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Abstract. The exchange of carbon, water, and energy fluxes
between the land and the atmosphere plays a vital role in
shaping global change and extreme events. Yet our under-
standing of the theory of this surface-atmosphere exchange,
represented via land surface models (LSMs), continues to be
limited, highlighted by marked biases in model-data bench-
marking exercises. Here, we leveraged the PLUMBER2
dataset of observations and model simulations of terrestrial
sensible heat, latent heat, and net ecosystem exchange fluxes
from 153 international eddy-covariance sites to identify the
meteorological conditions under which land surface models
are performing worse than independent benchmark expec-
tations. By defining performance relative to three sophisti-

cated out-of-sample empirical models, we generated a lower
bound of performance in turbulent flux prediction that can be
achieved with the input information available to the land sur-
face models during testing at flux tower sites. We found that
land surface model performance relative to empirical mod-
els is worse at edge conditions — that is, LSMs underperform
in timesteps where the meteorological conditions consist of
coinciding relative extreme values. Conversely, LSMs per-
form much better under “typical” conditions within the cen-
tre of the meteorological variable distributions. Constraining
analysis to exclude the edge conditions results in the LSMs
outperforming strong empirical benchmarks. Encouragingly,
we show that refinement of the performance of land surface
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models in these edge conditions, consisting of only 12 %-—
31 % of all site-timesteps, would see large improvements
(22 %—114 %) in an aggregated performance metric. Better
performance in the edge conditions could see mean relative
improvements in the aggregated metric of 77 % for the la-
tent heat flux, 48 % for the sensible heat flux, and 36 % for
the net ecosystem exchange on average across all LSMs and
sites. Precise targeting of model development towards these
meteorological edge conditions offers a fruitful avenue to fo-
cus model development, ensuring future improvements have
the greatest impact.

1 Introduction

Our ability to predict future climate and its impact on
the places where we live largely rests on our ability to
model the land surface (Charney, 1975; Friedlingstein et al.,
2014, 2025; Arora et al., 2020; Canadell et al., 2021). Turbu-
lent fluxes of carbon, water, and energy link terrestrial pro-
cesses with atmospheric dynamics and oceanic freshwater in-
put. As the climate changes, these land-atmosphere interac-
tions will be altered as the behaviour of both the land surface
and the atmosphere is impacted (Cao et al., 2021; Walker
et al., 2021). As such, it is necessary that our knowledge of
terrestrial processes is robust and well-developed.

Land Surface Models (LSMs) simulate the surface car-
bon, water, and energy cycles and their interaction with the
boundary layer (the lowest part of the atmosphere directly
influenced by the land surface) and are important compo-
nents of Earth System Models (ESMs) that are used to cre-
ate future climate projections. Since LSMs integrate our cur-
rent knowledge of terrestrial processes, they are an ideal
testbed for evaluating the extent and efficacy of our under-
standing. While all LSMs are based on fundamental theory
and physical processes, implementations can vary substan-
tially whether via equations, parametrisation, approach to ap-
proximations, or the number of processes represented, with
multiple independent modelling teams producing their own
unique LSMs (Fisher and Koven, 2020). In turn, the outputs
from LSMs can also exhibit significant differences, result-
ing in a wide range of contemporary simulations and future
projections of the terrestrial carbon, water, and energy cycles
(Arora et al., 2020).

Analysing LSM performance can provide important feed-
back on our understanding of terrestrial processes. Analy-
sis conducted against observations yield estimates of accu-
racy (Blyth et al., 2011). Comparing LSMs against each
other, either in coupled simulations as part of ESMs as
seen within progressive phases of the Coupled Model In-
tercomparison Projects (CMIP, Eyring et al., 2016) such as
CMIP6 (Gier et al., 2024), stand-alone implementations such
as the PILPS (Henderson-Sellers et al., 1996) and TRENDY
projects (Sitch et al., 2015, 2024), or even the combina-
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tion of coupled and offline simulations (e.g. LS3MIP, van
den Hurk et al., 2016), provides a measure of model un-
certainty that can advance our understanding of terrestrial
processes. A relatively novel approach to LSM evaluation
is that of benchmarking LSMs against a priori expecta-
tions of performance as used in the PLUMBER framework
(Best et al., 2015; Haughton et al., 2018b). Model intercom-
parisons alone rarely guide model refinement as quantify-
ing intermodel spread or demonstrating that one model is
marginally superior does not provide insight into the pro-
cesses or input conditions causing such performance discrep-
ancies. Here we used data from the PLUMBER?2 benchmark-
ing experiment to answer three questions that might more
constructively contribute to LSM development:

1. Under what specific meteorological input conditions
does each land surface model consistently underperform
in simulations of net ecosystem exchange, latent heat,
and sensible heat fluxes?

2. Are the conditions where each LSM underperforms
similar across different LSMs and fluxes?

3. How much do these conditions, and the subsequent un-
derperformance when simulating fluxes, influence the
overall performance of LSMs in benchmarking studies,
such as PLUMBER2?

To answer the first question, it is necessary to define “un-
derperformance”. To do so, we turn to the PLUMBER bench-
marking framework and its second iteration, PLUMBER?2
(Best et al., 2015; Abramowitz et al., 2024). PLUMBER2
includes multiple LSM simulations using harmonised input
data from a set of eddy-covariance sites (Ukkola et al., 2022).
In addition, it includes a series of out-of-sample empirical
flux models (EFMs) which also simulate the fluxes at the
same sites to provide performance measures independent of
the LSMs. By comparing LSM outputs to those of EFMs of
increasing complexity, PLUMBER?2 creates a range of poten-
tial performance expectations predicated on the information
available to the LSMs — the EFMs provide lower bounds of
flux prediction skill based on the input data (Haughton et al.,
2018a) — and LSMs can then be assessed on their accuracy
relative to these benchmarks (Abramowitz et al., 2024). As
such, here we define “underperformance” as instances where
the LSM does not achieve these empirically-derived lower
bounds of predictive skill.

Next we must consider what is meant by “conditions”.
The PLUMBER? dataset includes a wide variety of eddy-
covariance sites — over 150 eddy-covariance sites situated
in more than 20 countries and comprising of 11 vege-
tation classes (Ukkola et al., 2022). While this is a bi-
ased sampling of the global land surface (Alton, 2020; Chu
et al.,, 2017, 2021; Griebel et al., 2020), the dataset does
capture a broad range of ecosystems, climate regimes and
weather conditions (van der Horst et al., 2019; Beringer
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et al., 2022). Therefore, the PLUMBER2 domain space is
likely to be suitable for assessing LSM performance and
identifying specific conditions where LSMs underperform.
Identifying “poor performance” conditions based on plant
functional type (PFT) classifications or individual site be-
haviour is unlikely to provide clear directions for improve-
ment (Haughton et al., 2018a). PFTs are poor descriptors
of flux-meteorology interactions, so grouping sites in this
manner is likely to obscure the cause of performance issues
(Cranko Page et al., 2024). Similarly, studies have repeat-
edly analysed LSM performance during meteorological con-
ditions defined at longer timescales — such as the monthly
scales used in the TRENDY project (Sitch et al., 2024) —
with conditions such as droughts being poorly modelled by
LSMs (Bastos et al., 2021; De Kauwe et al., 2015; Gu et al.,
2016). However, most LSMs operate with approximately
half-hourly timesteps meaning that any emergent biases ul-
timately originate from biases at this timescale, and so in this
study, we consider meteorological conditions at this higher
temporal resolution. Analysis at half-hourly resolution is un-
likely to adversely penalise LSMs (Haughton et al., 2016)
but could provide crucial information on conditions in which
LSMs underperform and the processes responsible, includ-
ing issues of process representation associated with diurnal
cycles, fast processes such stomata functioning, or particular
transient weather conditions (e.g. clouds).

