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Abstract. Arctic methane (CH4) budgets are uncertain be-
cause field measurements often capture only fragments of
the wet-to-dry gradient that control tundra CHy fluxes. Wet
hotspots are over-represented, while dry, net-sink sites are
under-sampled. We paired over 13000 chamber flux mea-
surements during peak growing season in July (2019-2024)
from Trail Valley Creek in the western Canadian Arctic with
co-registered remotely sensed predictor variables to test how
spatial resolution (I m vs. 10m) and choice of machine-
learning algorithm shape upscaled CH4 flux maps over our
3.1 km? study domain. Four algorithms for CHy4 flux scaling
(Random Forest (RF), Gradient Boosting Machine (GBM),
Generalised Additive Model (GAM), and Support Vector Re-
gression (SVR)) were tuned using the same stack of multi-
spectral indices, terrain derivatives and a six-class landscape
classification. Tree-based models such as RF and GBM of-
fered the best balance of 10-fold cross-validated R> (=<0.75)
and errors, so RF and GBM were used in a subsequent step
for upscaling to the study area. With 1 m resolution, GBM
captured the full range of microtopographic extremes and
predicted a mean July flux of 99 mg CH4 m~2 per month. In
contrast, RF, which smoothed local extremes, yielded an av-
erage flux of 519 mg CH; m~2 per month. The disagreement
between flux estimates using GBM and RF correlated mainly
with the Normalized Difference Water Index (NDWI), a

moisture proxy, and was most pronounced in waterlogged,
low-lying areas. Aggregating predictors to 10 m averaged the
sharp metre-scale flux highs in hollows and lows on ridges,
narrowing the GBM-RF difference to ~ 75 mg CHy m~2 per
month while broadening the overall flux distribution with
more intermediate values. At 1 m, microtopography was the
main driver. At 10 m, moisture proxies explained about half
of the variance. Our results demonstrate that: (i) metre pre-
dictors are indispensable for capturing the wet-dry microto-
pography and its CHg4 signals, (ii) upscaling algorithm selec-
tion strongly controls prediction spread and uncertainty once
that microrelief is resolved, and (iii) coarser grids smooth lo-
cal microtopographic details, resulting in flattened CHy flux
peaks and wider distribution. At 10 m, however, flux esti-
mates became more consistent between models and better
represented broad moisture-driven patterns, suggesting im-
proved generalisability despite some loss of detail. This is
supported by findings for remote sensing derived seasonal
subsidence which reflects moisture gradients. All factors
combined lead to potentially large differences in scaled CHy
flux budgets, calling for a careful selection of scaling ap-
proaches, spatial predictor layers (e.g., vegetation, moisture,
topography), and grid resolution. Future work should cou-
ple ultra-high-resolution imagery with temporally dynamic
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indices to reduce upscaling bias along Arctic wetness gradi-
ents.

1 Introduction

The Arctic is warming nearly four times faster than the global
average due to Arctic amplification feedbacks (Previdi et al.,
2021; AMAP, 2021; Rantanen et al., 2022; Ballinger et al.,
2020). This rapid warming is of particular concern due to
the substantial quantities of organic carbon stored in wetland
ecosystems of the circumpolar permafrost region (Hugelius
et al., 2014; Schuur et al., 2015; Turetsky et al., 2020; Ole-
feldt et al., 2016). Thaw exposure may mobilize part of
the previously frozen carbon as methane (CHy), a green-
house gas 28-34 times more potent than CO, over 100 years
(Koven et al., 2011; Etminan et al., 2016; Nisbet et al., 2019;
Saunois et al., 2020). Rising temperatures, therefore, risk
to trigger a positive feedback in which permafrost degrada-
tion elevates CH4 emissions, further intensifying warming
(Schuur et al., 2015; Walter Anthony et al., 2018; Turetsky
et al., 2020; Natali et al., 2021).

High-resolution CH4 flux measurements in tundra ecosys-
tems remain sparse even during the growing season due to the
Arctic’s remoteness, harsh climate, and logistical challenges
(e.g., lengthy travel times, high fieldwork costs, sparse infras-
tructure, and challenging equipment maintenance), which
limits the number of long-term monitoring sites. The primary
tools for plot- to ecosystem scale CHy flux observations are
flux chambers (Subke et al., 2021) and eddy covariance tech-
niques, respectively (Matthes et al., 2014; Baldocchi, 2003);
however, the time window to conduct growing season cham-
ber campaigns is usually limited to a few months between
June and September, and locations in the Arctic featuring
eddy covariance towers are few (Vogt et al., 2025). As a con-
sequence, most synthesis studies aiming at constraining CHy
budgets in the high northern latitudes must rely on a lim-
ited database biased toward high-emitting sites near research
stations and often overlooking areas with net CH4 uptake
(Mastepanov et al., 2013; Varner et al., 2022; Kuhn et al.,
2021; Voigt et al., 2023c). Most tundra chamber campaigns
collect data only for short intervals, typically from a single
day up to a few weeks during the growing season, and many
are conducted in just one growing season without repeated
multi-year sampling or covering winter fluxes, which limits
their value for model benchmarking and interannual analysis
(Varner et al., 2022; Kuhn et al., 2021; Résénen et al., 2021;
Mastepanov et al., 2013; Treat et al., 2018).

Even where flux data exist, CHy fluxes can shift within
metres because the relative position and seasonal movement
of the water table and the frost table create mosaics of anoxic
(CH4 — producing) and oxic (CHs — oxidising) soil (Frol-
king et al., 2011). These redox contrasts are further modu-
lated by microtopography, plant functional type, and surface
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moisture (Mastepanov et al., 2013; Pirk et al., 2015; Ole-
feldt et al., 2021). Because the water table and frost table
rarely coincide at the same depth across tundra microtopog-
raphy, neighbouring microsites can experience very differ-
ent oxic—anoxic conditions. Across the Arctic tundra, surface
types range from water-saturated zones, such as sedge fens,
polygon centres, troughs and thaw slumps, to better-drained
features like hummocky ridges, palsas and gravelly uplands.
These elements cover the entire CHy flux range, with micro-
topographically lower, wetter zones acting as strong sources
and microtopographically elevated, better-aerated zones of-
ten functioning as net sinks (Résénen et al., 2021; Bao et al.,
2021; Yuan et al., 2024). Such small-scale heterogeneity fre-
quently occurs within a single 10 m pixel, so coarse maps or
remote-sensing data products can combine zones of strong
CHy emission and neighbouring areas that act as net CHy
sinks (Knox et al., 2019; Treat et al., 2018). Without spa-
tially explicit methods that resolve this fine-scale heterogene-
ity, upscaling can introduce systematic biases. It may over-
estimate CH4 emissions when dry areas that act as sinks are
overlooked or underestimate them when narrow wet trenches
surrounding dry patches are missed (Résédnen et al., 2021;
Treat et al., 2018).

Ultra-high-resolution (< 1-2m) imagery from drones or
commercial satellites can directly resolve fine-scale vegeta-
tion patterns and microtopographic features (e.g., hummocks
and hollows) in heterogeneous tundra landscapes, for exam-
ple mapping plant communities on dry polygon rims versus
wet sedge hollows and other microrelief features that cor-
respond to CHy “hotspots” and ““cold spots”, respectively.
Studies using sub-metre to metre-scale imagery and plot-
based observations have shown that fine spatial resolution
is essential to capture local flux heterogeneity and micro-
topographic controls (Lehmann et al., 2016; Becker et al.,
2008; Strom et al., 2005; Ludwig et al., 2024; Davidson et al.,
2017). However, working with spatially ultra-high-resolution
data presents significant challenges. The acquisition and pro-
cessing of sub-metre or metre imagery through drones or
advanced satellites and LiDAR are both costly and labour-
intensive; such datasets are rarely available as dense, multi-
date image stacks and cannot be easily collected over large
areas (Scheller et al., 2022; Karim et al., 2024; Anderson and
Gaston, 2013). Moreover, ultra-high resolution can introduce
noise from small-scale elevation artefacts and micro-relief
features that do not represent real hydrological connectivity,
and thus may not lead to a better representation of environ-
mental conditions (Riihimaéki et al., 2021).

By contrast, high resolution (~ 10 m) predictors such as
Sentinel-2 multispectral imagery and ArcticDEM terrain
products are freely available and cover the entire Arctic with
regular revisits with a standardised approach (Drusch et al.,
2012; Porter et al., 2023). However, the coarse 10m reso-
lution has a clear disadvantage because individual microto-
pographic features (e.g., hummocks, hollows) and landforms
(e.g., dry palsas, wet trenches, etc.) that control small-scale
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variability in CHy fluxes are aggregated into single pixels,
blurring the fine-scale patterns of emission and uptake (Résa-
nen and Virtanen, 2019).

Data-driven approaches, including the machine-learning
(ML) algorithms Random Forest (RF), Gradient Boosting
Machine (GBM), and Support Vector Regression (SVR), as
well as the semi-parametric statistical model Generalised
Additive Model (GAM), can integrate predictors derived
from remote sensing products with flux measurements to up-
scale CHy from plot- and ecosystem- to landscape scales
(Yuan et al., 2024; Chen et al., 2024; Zhang et al., 2020, Ying
etal., 2025). Tree ensembles (RF, GBM) are particularly well
suited for capturing complex interactions and handle multi-
collinearity, while GAMs have the advantage of yielding in-
terpretable smooth functions, and SVR excels with limited
nonlinear data (Wood, 2017; Smola and Scholkopf, 2004).
Model choice, predictor resolution and limited training data
still generate large spreads in upscaled Arctic tundra CHy
fluxes, with ensemble estimates differing by roughly 25 %-
50% of the mean depending on the study (Peltola et al.,
2019; McNicol et al., 2023; Chen et al., 2024; Résinen et
al., 2021). Quantifying and reducing these uncertainties are
essential for robust CH4 budgets.

Here, we address these methodological challenges in a
study aiming at upscaling CH4 fluxes in a heterogeneous
tundra landscape in the western Canadian Arctic by pairing
> 13000 peak growing season (July) chamber measurements
collected over five years with matched 1 and 10 m remote
sensing predictors and training three machine-learning algo-
rithms (RF, GBM, SVR) and one semi-parametric statistical
model (GAM). Our overarching aim is to reduce uncertain-
ties in peak-season (July) CHy budgets for the 3.1 km?> het-
erogeneous tundra around the Trail Valley Creek Research
Station. We address this aim through four specific questions:

— Which remotely-sensed vegetation, moisture, and to-
pographic characteristics best explain July CHy fluxes
across a wet-to-dry micro-site gradient?

— Does replacing freely available 10 m data (Sentinel-2,
ArcticDEM) with metre imagery from drones and air-
borne lidar lead to a detectable improvement in predic-
tion accuracy and spatial detail?

— How do the four modelling approaches differ in pre-
dicted net flux magnitudes and spatial patterns?

