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Figure S1. Spatial representativeness of chamber measurements across land-cover types at 1 m

(left) and 10 m (right) resolution in Trail Valley Creek. Bars show the proportional map area (light

grey) versus the proportion of flux observations (dark grey) for each land-cover class. Chamber

sampling broadly reflects the dominant surface types in the AOI (tussock, dwarf shrubs, lichens),

while sedges and tall shrubs occupy a small area and thus contribute fewer flux points. Values

represent July flux observations only (n = 13,384).

Table S1. Class-specific accuracy for 1 m and 10 m landscape classifications. The validation set

included 28 independent points (20 % of the total 140 training + validation samples).

Landscape class Test points (n) Accuracy (1 m) Accuracy (10 m)
Lichen 6 67 % 67 %

Tussock 8 75 % 60 %

Dwarf shrub 2 (low n) — (unstable) — (unstable)

Tall shrub 10 80 % 89 %

Sedge 2 (low n) — (unstable) — (unstable)




S1. Hyperparameter settings and model configurations

Random Forest (ranger package)
The following hyperparameters were tuned:

* mtry

Definition: number of predictors randomly sampled at each tree split.

Effect: lower values increase diversity among trees; higher values strengthen each tree.
Tested values: 5, 10

* min.node.size

Definition: minimum number of samples in terminal nodes.

Effect: smaller values capture fine-scale variability; larger values smooth predictions.
Tested values: 5, 10

* num.trees

Definition: number of trees in the forest.

Effect: more trees increase stability but slow down computation.
Fixed value: 500

Gradient Boosting Machine
* n.trees
Definition: number of boosting iterations.
Effect: higher values reduce bias but risk overfitting.
Tested values: 500, 1000

* interaction.depth

Definition: maximum depth of individual trees.
Effect: determines flexibility and interaction order.
Tested values: 3, 5

e shrinkage

Definition: learning rate.

Effect: lower values improve stability but increase runtime.
Tested values: 0.01, 0.1

* n.minobsinnode

Definition: minimum number of observations in terminal nodes.
Effect: affects smoothness versus sensitivity to extremes.
Tested values: 10, 20

Support Vector Regression

* kernel

Definition: mapping of predictor space for nonlinear regression.

Setting: Radial Basis Function (RBF), fixed

Linear and polynomial kernels were also evaluated but showed substantially weaker
predictive performance. Therefore, only the RBF kernel was retained in the final models.

* sigma
Definition: kernel bandwidth.
Effect: controls smoothness; low values allow sharp changes.



Tested values: 0.5, 1, 5

+C
Definition: penalty for model complexity.

Effect: high values reduce regularization and may overfit.
Tested values: 50, 100, 500

Generalized Additive Models
Generalized additive models (GAMs) were implemented using thin-plate regression splines
(s() in mgev) for all numeric predictors, while vegetation class was treated as a categorical
term. Smoothing parameters were estimated with the REML method. We tested
configurations with and without penalization of uninformative smooth terms (select =
TRUE/FALSE) as well as two gamma settings (1.0 and 1.4) to control overfitting. The optimal
configuration, selected based on lowest cross-validated RMSE, used select = TRUE and

gamma = 1.4.

Predictor transformations
For RF and GBM we tested two formulations:
1. Linear
All predictors entered directly in the model.
2. Polynomial
Second-order polynomials applied to numeric predictors to test sensitivity to interaction

structure.

SVR relies on kernel-based nonlinear mapping, and GAM uses spline-based nonlinear effects; therefore

only linear predictor formulation was used for these models.

Final model hyperparameters

The optimal hyperparameter settings for each model were selected based on the lowest cross-validated
RMSE and highest R?. For Random Forest, the final configuration used mtry = 5, min.node.size = 5,
splitrule = variance, and num.trees = 500. For Gradient Boosting Machines, the selected settings were
n.trees = 1000, interaction.depth = 5, shrinkage = 0.1, and n.minobsinnode = 10. These tuned
configurations were refit on the full dataset at each spatial resolution to generate the final CH4 flux

predictions.



