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Abstract. The combination of various nitrogen (N) trans-
formation pathways (mineralization, nitrification, denitrifi-
cation, DNRA, anammox) modulates the fixed-N availabil-
ity in aquatic systems, with important environmental conse-
quences. Several models have been developed to investigate
specific processes and estimate their rates, especially in ben-
thic habitats, known hotspots for N-transformation reactions.
Constraints on the N cycle are often based on the isotopic
composition of N species, which integrates signals from var-
ious reactions. However, a comprehensive benthic N-isotope
model, encompassing all canonical pathways in a stepwise
manner, and including nitrous oxide, was still lacking. Here,
we introduce a new diagenetic N-isotope model to analyse
benthic N processes and their N-isotopic signatures, vali-
dated using field data from the porewaters of the oligotrophic
Lake Lucerne (Switzerland). As parameters in such a com-
plex model cannot all uniquely be identified from sparse data
alone, we employed Bayesian inference to integrate prior pa-
rameter knowledge with data-derived information. For pa-
rameters where marginal posterior distributions considerably
deviated from prior expectations, we performed sensitivity
analyses to assess the robustness of these findings. Along-
side developing the model, we established a methodology
for its effective application in scientific analysis. For Lake
Lucerne, the model accurately replicated observed porewa-
ter N-isotope and concentration patterns. We identified aero-
bic mineralization, denitrification, and nitrification as domi-
nant processes, whereas anammox and DNRA played a less

important role in surface sediments. Among the estimated
N isotope effects, the value for nitrate reduction during deni-
trification was unexpectedly low (2.8± 1.1 ‰). We identified
the spatial overlap of multiple reactions to be influential for
this result.

1 Introduction

Nitrogen (N) is an essential element for all living organ-
isms (Xu et al., 2022) and often limits primary production
in aquatic systems (Kessler et al., 2014). In order to meet
the global demand for fixed N (nitrate, NO3

−, and ammo-
nium, NH4

+), industrial fixation of atmospheric dinitrogen
(N2) through the Haber-Bosch process now exceeds biolog-
ical N2 fixation, with unforeseeable consequences regarding
the ability of the environment to remove the excess fixed N,
leaving the global N cycle imbalanced (Kessler et al., 2014).
High fixed-N in aquatic systems has detrimental environmen-
tal consequences (Denk et al., 2017; Yuan et al., 2023), in-
cluding eutrophication, ecosystem deterioration, and green-
house gas emissions (e.g., nitrous oxide, N2O). Thus, under-
standing the fate of fixed N in aquatic ecosystems and quanti-
fying N fluxes are crucial for global budget estimates (Pätsch
and Kühn, 2008).

In aquatic systems, benthic habitats are important hotspots
in the transformation of large amounts of fixed N (Dale et al.,
2019; Pätsch and Kühn, 2008; Xu et al., 2022), owing to
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sharp oxyclines and the co-occurrence of aerobic and anaer-
obic processes. The active N cycle in these sediments is
driven by the flux of organic matter (OM) from the photic
zone along with elevated concentrations of other electron
donors (Ibánhez and Rocha, 2017; Wankel et al., 2015). Aer-
obic reactions, such as nitrification (stepwise NH4

+ oxida-
tion to NO3

− via nitrite, NO2
−, with N2O as by-product),

are usually restricted to the top few millimetres in OM-rich
sediments (e.g., in small lakes) or extend several centime-
tres deep in OM-poor sediments (e.g., in large oligotrophic
lakes and the ocean) (Pätsch and Kühn, 2008; Wankel et al.,
2015). The fate of NO3

−, produced via nitrification either lo-
cally in the sediments or in the water column, determines a
system’s capacity to function as an efficient N sink (Wankel
et al., 2015). Denitrification, the stepwise reduction of NO3

−

to N2 (via NO2
− and N2O), has been identified as a key path-

way for anaerobic N removal. Additionally, anammox, the
anaerobic oxidation of NH4

+ to N2 using NO2
−, can con-

tribute to N loss (Ibánhez and Rocha, 2017; Kampschreur
et al., 2012; Wankel et al., 2015), especially in oligotrophic
lake sediments (Crowe et al., 2017). In anammox, partial ox-
idation of NO2

− generates NO3
− as a by-product to provide

reducing equivalents for the fixation of inorganic carbon (C)
(Brunner et al., 2013; Strous et al., 1999). Counteracting N
removal by anammox and denitrification, the dissimilatory
NO3

− reduction to NH4
+ (DNRA) contributes to N reten-

tion (Denk et al., 2017; Ibánhez and Rocha, 2017; Rooze and
Meile, 2016). The balance between these N-transforming re-
actions is strongly influenced by environmental conditions,
particularly the ratio of organic C to NO3