To answer whether all LSMs reliably underperform in sim-
ilar conditions we can again lean on the PLUMBER bench-
marking framework. Multiple LSMs were run with the same
information at the same eddy-covariance sites, facilitating
comparison between LSMs in a robust manner (Abramowitz
et al.,, 2024). If all LSMs routinely underperform in the
same half-hourly meteorological conditions, this would im-
ply there are processes at play that are either consistently
missing or incorrectly represented across all models. How-
ever, if the conditions under which each LSM underperforms
differ, then information on correct process representation and
parametrisation might be derived from these differences.

When considering LSM performance, the initial
PLUMBER?2 analysis found that LSMs perform poorly
against benchmarking EFMs (Abramowitz et al., 2024).
In fact, LSM simulations of turbulent fluxes were often
of worse quality than those from simple empirical models
when the modelled fluxes were compared via an aggregated
measure of seven independent performance metrics. This
result may derive from a base level of LSM underperfor-
mance under all meteorological conditions — the LSMs
may just consistently be slightly worse than the EFMs.
However, potentially, this poor LSM performance against
EFMs could be caused by the specific conditions in which
LSMs underperform. If this is the case, we could identify
the region of input space of meteorological conditions that
is responsible for the poor LSM performance relative to the
benchmarks in PLUMBER?2 and help constrain areas for
future model development.
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We might hypothesise that the conditions of worst EFM
performance will be in those areas where the EFMs may be
lacking training data. Such conditions will be associated with
meteorological extremes, which due to their nature are ob-
served less frequently. Meanwhile, the EFMs should perform
very well under “average” conditions — those meteorological
conditions experienced the most across the available training
data. As such, we hypothesise that the LSMs may underper-
form generally across the more temperate and hence “popu-
lated” meteorological conditions due to the better EFM per-
formance under these conditions. However, since most LSM
parametrisation is based on typical or good conditions con-
ducive to normal ecosystem functioning, two possible con-
trasting hypotheses are posited regarding the extreme meteo-
rological conditions. Firstly, that the lack of training data is a
greater penalty to the EFMs and so LSMs have good perfor-
mance at meteorological extremes relative to the EFMs. The
alternative hypothesis is that the LSMs’ lack of parametri-
sation at extremes is a bigger disadvantage than the lack of
training data for EFMs, and hence the LSMs underperform
in the extreme conditions.

A final hypothesis is that, under conditions where the ob-
servations used are erroneous but consistently biased (for ex-
ample, conditions where the eddy-covariance method is bi-
ased due to violated assumptions such as during low wind
speeds), the LSMs will underperform compared to the EFMs.
This is because the eddy-covariance data is compromised
and therefore the LSMs, being process-based, cannot model
the biased observations, while the EFMs have no such con-
straints and can learn the biased behaviour under such condi-
tions.

2 Methods
2.1 Data
2.1.1 Eddy-covariance Data

As part of the PLUMBER?2 benchmarking framework, this
study utilised the PLUMBER?2 eddy-covariance dataset of
observations (Ukkola et al., 2022). Of the 170 available sites,
153 were used in this study, as 17 sites were found to ex-
hibit problematic or missing precipitation data (Abramowitz
et al., 2024). For each site, observed fluxes of sensible
heat (Qh), latent heat (Qle), and net ecosystem exchange
(NEE) were available at a half-hourly timestep. Note that
the PLUMBER?2 dataset includes energy balance-corrected
versions for each of these fluxes but these were not used in
this study since Abramowitz et al. (2024) showed that us-
ing the energy balance-corrected data did not improve the
overall performance of the LSMs. Locally-observed mete-
orology including downwelling surface shortwave radiation
(SWdown), downwelling surface longwave radiation (LW-
down), air temperature (Tair), vapour pressure deficit (VPD),
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specific humidity (Qair), relative humidity (RH), precipita-
tion (Precip), surface air pressure (PSurf), CO, concentra-
tion (CO2air), and wind speed (Wind) was used as inputs
to the models. The leaf area index (LAI) provided for each
site in the PLUMBER?2 dataset was also utilised. This LAI
timeseries was derived from one of two remote sensing prod-
ucts, with this study using the preferred timeseries as detailed
in Ukkola et al. (2022). In total, over 16 million individual
site-timesteps were available in the dataset. Throughout this
study, the three fluxes were analysed separately.

2.1.2 Models

The PLUMBER?2 benchmarking framework involved 33
models, including seven empirical flux models and
26 process-based models. The details are specified in
Abramowitz et al. (2024). To confine this study and en-
sure models were comparable, we here focussed on the
11 process-based models that are “Land Surface Mod-
els” or LSMs — that is, those models that are designed
to be used in coupled climate modelling simulations.
The models meeting this requirement are detailed in Ta-
ble 1. Simulated NEE fluxes were not available for CLMS35,
JULES_GL9, JULES_GLO9_LAI, and MATSIRO. In addi-
tion, ORCHIDEE2 and ORCHIDEE3 were lacking model
outputs for all three fluxes at two and four sites, respectively.
Additionally, this study used five of the PLUMBER2 EFMs
in two different groups — the “benchmark” EFMs and the
“best” EFMs. The “benchmark EFMs” were used to illus-
trate the full range of EFM performance when using models
of increasing complexity and data needs. As such, they can
be used to benchmark LSM performance aligning with their
use in PLUMBER?2. These were:

— the “1lin” model, a simple linear regression of flux
against SWdown.

— the “3km27” model that used k-means clustering plus
regression on three meteorological variables, namely
SWdown, Tair and RH. 27 clusters were used to theoret-
ically allow clusters where each meteorological variable
is “low”, “medium”, and “high”.

— the “LSTM” model, a long short-term memory model
that was provided similar information to the LSMs, in-
cluding static site parameters such as vegetation type
and canopy height.

The “best EFMs” were, as the name suggests, the three
EFMs that performed best according to the aggregated met-
rics for NEE, Qle, and Qh in the PLUMBER?2 framework
(Abramowitz et al., 2024). These EFMs were the most com-
plex EFMs used in the framework and were:

— the “6km729lag” model, which used k-means cluster-
ing plus regression across 6 meteorological variables —
SWdown, Tair, RH, Wind, Precip, and LWdown — as
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well as lagged Precip and Tair in the form of mean
values over the prior 1-7, 8-30, and 31-90d. Simi-
lar to the “3km27”, the number of clusters was chosen
such that each meteorological variable could be “low”,
“medium”, or “high”, resulting in 729 clusters.

