conditions sub-
side, only subsequent biotic damage may be detected. Nev-
ertheless, Coleman et al. (2018) showed that the detection
of damage types and agents in IDS dataset could be im-
proved by aligning flight conditions and timing with the bi-
ological windows of disturbance agents. However, they also
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noted that limited ground-truthing and the subjective nature
of aerial surveys — affected by different surveyors, viewing
conditions, and flying conditions — introduce variability and
uncertainty into the data (Coleman et al., 2018; Meddens
et al., 2012). In addition, aerial surveys face inherent limi-
tations in detecting slow-acting or chronic disturbances and
in discerning the primary cause of mortality in complex or
compound disturbance events (McDowell et al., 2015). Ad-
dressing these limitations represents a key opportunity to im-
prove disturbance monitoring methodologies in the future.

Remote-sensing technology is widely used in forest dis-
turbance mapping (Banskota et al., 2014), but attribution to
specific agents based on remote-sensing data only is still lim-
ited. While now being a standard approach to identifying cer-
tain types of disturbances like those caused by fire (Chuvieco
etal., 2018, 2022; Otén et al., 2019), distinguishing other dis-
turbances such as different biotic agents, and especially non-
stand replacing ones is more challenging (Senf et al., 2020;
Senf and Seidl, 2021b; Senf et al., 2017; McDowell et al.,
2015). NAFD integrates agent attribution into its remote-
sensing approach. While wind events only occur in the east
of the US (see Figs. 8 and Al4), Schleeweis et al. (2020)
note that they had not enough wind events and conversion
in the West of the USA as training data so they cannot gen-
erate accuracy metrics. This is reflected in Table B4, where
the total number of wind events is markedly lower than for
other disturbance agents. Similar methodological constraints
apply to fire, which may contribute to the low agreement
with IDS. Schleeweis et al. (2020) note that when multiple
fires occur in a single pixel, only the highest magnitude (or
most recent, if tied) event is retained, so this compositing ap-
proach likely underestimates sequential canopy loss. Addi-
tionally, producer accuracy for fire is higher in the West than
in the East leading to regional differences. Other causes are
broadly categorized as human activity or ambiguous classes
like Stress, reflecting the limitations of remote sensing in dis-
tinguishing non-fire agents (Schleeweis et al., 2020). Thus,
while NAFD offers valuable long-term information on dis-
turbance dynamics, particularly for retrospective analyses,
its capacity for detailed agent attribution is constrained by
methodological limitations.

For ITMN, a detailed quantitative comparison was not fea-
sible due to the low number of records and limited geo-
graphic scope. Although ITMN primarily reports drought-
induced mortality, literature indicates that many of these
events may involve compound disturbances, such as in-
teractions between drought stress and bark beetle infesta-
tions. This suggests that some ITMN records classified un-
der drought may, in reality, reflect Multi Damage phenom-
ena, further complicating direct comparisons with datasets
that separate agents more explicitly. Ad-hoc literature-based
synthesis, as is the case of ITMN (Hammond et al., 2022), are
prone to biases in terms of the key-words used to select rel-
evant studies, as well as inconsistencies in the interpretation
and granularity of driving agents reported in each individual

Biogeosciences, 23, 1291-1325, 2026



1312 L. Eifler et al.: Consistency of forest disturbance datasets in continental USA

study. Indeed, here we found a tendency towards higher attri-
bution to drought-related disturbances in ITMN, in isolation
or in combination with biotic agents, while IDS tended to as-
sociate mortality events mostly with bark beetle disturbance
for the same events.

These factors collectively contribute to the observed low
consistency in disturbance agent determination and under-
score the challenges involved in accurately identifying and
classifying forest disturbances. The discrepancies between
datasets, the complexities of cascading disturbances, and the
limitations of current detection methods all highlight the
need for improved approaches in forest disturbance monitor-

ing.
5.5 Recommendations

All five datasets evaluated in this study exhibit distinct char-
acteristics, making them suitable for different research appli-
cations and analytical contexts.