− and oxygen (O2)
availability. For instance, DNRA may be predominant under
high C : NO3

− ratios (Ibánhez and Rocha, 2017; Kraft et al.,
2011; Wang et al., 2020). Oxygen is a central regulator in this
context: it controls the coupling of nitrification with denitri-
fication, anammox and DNRA, and modulates N2O produc-
tion and consumption, with peak N2O yields typically occur-
ring at the oxic-anoxic interface (Ni et al., 2011). The spatial
overlap of aerobic and anaerobic N cycling processes at this
transition zone in sediments often results in very low con-
centrations of metabolic intermediates (e.g., N2O) in pore-
water, complicating their measurements in natural benthic
environments. This is particularly true for the analysis of
natural-abundance DIN isotopologues, which provide criti-
cal insights into N-cycling reactions and pathways. However,
measuring these isotopologues, especially low-concentration
intermediates in porewater, is technically challenging, if not
impossible at present. To overcome these limitations, isotope
modelling has become an essential tool for quantifying rapid
N turnover at the oxic-anoxic interface, and for evaluating
environmental controls on N dynamics and isotope signa-
tures across diverse settings (Denk et al., 2017; Wankel et al.,
2015).

Natural abundance stable isotope measurements provide
insights into the N cycle, and the fluxes within its pathways,
as microbial processes impart unique isotopic imprints on the

involved N pools (Lehmann et al., 2003; Rooze and Meile,
2016; Wankel et al., 2015). In most microbial processes, the
isotopically lighter molecules are preferentially consumed,
yielding 15N-depleted products and 15N-enriched substrates
(normal N-isotopic fractionation) (Kessler et al., 2014), with
few exceptions, such as NO2

− oxidation, which occurs with
an inverse N isotope fractionation (Casciotti, 2009; Martin
et al., 2019). The isotopic composition of a given N pool is
expressed in δ-notation, δ15N (‰ vs. std)= [(Rsample/Rstd)−

1]× 1000, where R is the isotope ratio 15N/14N, and the in-
ternationally recognized standard is atmospheric N2 (Denk
et al., 2017; Martin et al., 2019). The extent of the isotopic
fractionation for a reaction is quantified using the isotope
effect, ε, defined as ε(‰)= [1− (Hk/Lk)]× 1000, where
Hk and Lk are the specific reaction rates for the isotopically
heavy and light molecules, respectively (Sigman and Fripiat,
2019). For instance, δ15N-NO2

− analysis can help differen-
tiate reductive and oxidative pathways of NO2

− consump-
tion, as they are characterised by a normal and an inverse
kinetic isotope effect, respectively (Dale et al., 2019; Martin
et al., 2019; Rooze and Meile, 2016). Despite considerable
efforts to estimate isotope effects for most N-transformation
processes (Denk et al., 2017), isotope effects estimated in
batch cultures often differ from in situ measurements (Martin
et al., 2019). To date, only limited efforts have been made to
develop comprehensive benthic isotope models that integrate
multiple N-transformation processes in a stepwise manner,
and assess the expression of their isotope effects in the pore-
water of aquatic sediments, validated with observational data
(Denk et al., 2017; Rooze and Meile, 2016).

Existing N-isotope models address specific aspects of the
N cycle (Denk et al., 2017), such as denitrification (Kessler
et al., 2014; Lehmann et al., 2003; Wankel et al., 2015),
NO2

− oxidation and reduction (Buchwald et al., 2018) or
N2O dynamics (Ni et al., 2011; Wunderlin et al., 2012). As
denitrification is the primary pathway for fixed-N loss in
many aquatic systems, models integrating dual NO3

− iso-
topes (Lehmann et al., 2003; Wankel et al., 2015) have
been used for example, to constrain its partitioning between
water-column and benthic denitrification (Lehmann et al.,
2005), as well as the contribution of regenerated NO3

−

supporting denitrification (Lehmann et al., 2004). Rooze
and Meile (2016) combined isotope data with a reaction-
transport model to investigate the influence of hydrodynam-
ics on fixed-N removal, highlighting enhanced coupling of
nitrification-N2 production by benthic infauna. Buchwald
et al. (2018) used dual NO3

− and NO2
− isotope analyses

and a reaction-diffusion model to demonstrate the tight cou-
pling of NO3

− reduction and NO2
− oxidation near oxic-

anoxic interfaces, emphasizing the central role of NO2
− in

N recycling. In contrast, most N2O modelling efforts (pri-
marily concentration-based models) to date have focused
on engineered systems such as wastewater treatment, where
they have been used to assess N2O production pathways un-
der variable conditions, and to minimize its emissions (Ni
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et al., 2011; Wunderlin et al., 2012). Challenges in measuring
N2O isotopologues in natural settings, especially in sediment
porewaters, have limited the broader application of N2O iso-
topic approaches and led to the exclusion of N2O from ben-
thic N-isotope modelling efforts so far. Nonetheless, given
the key role of N2O in the N cycle, and its sensitivity to re-
dox conditions, there is a growing need for modelling frame-
works that integrate multi-species N-isotope dynamics, even
in the absence of direct measurements of N-cycle intermedi-
ate like NO2

− and N2O to more accurately capture the inter-
connected nature of N transformations in natural systems.