— the “RF” model which used the Random Forest method
with SWdown, LWdown, RH, Qair, surface air pressure
(Psurf), Wind, CO; concentration (CO2air), VPD, and
LAI as predictors.

— the “LSTM” model as above.

By using three EFMs to define the best EFM performance,
we reduced the influence of individual model structure on
our results while also limiting any instances of a single EFM
performing anonymously well and affecting the assessment
of LSM performance.

In all cases, the EFMs were run out-of-sample for each
site. For all but the “LSTM” model, this involved training
the models on the timesteps from all but a single site to then
predict the remaining site out-of-sample. For the “LSTM”
model, three randomly chosen sites were held back from each
model and this was repeated until all sites had been simulated
out-of-sample. As such, each EFM is the collective output
from multiple models trained on all but one or three sites and
then simulating the individual unseen sites. Similarly, for all
but the “LSTM” model, each of the three fluxes used separate
models. The “LSTM” model predicted NEE, Qle, and Qh in
each model.

2.2 Analysis
2.2.1 Defining Poor LSM Performance

To analyse the conditions under which the LSMs could be
expected to perform better, we compared LSM error to the
errors of the best EFMs at each site-timestep. The absolute
model error was calculated as:

Errormod (1) = [Fluxnod (1) — Fluxops (1| 6]

for each LSM and the three best EFMs (step 2 in Fig. 1). We
then defined an individual timestep as being a “LLSM Loss”
(LL) if and only if the absolute error of the LSM was greater
than the absolute error of each of the three best EFMs:

Timestep t = LSM Loss <= Error sm(?)
> max(Errorggm (7)) 2)

If a timestep was not an LSM Loss, then we defined it as an
“LSM Win” such that each timestep had a binary classifica-
tion of whether or not we could expect the LSM to perform
better under the corresponding conditions (step 3, Fig. 1).
This definition was chosen to favour the LSMs. If the abso-
lute LSM error was smaller than the absolute error of any of
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Table 1. Land Surface Models included in this study. “No NEE flux” here refers only to the necessary 30 min outputs required for this

analysis — the model may produce NEE simulations at a larger timestep.

Model LAI Notes References

CABLE Prescribed  No C-N cycle Kowalczyk et al. (2006), Wang et al. (2011)

CABLE-POP Prescribed  Contains C-N cycle Haverd et al. (2013, 2016, 2018)

CHTESSEL_1 Prescribed - Balsamo et al. (2009), Boussetta et al. (2013),
Dutra et al. (2010), van den Hurk et al. (2000)

CLM5 Prescribed  No NEE flux Lawrence et al. (2019)

GFDL Computed — Dunne et al. (2020), Shevliakova et al. (2024)

JULES_GL9 Prescribed  No NEE flux, internal LAI values Best et al. (2011), Clark et al. (2011)

JULES_GL9_LAI Prescribed No NEE flux, PLUMBER2 LAI values Best et al. (2011), Clark et al. (2011)

MATSIRO Prescribed  No NEE flux MATSIRO6 Document Writing Team (2021)

NoahMP Computed - Niu et al. (2011), He et al. (2023)

ORCHIDEE2 Computed  Two sites missing, no C-N cycle Krinner et al. (2005)

ORCHIDEE3 Computed  Four sites missing, contains C-N cycle  Vuichard et al. (2019)

the best EFMs — that is, if the LSM outperformed just one
of the three EFMs — we did not count this towards the defi-
nition of poor LSM performance. As previously mentioned,
this reduced the influence of individual EFM model struc-
ture, meaning that poor LSM performance is more likely due
to a general underutilisation of the information available in
the input variables by the LSM. This in turn aimed to ensure
that any areas of the input domain that exhibit poor perfor-
mance under this definition are more likely to yield perfor-
mance improvements if targeted for development. To illus-
trate the impact of such a definition of LSM Loss, consider
the situation where an LSM and the best EFMs had equal per-
formance across the entire domain of site-timesteps so that
the differences between the four models were simply noise.
We’d then expect a ratio of LSM Loss to LSM Win of 1 : 3.
In other words, 25 % of timesteps would be an LSM Loss.
To explore the conditions under which the LSMs per-
form better or worse, we binned the input space based on
eight input variables from the data measured at each site
— SWdown, LWdown, Tair, Qair, VPD, Precip, Wind, and
LAI Each variable’s range was split into fifty equally-spaced
bins. With eight variables and fifty bins each, the input
space was then split into 4 x 10'3 unique cells across the
8-dimensional domain. Each cell was defined by the small
sub-range of each of the eight input variables it contained.
However, due to site distribution and the nature of meteo-
rology, many of these cells were empty and some contained
many more timesteps than others. For instance, cells corre-
sponding to low SWdown values contained many timesteps
due to roughly half of all the observational timesteps occur-
ring at nighttime. Meanwhile, the PLUMBER?2 dataset con-
tains fewer sites that experience the extremes of temperature
compared to temperate locations. Therefore, due to natural
conditions and physically-determined interactions, the num-
ber of populated cells (i.e. cells with at least one timestep as-
signed to them) was far fewer than the total number of cells
at slightly under six million (step 4, Fig. 1). The “LSM Loss
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Ratio” or LLR was then defined for each input cell as the
percentage of timesteps in the cell that were an LSM Loss
(step 5, Fig. 1). Hence, the LLR took a range of 0% (the
LSM outperformed at least one of the three best EFMs for
every timestep in the cell) to 100 % (every timestep saw the
LSM perform worse than all three of the best EFMs). The
LLR provided a metric for LSM performance relative to the
EFMs, and indicates the degree to which the LSMs are able
to match the EFM’s lower bound estimate of flux predictabil-
ity for the small domain space contained within each cell.
Cells with high LLR represent meteorological conditions un-
der which the LSM(s) could be expected to perform better. In
contrast, low LLR indicates meteorological conditions where
our process understanding, LSM structure, and parametrisa-
tion are effective at utilising the available information to pre-
dict terrestrial fluxes. As noted above, if the LSM and best
EFMs are equally capable, such that differences in their er-
rors are random, then the LLR would be 25 %. Therefore, a
LLR of 25 % or less indicates conditions where LSMs are
reliably adding value.

We enabled visualisation of the results by collapsing the
eight-dimensional input space into two-dimensional “finger-
prints” via grouping the cells based on only two input vari-
ables at a time. We present plots of these fingerprints with
Tair as one dimension and the other variables as the second
dimension in turn. Tair was chosen as the constant x axis
because it is intuitively easy to understand, has clear rela-
tionships with other meteorological variables, and its do-
main space is relatively uniformly represented by the site-
timesteps, as opposed to the zero-dominated shortwave ra-
diation for instance. Thus, we have two-dimensional finger-
prints consisting of cells for which we calculated the LLR.
We do not present the fingerprints for Qair because Qair and
VPD are highly coupled.