— How do model choice, grid resolution, and their inter-
action shape the spatial patterns and uncertainty of our
upscaled CHy4 flux maps?

Optimising a data-driven upscaling approach based on
these questions allows us to produce July CHy flux maps with
pixel-level uncertainty, improving peak-season emission esti-
mates and guiding where additional measurements or higher-
resolution imagery would most reduce prediction error.
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2 Materials and Methods
2.1 Study site

The study site is the undulating tundra landscape of the Trail
Valley Creek (TVC) Research Station, about 55km north
of the town of Inuvik, NT, in the western Canadian Arc-
tic east of the Mackenzie River Delta (Fig. 1). TVC lies in
the Southern Arctic ecozone and contains continuous per-
mafrost, with thickness ranging from 100 to 150 m (Marsh et
al., 2008). Our analyses focus on a ~ 3.1 km? section of this
57 km? basin with elevations ranging from 41 to 102 ma.s..
The 1991-2020 climate normals for Inuvik are a mean an-
nual air temperature of —7 °C, mean annual precipitation of
~250mm, and a frost-free period (the interval with mini-
mum air temperatures above 0°C) of roughly 78d (Envi-
ronment and Climate Change Canada, 2024). The soils are
classified as organic cryosols, with an upper peat horizon
approximately 0.2-0.5m thick overlying mineral silty-clay
subsoil (Petrone et al., 2000). The vegetation at TVC is
highly diverse, reflecting the microtopography and moisture
gradients. Isolated patches of white and black spruce (Picea
glauca, P. mariana) occur in valley bottoms and on slopes.
Tall shrub tundra, dominated by green alder (Alnus alnobe-
tula) and featuring scattered willows and dwarf birch, can be
found on hill slopes and alongside streams. Riparian zones
feature dense willow thickets reaching up to 2m in height.
Upland areas support dwarf shrub tundra with dense stands
of dwarf birch (Betula glandulosa), Labrador tea (Ledum
palustre) and mountain cranberry (Vaccinium vitis-idaea), in-
terspersed with mosses and lichens. Flat, poorly drained ar-
eas are dominated by tussock-forming sedges (Eriophorum
and Carex), alongside moss and scattered shrubs. Exposed
uplands and polygon rims are covered by lichen mats and low
dwarf shrubs. Mosses, especially Sphagnum and Polytrichum
species, are prevalent in wetter microhabitats. Snow depth
and winter soil temperatures are highest in the tall shrub
and tussock zones and lowest in the lichen tundra (Griin-
berg et al., 2020; Marsh et al., 2010). Although TVC rep-
resents a single site, its strong microtopographic and vege-
tation heterogeneity reflects the wet-dry gradients typical of
Arctic continuous-permafrost lowlands. Similar mosaics of
sedge wetlands, dwarf-shrub uplands, and lichen tundra oc-
cur across large parts of the western Canadian Arctic and
other low-relief tundra landscapes, suggesting that the scale
effects we document are broadly transferable.

2.2 Data sources

This study combines field-based CH4 flux measurements
with remotely sensed and meteorological data to build and
evaluate spatially explicit models of CH4 exchange. The
chamber flux data provide the response variable for model
training, while the meteorological records include air tem-
perature (AT), photosynthetically active radiation (PAR),
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Figure 1. Map of the study area showing the location of the area of interest (outlined with white polygon), with CH4 flux measurement
locations marked with yellow circles. The inset map in the upper left corner highlights the region in which the Trail Valley Creek (TVC)
research station is located (marked with a yellow triangle on the overview map and a white triangle on the detailed map). Background satellite
imagery sources: © 2025 Maxar, provided by Esri, acquired on 12 July 2024. Area of interest aerial imagery: Rettelbach et al. (2024).

and thawing degree days (TDD) as dynamic atmospheric
drivers. Remotely sensing datasets supply spatial predic-
tors describing vegetation, surface moisture, terrain struc-
ture, and landscape classification at two spatial resolutions (1
and 10m). The resulting predictor stacks were then used to
train and compare the four modelling approaches described
in Sect. 2.3.

2.2.1 CHy flux data

We used a combination of continuous and campaign-based
CH4 flux measurements to capture spatial and temporal vari-
ability in CHy. The dataset includes previously published au-
tomated chamber observations made in 2019 and 2021 (Voigt
etal., 2023a), and campaign-based manual chamber observa-
tions made in 2019 (Voigt et al., 2023b) and in 2022 to 2024
(Ivanova et al., 2025a). Manual chamber measurements from
2022 to 2024 were collected as part of this study. The main
measurement protocols, chamber specifications, instrumen-
tation, and flux calculation methods for each campaign are
summarized in Table 1.

The complete dataset included 13 384 CH,4 flux measure-
ments collected between 1 July and 31 July (2019-2024) un-
der both light and dark conditions. Our chamber measure-
ments cover the spatial heterogeneity of the ~ 3.1km? study
area, ensuring representation of key CHy controlling gradi-
ents.

Flux measurements were collected across the full range
of microtopographic and vegetation conditions within the
AOQI. Observations were distributed across tussock tundra,
dwarf shrubs, lichen-dominated uplands, and sedge wetlands
at both spatial resolutions. The sampling distribution closely
matched the mapped area fractions of these classes in the
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AOI (Fig. S1 in the Supplement), confirming robust ecolog-
ical representativeness. Detailed percentages for both map
area and flux sampling are provided in Fig. S1. Repeated
measurements under different meteorological conditions also
provide independent temporal variability for model training.
On average, each microsite was measured 50—450 times de-
pending on year and instrument type, resulting in a total of
13 384 individual chamber observations across 68 unique lo-
cations (microsites). Of these, 1093 fluxes were measured
manually using closed chambers, while 12291 were col-
lected using an automated chamber system (Fig. 1). Man-
ual chambers were installed directly on the ground surface
without boardwalk contact. Automated chamber plots were
accessed via short boardwalks located adjacent to cham-
ber collars. These boardwalks did not overlap with chamber
footprints and therefore did not influence the spectral sig-
nal of the exact measurement location. For each flux mea-
surement, ancillary data recorded include coordinates, PAR
(measured as photosynthetic photon flux density (PPFD;
umolm~2s~1)), air temperature, land cover type, and time
of day (when available).

2.2.2 Climatic data

AT data were obtained from the Trail Valley Creek meteoro-
logical station operated by Environment and Climate Change
Canada — Meteorological Service of Canada (ECCC, 2024).
The station is located within the study area at 68°44'46.8” N,
133°30'06.4” W, at an elevation of 85ma.s.l. (Climate ID:
220N005; WMO ID: 71683; TC ID: XTV). The original
data were recorded at hourly resolution and were downsam-
pled to 3 h intervals to match the temporal resolution of the
model predictions. PAR data were obtained from the NASA
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Table 1. Summary of CHy flux measurement protocols and instrumentation used at TVC, 2019-2024.

Year 2019, 2021 2019 2022-2024
Method Automated Manual Manual
Number of microsites 18 13 37

Chamber size and shape =~ 30-45 L, hemispherical

17L, cylindrical

17L, cylindrical

Los Gatos Research Enhanced
Performance Greenhouse Gas

Gas analyzer

Picarro G4301 GasScouter
(Picarro, Inc., Santa Clara, CA,

LI-COR LI-7810 Trace Gas
Analyzer (LI-COR Biosciences,

Analyser (Rackmount GGA-24EP  USA) Lincoln, NE, USA)
911-0010, Los Gatos)

Measurement frequency 1Hz 1Hz 1Hz

Enclosure time 3 min 5 min 2—-4 min

Flux calculation method  Linear regression (default);

exponential fit for large fluxes

Linear or nonlinear regression
with the MathWorks Inc. (2020)

Linear regression with
bootstrapping (R)

Reference Voigt et al. (2023a)

Voigt et al. (2023b)

Ivanova and Gockede (2025)

POWER dataset (NASA Langley Research Center, 2024) at
a spatial resolution of 1km. These data provided temporally
dynamic inputs for model training and prediction.

2.2.3 Remotely sensed data

We assembled two separate but equivalent predictor stacks,
one with a cell size of 1 m and one with 10 m. Both cover the
same area of interest (AOI, Fig. 1), use the same map pro-
jection, and pass through the same preprocessing workflow
(Ivanova et al., 2025b). The AOI was delineated along natu-
ral drainage lines on three sides and the Inuvik-Tuktoyaktuk
Highway on the west. An image stack refers to a set of
co-registered raster layers (multispectral indices and terrain
derivatives) that share the same grid and extent. To facilitate
comparison between datasets of different spatial resolutions,
we summarized all predictors in Table Al.

It lists each variable with its data source, spatial resolution
(1 m, 10 m, or constant), and whether it is static or dynamic.
Variables derived from UAV imagery are used at 1 m resolu-
tion, while Sentinel-2 and ArcticDEM products are used at
10 m.

The 1 m stack is based on the RGB + NIR drone orthomo-
saic captured on 22 August 2018 by Rettelbach et al. (2024)
and the 1 m LiDAR-derived digital terrain model (DTM)
from Lange et al. (2021). From these layers, we derived
the Normalised Difference Vegetation Index (NDVI; Rouse
et al.,, 1974) and the Normalised Difference Water Index
(NDWTI; Gao, 1996; McFeeters, 1996) as proxies for biomass
and surface moisture, respectively. Topographic derivatives
including slope, aspect, the Topographic Position Index (TPI,
30m window), and the Topographic Wetness Index (TWI)
were calculated with Whitebox Tools (Lindsay, 2016). A
30 m neighbourhood was used for TPI, as this scale best cap-
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tured local elevation contrasts typical of heterogeneous mi-
crotopography.

The 10m stack contains the same set of variables but at
coarser spatial resolution. It combines multispectral infor-
mation from Sentinel-2 Level-2A scenes collected between
2015 and 2024 using the Copernicus Browser with topo-
graphic derivatives derived from the 2 m ArcticDEM, resam-
pled to 10 m to match the Sentinel grid. Cloud-, shadow-,
and snow-masked for AOI Sentinel-2 Level-2A scenes from
July—August 2018 (n = 6 cloud-free scenes) were compos-
ited using the mean to align with the 2018 drone campaign
in Google Earth Engine (Gorelick et al., 2017). For the time-
specific analysis, NDVI and NDWI were extracted from the
nearest cloud-free scene within £10d of each chamber mea-
surement, with no temporal averaging and only cloud-free
pixels accepted. NDVI and NDWI were extracted from this
composite, and the same set of terrain derivatives (slope, as-
pect, TPI, TWI) was computed for consistency. A complete
overview of all predictor variables, including data descrip-
tions, resolution, temporal variability, and references, is pro-
vided in Appendix Table A1. To link chamber measurements
with remote sensing inputs, predictor values were extracted
directly from the raster cell covering the chamber footprint,
without spatial buffering. No spatial averaging or neighbour-
hood smoothing was applied to the pixel values at extraction.
All chamber measurements were kept as individual records,
even when multiple chambers or repeated measurements fell
within the same 1 m or 10 m grid cell, to preserve sub-pixel
heterogeneity in vegetation and soil conditions.

