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Figure S1. Spatial representativeness of chamber measurements across land-cover types at 1 m 

(left) and 10 m (right) resolution in Trail Valley Creek. Bars show the proportional map area (light 

grey) versus the proportion of flux observations (dark grey) for each land-cover class. Chamber 

sampling broadly reflects the dominant surface types in the AOI (tussock, dwarf shrubs, lichens), 

while sedges and tall shrubs occupy a small area and thus contribute fewer flux points. Values 

represent July flux observations only (n = 13,384). 

 

Table S1. Class-specific accuracy for 1 m and 10 m landscape classifications. The validation set 

included 28 independent points (20 % of the total 140 training + validation samples). 

Landscape class Test points (n) Accuracy (1 m) Accuracy (10 m) 

Lichen 6  67 % 67 % 

Tussock 8  75 % 60 % 

Dwarf shrub 2 (low n) – (unstable) – (unstable) 

Tall shrub 10  80 % 89 % 

Sedge 2 (low n) – (unstable) – (unstable) 

  



S1. Hyperparameter settings and model configurations 

Random Forest (ranger package) 

The following hyperparameters were tuned: 

 

• mtry 

Definition: number of predictors randomly sampled at each tree split. 

Effect: lower values increase diversity among trees; higher values strengthen each tree. 

Tested values: 5, 10 

 

• min.node.size 

Definition: minimum number of samples in terminal nodes. 

Effect: smaller values capture fine-scale variability; larger values smooth predictions. 

Tested values: 5, 10 

 

• num.trees 

Definition: number of trees in the forest. 

Effect: more trees increase stability but slow down computation. 

Fixed value: 500 

 

 

Gradient Boosting Machine 

• n.trees 

Definition: number of boosting iterations. 

Effect: higher values reduce bias but risk overfitting. 

Tested values: 500, 1000 

 

• interaction.depth 

Definition: maximum depth of individual trees. 

Effect: determines flexibility and interaction order. 

Tested values: 3, 5 

 

• shrinkage 

Definition: learning rate. 

Effect: lower values improve stability but increase runtime. 

Tested values: 0.01, 0.1 

 

• n.minobsinnode 

Definition: minimum number of observations in terminal nodes. 

Effect: affects smoothness versus sensitivity to extremes. 

Tested values: 10, 20 

 

Support Vector Regression 

 

• kernel 

Definition: mapping of predictor space for nonlinear regression. 

Setting: Radial Basis Function (RBF), fixed 

Linear and polynomial kernels were also evaluated but showed substantially weaker 

predictive performance. Therefore, only the RBF kernel was retained in the final models. 

 

• sigma 

Definition: kernel bandwidth. 

Effect: controls smoothness; low values allow sharp changes. 



Tested values: 0.5, 1, 5 

 

• C 

Definition: penalty for model complexity. 

Effect: high values reduce regularization and may overfit. 

Tested values: 50, 100, 500 

 

Generalized Additive Models  

Generalized additive models (GAMs) were implemented using thin-plate regression splines 

(s() in mgcv) for all numeric predictors, while vegetation class was treated as a categorical 

term. Smoothing parameters were estimated with the REML method. We tested 

configurations with and without penalization of uninformative smooth terms (select = 

TRUE/FALSE) as well as two gamma settings (1.0 and 1.4) to control overfitting. The optimal 

configuration, selected based on lowest cross-validated RMSE, used select = TRUE and 

gamma = 1.4. 

 

 

Predictor transformations 

For RF and GBM we tested two formulations: 

1. Linear 

All predictors entered directly in the model. 

2. Polynomial 

Second-order polynomials applied to numeric predictors to test sensitivity to interaction 

structure. 

 

SVR relies on kernel-based nonlinear mapping, and GAM uses spline-based nonlinear effects; therefore 

only linear predictor formulation was used for these models. 

 

Final model hyperparameters 

The optimal hyperparameter settings for each model were selected based on the lowest cross-validated 

RMSE and highest R2. For Random Forest, the final configuration used mtry = 5, min.node.size = 5, 

splitrule = variance, and num.trees = 500. For Gradient Boosting Machines, the selected settings were 

n.trees = 1000, interaction.depth = 5, shrinkage = 0.1, and n.minobsinnode = 10. These tuned 

configurations were refit on the full dataset at each spatial resolution to generate the final CH4 flux 

predictions.  