S2. Collinearity diagnostics for GAM model predictors

Collinearity among predictors was evaluated using Variance Inflation Factors (VIF), which quantify the
extent to which a predictor can be explained by other predictors in the model. VIF values > 5 typically
indicate that a variable shares substantial information with another variable, and values > 10 are
conventionally considered problematic. Because Landscape Class (LC) has several categories, we used
a generalized form of VIF (GVIF) designed for categorical variables. We also adjusted the values so that

all predictors can be compared on the same scale.

Table S2. Predictor collinearity check. Generalized Variance Inflation Factor (GVIF) results for
the predictors used in the CH4 flux models at 1 m and 10 m spatial resolution. The values show
how strongly each predictor overlaps with the information provided by the other predictors.
Values above S indicate moderate redundancy. Values above 10 indicate strong redundancy.
Abbreviations: AT — air temperature; PAR — photosynthetically active radiation; TDD -
cumulative thawing degree days; TPI — topographic position index; TWI — topographic wetness
index; NDWI — normalized difference water index; NDVI — normalized difference vegetation

index; Aspect — slope orientation; Slope — terrain steepness; LC — landscape class.

Predictor | 1 m GVIF | 10 m GVIF

AT 1.06 1.05
PAR 1.04 1.04
TDD 1.02 1.01
TPI 1.28 7.48
TWI 1.33 6.52
NDWI 2.48 7.80
NDVI 2.61 8.12
Aspect 1.21 5.32
Slope 1.45 4.73
LC 1.14 3.20

Collinearity diagnostics showed that the majority of predictors exhibited low to moderate redundancy at
both spatial resolutions. Air temperature (AT), PAR, TDD, and LC had low adjusted VIF values (< 2),
indicating that they contributed largely independent information to the models. Terrain-derived variables
(Aspect, Slope, TPI, TWI) showed moderate redundancy, reflecting their shared geomorphological

controls on drainage and microtopography.



In contrast, the satellite-derived moisture and vegetation indices (NDWI and NDVI) showed the highest
VIF values, particularly at 10 m resolution. This pattern is expected, because spatial aggregation reduces
fine-scale variation and strengthens correlations between moisture, vegetation, and topography. Despite
this, their adjusted VIF values remained below widely used thresholds of concern (GVIF< 5), indicating

that collinearity was not high enough to destabilize model fitting or inflate parameter uncertainty.

Generalized additive model (GAM) concurvity results confirmed that nonlinear smooth terms did not
show problematic overlaps. Estimated concurvity values were low across predictors, meaning that each
smoother explained a unique portion of CHa4 variability. This supports the use of spline terms without

the need to remove predictors due to redundancy.

Together, these results demonstrate that all predictors can be retained in the final models without
violating statistical assumptions related to multicollinearity. We therefore included the full predictor set

in modeling at both 1 m and 10 m resolutions.

Figure S2. Pixel-wise cross-comparison between the CALU map (10 m resolution) and the site-
specific landscape classification aggregated from 1 m to 10 m resolution. CALU represents a
published pan-Arctic land-cover product, while LC 1 m originates from drone and LiDAR data
classified at 1 m and then aggregated to 10 m by majority vote for comparability. Each cell in the
matrix shows the percentage of pixels of a given CALU class that fall within a given LC class, so
each CALU row sums to 100 %. Numbers are shown for values > 0.5 %. Coloured but unlabeled
tiles indicate < 0.5 %, and blank tiles indicate that no such class combination occurs within the

study area.
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S3. Extension of the 10 m models with CALU and Subsidence predictors, and temporal
NDVI/NDWI indices

In order to test whether large-scale land-cover products and temporal vegetation dynamics could further
improve model performance, we performed an additional set of analyses using the 10 m dataset.
Specifically, we included two broader-scale predictors: CALU (Circumarctic Land Cover Units; Bartsch
et al., 2024) and Subsidence (InSAR-derived seasonal ground displacement), as well as temporally
matched NDVI and NDWI values derived from Sentinel-2 imagery acquired within + 10 days of
chamber measurements. These analyses complement the main results (Section 3.4) by evaluating the
potential contribution of geophysical deformation and short-term vegetation dynamics beyond the static
and locally derived predictors used in the core models.