With this study, we introduce a comprehensive 1-D
diffusion-reaction model, encompassing all canonical N-
transformation processes and most DIN isotopologues, to
assess the role of distinct environmental factors (e.g., OM
reactivity, bioturbation) in shaping porewater N dynamics
and the N isotopic signatures the different N transforma-
tions (and combinations thereof) generate. Furthermore, by
considering the stepwise nature of the N-cycling pathways,
the model quantifies and isotopically characterizes key inter-
mediates (i.e., N2O, NO2

−), which serve as substrates for
subsequent reactions (Martin et al., 2019). Moreover, the
model acts as a valuable research tool for analysing process
couplings (e.g., DNRA-anammox interactions) (Dale et al.,
2019; Hines et al., 2012), which are crucial for accurately
estimating N removal and recycling, and can influence the
apparent isotope effects of NO3

− and NO2
−. Incorporating

N2O isotopologues as state variables enables the model to
resolve the relative importance of N2O producing mecha-
nisms across small-scale benthic oxic-anoxic interfaces, and
to quantify their contribution to sedimentary N2O emissions.

The application of a comprehensive diagenetic N isotope
model to measured porewater profiles of selected inorganic
N compounds often results in parameter identifiability is-
sues. Specifically, similar fits to the observed data might be
achieved with comparable accuracy using different parame-
ter sets, each yielding distinct transformation rates. To reduce
the risk of drawing erroneous conclusions from such iden-
tifiability problems, we employed the following modelling
strategies:

– Use of prior knowledge. Prior knowledge informed both
the development of the model structure and the selec-
tion of parameter values. The model parameterization
was adapted as deemed necessary to effectively inte-
grate this prior knowledge. This approach aims to pro-
duce a plausible representation of the mechanisms gov-
erning the data.

– Consideration of uncertainty. Uncertainty in model pa-
rameters was explicitly accounted for using epistemic
probability distributions. Bayesian inference (Bernardo
and Smith, 1994; Gelman et al., 2013; Robert, 2007)
was employed to combine prior knowledge with infor-
mation obtained from observational data. The result-
ing posterior distribution of the parameters and calcu-

lated results provide a comprehensive uncertainty de-
scription, which is, however, still conditioned on prior
information about the model structure and parameters.

– Sensitivity analysis. To test the robustness of key results
against modelling assumptions, we assessed their sen-
sitivity to the choice of prior probability distribution of
the model parameters and to the inclusion of specific
active processes within the model.

Since the numerical implementation of Bayesian inference
requires the computationally intensive Markov Chain Monte
Carlo (MCMC) sampling technique (Andrieu et al., 2003),
an efficient model implementation is required. To meet this
need, we implemented the model in Julia (Bezanson et al.,
2017) (https://julialang.org, last access: 11 July 2024), a
high-performance programming language. This choice also
enables the use of automatic differentiation, which sup-
ports advanced MCMC techniques like Hamiltonian Monte
Carlo (HMC) (Betancourt, 2017; Neal, 2011). The model
was tested using field measurements from oligotrophic Lake
Lucerne. It is important to emphasize that this isotope model
is designed as a research tool, rather than a predictive instru-
ment. Its primary purpose is to test hypotheses and assump-
tions related to the biogeochemical controls on N isotope sig-
natures in natural environments, and to assess the identifiabil-
ity of process rates and N isotope effects from observational
data.

2 Model description

2.1 Model formulation

A one-dimensional diffusion-reaction model was developed
to simulate the concentrations of inorganic N compounds
(NO3

−, NO2
−, NH4

+, N2, N2O), distinguishing between
14N and 15N isotopes (14NO3

−, 15NO3
−, 14NO2

−, 15NO2
−,

14NH4
+, 15NH4

+, 14N2, 14N15N, 15N2, 14N2O, 14N15NO,
15N2O), as well as for O2 and sulfate (SO4

2−) concentra-
tions. Their production and consumption rates are described
by incorporating key processes of the canonical N cycle: aer-
obic mineralization, denitrification, nitrification, anammox,
DNRA, mineralization by SO4