In a separate workflow, we used multispectral, terrain, and
texture features to produce a site-specific landscape classifi-
cation map at both 1 and 10 m resolution using a Random
Forest approach (Breiman, 2001). The 1 m dataset was de-
rived from RGB + NIR orthomosaic drone imagery collected
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by drone on 22 August 2018 (Rettelbach et al., 2024) and a
co-registered 1 m LiDAR-based digital terrain model (Lange
et al., 2021). The 10 m dataset was based on Sentinel-2 mul-
tispectral imagery and ArcticDEM-derived terrain parame-
ters, representing the same area of interest. Six landscape
classes were defined following Griinberg et al. (2020): Water,
Lichens, Tussock, Dwarf Shrubs, Tall Shrubs + Trees, and
Sedges.

Training and validation points (n = 140 in total) were
manually delineated from the drone orthomosaic. Eighty per-
cent of the points were used for model training and 20 %
for accuracy assessment. The same training polygons were
used for both the 1 and 10m classifications in terms of
geographic location and class label, while predictor values
were extracted from the respective remote-sensing datasets
(drone + LiDAR for 1 m; Sentinel-2 + ArcticDEM for 10 m).
This approach ensured that the two classifications were com-
parable while reflecting the characteristics of their respec-
tive input data. Because the spatial resolution and input data
differ, the resulting landscape maps do not show identical
boundaries or class proportions, but instead reflect the sur-
face characteristics captured at each scale. Both maps con-
tained the same six land-cover classes. However, for the 1 m
model training, the Tall shrubs + trees class was merged with
Dwarf shrubs because no chamber flux measurements over-
lapped that class. Thus, five classes were used for flux mod-
eling at 1 m, whereas all six were retained at 10 m. Water
pixels were masked prior to classification using a thresh-
old of NDWI > 0 and manually checked against the drone
orthomosaic to ensure the exclusion of ponds and streams.
All subsequent statistical analyses were restricted to terres-
trial classes. A detailed description of the classification work-
flow, feature set, and accuracy assessment is provided in Ap-
pendix A1l and Table A2.

For broader application, the 10 m predictor stack is di-
rectly reproducible across the Arctic (Sentinel-2 Level-
2A + ArcticDEM). In contrast, the 1 m stack depends on site-
specific drone orthomosaics and LiDAR, which limits imme-
diate circumpolar scaling but is valuable for local calibration
and bias assessment.

In addition, we also explored the potential of two datasets
that are particularly relevant for Arctic-scale applications.
The Circumarctic Land cover Units (CALU) (Bartsch et
al., 2024) provides a 10 m classification of vegetation phys-
iognomy and soil moisture regimes across the circumpolar
Arctic tundra. The data product is based on the fusion of
Sentinel-1 and Sentinel-2 imagery and was calibrated using
over 3500 field samples of soil and vegetation properties.
One of the key strengths of CALU is that it captures spatial
gradients in surface wetness while using a consistent classi-
fication scheme across all Arctic regions. This makes it pos-
sible to directly compare classes between distant sites across
the Arctic, which is rarely achievable with site-specific clas-
sifications. 20 of 23 land cover units are found across the
AOI, but only 5 of those were covered by CHy4 measure-
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ments. The complete legend of CALU classes used in this
study, including definitions, their occurrence within the AOI,
and whether CH4 flux measurements are available for each
class, is presented in Table A3. Additionally, we considered a
radar interferometric (InSAR) dataset derived from Sentinel-
1 data for 2018-2023 (Widhalm et al., 2025), which captures
seasonal ground subsidence rates in thawing degree days
domain associated with thaw table (the uppermost soil that
freezes and thaws each year). The magnitude of the subsi-
dence rates reflects soil moisture gradients (Widhalm et al.,
2025).

Finally, we assessed the benefit of incorporating time-
specific spectral indices (NDVI and NDWI) extracted from
Sentinel-2 scenes close to each chamber measurement. We
compared the effect of using these time-matched indices ver-
sus a seasonal composite (July—August 2018) to test whether
short-term variability in vegetation and moisture status im-
proves model skill. Although this approach relies on satellite
scenes taken within a limited time window and may not align
perfectly with the exact in situ measurement date, it still of-
fers a more detailed representation of changes in surface con-
ditions than seasonal averages.

All four additional predictors (CALU, InSAR, and tem-
porally dynamic NDVI and NDWI) were tested in separate
model runs to assess how much they improved predictive per-
formance (Rz, RMSE) when added to the main predictor set.
These sensitivity analyses allowed us to evaluate their ex-
planatory value without altering the resolution comparison,
as each of these variables is available only at a single spatial
scale.

To specifically evaluate how spatial resolution influences
model performance and predicted CHy fluxes, we designed
the analysis so that the only factor differing between the
two datasets was grid size (1 m vs. 10 m). All other parame-
ters (predictors, preprocessing steps, algorithms, and training
data) were kept identical. This approach allowed us to isolate
the effect of scale from other potential sources of variation.
As shown in Fig. 2, narrow, wet features such as polygonal
trenches are captured at 1 m but blended at 10 m, which alters
both the NDVI and the landscape classification. Since many
high CH4 fluxes originate from these small wet zones, ag-
gregation at a coarser resolution obscures their contribution.
Some of the remaining model disagreement may also be due
to the limited representation of extremely wet or complex
terrain in the training data, which reduces the model’s gener-
alisability.

2.3 Statistical analyses

The statistical analysis was structured into five sequential
stages: (1) data preparation, (2) model training and evalua-
tion, (3) spatial prediction, (4) temporal aggregation and in-
terpretation, and (5) variable importance analysis (Fig. 3). All
steps were applied identically to the 1 and 10 m datasets to
enable direct comparison of model behaviour and prediction
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Figure 2. Site-specific landscape classification (LC) and Normalized Difference Vegetation Index (NDVI) at two spatial resolutions: 1 m
(panels A and C) and 10 m (panels B and D). Panels (A) and (B) show LC maps, while panels (C) and (D) show NDVI. Each panel includes
a black-framed inset highlighting a representative polygonal mire. Narrow, waterlogged microtopographic features such as wet trenches
remain distinct at 1 m resolution but blend into mixed pixels at 10 m. Background imagery: © Google Earth (Maxar) 2025.

outcomes across spatial resolutions. The analysis was imple-
mented in R 4.3.2 (R Core Team, 2024).

2.3.1 Data preparation

The first step consisted in the preparation of the predictor
datasets to explain spatio-temporal variability in CH4 fluxes.
In total ten predictors were used: AT, PAR, TDD, NDVI,
NDWI, slope, aspect, TPI, TWI, and a six-class landscape
classification (see Appendix Table A1 for details). The three
meteorological variables (AT, PAR, and TDD) were treated
as spatially uniform across the ~ 3km? study area, as it is
covered by a single meteorological station. Their values var-
ied only temporally, while all other predictors were spatially
distributed and static during each model run. To assess poten-
tial multicollinearity, pairwise correlations among predictors
were calculated separately for the 1 and 10 m datasets using
Spearman’s rank correlation.

2.3.2 Model training and evaluation

Second, we evaluated four modelling families for their abil-
ity to predict CH4 fluxes: random forests (RF), gradient-
boosting machines (GBM), generalized additive models
(GAM), and support-vector regression (SVR). RF is a ML
algorithm that builds multiple decision trees on bootstrapped
data. The mean of their outputs is then calculated. The av-
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eraging reduces noise and the method reports easy-to-read
variable-importance scores (Breiman, 2001; Prasad et al.,
2006). GBM also uses trees but adds them one after another.
Each new tree learns from the errors of the current ensemble,
which often reduces bias but requires careful tuning to avoid
over-fitting (Friedman, 2001; Elith et al., 2008). Similar RF,
GBM handles mixed predictor types, outliers, missing val-
ues, and nonlinear relationships without preprocessing (Elith
et al., 2008). GAM is a statistical technique that fits a smooth
curve to each predictor and then combines these curves to
create a composite curve. The curves demonstrate how CHy
changes with each driver and provide reliable predictions be-
yond the training range (Hastie and Tibshirani, 1986; Wood,
2017). SVR is a ML algorithm that fits a flexible line or sur-
face that best follows the data while allowing small errors
within a defined range. It uses a mathematical function called
a kernel to handle weak non-linear patterns, and is particu-
larly effective when the dataset is small or the relationships
are not strongly linear (Cortes and Vapnik, 1995; Smola and
Scholkopf, 2004). Each model was implemented using the
caret package in R (Kuhn, 2008) for hyperparameter tuning
via stratified 10-fold cross-validation on individual measure-
ments. We used the R-packages ranger for RF (Wright and
Ziegler, 2017), gbm for GBM (Greenwell et al., 2022), kern-
lab for SVR (Karatzoglou et al., 2004), and mgcv for GAM
(Wood, 2017). Model performance was assessed using five-
fold cross-validation based on out-of-fold predictions, with-
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Figure 3. Workflow for modelling and upscaling CH,4 fluxes in the designated study area. The analysis was performed separately for 1 and
10 m spatial resolutions and comprised five primary stages: (1) Predictor preparation. (2) The training and tuning of models. (3) Spatial
prediction. (4) Temporal aggregation and evaluation. (5) Variable importance.

out grouping by site or year of measurement. Three com-
plementary metrics were used: the coefficient of determina-
tion (R?), root mean square error (RMSE), and mean abso-
lute error (MAE). R? describes how well model predictions
capture the variability of observed CHy fluxes, RMSE em-
phasises large deviations, and MAE quantifies the average
absolute difference between observed and predicted values.
R? and RMSE were the main criteria for evaluating predic-
tive performance and selecting the best model configurations,
while MAE was reported as an additional indicator of abso-
lute error, given the low mean CHy fluxes. All metrics were
computed from cross-validated predictions using the yard-
stick package (Kuhn et al., 2025) to ensure consistent imple-
mentation across all model types.

We tuned the key parameters of RF, GBM, SVR, and GAM
using five-fold cross-validation with RMSE as the evaluation
metric (Sect. S1 in the Supplement). For SVR, several ker-
nel functions were tested and the radial basis function ker-
nel provided the best performance. GAMs were fitted us-
ing thin-plate regression splines for numeric predictors and
penalization of uninformative smooth terms. Multicollinear-
ity among predictors was assessed using Variance Inflation
Factors (VIF/GVIF) and GAM concurvity diagnostics, and
no predictors exceeded commonly used concern thresholds
(Sect. S2 and Table S2 in the Supplement). Therefore, the
full predictor set was retained at both spatial resolutions.