Among the point-based datasets, FIA offers detailed long-
term (1957-2022) disturbance information with broad agent
categories across the United States. Its extensive temporal
coverage and rich attribute data make it well-suited as a ref-
erence or validation dataset and for training machine learn-
ing models that require agent-specific information. How-
ever, its applicability for large-scale applications is lim-
ited by its point-based nature, inconsistent data availability
across states, and irregular and low-frequency revisit inter-
vals, which may pose challenges for certain modeling ap-
proaches. The results show an important influence of the
inventory/measurement revisit timing on the uncertainty in
the timing of mortality (Sect. 5.3) Ownership status shows
a small contribution to the temporal mismatches, indicating
that the fuzzing and swapping procedure allows to charac-
terize well the disturbance occurrence, at least at the scales
analysed here, although we note that regional differences can
be larger (Figs. A7, A8, A9). Applications using FIA that
require precise timing of the mortality event (e.g. to evalu-
ate drivers, or develop predictive models) should limit the
analysis to events with matching mortality and measurement/
inventory years to effectively reduce temporal uncertainty.
While this reduces the number of samples, the broad spa-
tial and temporal coverage of FIA data still allows for a very
large number of samples. More frequent observations may
enhance temporal and potentially spatial consistency across
datasets, thereby reducing uncertainty. Given the uncertainty
in reported years, studies using FIA to analyze disturbance
agents should be aware that events recorded between inven-
tory or measurement periods may have less precise timing es-
pecially for slow onset and more subtle disturbance agents,
particularly in regions or plots with longer revisit intervals,
which can affect interpretation of the sequence or cause of
mortality.

ITMN, while also primarily inventory based, is a smaller,
globally distributed dataset primarily capturing drought-
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related mortality. The dataset is known to be biased toward
the Northern Hemisphere (Hammond et al., 2022) and lacks
the spatial and thematic detail of FIA. Nevertheless, ITMN
can serve as a valuable exploratory dataset or a complemen-
tary source in regions where detailed inventory data are un-
available. However, we note that ITMN predominantly at-
tributes mortality to drought while in fact mortality might be
driven by a combination of drought and biotic agents. Com-
parisons involving ITMN show the smallest standard devi-
ations in temporal lags, however, it has small sample size,
making it impossible to better understand sources of mis-
matches. While the general good temporal agreement makes
ITMN valuable as a validation dataset for tree mortality oc-
currence, its small and potentially biased sample set limits its
suitability for model training and further analyses. Further-
more, we recommend combining ITMN with other datasets
to better identify mortality causes beyond drought.

Among the spatial datasets, IDS provides high-resolution
polygon data with detailed agent attribution over the entire
CONUS. This level of detail makes it particularly valuable
for training models aimed at detecting and classifying distur-
bance agents. While it is primarily developed for insect and
diseases, often reporting down to the species level, IDS in-
cludes a range of other relevant disturbance agents, in fact,
covering the same broad categories as FIA and with addi-
tional detail (Table S1). In addition to mortality events, IDS
also includes various damage categories like crown discol-
oration, topkill and dieback. Nevertheless, some limitations
should be taken into account, namely its potential subjectiv-
ity in delineated disturbance areas due to human labeling, and
limited revisit frequency. IDS is particularly well-suited for
large-scale analyses of forest disturbance types, offering de-
tailed agent attribution and spatially explicit polygons across
CONUS. Its granularity and broad thematic coverage make
it useful for model training and classification tasks. The high
level of detail of IDS can also be used to refine detection and
classification methods, e.g. by sub-sampling events based on
disturbance severity, or type of impacts. However, given po-
tential uncertainties from manual interpretation and limited
revisit frequency, IDS is best used in combination with other
datasets for robust temporal analyses or validation. Increas-
ing survey revisit frequency could allow for better detection
of slow declines or compound events, which are often missed
with the current 5 to 10 year interval (Cohen et al., 2016;
Schroeder et al., 2014).

GFC, a globally consistent and annually updated remote-
sensing product, offers broad coverage of forest loss but
lacks information on disturbance agents or severity. Notably,
our analysis indicates that GFC detects disturbances earlier
than the other datasets, underscoring the value of remotely-
sensed imagery to identify disturbances. Furthermore, given
its global coverage and long period (since 2001 and annu-
ally updated), GFC can be applied to large-scale trend analy-
ses, change detection, forest change monitoring, as previous
studies have shown (Hansen et al., 2013). Based on the re-
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sults, GFC is shown to be very promising for timely mor-
tality detection, which can help to improve understanding
about drivers and develop predictive models. However, given
that it does not include information about disturbance agents,
it needs to be combined with other datasets, preferentially
ground-based, e.g., as reference data. In that case though,
careful consideration of the uncertainties underlying such ad-
ditional datasets is needed.