2− reduction, and anaerobic
mineralization (other than SO4

2− driven) (Fig. 1). All reac-
tions (Table 1) are described using the general formula:

rate= kmax · limitation · inhibition (1)

where kmax represents the maximum conversion rate under
ideal conditions (in µMd−1). The terms for limitation by sub-
strate X and inhibition by substance Y for the process i are
defined following Michaelis–Menten kinetics (Martin et al.,
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Figure 1. Simplified scheme of the N-transformation reactions considered for the diagenetic isotope model described in this paper. Continu-
ous lines identify aerobic processes, while dashed lines indicate anaerobic processes. The state variables explicitly modelled as substrates for
the considered reactions are highlighted with outlined boxes; O2 is modelled as a state variable and as a regulator of aerobic and anaerobic
processes; organic matter (OM) is not a state variable per se within the framework of this model, but acts as a source of N for the remaining
processes. The isotopic fractionation of each process is shown using + and − signs to represent the 15N-enriching and 15N-depleting effects
of the respective reactions.

2019):

limitation=
[X]

KX,i + [X]
(2)

inhibition=
KY,i

KY,i + [Y ]
(3)

where [X] and [Y ] are the concentrations (in µM) of sub-
stances X and inhibitor Y , respectively, while KX,i and
KY,i are their respective half-saturation and inhibition con-
stants (in µM) for process i, respectively. While the model
supports exponential equations for limitation and inhibition
terms, Michaelis–Menten kinetics were chosen for this study,
as they are more commonly employed in N models (Rooze
and Meile, 2016). The specific reaction rate equations are
implemented taking into account the concentrations of 14N,
15N, 14N14N, 14N15N, and 15N15N species separately for the
limitation term. For 15N-containing species, specific reaction
rates are reduced by (1− ε/1000) relative to 14N-containing
species, reflecting the isotope effect associated with a given
reaction (detailed descriptions of the model processes are
provided in Appendix A: Model processes and stoichiome-
try).

Molecular diffusion is modelled taking into account the
reduced solute movement due to tortuosity (Burdige, 2007).
Additionally, bioturbation is included as a transport term en-
hancing diffusion, with its influence exponentially decreas-
ing with depth. Boundary conditions are set based on ob-
served concentrations of N compounds, O2, SO4

2− at the
upper boundary, and by zero fluxes at the lower boundary, ex-
cept for NH4

+. The NH4
+ flux (and its δ15NFNH4

) was jointly
estimated with the model parameters, as the field data display
a clear NH4

+ concentration gradient at 5 cm. Total N, 14N
and 15N concentrations, along with their fluxes, are used for

model parameterization (see Appendix B: Reaction-diffusion
model for details).

The model is formulated as a dynamic model, but simu-
lated to steady-state for comparison with observational data.
Concentrations of 14N- and 15N-containing compounds are
converted to total concentrations and δ15N.

2.2 Description of modelled transformation processes

This section outlines the modelled processes for 14N and
14N14N compounds (Table 1). A comprehensive overview of
the transformation processes for all isotopologues, and stoi-
chiometric relations is provided in Appendix A: Model pro-
cesses and stoichiometry.

Mineralization of OM, the sole external N source, is dif-
ferentiated in the model according to the specific electron ac-
ceptor involved: aerobic mineralization (O2), denitrification
and DNRA (NO3

−), SO4
2− reduction, and anaerobic miner-

alization. The latter encompasses all remaining redox species
(i.e., other than O2, NO3

−, and SO4
2−) below the nitracline

(e.g., manganese oxides, iron oxides, carbon dioxide).
Denitrification is modelled as a three-step process:

(1) NO3
− to NO2

−; (2) NO2
− to N2O; and (3) N2O to N2.

The first step, typically regarded as the rate-limiting step
(Kampschreur et al., 2012), is the primary control on the
overall expression of the N isotope effect (Kessler et al.,
2014; Rooze and Meile, 2016). To prevent unrealistic rates,
subsequent steps are constrained by setting kDen2 = fDen2×

kDen1 and kDen3 = fDen3× kDen1, and specifying priors for
fDen2 and fDen3. The re-parameterization of the second and
third steps using the fDen2Den1 and fDen3Den1 factors corre-
sponds to exactly the same model without any approximation
or simplification. It serves solely to facilitate the specification
of priors, as more knowledge is typically available about ra-
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tios of maximum rates (i.e., fDen2Den1 = kDen2/kDen1) than
about the absolute maximum rates themselves. The NO3

−

N isotope effect during benthic denitrification is known to
be suppressed in the overlying water due to diffusion limita-
tion (Dale et al., 2022; Kessler et al., 2014; Lehmann et al.,
2003), though its expression at the porewater level remains
less well constrained (Wankel et al., 2015). Transiently accu-
mulating intermediates, such as N2O, that can escape to the
overlying water and alter benthic N fluxes (Rooze and Meile,
2016), are also considered. Lastly, to ensure mass balance,
the model accounts for clumped (doubly substituted; e.g.,
15N15NO and 15N15N) isotopocules, but does not distinguish
between isotopomers (i.e., 14N15NO and 15N14NO) due to
lack of N2O isotope data needed for model validation. For
the purpose of comparison with previous N models, a sim-
plified one-step denitrification pathway (NO3

− to N2 with
no release of NO2

− or N2O into the environment) approach
is also implemented in the model code.