In addition to the main predictor set, models were also
trained with additional variables available only at 10 m spa-
tial resolution, including CALU land cover, InSAR-derived
surface subsidence, and temporally dynamic NDVI and
NDWI extracted for dates closest to each CHy flux measure-
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ment. These variables were tested in separate model runs to
evaluate their explanatory power but were not included in
the main inter-resolution comparison, as they were unavail-
able at 1 m resolution and would otherwise bias scale-related
analyses.

To disentangle the effects of spatial resolution and data
source, we additionally aggregated the 1 m input dataset to
10 m resolution using the same workflow. Continuous pre-
dictors were averaged within each 10m grid cell, and cat-
egorical variables (LC) were assigned based on the majority
class. These aggregated data were then used to train and eval-
uate all models using the same hyperparameter settings and
cross-validation strategy as for the main analysis.

2.3.3 Spatial prediction

Third, two best-performing models (RF and GBM) were
applied to a complete spatial predictor stack, a multi-layer
raster covering the entire study area without gaps. The stack
included two types of layers. Static layers, such as NDVI,
NDWI, slope, aspect, TPI 30m, TWI, and land cover, re-
mained unchanged throughout July. In contrast, the meteo-
rological layers (AT, TDD, PAR) were spatially uniform but
temporally dynamic. A temporal loop progressed from 1 July
at 00:00 to 31 July at 23:59 LT in three-hour steps. At each
time step, the corresponding values of AT, PAR, and TDD
were inserted into their respective layers in the stack. The
model then generated an instantaneous CHy4 flux raster in
mgCH;m~2h~! using the ferra package (Hijmans, 2023).
This routine resulted in 248 flux rasters for the whole month
of July, produced per year and spatial resolution. To ensure
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consistency, areas with missing input values (e.g., water bod-
ies) were excluded from predictions. In total, 5952 CH,4 flux
rasters were generated (248 time steps x 2 models x 2 reso-
lutions x 6 years).

2.3.4 Temporal aggregation and interpretation

Fourth, the predicted raster time series was aggregated using
arithmetic operations in the ferra package. Averaging over
all time steps resulted in July mean flux maps, while sum-
ming and multiplying by three converted instantaneous rates
into cumulative monthly fluxes. Six-year means and inter-
annual variation (2019 to 2024) were calculated. To assess
spatial mismatches related to scale, the 1 m predictions were
aggregated to 10 m resolution, and the aggregated 1 m maps
were subtracted from the 10 m maps pixel-by-pixel to com-
pute spatial differences. In addition, differences between the
two tree-based model families, RF and GBM, were mapped
to quantify structural uncertainty. To interpret these mis-
matches, Pearson correlations were calculated between the
difference maps (resolution- or model-based) and individual
predictor layers.

2.3.5 Variable importance analysis

Fifth, we conducted a separate variable importance analy-
sis to identify the most influential predictors in each model.
Variable importance scores were extracted from the cross-
validated, hyperparameter-optimised RF and GBM models
using permutation importance (ranger package; Wright and
Ziegler, 2017) and relative influence (ghbm package; Green-
well et al., 2022), respectively. These scores were used to
assess the consistency of predictor relevance across models
and spatial resolutions. Variable importance scores for each
model were normalized by dividing by the sum of all impor-
tance values within that model, resulting in relative impor-
tance values ranging from O to 1.

3 Results and Discussion

3.1 Correlation between observed CH4 fluxes and
single remote sensing parameters

This exploratory analysis examined how observed July CHy4
fluxes correlate with individual environmental variables at
two spatial scales (1 and 10 m) to identify significant controls
of CH4 flux and how spatial resolution affects their predic-
tive power. Although the observed associations were gener-
ally weak, several clear patterns emerged across landscape
classes and environmental gradients.

Seasonal subsidence showed the strongest positive corre-
lation, underscoring the explanatory power of this parameter
for moisture availability and related enhancements in CHy
fluxes (Table 2). This is in line with observations linking
InSAR-derived subsidence to elevated CHy fluxes in Arc-
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tic ecosystems (Sjogersten et al., 2023). Several moisture-
related indices (NDWI, TWI, TPI) show higher correlations
at 10 m than at 1 m, because 10 m aggregation smooths mi-
crotopographic noise while 1 m retains over-detailed, hetero-
geneous signals. This indicates that coarser resolution better
captures landscape-scale hydrological gradients. This find-
ing is supported by Ruhoff et al. (2011), who demonstrated
that TWI values stabilise and become more spatially coher-
ent at coarser resolutions, and by Riihimiki et al. (2021),
who showed that TWT’s ability to predict soil moisture im-
proves when derived from coarser DEMs (e.g., 10-30 m).
Conversely, the correlation with aspect weakened at 10 m,
compared to 1 m resolution, likely due to the loss of micro-
topographic detail when pixels are aggregated, as shown pre-
viously (Schoorl et al., 2000; Vaze et al., 2010).

Temporally matched NDVI and NDWI show weaker cor-
relation with CHy4 fluxes compared to static indices. The
reason may be the limited effective temporal resolution of
Sentinel-2: although the constellation has a nominal 5d re-
visit, persistent Arctic cloud cover often stretches the cloud-
free gap well beyond 10d (Runge and Grosse, 2019), pro-
ducing a temporal mismatch with chamber measurements.

We examined CHy4 flux variation across the landscape
classes and CALU units (Fig. 4a and Table B1). For ex-
ample, sedge-dominated landscape classes had the high-
est mean CHy flux (0.87-0.94 mg CHy m~—2 h~!). Elevated
fluxes in these systems are likely driven by plant trans-
port through aerenchymatous tissue during which CHy pro-
duced at depth bypasses the oxic zones, and enhanced CHy
production resulting from high plant productivity and in-
creased substrate availability via root exudates (Olefeldt
et al., 2013; Kwon et al., 2017). Tussock areas displayed
the lowest flux values, with on average minor uptake of
CH4 (—0.02mgCH4m~2h~!). These patterns were consis-
tent with observations by Voigt et al. (2023c).

All pairwise differences between CHy4 flux distributions
for the 1 and 10 m products were statistically significant
(Wilcoxon rank-sum test, p < 0.0001). However, this result
should be interpreted with caution due to the large sam-
ple sizes (even subtle differences can appear significant).
In some cases, the differences in median fluxes were small
(e.g., sedges), while in others, the resolution shift results
in more substantial changes (e.g., dwarf shrubs: median in-
creased from 0.05 to 0.19 mg CHy m~2h~1). In some cases,
the flux sign even changed, for instance, lichen-dominated
areas shift from weak uptake to weak emission. These shifts
likely reflect the effects of aggregation, where coarser reso-
Iution mixes surface types or blends microsites with different
flux patterns.

To assess how well a pan-Arctic land-cover scheme cap-
tures CHy flux variation, we aligned our measurements with
the CALU map (Fig. 4b). CALU vegetation classes differed
significantly in CHy flux, except between moist moss tun-
dra, abundant moss, prostrate to low shrubs (class 10) and
permanent wetlands (class 3) (Fig. 4b, Table B2). Within
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Table 2. Spearman rank-correlation coefficients (o) between July CHy flux and environmental predictors at 1 and 10 m spatial resolution.
Positive values indicate that higher predictor values coincide with higher CHy emissions, negative values indicate the opposite. All corre-
lations were computed using the full dataset. For vegetation and surface wetness predictors (NDVI, NDWI), both static (July 2018) and
temporally matched values (Sentinel-2 scenes within 10 d of each chamber measurement) are shown. The column “10 m, temporal” reflects
those temporally matched predictors. For predictors derived from static landscape characteristics (e.g., TWI, Slope, TPI, Subsidence), 10 m
and 10 m-temporal columns are merged as they do not vary in time. Significance levels: ** p < 0.01, *** p < 0.001.

Group Predictor 1m ‘ 10m ‘ 10 m, temporal
Vegetation NDVI —0.289%* | —0.295%** | —0.082**
Surface wetness and soil moisture NDWI 0.141%%* 0.24%%* ‘ —0.013
TWI 0.027** 0.235%**
Topography Slope —0.187*** —0.238***
Aspect 0.14%** 0.035%**
TPI —0.162%** —0.327%**
Ground subsidence Cumulative seasonal 0.534%**
subsidence
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Figure 4. Comparison of observed CH4 fluxes across site-specific landscape classification at two spatial resolutions and CALU (Circumarc-
tic Land cover Units) classes. The numbers above the boxplots indicate the total number of unique measurements followed by the number
of Sites of measurements in parentheses Panel (A): CHy fluxes across five site-specific landscape classes with existing CH4 flux measure-
ments. Measurements were aggregated separately for 1 and 10 m spatial resolution. Panel (B): CHy fluxes grouped by CALU classes. CHy
fluxes differed significantly between most CALU classes (p < 0.001, pairwise Wilcoxon test), except classes 10 and 3 (wetlands), where no
significant difference was observed (p = 0.054). Boxplots show the distribution of fluxes for each group. horizontal lines represent medians,
boxes indicate the interquartile range, and whiskers extend to 1.5x the IQR. The red dashed lines indicate zero fluxes.

CALU classes, average CHy fluxes ranged from slight up-
take in wetland class (—0.09 mg CH4 m~2h~!) to moderate
emissions in moist tundra, abundant moss, dwarf and low
shrubs (CALU 11) (0.46 mgCH4m_2 h~!). Unexpectedly,
the permanent wetland class showed CHy4 uptake. This cate-
gory only included one area, where dry lichen areas dominate
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most of the area. Moreover, the 10 m resolution of CALU
likely leads to mixed pixels, where wetter spots were av-
eraged with drier surroundings, reducing the apparent CHy
emissions. In contrast, many wet areas at our site were too
small to be resolved as wetlands in CALU and were instead
classified into other categories.
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Overlay analysis between our site-specific landscape clas-
sification and the CALU (Fig. 5) showed that each of our
landscape classes included 611 CALU classes (with cover-
age > 1 %), typically dominated by moist tundra, abundant
moss, dwarf and low shrubs (CALU 11). This reflects dif-
ferences in classification approaches: CALU aimed at rep-
resenting vegetation diversity and wetness gradients across
the entire Arctic (Bartsch et al., 2024), whereas the site-
specific landscape classification was explicitly built for CHy
flux modelling and therefore integrates fine-scale microto-
pography, surface-moisture patterns, and local vegetation. A
similar degree of cross-class mixing was observed for the
1 m classification (Fig. S2 in the Supplement), indicating that
these differences are primarily driven by conceptual distinc-
tions between classification schemes rather than spatial reso-
lution.

While both CALU and our site-specific classifications
captured broad vegetation and wetness gradients, tall-shrub
areas were clearly underrepresented in the flux dataset
(< 1.5% of points vs. ~ 20 %-30% of the mapped area;
Fig. S1). These zones often coincide with wetter micro-
depressions and drainage areas (Griinberg et al., 2020), sug-
gesting that the wettest conditions are not fully captured in
the current sampling. Increasing coverage of these habitats
would improve the robustness of flux comparisons and re-
duce residual variability in future models.