Biogeosciences, 23, 263-282, 2026
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Figure 1. Schematic of Analysis Process. Circles indicate a timestep and octagons indicate a cell containing all timesteps that fall within a
specific interval for each meteorological variable. The ellipses indicate that many other timesteps and cells are included in the full analysis.

2.2.2 Quantifying Impacts of Poor LSM Performance

While high LLR implies that the LSM(s) are underperform-
ing compared to the EFMs, it does not quantify the magni-
tude of this underperformance. To do this, we utilised the
metric suite from PLUMBER2 (Abramowitz et al., 2024).
This consists of seven independent metrics (here meaning
that any timeseries can be modified such that any one met-
ric changes while the others remain constant), namely Mean
Bias Error, Standard Deviation Difference, Correlation Co-
efficient, Normalised Mean Error, 5th Percentile Difference,
95th Percentile Difference, and Density Overlap Percentage.

Biogeosciences, 23, 263-282, 2026

These capture information about the averages, distributions,
and extremes of the timeseries as well as temporal correla-
tion. Note that these were calculated on a site-by-site ba-
sis. To summarise these seven metrics, we utilised the in-
dependent normalised metric value (iNMV), introduced by
PLUMBER? and again calculated on a site-by-site basis. For
metrics where lower values are better, the metric INMV™ was
defined as:

mpSM — Min(MpenchmarkBFMs)
max (MpenchmarkEFMs) — MiN(MpenchmarkEFMs)

INMVI'y = 3)

https://doi.org/10.5194/bg-23-263-2026



J. Cranko Page et al.: Land surface model underperformance tied to specific meteorological conditions 269

while for metrics where higher values are better, it was:

max (MpenchmarkEFMs) — MLSM
max (MpenchmarkEFMs) — MiN(MbenchmarkEFMs)

INMV{'g\p = “)

where m is the metric value, and the set of benchmark
EFMs is as listed above. A lower iNM V"™ is better. The mean
INMV™ across metrics and sites, iNMYV, then provides a sin-
gle number that synthesises LSM performance relative to
EFMs. Since each of the seven metrics is weighted equally
within this summary metric, the iINMV should adequately ac-
count for performance related to averages, extremes, and the
distribution of the modelled timeseries as far as any aggre-
gated metric can.

To assess the impact of poor LSM performance under the
LSMs’ worst meteorological conditions against other po-
tential sources of poor LSM performance, we filtered the
site-timesteps in five ways and compared the iNMV to the
iNMV of the unfiltered data. Three of these filters were re-
lated to physical conditions, and two were “Loss Ratio Fil-
ters” (LRFs), where all timesteps that belong to input cells
with a LLR above the threshold value were removed from
the analysis, and performance impact of removing them was
assessed (Fig. 1). Importantly, the LRFs were applied on the
eight-dimensional input cells, not the two-dimensional fin-
gerprints. The five filters were:

— A LRF of 95 %. All timesteps belonging to input cells
with a LLR of 95 % or above were removed. This cap-
tured all conditions where the LSM was nearly always
outperformed by the best EFMs.

— A LRF of 50 %. All timesteps belonging to input cells
with a LLR of 50 % or above were removed. This pro-
vided an analysis that included only cells where the
number of LSM wins outnumbered LSM losses. Due
to the preference shown to the LSMs in the definition of
an LSM Loss, this LRF significantly weighted the anal-
ysis towards conditions where the LSMs perform well
compared to the best EFMs.

— A “Physical” consistency filter. This filter removed
timesteps that consisted of physically impossible mete-
orological conditions. This involved calculating the sat-
urated vapour pressure (SVP) at the observed air tem-
perature and then removing any timesteps with a Qair or
VPD value that violated this SVP. Such timesteps may
occur due to observational error and could result in em-
pirical models having an advantage where LSMs have
strict constraints.

— A “Daytime” filter. All timesteps with SWdown less
than or equal to 10 Wm™2 were removed. The assump-
tions underlying the eddy-covariance method can be
violated at night-time (for instance, due to increased
instances of insufficient turbulence), and hence night-
time data can be heavily gap-filled (Aubinet et al.,
2010, 2012; Pastorello et al., 2020).
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— A “Windy” filter. All timesteps with Wind less than
or equal to 2ms~! were removed. This again was to
account for potential measurements at times of insuf-
ficient turbulence. Wind speed was chosen over the
friction velocity u* to maintain consistency across the
PLUMBER? studies, with the wind speed threshold
also being used in Abramowitz et al. (2024).

By applying these filters, we could gain an understanding
of the areas of weak performance of LSMs, whether this was
at night, being fed physically inconsistent inputs, or under
particular meteorological conditions.

3 Results

Figure 2 shows the sensible heat flux LSM Loss Ratio (LLR)
for the LSMs. Yellow indicates the null expectation of LSM
performance (an LLR of around 25 %) where the LSM per-
formed similarly to the best EFMs. This progresses to or-
anges and reds as LSM performance decreased and LLR in-
creased. In contrast, LLRs of less than 20 % are coloured
blue-green and indicate conditions where the LSMs were
providing additional performance over the EFMs. The first
column is an aggregated measure of LLR across all the LSMs
using the root mean square of the individual LLRs. The
Timesteps column shows the density distribution of the full
dataset. Interestingly, across all potential input variable pair-
ings with Tair, the largest LLRs for the root mean square
(RMS) of all LSMs were seen in the edge cases — that is,
located around the edge of the fingerprints. High LLRs oc-
curred over the widest range of conditions when consider-
ing the LWdown-Tair interaction, with VPD-Tair and Wind-
Tair also having more substantial areas of low LSM perfor-
mance. There were no large discrepancies between the indi-
vidual LSMs at LLRs above 80 % (light and dark red), with
the “fingerprints” exhibiting similar patterns for poor LSM
performance across models, and this is reflected too in the
RMS fingerprints in the first column. At a LLR of 50 % or
more (i.e. the LSM performing poorly at least half the time),
differences between LSMs were clearer. For the VPD-Tair
interaction, CABLE-POP had a high LLR across all condi-
tions, while CABLE and both JULES implementations did
worse at high VPD for the corresponding Tair (high LLR in
the top right of the VPD-Tair domain). GFDL exhibited an
inverse result with worse performance at low VPD-Tair val-
ues. The ORCHIDEE LSMs had a LLR of 50 % or more at
VPD values with high but not extreme temperatures as seen
from the dark orange streak to the right of the fingerprint,
with surrounding lighter areas at higher temperatures. CHT-
ESSEL_1, CLMS, and NoahMP had poor performance only
at the boundaries of the Tair-VPD input space.