NAFD provides agent-attributed disturbance information
from 1986 to 2010 across the US, making it well-suited
for retrospective studies and long-term trend validation. Al-
though it lacks recent data, NAFD remains a valuable his-
torical resource when integrated with more current datasets.
In principle, the dataset could be extended to the present
using annually updated Landsat imagery. To improve agent
attribution, NAFD could be integrated with complementary
ground-based or higher-resolution datasets, such as Plan-
etScope or Google Earth, that provide more precise informa-
tion on disturbance type. Structural information from sensors
like Sentinel-1 may further aid in distinguishing certain dis-
turbance types (Miiller et al., 2025).

Generally, the datasets show good agreement in distur-
bance timing. In principle, increasing the temporal resolu-
tion of the datasets, e.g. with revisits for different phenologi-
cal stages, could support earlier and more timely detection of
disturbances. However, despite the temporal agreement, spa-
tial overlaps among datasets remain low, highlighting sub-
stantial divergence in the location and extent of disturbances.
This discrepancy underscores the challenges in defining, de-
tecting, and mapping forest disturbances consistently across
datasets. However, increasing the temporal resolution of in-
ventories is impractical and costly. Satellite-based datasets
could bridge this gap. While trend break detection algorithms
based on Landsat are likely to be limited to annual scale, new
sensors such as the ones on board of the Sentinel constella-
tion, with both high spatial and frequent revisit times, as well
as global coverage, might allow for sub-annual disturbance
detection.

Additionally, we find discrepancies between agent attribu-
tion and level of detail in inventory-based data. These limi-
tations can further contribute to the mismatch with remote-
sensing based data. Additional information about disturbance
severity and specific impacts (e.g., leaf discoloration, legacy
pattern, percent affected) are available for IDS and could in
principle be added to regular forest inventories. This would
allow to identify the most appropriate satellite dataset (op-
tical, radar, etc) for each type of disturbance and associated
impact, and possibly improve their detection regarding tim-
ing and spatial features.

6 Conclusions

In this study, we assessed the consistency of five forest distur-
bance datasets across the conterminous United States, high-
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lighting the challenges of comparing and interpreting these
data. Our results reveal varying levels of agreement, with the
remote-sensing dataset generally reporting disturbances ear-
lier than the others, underscoring the need for careful consid-
eration of dataset differences when analyzing forest distur-
bance patterns.

Overall, the spatial agreement between datasets depends
strongly on perspective. GFC and NAFD overlap substan-
tially with IDS, but the multi-layered nature of IDS results in
a small portion of its total area aligning with the other data.
Comparisons with point-based FIA show moderate agree-
ment, reflecting both differences in data type and sampling
design.

In overlapping events, we find good temporal agreement
in the mean reported mortality year across pairwise compar-
isons which ranges between 0.1 to 1.9 years. However, the
temporal uncertainty varies between 1 and 4 years. Satellite-
based datasets tend to identify disturbances sooner than
inventory-based datasets such as FIA and IDS, likely reflect-
ing the less frequent and inconsistent revisiting intervals of
ground and aerial surveys. These uncertainty ranges should
be regarded as inherent error margins and incorporated into
applications like model training.

Our analysis further revealed inconsistencies in identify-
ing disturbance agents of overlapping disturbances. These
discrepancies stem from varying levels of detail in the
datasets and the subjective determination of agents, as well
as the prevalence of compound disturbance events, where
multiple interacting stressors — such as drought followed by
insect outbreaks — complicate clear attribution to a single
cause and a single mortality year. This finding emphasizes
the need for more standardized and detailed attribution of dis-
turbance agents across datasets. Moreover, we show the im-
portance of accounting for inherent data uncertainties, partic-
ularly those related to discrepancies between revisiting and
reporting times.

Our findings emphasize the need for careful considera-
tion of the multiple sources of uncertainty and strict pre-
processing of the data for use in other applications such
remote-sensing disturbance classification models. Our anal-
ysis of spatial and temporal differences between datasets al-
lowed us to provide quantitative estimates of the accuracy
and precision of the different datasets, contributing to more
robust and informed decision-making when using such data.