However, even within each CALU or LC class, flux vari-
ance remained high, underlining that vegetation type alone
cannot capture the full pattern of CH4 fluxes without consid-
ering microtopography and moisture indices. Similar to the
pan-Arctic synthesis by Olefeldt et al. (2013), our findings
support the view that the effects of key environmental pa-
rameters on CH4 flux should be considered jointly rather than
independently. Additionally, soil temperature and soil mois-
ture, key controls of CH4 production and oxidation (Wille et
al., 2008; Mastepanov et al., 2013), were not included as pre-
dictors in the present analysis due to limited spatial coverage
but are planned for integration in future model development.

3.2 Evaluation of Model Accuracy

Our cross-validated modelling framework achieved predic-
tive performance (R? from 0.53 to 0.87, Table 2) comparable
to recent CH4 upscaling studies in the Arctic-boreal region,
including both chamber- (e.g., Virkkala et al., 2024; Risidnen
et al., 2021) and eddy covariance-based studies (e.g., McNi-
col et al., 2023; Chen et al., 2024; Peltola et al., 2019; Tra-
montana et al., 2016).

Model evaluation at 1 m resolution revealed that SVR
achieved the highest R” of 0.87, indicating strong predic-
tive power. However, this was accompanied by substantial er-
rors (RMSE = 0.078, MAE = 0.019 of mean CHy4 flux), sug-
gesting high sensitivity to skewed distributions and outliers,
a known limitation of SVR when modelling non-Gaussian
ecological data (Smola and Scholkopf, 2004). In contrast,
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Table 3. Performance of four models at 1 and 10m spatial reso-
lutions. Metrics include R2 (coefficient of determination), MAE
(mean absolute error), and RMSE (root mean square error). Bold
values represent the best score for each metric within each reso-
Iution. The “10m” scenario includes models with temporally sta-
ble normalized difference vegetation index (NDVI) and normalized
difference water index (NDWI), while “10m_temporal” refers to
models using temporally dynamic indices, matched to the closest
available date of in-field CHy flux measurements.

Model Type  Resolution R> MAE RMSE
GAM Im 0.616 0.025  0.077
10m 0.527 0.027  0.126
10 m_temporal  0.645  0.022 0.084
GBM Im 0.625 0.008  0.012
10m 0.570  0.008  0.013
10 m_temporal  0.689  0.117 0.024
RF Im 0.744  0.006 0.010
10m 0.650  0.007  0.012
10 m_temporal  0.751 0.016 0.105
SVR Im 0.868 0.019 0.078
10m 0.682 0.022  0.117
10 m_temporal  0.668  0.022 0.124

RF showed both high accuracy and robustness, combining
high R? with the lowest errors among tested algorithms.
This confirms the algorithm’s strength in capturing nonlin-
ear interactions while being less sensitive to noise and over-
fitting, as highlighted in ecological applications (Belgiu and
Dragut, 2016; Résédnen et al., 2021; Cutler et al., 2007). GBM
also showed strong performance, with low errors and consis-
tent R? values, reflecting its capability to efficiently lever-
age key predictors (Kdmirdinen et al., 2023; Natekin and
Knoll, 2013). GAM, in contrast, had the weakest perfor-
mance among all models at 1 m resolution, with the lowest
R2 (0.62), highest RMSE (0.077), and highest MAE (0.025).
This likely reflects the model’s limited ability to capture
sharp spatial variability in CH4 fluxes when localized struc-
ture is strong. GAMs rely on detecting smooth nonlinear ef-
fects, but when predictors become noisy or spatially com-
plex, the fitted splines lack the detail needed for accurate pre-
diction (Wood, 2017).

At 10 m resolution, RF not only achieved the lowest mean
absolute and root-mean-square errors, but its R? and error
metrics also changed the least when we varied resolution
or added temporally dynamic predictors, indicating the most
consistent performance in our experiments (Table 3).

GBM showed similarly low errors but a slightly lower R?
(0.57). SVR achieved the highest R? (0.68), but this was off-
set by much higher prediction errors, indicating poor gen-
eralisation despite high apparent fit. GAM performed worst,
with the lowest R2 (0.53) and the highest RMSE (0.13).
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Figure 5. Pixel-wise cross-comparison between two 10 m land-cover products for the TVC study area. LC 10 m (this study): a site-specific
Sentinel-2 + ArcticDEM classification built (see Appendix Al). CALU (Circumarctic Land cover Units): published pan-Arctic landcover
units (full legend in Table A3). Each tile shows the fraction of pixels of a given CALU class that fall into that LC 10 m class; row totals,
therefore, equal 100 %. Values > 0.5 % are printed inside the tiles. Tiles that are coloured but unlabelled occur (< 0.5 %), while blank tiles

indicate class pairs that do not intersect within the AOL.

The decrease in SVR and GAM performance at 10 m reso-
lution likely reflects the loss of fine-scale spatial detail when
data are aggregated to coarser grids. At coarser resolution,
each pixel represents a mixture of surface types and microto-
pographic conditions, which reduces local variability in the
predictors and weakens the model’s ability to capture small-
scale relationships with CHy fluxes. SVR models, which de-
pend on detailed nonlinear patterns, become less stable when
this localised structure is smoothed out. Similarly, GAM per-
formance declines when predictors become more homoge-
neous, since spline functions can no longer represent fine
spatial gradients. In contrast, RF and GBM were more ro-
bust to this loss of detail because their ensemble structure
allows them to generalise better under coarser input con-
ditions. Based on these results, we selected RF and GBM
for further analysis as the most reliable combination of ac-
curacy and cross-resolution stability. When cross-validation
was grouped by site or year, R? values dropped to ~ 0.1—
0.2 and RMSE increased compared to the standard strati-
fied 5-fold CV (Sect. S5 and Fig. S7 in the Supplement).
This decline might reflect the heterogeneous sampling struc-
ture at Trail Valley Creek: because environmental conditions
are highly heterogeneous, many combinations of vegetation,
moisture and microtopography are represented by only one
or a few sites. Leaving such a site out removes these condi-
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tions from the training data and forces the models to extrap-
olate, rather than revealing instability of the general models.

Including the temporal variability of the NDVI and NDWI
values led to an average increase in R? of approximately 0.11
for the GAM, GBM and RF models at a resolution of 10 m
(Table 3). SVR was the exception, showing a slight decrease
in R? with no reduction in errors. For the GAM model, this
increase in explanatory power was accompanied by lower
RMSE and MAE values, indicating more accurate and robust
performance. In contrast, both RF and GBM showed a higher
R2, but also exhibited increased absolute errors, which may
indicate overfitting to temporally dynamic predictors. This
likely reflects the tendency of ensemble models to capture
noise in dynamic inputs when training data is limited (Barry
and Elith, 2006; Chollet Ramampiandra et al., 2023; Reich-
stein et al., 2019). Similar behaviour has been observed in
other ecosystem carbon flux modelling studies, for example,
in neural network models that overfit to lagged meteorolog-
ical inputs (Papale and Valentini, 2003). The GAM model
likely benefited from its ability to represent gradual ecolog-
ical shifts through penalised smoothers, which reduces sen-
sitivity to noise (Berbesi and Pritchard, 2023). The limited
improvement in performance for SVR may be due to its sen-
sitivity to data structure and lower flexibility when modelling
smooth temporal trends in ecological datasets (Smola and
Scholkopf, 2004).

https://doi.org/10.5194/bg-23-233-2026



K. Ivanova et al.: Shortened running title: High-resolution ML-based upscaling of CH, fluxes 245

3.3 Impact of model and resolution selection on CHy
flux predictions

Because only meteorological variables changed over time,
the interannual variation in the predicted maps arises from
interactions between the static landscape predictors and vary-
ing atmospheric conditions, rather than from spatial changes
in surface characteristics. Different data-driven models can
produce distinct spatial predictions even when trained on the
same input data. Although well documented, most machine-
learning algorithms are not easily interpretable, whereas sta-
tistical approaches such as GAMs provide more transpar-
ent relationships between predictors and fluxes. We therefore
compare their spatial predictions and simple diagnostics to
assess reliability and guide model choice for CHy upscaling.
Our comparison of upscaled CHy4 flux fields produced by the
RF and GBM models showed that algorithm choice remained
an important influence on spatial variability in predicted CHy4
fluxes (Fig. 6). The GBM model generated higher local con-
trast and more pronounced extremes, especially at 1 m reso-
lution, with pronounced peaks in wet, topographically com-
plex areas, reflecting its greater sensitivity to extreme values
and local predictor variation. RF produced smoother, noise-
resistant distributions, aligning with its known strength in
generalising across heterogeneous landscapes (Risinen et
al., 2021; Cutler et al., 2007). While RF remains a robust
and widely applied method for spatial upscaling (Cutler et
al., 2007), our findings demonstrate that algorithm choice
still affects spatial outcomes, with each model emphasising
different aspects of landscape variability. This highlights the
value of including multiple model types, not only for opti-
mising performance, but also for quantifying model-driven
uncertainty in CHy flux upscaling.

Interestingly, although GBM exhibited more spatial flux
variability, the mean fluxes predicted by GBM were con-
sistently lower than those of RF. At 1m, GBM aver-
ages 98.7mgCH;m™2 per month, whereas RF averages
518.6 mg; at 10m the values rise to 608.8 and 683.4 mg,
respectively (Fig. 7a). This more than fivefold difference
at 1 m resolution underscores the substantial structural un-
certainty that arises purely from algorithm selection, even
when all predictors and training data are identical. At 10 m
resolution, this discrepancy largely disappears because spa-
tial aggregation smooths microtopographic extremes and re-
duces the influence of local outliers, making both models
converge toward similar mean fluxes. Net-sink pixels ac-
counted for 10.0 % (RF) and 9.5 % (GBM) of the 1 m do-
main, but only 4.9 % (RF) and 4.4 % (GBM) at 10m. CHy
sink areas were spatially limited and highly sensitive to
scale. Pixels acting as net CHy sinks (i.e. with negative
monthly fluxes) were located on well-drained polygon rims
and other lichen-dominated uplands where oxygen remained
available throughout the summer. This allowed highly effi-
cient methanotrophs to oxidise CHy faster than it was pro-
duced (Biasi et al., 2008). Resolving these units at a scale
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of 1 m showed that they covered around 10 % of the scene
and significantly reduced the landscape-mean flux. However,
coarsening to 10 m mixed the aerobic patches with adjacent
wet hollows, reducing their mapped extent to approximately
4.5 % and erasing many uptake pixels. A comparable effect
has been observed when chamber data were averaged across
broader physiographic units, shifting site-level balances from
weak sinks to slight sources (Zona et al., 2016). This pro-
nounced scale effect is consistent with pan-Arctic syntheses,
indicating that, although they cover only a small fraction of
the surface, aerated uplands can offset a significant propor-
tion of wetland emissions, yet they are often obscured in
coarse products and regional budgets (Olefeldt et al., 2013;
Kuhn et al., 2021). Our findings support recent assessments
that retaining metre-scale information on microtopography,
vegetation, and soil moisture is essential for capturing sink
behaviour and ultimately for refining carbon budgets in per-
mafrost regions, which currently indicate a small terrestrial
CO2 sink and a wetland CHy4 source (Treat et al., 2024).