Figure 3 shows the Tair interaction LLR fingerprints for
latent heat flux. While Qle had lower LLR values than Qh
in general, it is still the case that the majority of high LLRs
occurred in the edges of the fingerprints. However, in com-
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Figure 2. LSM Loss Ratio by Driving Variable and Model for Predicting Sensible Heat Flux. The x axis of each plot is air temperature
and the y axis the other variables, each split into 50 equal-sized bins of which only every 10th bin is labeled. For the columns of individual
models, each cell is coloured by the LSM Loss Ratio, the percentage of timesteps within the corresponding 2-D variable cell that are classified
as an LSM Loss for the Qh flux. An LSM Loss of 0 occurs where, for every timestep within the cell, the LSM’s absolute flux error is smaller
than at least one of the absolute flux errors of the three best EFMs. Conversely, an LSM Loss of 100 occurs when the LSM’s absolute flux
error is greater than all three absolute flux errors of the best EFMs for all timesteps in the cell. For the timesteps column, the colour indicates
the percentage of the total number of timesteps that fell within the 2-D variable cell. The “All LSMs” column is coloured by the root mean
square of the LSM Loss across all models. Note that since all models simulated the same site-timesteps, the cells and timesteps within each
cell are approximately the same but not equal for every model (some LSMs did not submit simulations for every site, missing four sites at

most).

parison to Qh (Fig. 2), it is not the case that most edge cells
had poor LLR. In fact, many edge condition cells had LLR
as low as 20 % or less. This indicates that, while LSMs still
had areas of poor performance under edge conditions, there
were also edge conditions under which Qle was well simu-
lated relative to the EFMs. Hence, there were edge conditions
where the LSMs have poor performance for Qh but good per-
formance for Qle (for instance, compare the LWdown — Tair
fingerprints in Figs. 2 and 3 where dark red areas in Fig. 2
are blue in Fig. 3). In turn, there were also edge conditions
where both fluxes showed poor performance compared to the
EFMs, such as can be seen in the VPD — Tair fingerprints.
Particularly high LLR and poor LSM performance for Qle
was seen at high VPD values relative to the concurrent Tair
observation. Generally, as seen in the RMS of LLR for all
LSMs and across most models independently, poor LSM per-
formance for Qle did not appear to be dependent on LAI val-
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ues, with the edge LLR rarely exceeding even 80 %, and the
rest of the fingerprints’ areas at 50 % or below.

At low Tair (—30°C or less), LLR was sub-20 % irre-
spective of input interactions across all LSMs, seen from
the blue regions in columns 2 onwards in Fig. 3. For Qle,
GFDL stands out as having the most potential for improve-
ment in flux simulations. Extensive high LLR areas exist for
all input condition interactions. GFDL has a LLR of around
20 %-50 % at high but not extreme temperatures indicating
capacity for satisfactory simulation, yet performance began
to decline around 10 °C. Other behaviours of note are the
ORCHIDEE models having a similar drop in performance
around a Tair value of 10 °C, although here the effect was
moderated by interaction with other input conditions. The
performance decline was seen only at the high/low LWdown
boundaries, for SWdown values above ~ 300 W m™2, and for
high VPD values. MATSIRO had high LLR (and hence poor
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Figure 3. LSM Loss Ratio by Driving Variable and Model for Predicting Latent Heat Flux. The details are the same as Fig. 2 but for
predictions of the Qle flux.

relative performance) at Tair values around 0 °C when LAI Figure 5 shows the independent normalised metric values
is above ~ 1 m> m~2 but performed well at higher and lower (AINMYV) for each LSM defined by the range of metric val-
temperatures. ues of the three benchmark EFMs. This is a measure of LSM

Figure 4 completes the fingerprinting with the results for performance based on the benchmark EFM performance, di-
NEE. The LSM performance under edge conditions was rectly comparable across LSMs (note the differing y axes).
much improved for NEE compared to the energy fluxes. In The grey lines indicate the 3 PLUMBER?2 benchmark EFMs
fact, there are substantial areas in Fig. 4 where the LSMs — 1lin, 3km27, and LSTM — with different symbols to differ-
were providing additional value above the EFM simulations, entiate between the EFMs and darker greys as the complex-
often around the edge of the fingerprints. High LLRs still oc- ity increases. The black line is the base LSM performance.
curred at the boundaries of the Tair-VPD and Tair-Wind fin- The blue lines are the LSM results when filters were applied,

gerprints yet were interspersed with cells of good LSM per- either using only daytime timesteps (dark blue), timesteps
formance. However, inter-LSM differences were conspicu- with sufficient wind (mid blue), or timesteps that did not vio-
ous for the carbon flux. NoahMP struggled against the EFMs late physical humidity limits (light blue). The orange (95 %)
relative to the rest of the LSMs: there was a pronounced and red lines (50 %) are the LSM results when timesteps are
temperature effect with a gradient of generally increasing filtered based on the LSM Loss Ratio. In all cases, iNMV
LLR as Tair values increased. This dominant role of Tair ap- was calculated using the benchmark metrics as calculated
peared, but with a more subtle impact, for the other LSMs to on the original dataset i.e. no filters were ever applied to
varying degrees with greater regions of worse LLR (orange the benchmark models — their iINMV values are always cal-
and red tones) towards higher temperatures and good per- culated on the entire dataset. The black lines indicate the

formance (blue tones) towards lower temperatures. CABLE raw LSM performance as in the PLUMBER2 benchmark-
and CHTESSEL_1 were the other two LSMs that exhibited ing framework and are therefore almost exactly the same re-
LLRs of 50 % or more at higher temperatures, while the two sult as Abramowitz et al. (2024) (there are slight differences
ORCHIDEE models in particular have only small regions of due to using one less site here). As per Abramowitz et al.
high LLR. (2024), LSMs mostly performed worse than the benchmark

EFMs, with all 11 LSMs performing worse than a simple lin-
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Figure 4. LSM Loss Ratio by Driving Variable and Model for Predicting Net Ecosystem Exchange. The details are the same as Fig. 2 but
for predictions of the NEE flux. Note that greyed out LSMs did not provide half-hourly NEE outputs to the PLUMBER?2 experiment.

ear model for simulating Qh. Better performance was seen in
the other two fluxes, with most LSMs’ performance falling
between the linear model and the “3km27” k-means cluster-
ing model for Qle. For NEE, three of the seven LSMs in this
analysis beat the linear model performance.