As forests face growing pressures from climate-driven
disturbances, improving the integration, comparability, and
transparency of disturbance datasets becomes increasingly
important. Future work should prioritize aligning definitions,
classification schemes, and methodological documentation
across data sources to reduce inconsistencies and uncertainty.
Such efforts are essential to enable robust disturbance map-
ping and facilitate deeper understanding of disturbance pat-
terns and their underlying drivers.
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Appendix A: Figures
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Figure Al. Map of IDS with disturbance polygons in the common period 2001-2010 with disturbance events in 2001 in purple to events
in 2010 in yellow. Panel (A) shows an overview of the IDS disturbances in the CONUS Region, panel (B) zooms to irregular and large
polygons.
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Figure A2. Total area affected per state of IDS, GFC and NAFD.
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Figure A3. Gaussian probability density function of differences in mortality years across CONUS for point-based dataset comparisons.
Comparisons are made between small buffers of FIA and ITMN, as well as large buffers of both datasets. Negative values indicate that FIA
records mortality earlier than ITMN.
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Figure A4. DCA agreement between IDS and ITMN by state. Percentages represent the proportion of overlapping disturbance events with
matching DCA classifications. Grey states indicate no overlapping events between the two datasets during the study period.
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Figure AS. DCA agreement between IDS and FIA by state and agent type. Percentages represent the proportion of overlapping disturbance
events with matching DCA classifications. Grey states indicate no overlapping events between the two datasets during the study period.
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Figure A6. DCA agreement between IDS and NAFD by state and agent type. Percentages represent the proportion of overlapping disturbance
events with matching DCA classifications. Grey states indicate no overlapping events between the two datasets during the study period.
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Figure A7. Comparison of mean temporal lag between FIA and IDS across US states, grouped by the difference between public and private
forests: (a) private forests and (b) public forests. Negative values (in red) indicate earlier mortality reporting by FIA relative to IDS, while
positive values (in blue) indicate later reporting by FIA.
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Figure A8. Comparison of mean temporal lag between FIA and GFC across US states, grouped by the difference between public and private
forests: (a) private forests and (b) public forests. Negative values (in red) indicate earlier mortality reporting by FIA relative to GFC, while
positive values (in blue) indicate later reporting by FIA.
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Figure A9. Comparison of mean temporal lag between FIA and NAFD across US states, grouped by the difference between public and
private forests: (a) private forests and (b) public forests. Negative values (in red) indicate earlier mortality reporting by FIA relative to
NAFD, while positive values (in blue) indicate later reporting by FIA.
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Figure A10. Comparison of mean temporal lag between FIA and IDS across US states, grouped by the difference between measurement and
mortality year: (a) events with matching years (“Same”) and (b) events with different years (“Different”). Negative values (in red) indicate
earlier mortality reporting by FIA relative to IDS, while positive values (in blue) indicate later reporting by FIA.
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Figure A11. Comparison of mean temporal lag between FIA and GFC across US states, grouped by the difference between measurement and
mortality year: (a) events with matching years (“Same”) and (b) events with different years (“Different”). Negative values (in red) indicate
earlier mortality reporting by FIA relative to GFC, while positive values (in blue) indicate later reporting by FIA.
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Figure A12. Comparison of mean temporal lag between FIA and NAFD across US, grouped by the difference between measurement and
mortality year: (a) events with matching years (“Same”) and (b) events with different years (“Different”). Negative values (in red) indicate
earlier mortality reporting by FIA relative to NAFD, while positive values (in blue) indicate later reporting by FIA.
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Figure A13. Trend of datasets of total area per region. The rows represent the datasets, the columns show the regions (West and East). A
positive value indicates an increasing trend compared to the decadal mean.
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Figure A14. Trend of datasets of total area per region with asterisks showing the significance levels (***: p < 0.001; **: p < 0.01; *:
p < 0.1). The rows represent the datasets, the columns show the regions (West and East). A positive value indicates an increasing trend
compared to the decadal mean. Grey boxes have not enough or no values compute the trend.

https://doi.org/10.5194/bg-23-1291-2026 Biogeosciences, 23, 1291-1325, 2026



1320

Removal

Stress

L. Eifler et al.: Consistency of forest disturbance datasets in continental USA

..

Fire

Other

o
Mean Lag (years)

Conversion

Figure A15. Mean lag of overlapping disturbance events in NAFD and GFC per state and original NAFD disturbance agent. Positive values
indicate an earlier detection by GFC. Negative values show that NAFD reports earlier.

Appendix B: Tables

Table B1. Mean and standard deviation values of the differences between pairs of datasets. For the point datasets (FIA, ITMN), two different
buffer sizes have been considered to evaluate the role of uncertainty in the reported coordinates. The comparisons are grouped into mixed,
spatially explicit, and point-based categories.