Nitrification is modelled as a two-step process: (1a) NH4
+

to NO2
−; (1b) NH4

+ to N2O; (2) NO2
− to NO3

−. As for
denitrification, the second step of nitrification is constrained
to prevent unrealistic rates: kNit2 = fNit2× kNit1, with speci-
fying a prior for fNit2. N2O production yield during the first
step is O2-dependent, and is modelled accordingly:

fN2O_Nit1 =
ba

[O2] + a
(4)

where b and a are empirical parameters derived from Ji
et al. (2018). N2O production also occurs via nitrification-
denitrification, implicitly modelled by allowing reaction cou-
pling via the intermediate NO2

−. The expression of iso-
tope effects depends on substrate availability and reaction
completion. For instance, incomplete nitrification has been
shown to result in isotopically heavy NH4

+ efflux from the
sediments (Dale et al., 2022; Lehmann et al., 2004; Rooze
and Meile, 2016). However, similar phenomena for N2O and
NO2

− remain poorly understood.
The limited understanding of porewater N isotope dynam-

ics, especially for processes other than denitrification, hinges
on the scarcity of isotope data for crucial N species like
NH4

+ and NO2
− in natural settings (Martin et al., 2019;

Wankel et al., 2015). In the present model, we investigated
the importance of these solutes, and how N-turnover pro-
cesses like DNRA and anammox shape the distribution of
their N isotopes. DNRA is modelled as a two-step process:
(1) NO3

− to NO2
−; and (2) NO2

− to NH4
+. This approach

separates the impact of NO2
− reduction on NH4

+, and al-
lows comparison of NO2

− isotopic signatures induced by
denitrification, DNRA, and anammox. Anammox is mod-
elled to include both the comproportionation of NH4

+ and
NO2

− to N2 (main reaction, “m”), and the NO3
− production

via NO2
− oxidation (side reaction, “s”) (0.3 molNO3

− pro-
duced per 1 molNH4

+ and 1.3 molNO2
−) (Tables 1 and A1)

(Martin et al., 2019), which imparts a strong inverse isotope
fractionation (Brunner et al., 2013; Magyar et al., 2021).

The relative importance of reductive NO3
− pathways

is constrained by altering maximum conversion rates, k,
as: kDNRA1 = fDNRA1,Den1×kDen1; kDNRA2 = fDNRA2,Den2×

kDen2; kAnam = fAnam,Den2× kDen2, where prior information
on f factors was obtained from experimental rate measure-
ments (see below). Altogether these reactions provide a com-
prehensive overview of N isotope dynamics in porewater and
enable the assessment of influential environmental condi-
tions in shaping them.

2.3 Model assumptions

The model builds on the following considerations and as-
sumptions:

i. The inputs of sinking OM and associated advective
transport relative to the sediment surface are not explic-
itly modelled, as the dissolved O2 and N-compound pro-
files tend to reach quasi-steady state on short timescales
(days to weeks). This simplification may not be valid
for continental shelf sediments, where advection domi-
nates solute movement due to high sediment permeabil-
ity (Rooze and Meile, 2016). Therefore, in our model,
porewater profiles are shaped primarily by molecular
diffusion and bioturbation (the latter approximated as
enhanced diffusion), along with reaction processes.

ii. Hinging on assumption (i), the rates of OM-degrading
processes are assumed to be limited by the availability
of oxidants and not of OM, as in Kessler et al. (2014),
an assumption that holds for sediments with sufficient
readily degradable OM, but may break down at great
depths. As OM is neither a state variable nor a limit-
ing substrate, its production and consumption rates are
not tracked and are considered uninfluential within the
current model.

iii. Microorganisms involved in N-transformation path-
ways are not explicitly modelled, meaning that max-
imum conversion rates, k, represent a combination of
bacterial maximum specific growth rates and abun-
dance. These parameters likely vary significantly across
systems, due to differences in OM loading. Variabili-
ties in cell-specific rates, and consequently in isotope
effects, over depth and substrate availability were not
considered.

iv. N assimilation is not included, which is plausible if the
turnover rates of the modelled processes are consider-
ably higher than the N assimilation rates.