  



S2. Collinearity diagnostics for GAM model predictors 

Collinearity among predictors was evaluated using Variance Inflation Factors (VIF), which quantify the 

extent to which a predictor can be explained by other predictors in the model. VIF values > 5 typically 

indicate that a variable shares substantial information with another variable, and values > 10 are 

conventionally considered problematic. Because Landscape Class (LC) has several categories, we used 

a generalized form of VIF (GVIF) designed for categorical variables. We also adjusted the values so that 

all predictors can be compared on the same scale. 

 

Table S2. Predictor collinearity check. Generalized Variance Inflation Factor (GVIF) results for 

the predictors used in the CH4 flux models at 1 m and 10 m spatial resolution. The values show 

how strongly each predictor overlaps with the information provided by the other predictors. 

Values above 5 indicate moderate redundancy. Values above 10 indicate strong redundancy. 

Abbreviations: AT – air temperature; PAR – photosynthetically active radiation; TDD – 

cumulative thawing degree days; TPI – topographic position index; TWI – topographic wetness 

index; NDWI – normalized difference water index; NDVI – normalized difference vegetation 

index; Aspect – slope orientation; Slope – terrain steepness; LC – landscape class. 

 

Predictor 1 m GVIF 10 m GVIF 

AT 1.06 1.05 

PAR 1.04 1.04 

TDD 1.02 1.01 

TPI 1.28 7.48 

TWI 1.33 6.52 

NDWI 2.48 7.80 

NDVI 2.61 8.12 

Aspect 1.21 5.32 

Slope 1.45 4.73 

LC 1.14 3.20 

 

Collinearity diagnostics showed that the majority of predictors exhibited low to moderate redundancy at 

both spatial resolutions. Air temperature (AT), PAR, TDD, and LC had low adjusted VIF values (< 2), 

indicating that they contributed largely independent information to the models. Terrain-derived variables 

(Aspect, Slope, TPI, TWI) showed moderate redundancy, reflecting their shared geomorphological 

controls on drainage and microtopography. 



In contrast, the satellite-derived moisture and vegetation indices (NDWI and NDVI) showed the highest 

VIF values, particularly at 10 m resolution. This pattern is expected, because spatial aggregation reduces 

fine-scale variation and strengthens correlations between moisture, vegetation, and topography. Despite 

this, their adjusted VIF values remained below widely used thresholds of concern (GVIF< 5), indicating 

that collinearity was not high enough to destabilize model fitting or inflate parameter uncertainty. 

Generalized additive model (GAM) concurvity results confirmed that nonlinear smooth terms did not 

show problematic overlaps. Estimated concurvity values were low across predictors, meaning that each 

smoother explained a unique portion of CH4 variability. This supports the use of spline terms without 

the need to remove predictors due to redundancy. 

Together, these results demonstrate that all predictors can be retained in the final models without 

violating statistical assumptions related to multicollinearity. We therefore included the full predictor set 

in modeling at both 1 m and 10 m resolutions. 

Figure S2. Pixel-wise cross-comparison between the CALU map (10 m resolution) and the site-

specific landscape classification aggregated from 1 m to 10 m resolution. CALU represents a 

published pan-Arctic land-cover product, while LC 1 m originates from drone and LiDAR data 

classified at 1 m and then aggregated to 10 m by majority vote for comparability. Each cell in the 

matrix shows the percentage of pixels of a given CALU class that fall within a given LC class, so 

each CALU row sums to 100 %. Numbers are shown for values > 0.5 %. Coloured but unlabeled 

tiles indicate < 0.5 %, and blank tiles indicate that no such class combination occurs within the 

study area. 

 

  



S3. Extension of the 10 m models with CALU and Subsidence predictors, and temporal 

NDVI/NDWI indices 

In order to test whether large-scale land-cover products and temporal vegetation dynamics could further 

improve model performance, we performed an additional set of analyses using the 10 m dataset. 