Both models predict a comparable overall flux range, but
the main disagreement occurs in the intensity and spatial
extent of intermediate values. GBM also tends to produce
stronger negative extremes, indicating higher sensitivity to
localized sink conditions. The residual model disagreement
is driven less by the number of sink pixels than by their
intensity. Minimum fluxes predicted by GBM were consis-
tently more negative than those from RF, with extremes of
—147mgCH4;m~2 per month (1 m) and —330 mgCH; m~2
per month (10m), compared to —45 and —33 mgCH4 m~?2
per month in RF, respectively. This suggests that GBM may
emphasise CHy sink strength more than RF, even though the
spatial extent of sinks is similar across models.

At 1m, GBM often responds more strongly to local-
ized environmental extremes. These include areas with much
higher soil moisture, surface temperature spikes, or abrupt
changes in microtopography that may only occur at the me-
tre scale. This is due to its sequential learning process, which
can emphasize subtle but high-impact predictors. RF, in con-
trast, smooths local extremes and yields more conservative
area means. Because GBM-1 m produced a markedly lower
AOI mean than RF, we treat this behaviour as a potential sys-
tematic bias toward stronger sinks and hotspots. We there-
fore use RF-1m as the reference budget estimate and retain
GBM-1m as a sensitivity case to bracket structural uncer-
tainty. At 10 m, aggregation reduces fine-scale contrasts and
the RF-GBM predictions converge. Pixel-wise standard de-
viations (Fig. 7b) reveal that RF is temporally more stable,
while GBM is more sensitive to inter-annual variation, par-
ticularly in wet or geomorphically complex areas.

Spatial differences between models and resolutions were
calculated as pixel-wise subtraction (RF —GBM and I m —
10m), ensuring consistent direction of comparison across
all analyses. Additional analysis of spatial differences be-
tween models (Fig. B2) showed that several predictors were
moderately to strongly correlated with the differences be-

Biogeosciences, 23, 233-262, 2026



246 K. Ivanova et al.: Shortened running title: High-resolution ML-based upscaling of CH, fluxes

RF

GBM

CHys flux
M [mg CHs m?2 month™' ]
I <=-100
[l -100--40
B -40--20
[ -20--5
-5-0
0-5
5-100
100 - 250
250 - 400
[ 400 -700
[ 700 - 1000
[ 1000 - 1300
[ 1300 - 1600
Il 1600 - 1900
Hl > 1900

Background satellite map:
© Google Satellite Hybrid
image (map data: Google
Airbus, Maxar Technologies,
2025) of the area of interest,
Inuvik  region,  Northwest
Territories, Canada.

Figure 6. Predicted mean monthly CHy fluxes (mgCHy m~2 per month) for July (averaged over 2019-2024), generated by two machine-
learning models: Random Forest (RF, panels A and B) and Gradient Boosting Machine (GBM, panels C and D). The panels (A) and (C)
shows predictions at 1 m resolution, and panels (B) and (D) right column at 10 m resolution. Each panel contains a black-framed zoom
window, which enlarges a representative section of the polygonal mire. Visual comparison of the two insets illustrates how the fine wet-to-
dry microtopography resolved at 1 m is smoothed when aggregated to 10 m. Background imagery: © Google Earth (Maxar) 2025.

tween RF and GBM predictions. At 1 m resolution, the
strongest correlation was observed for NDWI (—0.53), indi-
cating that model disagreement was most pronounced in wet-
ter areas. NDVI (0.49) and landscape type (0.41) also showed
strong positive correlations with model differences, suggest-
ing greater divergence in vegetated zones and across cover
transitions. For the 10 m products, aspect (0.43) became the
only predictor for model differences above 0.4, implying that
model choice matters most on directionally exposed terrain
once fine micro-relief is lost. Across both resolutions, NDWI
exhibited consistent negative correlations, implying that di-
vergences are magnified in wetter and concave landforms
that tend to accumulate water or thaw differently. These find-
ings are in line with Tagesson et al. (2013), who showed that
adding satellite-derived NDWI improves CH4 flux modelling
by capturing moisture-driven variability.

The full spatial difference maps for each model and res-
olution are provided in the supplementary Zotero dataset
(Ivanova et al., 2025a) to enable direct comparison with envi-
ronmental layers and visual exploration of model- and scale-
driven patterns.

Part of the disagreement between the two models, particu-
larly at 10 m resolution, can be attributed to limited training
data in certain landscape types such as tall-shrub and com-
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plex wetland zones, which were sampled less intensively due
to access constraints. These classes show higher prediction
uncertainty and stronger divergence between RF and GBM,
as GBM amplifies local extremes while RF tends to smooth
them.

Model performance based on the aggregated 1 m data
(10m from 1m) was nearly identical to that of the origi-
nal 10m models, with only small differences across algo-
rithms. GBM and SVR showed slightly improved accuracy
after aggregation, while RF performed marginally worse and
GAM remained nearly unchanged. These results indicate that
the performance differences between the 1 and 10 m models
reported above are mainly attributable to spatial resolution
rather than to differences between sensor-based and aggre-
gated input data (see Sect. S4, Figs. S5 and S6 in the Supple-
ment).

3.4 Parameters importance in CH4 flux prediction

Analysis of the relative importance of the predictors revealed
fundamental differences between the RF and GBM models,
and how these differences change when moving from 1 m to
10 m resolution (Table B3). Significance was assessed using
the permutation method for each model and scale combina-
tion.
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Figure 7. CH4 fluxes and their interannual variability across the study area. (A) Pixel-wise monthly mean CHy flux predicted by RF and
GBM models for July 2019-2024. Each point in the boxplots represents the mean July CH4 flux of a single pixel, illustrating the spatial
distribution of fluxes across the study area. (B) Pixel-wise interannual standard deviation of predicted CH,4 fluxes for July months from
2019 to 2024, calculated separately for each model and resolution. The box spans the interquartile range (IQR, 25th—75th percentile), the
horizontal line indicates the median, whiskers extend to 1.5x IQR, and points beyond the whiskers represent potential outliers.

At the 1 m resolution, RF distributed importance fairly
evenly across the topographic parameters. TPI (~ 22 %), As-
pect (~ 21 %), and Slope (~ 18 %) showed comparably high
influence, followed by landscape class (~ 16 %). All other
predictors contributed less than 10 %, and meteorological
drivers collectively stayed below that level. This topography-
centred profile is consistent with the moderate intercorre-
lation among terrain metrics such as TPI, Slope, and TWI
(Fig. B1), which share a common DEM origin and partly
capture overlapping relief and moisture patterns. Such be-
haviour aligns with the known tendency of random forests
to distribute importance across correlated terrain drivers due
to their random feature-selection mechanism (Résidnen et al.,
2021; Cutler et al., 2007).

GBM showed a different pattern: again, no single parame-
ter dominates, but five drivers spread across different input
categories (Slope, Landscape class, AT, TDD and NDWI)
each explained about 14 %—16 % of the total, and none ex-
ceeds 20 %. This flatter profile is based on the boosting pro-
cess. Each new tree fixes the errors left by the previous one,
so different predictors take turns improving the model (Fried-
man, 2001). When several drivers reduce error by a similar
amount, the model splits importance among them (Kamarii-
nen et al., 2023).

When the resolution was coarsened to 10 m, pixel aggre-
gation smoothed micro-relief, and both algorithms shifted
toward moisture-integrating drivers as primary explanatory
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influences. In RF, NDWI (~ 25 %) and Landscape class (~
25 %) emerge as joint leaders, NDVI rises to ~ 12 %, and
all topographic parameters drop below 8 %. In GBM, the re-
organisation is even stronger: the moisture indicators NDWI
(~25%) and TWI (~ 19 %) together explained almost half
of the total importance, while landscape class follows at
~ 11 % and Slope and Aspect fall below 7 %. This pattern
agrees with field evidence that moisture proxies dominate
CHy4-flux prediction at coarser resolution, where fine-scale
topographic details are lost (Tagesson et al., 2013; Gachibu
Wangari et al., 2023). NDWI and TWI both integrate wa-
ter content over several pixels, making them potential sur-
rogates for local water-table height and the extent of anoxic
microsites that drive methanogenesis. NDWTI is also sensi-
tive to vegetation water and phenology, allowing it to track
water-table depth in peatlands (Meingast et al., 2014; Kalac-
ska et al., 2018). TWI, which maps landscape-scale water ac-
cumulation and thus redox and gas-diffusion controls, aligns
with syntheses showing that water-table fluctuations set the
size of anoxic zones and largely govern CHy production and
emission (Kaiser et al., 2018; Cui et al., 2024). Landscape
class and NDVI contributed complementary information on
vegetation type and biomass, which modulate both substrate
supply and methane oxidation. In practical terms, upscaling
to 10m can still capture landscape-scale CHy patterns, but
only if robust moisture indices such as NDWI and TWI were

Biogeosciences, 23, 233-262, 2026
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Figure 8. Mean relative importance (4 SD) of environmental predictors for CHy fluxes across two machine-learning models — Random
Forest (RF) and Gradient Boosting Machine (GBM) — evaluated at 1 and 10 m spatial resolutions. Importance was estimated by bootstrap
resampling (n = 100) and is expressed as a percentage of total importance within each model. Predictors are grouped into four categories:
Meteorological drivers (thawing degree days, air temperature, photosynthetically active radiation), Vegetation/Terrain (Normalized Differ-
ence Vegetation Index, landscape class), Topography (Topographic Position Index, aspect, slope), and Hydrology/Moisture (Topographic
Wetness Index, Normalized Difference Water Index). Abbreviations: TDD — thawing degree days; PAR — photosynthetically active radia-
tion; NDVI — Normalized Difference Vegetation Index; TPI — Topographic Position Index; TWI — Topographic Wetness Index; NDWI —

Normalized Difference Water Index.

included; purely geometric terrain drivers lose most of their
explanatory power once microtopography is averaged out.

The potential influence of CALU, subsidence, and tempo-
rally matched NDVI/NDWTI indices was further examined in
a separate 10 m model experiment (Sect. S3, Figs. S3 and S4
in the Supplement).

4 Conclusion

This study aimed to identify the key environmental and spec-
tral drivers of CHy fluxes in heterogeneous Arctic tundra,
evaluate how both model performance and predictor im-
portance change with spatial resolution and across different
data-driven models, and assess the implications for upscaling
CH4 fluxes.

Subsidence, derived from InSAR, showed the highest cor-
relation with observed CHy4 fluxes of all the tested predictors,
emphasising its value as a spatial proxy for soil moisture. It
should therefore be included directly in CHy4 upscaling work-
flows, particularly in permafrost landscapes where moisture
conditions were key drivers of fluxes.