v. Maximum specific conversion rates for all reactions are
constant with depth, implying uniform bacterial abun-
dance and activity across the sediment layer affected by
any given process.

vi. Limitation and inhibition kinetics are modelled using
Michaelis–Menten functions, as they are commonly
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employed in N-cycle models (Rooze and Meile, 2016);
exponential equations are provided within the code as
an alternative approach, depending on user preference.

vii. OM composition is approximated by the Redfield ratio
(C : N : P= 106 : 16 : 1), used to estimate the fraction of
NH4

+ released during OM mineralization, γ .

viii. Anaerobic mineralization includes all processes involv-
ing redox species below the nitracline (e.g., manganese,
iron, and carbon dioxide) with the exception of SO4

2−

reduction, with no distinction in reaction rate for dif-
ferent oxidants. Reduction of SO4

2− is modelled sepa-
rately, as it can occur at faster rates than oxidation by
iron(III), Fe3+, and manganese, Mn4+, in some lacus-
trine systems (Steinsberger et al., 2020), and is the dom-
inant anaerobic mineralization process in marine set-
tings.

ix. Re-oxidation of reduced species other than NH4
+ and

NO2
− (e.g., Fe2+, Mn2+, H2S, CH4) is neglected in the

O2 budget for the modelled interval; this is appropriate
where their upward fluxes are minor, but may underes-
timate O2 demand in settings with substantial reduced-
species fluxes. Future users are encouraged to adapt the
model to their research questions and dataset, including
adding processes and state variables, provided that they
can be constrained.

x. OM mineralization occurs with no N isotopic fractiona-
tion; that is, the released NH4

+ has the same N isotopic
composition of OM, which is a model parameter con-
sidered for estimation.

xi. Diffusivities of isotopologues are considered identical,
as their differences have been reported to be minimal
(Lehmann et al., 2007; Wankel et al., 2015).

xii. Bioturbation enhances diffusion equally for all mod-
elled species. As no solid was included as a state vari-
able of the model, the impact of bioturbation on solid
phase mixing was neglected.

xiii. The yield of NO3
− during anammox is fixed at 0.3 mol

NO3
− per 1 molNH+4 , although reported values range

from 0.26 to 0.32 (Brunner et al., 2013).

xiv. The NO3
− and NO2

− equilibrium during anammox has
been previously reported to occur under environmental
stress conditions with a strong isotopic fractionation (up
to −60.5 ‰) (Brunner et al., 2013). Since it leads to the
production of 15N-enriched NO3

−, similarly to the ki-
netic isotopic fractionation during NO2

− oxidation to
NO3

−, variable values of εAnam,side (−15 ‰ to -45 ‰)
can encompass both kinetic and equilibrium fractiona-
tion.

xv. NH4
+ adsorption and desorption rates are assumed to

be comparable, and to occur with negligible isotopic
fractionation, resulting in no net effect on the NH4

+

pool concentration or isotopic composition.

The model incorporates deliberate simplifications to re-
duce complexity, while remaining adaptable to new data or
insights; however, it is acknowledged that these assumptions
may significantly influence model outcomes and should be
carefully considered when interpreting results.

2.4 Prior knowledge about model parameters

Model parameter values were derived from an extensive lit-
erature review, and formulated as prior distributions, as de-
tailed and referenced in Appendix C: Prior values for in-
ference. Positive parameters were parameterized as Lognor-
mal priors, while priors of positive or negative parameters
were parameterized as Normal distributions. Mean values
were derived from the provided references, standard devia-
tions were assigned either as absolute values or as percent-
ages of the mean, depending on the class of variables. For
parameters that are lake-specific (see model assumption iii.)
and expected to be well identifiable from data, such as the
maximum conversion rates of various processes (i.e., aerobic
mineralization, the first step of nitrification, the first step of
denitrification, mineralization by SO4

2− reduction, anaero-
bic mineralization) and the NH4

+ flux from deeper sediment
layers, only limited prior knowledge is available, making
the use of uniform priors preferable. As their interpretabil-
ity can be questionable, uniform priors were applied only
to parameters expected to be well-identifiable, ensuring that
prior variations within the marginal posterior range would re-
main small, even with alternative broad priors. This approach
avoids specifying typical expected values, while maintain-
ing robust identifiability. The maximum conversion rates for
anammox, DNRA, as well as the second step of nitrifica-
tion and the second and third steps of denitrification (Anam,
DNRA1, DNRA2, Nit2, Den2 and Den3) were more chal-
lenging to identify from data, as the sensitivity of model re-
sults to these parameters becomes very low when the concen-
tration of the converted substance becomes small. Addition-
ally, prior specification for these rates was difficult, due to the
expected variability among different lakes, similar to other
maximum conversion rate parameters. Therefore, their priors
were formulated as ratios relative to the better-constrained
maximum conversion rate of the first nitrification (i.e., kNit1)
or denitrification step (i.e., kDen1). This approach allowed for
the characterization of the relative importance of each pro-
cess without requiring absolute rate values. The joint prior
for all parameters was assumed to be an independent combi-
nation of their respective marginal prior distributions.
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2.5 Model-based analysis process