Specifically, we included two broader-scale predictors: CALU (Circumarctic Land Cover Units; Bartsch 

et al., 2024) and Subsidence (InSAR-derived seasonal ground displacement), as well as temporally 

matched NDVI and NDWI values derived from Sentinel-2 imagery acquired within ± 10 days of 

chamber measurements. These analyses complement the main results (Section 3.4) by evaluating the 

potential contribution of geophysical deformation and short-term vegetation dynamics beyond the static 

and locally derived predictors used in the core models. 

1. CALU and Subsidence 

We extended the 10 m Random Forest (RF) and Gradient Boosting Machine (GBM) models by adding 

CALU and Subsidence as predictors. These variables capture broader environmental context: CALU 

representing vegetation composition and surface type derived from pan-Arctic classification, and 

Subsidence reflecting surface deformation and seasonal thaw-related ground movement. 

Subsidence emerged as the second most influential predictor (Fig. S3) in both models, underscoring its 

strong association with soil moisture dynamics and active-layer processes that directly influence CH4 

fluxes.  

CALU contributed moderately in RF (≈ 2.5 %) but more strongly in GBM (≈ 15 %), where it exceeded 

the locally derived landscape class (≈ 1 %). This reversal (CALU > LC in GBM vs. LC > CALU in RF) 

reflects algorithm-specific sensitivities: RF emphasises fine-scale categorical heterogeneity, whereas 

GBM integrates additive patterns related to vegetation and moisture gradients. 

2. Temporal NDVI and NDWI 

To evaluate whether temporally matched vegetation and wetness indices improve CH4 flux prediction, 

we replaced the static NDVI and NDWI layers with Sentinel-2 indices closest in time to the chamber 

measurements (Fig. S4). This modification substantially altered the predictor hierarchy at 10 m 

resolution. In the RF model, topography-related variables gained influence, with TWI emerging as the 

strongest driver, followed by Slope and landscape class. In contrast, NDVI and NDWI lost their previous 

prominence, suggesting that temporal variability in these indices introduced additional noise rather than 

new explanatory signal. The GBM model showed a similar shift: while TWI remained the leading 

predictor, Air Temperature became comparably influential, and NDWI retained moderate importance. 

Overall, temporally dynamic NDVI and NDWI did not improve model interpretability or dominance 

among predictors, indicating that for short Arctic growing-season windows, static indices capture 

vegetation and surface wetness patterns more robustly than temporally matched scenes affected by 

cloud-related gaps and sensor timing differences.  



 

Figure S3. Relative importance (%) of environmental predictors for CH₄ fluxes in the 10 m models 

including Subsidence and CALU (Circumarctic Land-cover Units) as additional predictors. 

Results are shown for Gradient Boosting Machine (GBM) and Random Forest (RF) models. 

Importance was estimated using permutation-based resampling and normalised within each 

model. 

 

  



Figure S4. Relative importance of environmental predictors in 10 m Random Forest (RF) and 

Gradient Boosting Machine (GBM) models using temporally matched NDVI and NDWI. 

 

  



S4. Resolution aggregation test to separate data source and scale effects 

The comparison between 1 m and 10 m model performances inherently combines two sources of 

variation: 

1. Differences related to spatial resolution (e.g. averaging across larger grid cells) 

2. Differences between the underlying datasets (e.g. acquisition time, sensor characteristics). 

To isolate these influences, we created an additional dataset where the 1 m input layers were aggregated 

to 10 m resolution using identical processing steps. This allowed us to isolate the effect of resolution 

from that of data source differences. 

Numeric predictors (e.g. NDVI, NDWI, TPI, TWI, Slope, Aspect) were aggregated by mean, while 

categorical variables (LC) were aggregated by majority vote based on the dominant pixel class within 

each 10 m grid cell. The resulting “10 m from 1 m” dataset preserved the spectral and structural 

characteristics of the original high-resolution inputs but matched the coarser grid of the 10 m Sentinel-

based data. 

We compared the distributions of all predictors across the three datasets (1 m, 10 m, and 10 m from 1 

m). The aggregated data were more similar to the original 1 m values (even when statistically different 

in most cases) than to the 10 m satellite-derived predictors (Fig. S5). For example, NDVI, Slope, and 

TWI retained the characteristic variability of the 1 m data, while the 10 m Sentinel-based inputs appeared 

smoother and less variable. 