Datasets

Mean [years]

Standard deviation [years]

Mixed data type comparison

FIA (800 m) — IDS 0.7 3.7
FIA (1600 m) — IDS 0.8 3.8
FIA (800 m) — GFC 0.5 3.9
FIA (1600 m) — GFC 0.5 3.9
FIA (800 m) — NAFD 0.5 3.9
FIA (1600 m) — NAFD 0.5 3.9
ITMN (500 m) — IDS —0.1 2.4
ITMN (1000 m) — IDS —0.4 2.4
ITMN (500 m) — GFC —0.6 2.4
ITMN (1000 m) — GFC 0.1 3.2
ITMN (500 m) — NAFD —-1.7 1.2
ITMN (1000 m) — NAFD -1.9 0.8
Spatially explicit comparison

IDS - GFC 0.5 3.6
IDS - NAFD 1.9 3.2
NAFD - GFC —-0.5 2.7
Point-based comparison

FIA (800 m) — ITMN (500 m) 1.3 2.8
FIA (800 m) — ITMN (1000 m) 0.3 2.4
FIA (1600 m) — ITMN (1000 m) 0.2 2.3
FIA (1600 m) — ITMN (500 m) 04 2.5
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Table B2. Mean and standard deviation values of the differences between FIA and IDS, GFC and NAFD, when considering the two groups
with different ownership status (public and private).

Ownership  Datasets Mean [years]  Standard deviation [years]  Proportion of records (%)
Public FIA - IDS 0.8 3.6 86
Private FIA - IDS 1.0 3.7 14
Public FIA - GFC 0.8 3.8 37
Private FIA - GFC 0.3 3.9 63
Public FIA - NAFD 0.9 3.8 34
Private FIA — NAFD 0.3 3.9 66

Table B3. Mean and standard deviation values of the differences between FIA and IDS, GFC and NAFD, when considering the groups of
events with same and different mortality vs. inventory or measurement years.

Type of year record Datasets Mean [years] Standard deviation [years]  Proportion of records [%]
Same INVYR FIA - IDS 0.6 3.5 2
Same MEASYEAR FIA - IDS 0.5 3.6 2
Same INVYR FIA - GFC 0.0 3.6 4
Same MEASYEAR FIA — GFC 0.3 3.6 4
Same INVYR FIA — NAFD 0.2 3.7 4
Same MEASYEAR FIA — NAFD 04 3.6 4
Different INVYR FIA - IDS 0.9 3.7 98
Different MEASYEAR  FIA — IDS 0.9 3.7 98
Different INVYR FIA - GFC 0.5 3.9 96
Different MEASYEAR  FIA — GFC 0.5 3.9 96
Different INVYR FIA — NAFD 0.5 3.9 96
Different MEASYEAR  FIA — NAFD 0.5 3.9 96

Table B4. Agreement matrix showing the absolute counts of overlapping events per disturbance agent between IDS (rows) and NAFD
(columns).

DCA NAFD

Fire Wind Other Abiotic Other

Insects 1406243 25 13962470 3972784
Disease 6106 11 70932 129455

- Fire 172969 99 55924 170033
8 Drought 70609 0 27218 55416
< Wind 944 239 3107 62560
8 Multi damage 120384 0 1488481 195622
Other biotic 25164 0 30898 153319
Other abiotic 383 0 1019 32129
Other 12721 52 1418 117073
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Code availability. The code to reproduce the analysis and fig-
ures is available here: https://github.com/lauraeifler/Eifleretal2026_
Disturbance_Data_Comparison (last access: 30 January 2026).

Data availability. Insect and Disease Survey data by
U.S. Department of Agriculture can be downloaded here:
https://www.fs.usda.gov/science-technology/data-tools-products/
fhp-mapping-reporting/detection-surveys (last access:
28 April 2025); Forest Inventory and Analysis Data by U.S.
Department of Agriculture can be downloaded here: https:
/lresearch.fs.usda.gov/products/dataandtools/tools/fia-datamart
(last access: 28 April 2025); Global Tree Mortality Database
by the International Tree Mortality Network can be found here:
https://www.tree-mortality.net/globaltreemortalitydatabase/  (last
access: 28 April 2025); Global forest change data by Global Forest
Watch and Global Land Analysis and Discovery can be downloaded
here: https://storage.googleapis.com/earthenginepartners-hansen/
GFC-2021-v1.9/download.html (last access: 28 April 2025). North
American Forest Dynamics Forest Loss Attribution by Schleeweis
et al. (2020) can be donwloaded here: https://www.earthdata.
nasa.gov/data/catalog/ornl-cloud-nafd-nex-attribution-1799-1 (last
access: 28 April 2025).
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