Although different models varied significantly in their es-
timates, RF and GBM provided the most consistent and re-
liable upscaling results. At the highest spatial resolution, the
two algorithms produced notably different flux magnitudes,
reflecting structural uncertainty linked to how each model
handles local extremes. However, their robustness should
be verified through targeted sensitivity analyses, including
tests with modified predictor sets, varied hyperparameters,

Biogeosciences, 23, 233-262, 2026

and bootstrapped subsampling, to assess the stability of vari-
able importance and model performance. Significance of
model predictors was found to be strongly scale-dependent.
At a resolution of 1 m, the models derived most of their ex-
planatory power from microtopographic metrics, which cap-
ture the detailed elevation contrasts that distinguish between
hummocks and hollows, as well as localising CHy4 hotspots.
However, after aggregation to 10 m, these relief cues were di-
luted, causing a change in ranking: moisture proxies NDWI
and TWI became the principal drivers, together accounting
for almost half of the explained variance. This transition from
terrain- to moisture-controlled importance highlights the fact
that fine-scale mapping requires detailed topographic data,
whereas regional upscaling must prioritize robust hydrologi-
cal indices. For AOI budgets we report RF at 1 m resolution
as the reference and use GBM at 1 m resolution as a sensitiv-
ity bound due to its amplification of metre-scale extremes.
Spatial resolution emerged as the important factor deter-
mining the predictive power of data-driven upscaled CHy
flux patterns, exerting a stronger influence than model
choice. At a resolution of 1 m, fine-scale heterogeneity was
captured at a high degree of detail, making it possible for
models to distinguish between local sources and sinks of
CHy4. At 10 m, micro features merge into mixed pixels, boost-
ing mean fluxes and variability. This resulted in fine-scale
sinks and hotspots disappearing, and in some cases, fluxes
being misclassified as a source of CHy in dry areas. Con-
sequently, 10 m models produced higher mean fluxes and
broader flux distributions. However, some of these high val-
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ues may be due to mixed-pixel artefacts rather than true local
emissions.

Our study findings imply that resolution is not simply a
case of “the higher, the better”, and similarly, more complex
ML methods may not necessarily yield better predictions. Al-
though 1 m models captured fine-scale heterogeneity, 10 m
models with temporally dynamic predictors improve ex-
planatory power but increase prediction errors, likely due
to overfitting to short-term fluctuations. This suggests that,
in some cases, 10 m resolution models can outperform 1 m
resolution ones, particularly when enhanced with well-timed
spectral information, though caution is needed to balance
fine-scale accuracy with broader spatial generalisability.

Although this study focuses on a single Arctic wetland
complex at Trail Valley Creek, the workflow and findings are
broadly transferable to other tundra environments. Ten-metre
inputs from Sentinel-2 and ArcticDEM reproduce dominant
moisture-control patterns typical of Arctic lowlands, while
metre-scale (drone + LiDAR) layers reveal fine sink—source
contrasts but require intensive data collection. Scale effects
may vary across Arctic landscapes depending on topographic
and vegetation complexity, and could differ in more homoge-
neous or highly dissected terrain. Because the models remain
correlative and July-specific, extending the workflow across
seasons and additional sites would strengthen generality and
test the stability of the observed scale effects. Future work
should expand sampling into underrepresented landscape and
vegetation classes, high-emission zones, methane uptake re-
gions, and winter fluxes, and incorporate temporally dynamic
predictors. Integrating theory-guided time-series modelling
approaches informed by ecological theory could enhance
both the interpretability and accuracy of CHy forecasts un-
der complex seasonal dynamics, particularly when data avail-
ability is limited.

Appendix A: Predictors from remote sensing and
meteorological data

Al Landscape classification

To classify land cover in the TVC area, we employed a
supervised classification approach using multi-source re-
mote sensing data at 1 and 10m resolutions. The classi-
fication process was implemented in Google Earth Engine
(GEE), enabling large-scale data processing. A Random For-
est (RF) classifier was chosen due to its ability to handle
high-dimensional data, its resistance to overfitting, and its
suitability for land cover mapping. By applying a consis-
tent classification framework at both 1 and 10 m resolutions,
this study enables direct comparisons of classification perfor-
mance across spatial scales,
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Training and Validation Data

The classification was trained using manually collected val-
idation points that were assigned to six distinct land cover
classes: Dwarf Shrub, Tall Shrub, Sedges, Tussock, Lichen,
and Water. To ensure statistical robustness, 80 % of the vali-
dation points were used for model training, while the remain-
ing 20 % were reserved for accuracy assessment.

Remote Sensing Data and Feature Extraction

To optimise classification accuracy, we integrated spectral,
texture, and topographic features derived from multiple re-
mote sensing sources. Sentinel-2 optical imagery at 10m
resolution was used for broad-scale classification, with im-
ages acquired during the 2018 growing season (25 June—
4 September 2018) to ensure that differences in land cover
classification were due to spatial resolution rather than
changing environmental conditions, matching the same sum-
mer period as the 1 m drone survey. Topographic features
were extracted from ArcticDEM (2 m resolution) (Porter et
al., 2023). At finer spatial scales, we incorporated ultra-high
resolution drone imagery (1 m and 10cm) from Rettelbach
et al. (2024) and a digital terrain model (DTM) (Lange et al.,
2021).

To further enhance classification accuracy, we performed a
Gray-Level Co-occurrence Matrix (GLCM) texture analysis
of NDVI, allowing us to incorporate information on vegeta-
tion heterogeneity. A 2 x 2 kernel was used for 10 m classifi-
cation, while a 20 x 20 kernel was applied at 1 m resolution
to capture 20 m spatial patterns.

Biogeosciences, 23, 233-262, 2026
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Table A1. Overview of predictor variables used in the CH,4 flux models. This table lists all environmental predictor variables considered in the modelling framework. For each parameter,
the spatial resolution (for remote sensing layers), source, short description, and formulas for calculations are presented (where applicable). Parameters are grouped into six thematic
categories: Meteorological Drivers (e.g., PAR, AT, TDD), Vegetation/Land Cover (e.g., NDVI, landscape classification, CALU), Hydrology / Moisture Indicators (e.g., NDWI, TWI),
Topography (e.g., slope, aspect, TPI), and Surface Deformation (subsidence). Each variable is marked as either static (unchanging during the study period) or dynamic (time-specific).

Parameter Spatial Derived from Description Temporal Parameter type

resolution variability

Photosynthetically 1km NASA Langley Research Extracted as a predictor variable for CHy flux models. Dynamic Meteorological

Active Radiation Center (2024) Drivers

(PAR)

NDVI Im Rettelbach et al. (2024) Ultra-high resolution NDVI derived from drone imagery. Static Vegetation / Terrain

NDVI = JIR=Red (A1)
NIR+Red
NDWI Im Rettelbach et al. (2024) Ultra-high resolution NDWI derived from drone imagery. Static Hydrology / Moisture
NDWI = ‘mwmmm.ﬂﬁm (A2) Indicators

Landscape Im Rettelbach et al. (2024), Landscape classification performed using 1 m drone imagery Static Vegetation / Terrain

classification Lange et al. (2021) and ALS-derived DTM (Appendix B).

NDVI 10m Sentinel-2 [2019-2024] Extracted from the composite Sentinel-2 image for Static Vegetation / Terrain
(mean for July—August July—August 2018.

_ NIR—Red
2018). NDVI = qrr7Rreq (AD

NDWI 10m Sentinel-2 [2019-2024] Extracted from the composite Sentinel-2 image for Static Hydrology / Moisture

(mean for July—August July—August 2018. Indicators
_G —NIR
2018). NDWI = memm TR (A2)

NDVI 10m Sentinel-2 [2019-2024] Extracted from single-date, closest to flux measurement. Dynamic Vegetation / Terrain
(Single-date, closest to flux ~NDVI= %ﬁmmm (A1)
measurement).

NDWI 10m Sentinel-2 [2019-2024] Extracted from single-date, closest to flux measurement. Dynamic Hydrology / Moisture
(Single-date, closest to flux ~NDWI = mm%.ﬂwmm (A2) Indicators
measurement).

Landscape 10m Copernicus Sentinel-2 data ~ Landscape classification performed using Sentinel-2 indices Static Vegetation / Terrain

classification [2018], ArcticDEM v4 (2018) and terrain derivatives of ArcticDEM (Appendix B).

(Porter et al., 2023)

Slope Im Lange et al. (2021) Measures the rate of elevation change along the steepest Static Topographical

descent. It controls water and material flow, influences soil parameters

moisture, erosion, and formation, and is a key hydrological and

geomorphological factor.
Derived from DTM.
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Table A1l. Continued.

Parameter Spatial Derived from Description Temporal Parameter type
resolution variability
TPI_30m 10m ArcticDEM v4 The Topographic Position Index (TPI) quantifies the elevation of a cell relative  Static Topographical
(from 2 m) (Porter et al., 2023) to the mean elevation of surrounding cells, allowing differentiation between parameters
ridges, valleys, and flat areas. We computed TPI using a 30 m circular moving
window, meaning that for each location, its elevation was compared to the
average of all surrounding elevations within a 30 m radius. This window size
smooths out small-scale variation and captures broader landform patterns.
Derived from DTM.
Subsidence 10m Copernicus Sentinel-1/2  Seasonal deformation has been derived from Sentinel-1 time series Static Surface
data (2018-2023) using SAR Interferometry. Six years have been averaged to Deformation
reduce noise. The seasonal deformation rates in thawing degree days domain
represent near surface soil moisture spatial patterns. (Widhalm et al., 2025)
CALU 10m CALU The Circumarctic Landcover Units provide a consistent high-resolution land Static Vegetation / Terrain
(Bartsch et al., 2024) cover classification across the entire Arctic tundra. CALU defines 23 units of
similar reflectance derived from multispectral (Sentinel-2) and C-band SAR
(Sentinel-1) data. The classification reflects wetness gradients, shrub density,
moss abundance, and surface moisture (Bartsch et al., 2024).
AT Point Trail Valley Creek Hourly air temperature measured at 2 m above ground level. Used as a dynamic ~ Dynamic Meteorological
meteorological station meteorological driver for CHy4 flux models. Drivers
(Climate ID: 220N005;
WMO ID: 71683;
TCID: XTV).
Thawing Point Trail Valley Creek Cumulative positive air temperature sum (above 0 °C) used as a proxy for thaw  Dynamic Meteorological
Degree Days meteorological station energy and season length. Calculated per flux measurement period based on air Drivers
(TDD) (Climate ID: 220N005; temperature from meteorological station.

WMO ID: 71683;
TCID: XTV).