1. CALU and Subsidence

We extended the 10 m Random Forest (RF) and Gradient Boosting Machine (GBM) models by adding
CALU and Subsidence as predictors. These variables capture broader environmental context: CALU
representing vegetation composition and surface type derived from pan-Arctic classification, and
Subsidence reflecting surface deformation and seasonal thaw-related ground movement.

Subsidence emerged as the second most influential predictor (Fig. S3) in both models, underscoring its
strong association with soil moisture dynamics and active-layer processes that directly influence CH4
fluxes.

CALU contributed moderately in RF (= 2.5 %) but more strongly in GBM (= 15 %), where it exceeded
the locally derived landscape class (= 1 %). This reversal (CALU > LC in GBM vs. LC > CALU in RF)
reflects algorithm-specific sensitivities: RF emphasises fine-scale categorical heterogeneity, whereas
GBM integrates additive patterns related to vegetation and moisture gradients.

2. Temporal NDVI and NDWI

To evaluate whether temporally matched vegetation and wetness indices improve CH4 flux prediction,
we replaced the static NDVI and NDWI layers with Sentinel-2 indices closest in time to the chamber
measurements (Fig. S4). This modification substantially altered the predictor hierarchy at 10 m
resolution. In the RF model, topography-related variables gained influence, with TWI emerging as the
strongest driver, followed by Slope and landscape class. In contrast, NDVI and NDWI lost their previous
prominence, suggesting that temporal variability in these indices introduced additional noise rather than
new explanatory signal. The GBM model showed a similar shift: while TWI remained the leading
predictor, Air Temperature became comparably influential, and NDWI retained moderate importance.
Overall, temporally dynamic NDVI and NDWTI did not improve model interpretability or dominance
among predictors, indicating that for short Arctic growing-season windows, static indices capture
vegetation and surface wetness patterns more robustly than temporally matched scenes affected by

cloud-related gaps and sensor timing differences.



Figure S3. Relative importance (%) of environmental predictors for CHs fluxes in the 10 m models
including Subsidence and CALU (Circumarctic Land-cover Units) as additional predictors.
Results are shown for Gradient Boosting Machine (GBM) and Random Forest (RF) models.
Importance was estimated using permutation-based resampling and normalised within each

model.
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Figure S4. Relative importance of environmental predictors in 10 m Random Forest (RF) and

Gradient Boosting Machine (GBM) models using temporally matched NDVI and NDWI.
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S4. Resolution aggregation test to separate data source and scale effects

The comparison between 1 m and 10 m model performances inherently combines two sources of
variation:

1. Differences related to spatial resolution (e.g. averaging across larger grid cells)

2. Differences between the underlying datasets (e.g. acquisition time, sensor characteristics).
To isolate these influences, we created an additional dataset where the 1 m input layers were aggregated
to 10 m resolution using identical processing steps. This allowed us to isolate the effect of resolution
from that of data source differences.
Numeric predictors (e.g. NDVI, NDWI, TPI, TWI, Slope, Aspect) were aggregated by mean, while
categorical variables (LC) were aggregated by majority vote based on the dominant pixel class within
each 10 m grid cell. The resulting “10 m from 1 m” dataset preserved the spectral and structural
characteristics of the original high-resolution inputs but matched the coarser grid of the 10 m Sentinel-
based data.
We compared the distributions of all predictors across the three datasets (I m, 10 m, and 10 m from 1
m). The aggregated data were more similar to the original 1 m values (even when statistically different
in most cases) than to the 10 m satellite-derived predictors (Fig. S5). For example, NDVI, Slope, and
TWI retained the characteristic variability of the 1 m data, while the 10 m Sentinel-based inputs appeared

smoother and less variable.
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Figure S5. Comparison of predictor distributions across resolutions (1 m, 10 m, and 10 m
aggregated from 1 m). Violin plots show the value range and median for each variable. Letters

above violins indicate significant differences between groups (Tukey’s HSD, p < 0.05).