The iNMVs for two different LRFs are also shown in
Fig. 5. The first, a LRF of 95 %, indicates the LSM perfor-
mance when timesteps in poorly modelled input cells were
removed from the analysis. These are the darker cells from
Figs. 2—4. The percentage of timesteps removed by this fil-
ter varied from 12 % (CABLE and ORCHIDEE?2 for NEE,
CABLE-POP and NoahMP for Qle) to 31 % (also NoahMP
but for NEE). The mean percentage of timesteps removed
by the 95 % LRF was 17 % for Qh, 14 % for Qle, and 16 %
for NEE. The 95 % LRF substantially improved iNMV for
many of the models for all three fluxes (indicated by the dif-
ference between the black “None” and orange “95” points).
The mean relative improvement in iNMV across all fluxes
and models was 56 % (Table S1in the Supplement). Note-
worthy cases include many models (CABLE, CHTESSEL_1,
CLMS5, JULES_GLS9, and the ORCHIDEE LSMs) improving
from beating only the “1lin” model to being better than even
the “LSTM” when simulating Qle (the mean relative im-
provement of iNMV for Qle under the 95 % LRF was 77 %).
The Qh simulations from CABLE-POP, CLM5, MATSIRO,

Biogeosciences, 23, 263-282, 2026

and NoahMP improved from a drastically worse performance
than any of the EFM benchmarks to at least beating the “1lin”
model (iNMV improvements of 69 %, 58 %, 68 %, and 57 %
respectively). The impact of the 95 % LRF was less substan-
tial for the NEE flux with smaller improvements across the
LSM suite (mean iNMYV relative improvement of 36 %).
The 50% LRF was a drastic filter application. Any
timesteps located in input cells with a LLR of 50 % or higher
were removed from the metric calculations. This means that
theoretically, within any single removed input cell, there
were still up to 50 % of the removed timesteps that were
instances where the LSMs actually beat (at least one of)
the best EFMs. The largest improvement here was seen in
the Qh flux simulations, where all LSMs but CHTESSEL _1
and GFDL beat the “LSTM” model under the 50 % LRF
(mean relative iNMV improvement of 97 %, Table S2in the
Supplement). Differences between the 50 % and 95 % LRFs
were minimal for Qle and NEE. The exception was Qle from
GFDL where at the 95 % LRF, GFDL was still outperformed
by the “11lin” EFM but at the 50 % LRF, GFDL can beat the
“LSTM” EFM. Necessarily, the 50 % LRF resulted in the ex-
clusion of a greater percentage of timesteps. Individual LSMs
range from 24 % to 72 % (ORCHIDEE2 and NoahMP re-
spectively, both for NEE) of timesteps removed. A mean of

https://doi.org/10.5194/bg-23-263-2026
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Figure 5. LSM Performance after Application of Different Timestep Filters. The three fluxes are on the x axis, and the y axis is the
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better. The grey lines are the benchmark EFMs, the black line is the original LSM, and the blue and red lines are the LSM under different
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percentage of timesteps removed by each of the five filters. Note the differing y axis scales and that the “Physical” filter is often obscured by

the “None” LRF/original model performance.

52 % of timesteps were removed for the Qh flux, 35 % for
Qle, and 39 % for NEE.

As clear in Figs. 2—4, the original PLUMBER? dataset in-
cludes timesteps that represent physically-impossible condi-
tions. For instance, there are timesteps that fall outside of the
VPD-temperature curve which is well-defined by the laws
of thermodynamics. Such instances could be due to obser-
vational error, poor gap-filling, or incorrectly applied quality
control. These timesteps have been retained in the LRF filters
in this analysis as they feature in the published PLUMBER?2
dataset. However, we also plotted the iNMV of the LSMs
when the physically inconsistent timesteps were removed
(the “Physical” LRF in light blue). The performance for most

https://doi.org/10.5194/bg-23-263-2026

models and fluxes was almost indistinguishable from the raw
LSM performance (mean relative iNMV improvement of 1 %
across all fluxes, Table S3in the Supplement) and only 6 %
of timesteps were removed.

Another non-LRF filter is the “Daytime” filter, imple-
mented by removing all timesteps with a SWdown value of
10 Wm™2 or less. This removed 52 % of the timesteps in the
base analysis, a substantial amount. However, in nearly all
cases, the LSM performance for Qh was degraded by ap-
plying this filter (Table S4 in the Supplement), with higher
iNMYV for all LSMs except GFDL and JULES_GL9 (rela-
tive iNMV improvement of 1 % and 7 % respectively). For
Qle, the LSM performance was always worse for the Day-
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time filter. In fact, for many LSMs, the base performance
beat the “1lin” benchmark while the Daytime filter resulted
in even this simple EFM performing better than the LSM.
The relative difference in iNMV varied from —11 % (GFDL)
to —120% for NoahMP. The Daytime filter also resulted
in worse NEE performance for all LSMs except NoahMP
which struggled with simulating NEE under the original con-
ditions (Fig. 4). NoahMP saw a dramatic performance in-
crease (73 % relative iNMV improvement) from failing to
beat the “1lin” benchmark to nearly matching the “3km27”
benchmark. Significant declines in performance (i.e. a neg-
ative change in the EFM benchmark beaten) were seen for
CHTESSEL_1 (—108 % iNMV relative difference) and OR-
CHIDEE2 (—76 % iNMV change) simulations of NEE in
terms of EFM benchmark thresholds (from beating “1lin” to
not).

The final filter is a “Windy” filter where timesteps with a
wind speed of 2ms™! or less were removed from the INMV
calculations for the LSMs. With the intention of remov-
ing timesteps of insufficent turbulence for effective eddy-
covariance measurements, the iNMV under this filter was
generally degraded (Table S5 in the Supplement), falling be-
tween the original LSM iNMV and the Daytime NMV. This
filter removed 43 % of timesteps. Performance was degraded
for Qle (mean relative iNMV difference of —39 %) while Qh
and NEE saw little change (mean relative iNMV differences
of —4 % and —5 % respectively).

4 Discussion

LSMs are under constant cycles of development with mul-
tiple modelling teams across the globe dedicated to improv-
ing their performance. By benchmarking LSMs against three
different out-of-sample EFMs that performed well when pre-
dicting site fluxes, we provide insight for model develop-
ment and assessment. This was not a “beauty contest” be-
tween LSMs — comparing LSMs directly against each other
fails to account, for example, for instances where all models
are underperforming. Similarly, direct comparison to obser-
vations fails to account for the level of inherent predictability
in flux measurements (Haughton et al., 2018a, b; Di et al.,
2023). Importantly, we also do not address here the absolute
performance of the LSMs. Instances of poor LSM perfor-
mance, as defined in this study, may in fact occur where both
LSMs and EFMs are performing objectively well compared
to the observations. On the converse, we may here report
good LSM performance where the LSMs and EFMs have sig-
nificant absolute errors compared to observations. Instead, by
considering performance relative to out-of-sample EFMs, we
can infer a lower bound estimate of predictability that LSMs
theoretically should be capable of achieving (Nearing et al.,
2018).

Importantly, all EFMs simulations were produced out-of-
sample on a site-by-site basis, meaning that they were not
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exposed to any information from the site they were tasked
with simulating. This increases the information provided by
the benchmark of prediction skill. For instance, suppose there
exists a process that LSMs are assumed to struggle to repre-
sent accurately, for example, the temperature acclimation of
photosynthesis (Oliver et al., 2022; Ren et al., 2025). If the
EFMs also struggle under these conditions, then LSM de-
velopment may be ill-spent focused on improving the rep-
resentation of this process because the poor EFM perfor-
mance would indicate that we lack the necessary informa-
tion (whether missing observations of related processes or
even the processes themselves) to easily improve LSM per-
formance. Instead, in areas where the EFMs outperform the
LSMs by a substantial margin, we can hypothesise that we
have the information required to model the process accu-
rately. In such areas, targeted LSM development may see eas-
ier performance gains.