TDD = 377 max(Tmean,i- 0) (A4)

— Tinean,i = mean daily air temperature on day i

— n = number of days in the accumulation period

— The max function ensures only temperatures above 0 °C are counted
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Table A2. Parameters used for the landscape classification. Abbreviations in the table: NDVI — Normalized Difference Vegetation Index,
NDWTI — Normalized Difference Water Index, EVI — Enhanced Vegetation Index, SAVI — Soil-Adjusted Vegetation Index, GLCM — Gray-
Level Co-occurrence Matrix, TPI — Topographic Position Index, TWI — Topographic Wetness Index, DEM — Digital Elevation Model.
Spectral indices were derived from Sentinel-2 (10 m spatial resolution) and drone imagery (1 m spatial resolution) using the visible and

near-infrared bands (Blue, Green, Red, NIR).

Parameter Description Formula (if applicable) Spatial
resolution
NDVI Measures vegetation greenness % 10, Im
: : Green—NIR

NDWI Identifies water and moisture GreentNIR 10, Im
content

EVI Irpproves sensitivity to high 25X NIR +6><§IEI§D_—R7F?><Blu T 10, I m
biomass

SAVI Reduces soil brightness effects %, where L = 0.5 10, Im

[3pt] GLCM Entropy = Measures randomness in pixel Derived from NDVI 10, Im
intensity

GLCM Contrast Captures local texture variation Derived from NDVI 10, Im

GLCM Homogeneity = Measures uniformity in image Derived from NDVI 10, Im
texture

Slope Measures terrain steepness Derived from DEM 2,1m

Aspect Identifies terrain orientation Derived from DEM 2,1m

TPI 6m Detects local terrain position Elevation — Mean(Elevation within 6 m radius) 2,1m

TPI 30m Identifies broader-scale landforms Elevation — Mean(Elevation within 30 m radius) 2, 1m

TWI Estimates soil moisture potential In (ﬁ), where 2,1m

A = specific contributing area
B = slope in radians

Band parameters Captures spectral variation in mean and sd for each pixel of RGB and NIR 10m
different wavelengths bands

Band parameters Captures spectral variation in pixel value of RGB and NIR bands 10m

different wavelengths

Classification Model and Accuracy Assessment

The Random Forest classifier was trained separately for 10 m
Sentinel-2 data and 1 m drone-based data, with 200 decision
trees used in both cases. The trained models were then ap-
plied to classify the entire dataset. The overall accuracy was
0.76 for 1 m resolution and 0.71 for 10 m resolution. Class-
specific accuracies are provided in Table S1 in the Supple-
ment.

Export

Final classified maps at 10 m and 1 m resolutions were ex-
ported as GeoTIFF files for further analysis and comparison.
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Table A3. Description of Circumarctic Land Cover Units (CALU) present in the study area. Class names and definitions are taken from
Bartsch et al. (2024). Additional columns indicate (i) whether the class is present within the area of interest (AOI), and (ii) whether CHy flux
measurements are available for this class.

CALU  Description Present CH,4 measurements
class in AOI  available
1 Water yes

2 shallow water/abundant macrophytes yes

3 wetland, permanent yes yes
4 wet to aquatic tundra (seasonal), abundant moss yes

5 moist to wet tundra, abundant moss, prostrate shrubs

6 dry to moist tundra, partially barren, prostrate shrubs yes

7 dry tundra, abundant lichen, prostrate shrubs

8 dry to aquatic tundra, dwarf shrubs (and sparse tree cover along treeline) yes

9 dry to moist tundra, prostrate to low shrubs yes yes
10 moist tundra, abundant moss, prostrate to low shrubs yes yes
11 moist tundra, abundant moss, dwarf and low shrubs yes yes
12 moist tundra, dense dwarf and low shrubs (and sparse tree cover along treeline) yes

13 moist to wet tundra, dense dwarf and low shrubs (and sparse tree cover along treeline)  yes

14 moist tundra, low shrubs yes

15 dry to moist tundra, partially barren yes yes
16 moist tundra, abundant forbs, dwarf to tall shrubs yes

17 recently burned or flooded, partially barren yes

18 forest (deciduous) with dwarf to tall shrubs yes

19 forest (mixed) with dwarf to tall shrubs yes

20 forest (needle leave) with dwarf and low shrubs yes

21 partially barren yes

22 snow/ice

23 other (incl. shadow) yes

Appendix B: Results

Table B1. Summary statistics of observed CHy4 fluxes (mg CHy m~2 h~!) across site-specific landscape classes at 1 and 10 m spatial resolu-
tions. The table reports the number of observations (N Obs), number of sites, where measurements were done (N sites), mean, first quartile
(Q1), third quartile (Q3), minimum, and maximum CHy flux values for each landscape class at both resolutions.

Landscape class  Resolution N Obs N sites Mean Q1 Q3 Min Max
Lichen Im 1713 22 0.002 —-0.02 0 —-048 1.62
10m 3690 19 -0.011 -0.02 0 —-048 0.62
Tussock Im 11372 39 —-0.016 -0.03 -0.01 —-0.24 241
10m 9218 30 -0.020 -0.03 -0.01 -0.18 0.68
Dwarf shrub Im 130 4 0.053 —-0.02 0.06 —0.18 0.89
10m 201 7 0.19 —0.01 0.13 —-0.28 241
Tall shrub 10m 71 3 0.024 —-0.02 0.05 —-0.12 0.54
Sedges Im 177 3 0.94 0.06 1.09 —-0.02 6.39
10m 204 9 0.87 0.05 1.07 —-0.03 6.39

Biogeosciences, 23, 233-262, 2026 https://doi.org/10.5194/bg-23-233-2026
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Table B2. Summary statistics of observed CHy fluxes (mg CHy4 m~2h~ 1y across CALU classes. The table reports the number of observations
(n), mean, first quartile (Q1), third quartile (Q3), minimum, and maximum CHy flux values for each landscape class at both resolutions. Class

descriptions are available in Bartsch et al. (2024).

CALU class n  Mean Q1 Q3 Min Max
3. Permanent wetland 11 -0.09 -0.09 0 -048 0
9. Dry to moist tundra, prostrate to low shrubs, tussocks 6357 —0.01 —0.02 0 -0.19 0.61
10. Moist tundra, abundant moss, prostrate to low shrubs, tussocks 6407 -0.02 -0.03 -0.01 —-0.18 0.41
11. Moist tundra, abundant moss, dwarf and low shrubs, tussocks 490 0.46 0.01 039 —-0.28 6.39
15. Moist to wet tundra, abundant lichen, in some cases partially 119 0 0 0.03 —-0.24 0.06
barren (disturbed).
1m 10m
X X
gl &
NDVI|  0.15 NDVI
NDWI -0.15 & NDWI &
N N
Slope 0.42 | -0.32 & Slope 0.51 | -0.41 &
° o
TPl 021 | -0.14 TPI 0.15
& Q&
T™wI -0.25 | 0.18 | -0.14 | -0.38 TWI  0.14 | -0.47 | 0.35 | -0.50
R ———— ] e — ]
-1 -08 -06 -04 -02 O 02 04 06 08 1 -1 -08 -06 -04 -02 O 02 04 06 08 1

Figure B1. Spearman rank correlations between environmental predictors used in the CHy flux models at (left) 1 m and (right) 10 m reso-
lution. Only statistically significant relationships (p < 0.05) with absolute correlation strength p>0.1 are shown; non-significant and weak
correlations are blanked. Positive correlations are shown in blue and negative correlations in red, with color intensity proportional to corre-

lation strength (see scale bar, —1 to +1).
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Resolution influence Resolution influence

Model influence (based on 1m predictors) (based on 10m predictors)

Topographic wetness -0.03 0.23 -0.09 0.09 0.07 0.29

index (TWI)
sample sizes:

Topographic position 0.04 -0.2 -0.04 -0.04 -0.22 -0.4 n=30402 (10 m resolution)

index 30m radius (TPI) n =3050788 (1m resolution)

Slope -012 | -0.05 026 | 023 012 | 008 correlation: Pearson
L RY

Normalized Difference -0.53 -0.28 -0.34 -0.23 -0.15 -0.12 0.5

Water Index (NDWI) 0.0

Normalized Difference 0.49 0.23 0.36 0.23 0.17 0.11 -0.5

Vegetation Index (NDVI) -1.0

Landcover type 0.41 0.06 0.42 0.28 0.32 0.24

Aspect 0.08 0.43 -0.02 0.04 -0.26 0.2

&
LS &« & & &
N4 N-Y4
b@ S (9
Y ~

Figure B2. Pearson correlation between spatial differences in CH4 flux predictions and selected environmental predictors. “Model influence”
(left block) shows differences between RF and GBM predictions at the same resolution (RF — GBM). “Resolution influence” (middle and
right blocks) show differences between 1 and 10 m predictions (1 m — 10m), calculated using predictors derived from (i) the 10 m products
downscaled to 1 m (middle) and (ii) the 1 m predictors aggregated to 10 m (right). Positive correlations indicate that higher predictor values
coincide with stronger CHy flux mismatches between models or resolutions. Each cell represents Pearson’s r across 30402 pixels (10 m) and
3050788 pixels (1 m).

Table B3. Relative importance [%] of environmental predictors for CHy flux models across spatial resolutions and algorithms. The table
shows the variable importance (in %) for each predictor derived from Random Forest (RF) and Gradient Boosted Machine (GBM) models
at 1 and 10 m spatial resolution. Predictors are grouped by thematic category (e.g., Meteorological, Topographic). Importance values reflect
the mean contribution of each predictor to the model performance and standard deviations (£ SD).

Group Parameter RFIm RFI0m GBMIm GBM10m
Meteorological Drivers Air temperature 84+29 77128 14.7+42 84+42
PAR 6.1+3 7.8+23 6.6+1.8 49+13
TDD 52+£1.7 3612 13.6+3.6 9.1+28
Hydrology / Moisture Indicators NDWI 14+1 245+£75 13.8+5 24.6+8.4
TWI 0.8£0.3 53+£19 26+13 188+£7.5
Topographical parameters Aspect 21.4£5.7 33£13 23+£0.8 6.5+£29
Slope 17.6 7.6 3624 158+6.5 36+1.1
TPI 21.6£6.6 7.5+2.7 9.6+2.7 1.94+0.6
Vegetation / Terrain NDVI 19+£1 11.7£6.9 55+23 11.3+£43

Landscape class  15.7+5.8 25+7.7 155+£29 10.9+3
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Code availability. The code used for CHy flux modelling, res-
olution comparison, and upscaling across Arctic wetland land-
scapes is publicly available on Zenodo (Ivanova et al., 2025b):
https://doi.org/10.5281/zenodo.15399084. The code used for pro-
cessing the manual chamber flux measurements (2022-2024) is
available at https://doi.org/10.5281/zenodo.16732354 (Ivanova and
Gockede, 2025).

Data availability. The CHy flux predictions, spatial dif-
ference maps, and input dataset used in this study are
publicly available on Zenodo (Ivanova et al., 2025a):
https://doi.org/10.5281/zenodo.15753253.

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-23-233-2026-supplement.
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