To quantify the impact on model performance, we applied the same modelling workflow to the 10 m
from 1 m dataset and compared results to the original 10 m models. Differences in RMSE were minor
(within +5 % across all algorithms): Random Forest = +4.1 %, GBM =—-4.9 %, SVR =—4.3 %, GAM =
+0.07 % (Fig. S6).

Overall, model performance at 10 m from aggregated 1 m data was very similar to that of the original

10 m models, with only minor differences across algorithms. Some models (e.g., GBM and SVR)



showed slightly better accuracy after aggregation, while others (e.g., RF) performed slightly worse, and
GAM remained nearly unchanged. These small differences suggest that the performance gap between
the 1 m and 10 m models reported in the main text mainly reflects the effect of spatial resolution rather

than differences in input data sources.

;
1
1
1
1
:
1
-4.3% H
SVR ®
E 41%
RF : ®
1
1
]
]
]
:
1
-4.9% !
GBM ® v
:
]
1
1
1
:
]
' 0.07%
GAM [
:
1
1
:
]
-5.0 -25 0.0 25

ARMSE (%)

Figure S6. Comparison of model performance between 10 m and 10 m (from 1 m aggregated)
datasets. Points show percentage differences in RMSE (ARMSE %) for four model types. Negative

values indicate lower error in the aggregated dataset.



S5. Cross-validation sensitivity: grouped by site and by year

To evaluate how sampling structure affects model transferability, we repeated model evaluation using
grouped cross-validation, where all data from the same year or site were held together in either the
training or testing subsets. This setup avoids data leakage across correlated measurements and provides
two complementary tests: (i) Year-CV, assessing temporal transfer to new measurement years, and (ii)
Site-CV, assessing spatial transfer to unmeasured locations.

In this dataset, the two grouping factors are not independent. Measurement years correspond to partially
distinct sets of sites and environmental conditions: automatic chambers, placed in relatively drier areas,
were sampled in 2019 and 2021, whereas wetter areas were sampled using mobile chambers in 2022-
2024. As aresult, holding out an entire year or a set of sites often removes entire parts of the hydrological
and vegetation gradients (NDWI, TWI, LC), forcing the model to extrapolate beyond its training
distribution rather than interpolate within it.

This design imbalance explains the sharp decline in predictive performance when grouped CV is applied
(Fig. S7). Under a standard five-fold CV, models achieve high accuracy (R? = 0.7-0.75, RMSE = 0.06-
0.07 for both 1 m and 10 m resolutions). In contrast, grouped-by-year and grouped-by-site CV produce
much lower R? values (typically 0.1-0.2) and larger RMSE (0.15-0.4). These values do not indicate
model instability but rather reveal that flux-environment relationships learned from one subset of the
landscape cannot be directly transferred to sites or years that represent different ecosystem types.

Such behaviour is expected when predictor distributions differ strongly between training and test subsets.
In practical terms, the grouped CV simulates a scenario of out-of-distribution prediction, for example,
applying a model trained on moist sedge areas to dry dwarf-shrub areas, or vice versa. The observed
decrease in R? therefore reflects the intrinsic spatial and temporal heterogeneity of the study area rather
than model overfitting.

Overall, this sensitivity test demonstrates that the RF and GBM models are internally consistent within
the sampled environmental space but cannot fully generalise to conditions not represented in the training
data. These results highlight the need for more temporally repeated measurements at identical

microtopographic locations to better quantify interannual predictability of site-level CH4 dynamics.
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Figure S7. Model performance (R? vs. RMSE) for Random Forest (gray) and Gradient Boosting
Machine (green) models under different cross-validation schemes (Standard CV = squares,
Grouped by Year = triangles, Grouped by Site = circles) at 1 m and 10 m resolutions. Points show
mean performance across folds; whiskers show standard deviation. Lower RMSE and higher R?

indicate better performance.
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