 

Figure S5. Comparison of predictor distributions across resolutions (1 m, 10 m, and 10 m 

aggregated from 1 m). Violin plots show the value range and median for each variable. Letters 

above violins indicate significant differences between groups (Tukey’s HSD, p < 0.05). 

 

To quantify the impact on model performance, we applied the same modelling workflow to the 10 m 

from 1 m dataset and compared results to the original 10 m models. Differences in RMSE were minor 

(within ±5 % across all algorithms): Random Forest = +4.1 %, GBM = −4.9 %, SVR = −4.3 %, GAM = 

+0.07 % (Fig. S6). 

Overall, model performance at 10 m from aggregated 1 m data was very similar to that of the original 

10 m models, with only minor differences across algorithms. Some models (e.g., GBM and SVR) 



showed slightly better accuracy after aggregation, while others (e.g., RF) performed slightly worse, and 

GAM remained nearly unchanged. These small differences suggest that the performance gap between 

the 1 m and 10 m models reported in the main text mainly reflects the effect of spatial resolution rather 

than differences in input data sources. 

 

Figure S6. Comparison of model performance between 10 m and 10 m (from 1 m aggregated) 

datasets. Points show percentage differences in RMSE (ΔRMSE %) for four model types. Negative 

values indicate lower error in the aggregated dataset. 

  



S5. Cross-validation sensitivity: grouped by site and by year 

To evaluate how sampling structure affects model transferability, we repeated model evaluation using 

grouped cross-validation, where all data from the same year or site were held together in either the 

training or testing subsets. This setup avoids data leakage across correlated measurements and provides 

two complementary tests: (i) Year-CV, assessing temporal transfer to new measurement years, and (ii) 

Site-CV, assessing spatial transfer to unmeasured locations. 

In this dataset, the two grouping factors are not independent. Measurement years correspond to partially 

distinct sets of sites and environmental conditions: automatic chambers, placed in relatively drier areas, 

were sampled in 2019 and 2021, whereas wetter areas were sampled using mobile chambers in 2022-

2024. As a result, holding out an entire year or a set of sites often removes entire parts of the hydrological 

and vegetation gradients (NDWI, TWI, LC), forcing the model to extrapolate beyond its training 

distribution rather than interpolate within it. 

This design imbalance explains the sharp decline in predictive performance when grouped CV is applied 

(Fig. S7). Under a standard five-fold CV, models achieve high accuracy (R2 = 0.7-0.75, RMSE ≈ 0.06-

0.07 for both 1 m and 10 m resolutions). In contrast, grouped-by-year and grouped-by-site CV produce 

much lower R2 values (typically 0.1-0.2) and larger RMSE (0.15-0.4). These values do not indicate 

model instability but rather reveal that flux-environment relationships learned from one subset of the 

landscape cannot be directly transferred to sites or years that represent different ecosystem types. 

Such behaviour is expected when predictor distributions differ strongly between training and test subsets. 

In practical terms, the grouped CV simulates a scenario of out-of-distribution prediction, for example, 

applying a model trained on moist sedge areas to dry dwarf-shrub areas, or vice versa. The observed 

decrease in R2 therefore reflects the intrinsic spatial and temporal heterogeneity of the study area rather 

than model overfitting. 

Overall, this sensitivity test demonstrates that the RF and GBM models are internally consistent within 

the sampled environmental space but cannot fully generalise to conditions not represented in the training 

data. These results highlight the need for more temporally repeated measurements at identical 

microtopographic locations to better quantify interannual predictability of site-level CH4 dynamics. 



 

Figure S7. Model performance (R2 vs. RMSE) for Random Forest (gray) and Gradient Boosting 

Machine (green) models under different cross-validation schemes (Standard CV = squares, 

Grouped by Year = triangles, Grouped by Site = circles) at 1 m and 10 m resolutions. Points show 

mean performance across folds; whiskers show standard deviation. Lower RMSE and higher R2 

indicate better performance. 
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