In line with this, our results show that model improve-
ments targeted to behaviour in a small number of specific
meteorological conditions could significantly improve LSM
performance. For instance, consider the MATSIRO LSM
simulations of sensible heat. As illustrated in Fig. 5, in the
PLUMBER? analysis across all site-timesteps, MATSIRO
underperformed with simulations worse than a simple lin-
ear regression. However, when we applied the 95 % LREF, the
performance of MATSIRO dramatically improved. Remov-
ing 17 % of timesteps resulted in MATSIRO leapfrogging
the “1lin” model and even beating the “3km27” benchmark.
Figure 2 shows where these 17 % of timesteps are located
in meteorological space — conditions of high VPD and high
wind speed relative to air temperature as well as high and
low temperature values relative to incoming longwave radia-
tion. That is, removing a small number of timesteps located
in discrete meteorological conditions resulted in a substantial
performance improvement. This was especially true for sen-
sible heat flux where the message of the PLUMBER? anal-
ysis (Abramowitz et al., 2024) — that for sensible heat sim-
ulations, LSMs were consistently beaten by a simple linear
model — would significantly change. The LSM simulations of
Qle improved dramatically under the 95 % LREF, frequently
improving the EFM benchmark threshold they could beat to
the best EFM in the analysis. This implies that, compared to
the other two fluxes, the performance of the LSM in predict-
ing Qle was dominated by a few poorly modelled instances.
In other words, there were timesteps (less than 20 % for all
models, see dark red cells in Fig. 3) where the LSM perfor-
mance was so much worse than the average performance that
these outliers significantly skewed the metrics towards worse
performance.

An interesting result is that the only substantial improve-
ment in model performance when applying the “Daytime”
filter is for the NEE flux simulated by NoahMP. For all other
models, the “Daytime” LRF reduces NEE performance. This
would suggest that the poor performance of NoahMP for
NEE is related to soil respiration which dominates night-
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time fluxes. The lack of similar improvement in the “Windy”
filter applied to NoahMP supports this. Similarly, the other
LSMs having worse NEE performance when filtering out
nighttime timesteps would indicate that these LSMs more
accurately capture the soil respiration. This might in turn
mean that the other LSMs are not as competent in simulat-
ing GPP as the original PLUMBER?2 results for NEE sug-
gest. Of course, such inferences might be tempered by the
possible poor nighttime flux data meaning that the LSMs are
attempting to simulate biased data at nighttime.

Figures 2—4 visualise the LSM input space through two-
dimensional fingerprints in combinations of input variables
interacting with Tair. There was a clear “edge effect” for
all three fluxes, albeit of varying magnitude. This indicates
that LSM performance was weak whenever an extreme value
in the input space of a variable coincided with an extreme
air temperature relative to the variable value in question. In
other words, the edge effect was itself two-dimensional. For
example, the LSM performance for sensible heat was notably
weaker at the edge values of longwave radiation and air tem-
perature. These edge conditions would imply extreme levels
of humidity and/or cloudiness (the drivers of longwave radia-
tion) compared to the temperature. The weaker LSM perfor-
mance at these timesteps may relate to site water availability
and the LSMs incorrectly partitioning energy between sensi-
ble and latent heat, poor representation of the effects of direct
vs diffuse radiation, or perhaps even changes in the heat ca-
pacity of the air that are not considered within the LSMs.
Another notable edge effect is seen in the VPD-Tair finger-
prints where LSMs have high LSM Loss Ratios for both sen-
sible and latent heat in the upper edge cells (Figs. 2 and 3).
This implies that at times of relatively high VPD and low
humidity for the given temperature, LSMs struggle to pre-
dict Qh and Qle well relative to the EFMs. This could poten-
tially arise from incorrect energy partitioning in the LSMs
(Yuan et al., 2022). Similar high LLRs are seen at high rel-
ative VPD for NEE (Fig. 4) but to a lesser extent, with cells
at the lower and upper ends of the temperature range exhibit-
ing good performance for the carbon flux. Interestingly, NEE
performance also suffers under high relative temperatures for
a given VPD. This may be further evidence for the energy
partitioning explanation since the LSMs can perform well
for NEE in some of the same regions that they struggle for
Qh and Qle. This would align with Haughton et al. (2016)
who found that, in the original PLUMBER analysis, LSM
errors were largely attributable to energy partitioning within
the LSMs. Yet another edge case is at high wind speeds, rela-
tive to Tair, where substantial LSM losses occur for all three
fluxes. Future work should investigate which of these possi-
ble causes may be responsible for the specific edge effects.

Figure 4 indicates that a relationship between tempera-
ture and LSM performance appears to exist for NEE. For
NoahMP in particular, and CABLE and CHTESSEL_1 to
a lesser degree, there is a clear progression from low LLR
to high LLR as air temperature increases. This relationship
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also exists for CABLE-POP, GFDL, ORCHIDEE2, and OR-
CHIDEES3 but with generally better LSM performance. One
potential reason for better LSM performance at low tempera-
tures is simply that photosynthesis and repsiration are signif-
icantly diminished or zero at cold temperatures which is easy
to incorporate in LSMs through temperature thresholds. An-
other potential cause could be the temperature acclimation
of photosynthesis at higher temperatures with LSMs strug-
gling to model this process (Blyth et al., 2021; Mengoli et al.,
2022). Interestingly, all LSMs except NoahMP still exhibit
an edge effect at higher temperatures with the most extreme
high temperatures also showing good LSM performance.

LSMs are often tested against certain types of climatic ex-
treme events as part of their development. For instance, LSM
performance under drought conditions (De Kauwe et al.,
2015; Ukkola et al., 2016; Huang et al., 2016; Harper et al.,
2021) and heatwaves (Mu et al., 2021a, b) is heavily stud-
ied. It is worth noting that while these extremes operate at
longer timescales than the half-hourly data explored here,
they necessarily need to result from processes simulated at
the half-hourly timescale in these models. When data is tem-
porally aggregated from this half-hourly timestep — even to
the 6-hourly inputs of e.g. TRENDY (Sitch et al., 2024) — the
extreme edge cases are averaged out. However, it is likely
more difficult for LSMs to capture the high-resolution be-
haviour at the sub-daily scale than averages over longer peri-
ods. For example, it would be theoretically possible to simu-
late perfect monthly average fluxes and have poor, but com-
pensating, process representations at the shorter timescales.
In the extreme case, an LSM could even simulate the diur-
nal cycle out of phase by 12 h, and this may not be apparent
when performance is analysed at monthly timescales. Inter-
estingly, Haughton et al. (2016) showed that, for the origi-
nal PLUMBER experiment, temporal aggregation made no
significant difference to LSM performance relative to EFMs.
This may indicate that LSMs submitted to other benchmark-
ing and comparison studies are too heavily calibrated to the
aggregated data on which they are applied. Our results in-
dicate that LSM behaviour under all types of short-term cli-
matic extremes is worthy of investigation, including during
colder temperatures and varying humidity levels. This edge
effect is then most likely explained by the parametrisation
of LSMs not being tested on meteorological edge conditions
at high temporal resolution to the degree necessary. A po-
tential reason for this lack of parametrisation testing at the
input boundaries is the complexity of the LSMs. The num-
ber of parameters in LSMs is increasing over time (Fisher
and Koven, 2020) as development attempts to improve the
representation of numerous model components, such as soil
structure and hydrology (Fatichi et al., 2020; Xu et al., 2023).
This increasing complexity may not be ideal given that most
parameters are poorly constrained (Shiklomanov et al., 2020;
Famiglietti et al., 2021).