To partially reduce structural uncertainty of the model and
to account for parameter non-identifiability, Bayesian infer-
ence was applied, considering all uncertain parameters listed
in Appendix C: Prior values for inference. Some parameters
were excluded from this analysis, including molecular diffu-
sion coefficients, compound concentrations at the sediment
surface, zero fluxes from deeper sediment layers (except for
the NH4

+ flux, which was inferred jointly with other param-
eters) and bioturbation. These values are considerably less
uncertain than the other model parameters, except for biotur-
bation, which was addressed separately through a scenario
analysis, following Bayesian inference under the Base sce-
nario.

The posterior distribution (probability density) of the
model parameters, fpost, is expressed as

fpost(θ)=
fL(C|θ)fpri(θ)∫
fL(C|θ ′)fpri(θ ′)dθ ′

(5)

where fpri is the prior distribution (probability density) of the
model parameters, fL(C|θ) is the likelihood function of the
model, C represents the observed compound concentrations,
or δ15N values, and θ denotes the model parameters. The
likelihood function fL(C|θ) is defined as a multivariate, un-
correlated Normal distribution with constant variances (stan-
dard deviation, σδ) for δ15N values, and variances increas-
ing linearly with concentration, leading to a standard devia-

tion σC =
√
σC,aC+ σ

2
C,b for O2, SO4

2−, and N compound
concentrations. This formulation incorporates the combined
uncertainties in model structure, sampling, and concentra-
tion measurements. To account for the unknown magnitude
of these uncertainties, the coefficients of these relationships,
σC,a , σC,b, and σδ , were inferred alongside the model param-
eters.

The marginal posteriors of individual parameters were
compared with their priors to evaluate whether observa-
tional data provided information about these parameters, and
whether this information was in conflict with the priors. In
addition, two-dimensional marginals were examined to iden-
tify potential identifiability issues. Finally, uncertainty in the
model results was calculated by propagating parameter un-
certainty to the model results under consideration of their
uncertainty for given parameter values as formulated in the
likelihood function:

fpost(C)=

∫
fL(C|θ)fpost(θ)dθ (6)

For the parameters with marginal posteriors in conflict
with prior information, we conducted additional scenario
analyses, fixing parameters, and narrowing or widening prior
distributions. These analyses evaluated the model’s compat-
ibility with observational data if parameters better aligned
with prior information and assessed changes in posterior dis-

tribution with weaker priors. These scenario analyses com-
plemented the assessment of bioturbation uncertainty men-
tioned above.

2.6 Discretization and numerical algorithms

The partial differential equations outlined in Appendix B:
Reaction-diffusion model were solved using the Method of
Lines. For spatial discretization, a grid was employed with
cell thickness increasing progressively from the sediment
surface toward deeper layers. This adaptive grid design re-
duced the total number of cells required, while still maintain-
ing high resolution near the sediment-water interface, where
steep concentration gradients typically occur (Appendix D:
Model discretization). The resulting system of ordinary dif-
ferential equations (ODE) was solved by a standard ODE
solver. Parameter inference was conducted using two ad-
vanced Bayesian inference algorithms: Metropolis (Andrieu
et al., 2003; Vihola, 2012) and Hamiltonian Monte Carlo
(Betancourt, 2017; Neal, 2011) algorithms.

2.7 Model implementation

The model was implemented in Julia (Bezanson et al.,
2017) (https://julialang.org, last access: 11 July 2024) to
achieve high-performance and facilitate automatic differenti-
ation. The DifferentialEquations.jl package (Rackauckas and
Nie, 2017) was used to solve the system of ODEs; perfor-
mance testing of several ODE solvers identified the FBDF
solver (adaptive order and adaptive time-step backward-
differencing solver) as the most suitable for handling the
stiffness of the ODE system. The ForwardDiff.jl package
(Revels et al., 2016) was used for automatic differentia-
tion; Bayesian inference was conducted using the adaptive
Metropolis sampler from the AdaptiveMCMC package (Vi-
hola, 2020), and the Hamiltonian Monte Carlo algorithm im-
plemented in the AdvancedHMC.jl package (Xu et al., 2020).
Further implementation details are provided in Appendix E:
Model implementation. Simulations were performed at sci-
CORE (https://scicore.unibas.ch, last access: 26 February
2025), the scientific computing centre at the University of
Basel.