Interestingly, by their nature and as illustrated in the fin-
gerprints of Figs. 2—4, these edge cells contained fewer
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timesteps than the cells near the centre of the variable dis-
tribution. As such, there was much less training information
available for these conditions for the EFMs — in fact, these
edge cells were often populated with timesteps entirely from
a single site (see Fig. S1 in the Supplement). Since the EFMs
were trained out-of-sample, they potentially had zero train-
ing data from these extreme conditions. As such, it might
be assumed that EFM performance would be at its worst at
the edge. Yet it was within these data-sparse regions that the
EFMs outperformed the LSMs. This would imply that the
flux behaviour under the extreme conditions can be learned
from other areas of the input space. Hence, it is unlikely to
be novel processes or missing biophysical interactions that
limit LSM performance in this space. In fact, Haughton et al.
(2016) found in the first PLUMBER experiment that, on
a site-by-site basis, LSMs could perform much better than
EFMs at unique sites dominated by less-common behaviour
or unusual processes. Another consideration is the temporal
nature of these edge timesteps — did the extremes come from
consecutive timesteps during an extreme event or do they oc-
cur only as random noise in the measurements? While we
did not explicitly assess the temporal connections within our
framework, if these coinciding extreme values did occur only
due to random noise, then we might expect the EFMs to per-
form worse than the LSMs here. Since most of the extreme
values are observed at single sites (Fig. S1), the EFMs have
no visibility of data from the exact same conditions when
simulating the timestep and should therefore equally strug-
gle to accurately model random noise. A next step here may
be exploring the results at site-level to identify more explic-
itly the processes in action within each cell with a high LLR.

Figures S2-S4 in the Supplement show the LSM finger-
prints for the mean LSM error relative to the observations
within each cell for Qh, Qle, and NEE respectively. While
not considered in-depth in the same manner as the bench-
marking, a few key findings stand out. Firstly, the magnitude
of mean error exhibits a similar edge effect to the benchmark-
ing losses with larger mean errors towards the edges of the
two-dimensional. As such, targeting model developments at
these cells is not only feasible as shown by the benchmarking
results in Figs. 2—4 but also targets the objectively worst per-
forming conditions when considered against observations.
Evidence for the power of our benchmarking and LSM Loss
framework is evinced by the LSMs’ mean error for NEE, es-
pecially NoahMP (Fig. S4). While the mean error tends to
have a greater magnitude at higher temperatures as most ev-
ident for NoahMP, the clear relationship between tempera-
ture and LSM performance (in terms of the LLR) with higher
temperatures having higher LSM Loss Ratios (Fig. 4) is not
discernible. In general, high LLR does not align with con-
sistent under- or overestimation. A good example is GFDL’s
performance for latent heat (Figs. 3 and S3). A large area
of high LLR at mid to low temperatures contains cells with
positive and negative mean errors. Since no clear relationship
exists between areas of high LLR and the LSM mean error,
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we recommend that model developers use LLR benchmark-
ing to identify priority areas before assessing the model error
and other metrics to pinpoint which processes or parameters
may need additional consideration.

The importance of observations at particular meteorolog-
ical extremes is clear from the edge effect observed here.
Such analysis is only possible because the existing eddy-
covariance networks have managed to capture these condi-
tions. However, van der Horst et al. (2019) showed that the
current network of flux towers undersamples high temper-
ature conditions. It is likely also the case that the potential
extremes of other variables are also underobserved. As such,
there is a need for increased observations from ecosystems
exposed to extreme meteorology (in this multi-dimensional
sense). This is important both because of the performance
edge effect we noted here, and the fact that these conditions
will likely become more common than they have been histor-
ically. While additional flux towers are an easy and obvious
request, two other actions could be taken. The first and sim-
plest is ensuring that existing towers can operate during the
extremes experienced at their locations by enhancing protec-
tion from the elements and disturbances. Secondly, the rapid
deployment of portable flux measurements when meteoro-
logical extremes are forecast could help develop the nec-
essary dataset of extreme observations. Such deployments
could be eddy-covariance towers (Billesbach et al., 2004;
Ocheltree and Loescher, 2007), leaf-canopy or footprint-
scale (respiration chambers) measurement campaigns, that
could complement ecosystem-scale understanding.

As mentioned for the Fig. 5 results, the PLUMBER?2 anal-
ysis contains some timesteps that are physically inconsistent
based on temperature and humidity relationships. It was pos-
sible that such timesteps may have negatively affected this
analysis — the EFMs were not constrained by physics and
so were more likely to be able to accurately model these
timesteps than the LSMs. The manner in which individual
LSMs handle physical inconsistency in inputs may also dif-
fer in methodology and therefore the impact on LSM perfor-
mance. However, removing these timesteps from the analy-
sis did not improve LSM performance, with any changes in
iNMV minimal. Approximately 6 % of the timesteps were
removed, representing a non-negligible portion of the data.
Whether the ability of the LSMs to robustly deal with such
physically-inconsistent inputs is reassuring (since model out-
puts did not massively degrade when forced by them) or of
concern (why should we expect LSMs to be able to simulate
fluxes under these unpredictable conditions?) is unclear and
is an area for further research.

5 Conclusions
We have shown that the LSM underperformance relative to

empirical benchmarks reported by the PLUMBER?2 exper-
iment can largely be attributed to LSM performance under
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specific conditions. In other words, LSMs perform signifi-
cantly better and can beat better EFM benchmarks when cer-
tain meteorological conditions are excluded from the analy-
sis. Notably, the conditions of markedly poor LSM perfor-
mance occur in only a fraction of the total site-timesteps be-
ing considered with the majority occurring under coinciding
extremes of two or more meteorological variables. In particu-
lar, the concurrent extremes, both low and high, of incoming
longwave radiation and air temperature result in poor LSM
performance for sensible heat. In addition, LSM performance
under high values of VPD relative to air temperature show
strong potential for improvement for all three fluxes of sen-
sible heat, latent heat, and net ecosystem exchange. Hence,
the timesteps of poor performance are mostly described by a
edge effect visible in 2-dimensional fingerprints of meteoro-
logical input space. By focussing LSM development on the
dominant processes at these half-hourly mutual extremes of
multiple drivers, we have shown that substantial performance
gains could be realised. This places clear value on observa-
tions of ecosystem fluxes at these meteorological edge con-
ditions. Without observations of these conditions, the contin-
ued advancement of LSMs is constrained by a lack of calibra-
tion and testing data. Targeted field campaigns, using rapid
deployments to sample responses, may be a necessary step
to guide efficient future LSM development and process re-
finement.
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