3 Sample collection and analyses

3.1 DIN concentrations and isotopes

Sediment cores were retrieved at the deepest location of the
Kreuztrichter basin in Lake Lucerne, a large oligotrophic
lake in Switzerland (Baumann et al., 2024), in April 2021 us-
ing a gravity corer with PVC liners. The sediment cores were
stored at 4 °C and processed using two porewater-sampling
methods: whole-core squeezing (WCS; Bender et al., 1987)
for NO3

− samples, and Rhizon samplers (Rhizosphere re-
search products, Wageningen, NL) for NH4

+ samples. The
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WCS technique provides a high depth resolution near the
sediment-water interface (0–5 cm, resolution: ∼ 0.7–1 mm),
where NO3

− is present in porewaters, while the Rhizon sam-
pling method allows collecting samples at greater sediment
depths (> 5 cm, resolution:≥ 0.5 cm). NO3

− and NH4
+ con-

centrations were measured using ion chromatography (940
Professional IC Vario, Metrohm). δ15N-NO3

− and δ15N-
NH4

+ were determined using the denitrifier method (Cas-
ciotti et al., 2002; Sigman et al., 2001), and the hypobromite-
azide method (Zhang et al., 2007), respectively. In both meth-
ods, sample N from NO3

− or NH4
+ is converted into N2O,

which is then purified and analysed by isotope ratio mass
spectrometry (Delta V Plus, Thermo Fisher Scientific). The
typical analytical precision is ∼ 0.25 ‰ (McIlvin and Cas-
ciotti, 2010).

3.2 Process rate measurements

For model parameterization, reaction rates for denitrification,
DNRA, and anammox were determined using established
protocols for 15N-tracer incubations (Holtappels et al., 2011).
After recovery and sectioning of the core into 1 cm intervals,
1 g of sediment was placed into 12 mL gas-tight glass vials
(Exetainers®, Labo, UK). These Exetainers were then filled
with anoxic, sterilized bottom water, amended with the fol-
lowing tracers: (Exp1) 15NO3

−, (Exp2) 15NH4
+
+

14NO2
−.

Exetainers were incubated at 6 °C in the dark, and terminated
at designated time points (0, 6, 12, 24, and 36 h) by adding
ZnCl2. Gas headspace samples were analysed for the produc-
tion of 14N15N and 15N15N using gas-chromatography iso-
tope ratio mass spectrometry (GC-IRMS; Isoprime, Manch-
ester, UK). Linear regression of 14N15N and 15N15N produc-
tion over time was used to calculate N2 production rates,
with standard errors derived from deviations in the regres-
sion slopes across the five-time points. For the determina-
tion of 15NH4

+ production from 15NO3
− additions, 15NH4

+

was chemically converted to N2 gas using the alkaline-
hypobromite method (Jensen et al., 2011). The resulting
14N15N was quantified by GC-IRMS. Linear regression of
14N15N production over time was used to calculate potential
rates of 29N2 (i.e., 15NH4

+) production. Rates of denitrifi-
cation, DNRA, and anammox were calculated according to
Holtappels et al. (2011) and Risgaard-Petersen et al. (2003).
Only data from the upper 1 cm were used to parameterize the
model, as the investigated sediments displayed a shallow ni-
tracline and the highest anammox contribution at 0–0.5 cm
depth.

4 Results and Discussion

The developed diagenetic N isotope model addresses exist-
ing knowledge gaps in understanding porewater N dynam-
ics, and aims to clarify the roles of distinct N-transformation
processes in shaping the distribution of N isotopes to be po-

tentially used to constrain benthic N (isotope) fluxes across
different environments. Here, we present (1) the results of
Bayesian inference applied to a large number (∼ 60) of
model parameters (see prior definition in Appendix C: Prior
values for inference), with a focus on assessing their uncer-
tainty, (2) a detailed scenario analysis, focusing on parame-
ters that exhibit significant shifts in their marginal posterior
distributions relative to their prior, as well as on the effect
of variable contributions from different NO3

− and NO2
− re-

duction pathways, and the impact of enhanced bioturbation
on model outcomes, (3) a sensitivity analysis, evaluating the
importance of individual model processes in shaping ben-
thic N isotope dynamics, (1) the importance of process cou-
pling in benthic N cycling, with a particular focus on the
role of intermediate NO2

− in influencing δ15N-NO3
− dy-

namics. All results are based on porewater concentration, iso-
tope, and rate measurement data from a sampling campaign
conducted in Lake Lucerne in April 2021. Additionally, we
performed (2) a sensitivity analysis examining model out-
put responses to modifications of selected parameters using
artificially simulated settings (e.g., variable contributions of
denitrification/anammox/DNRA); this analysis demonstrates
the model’s capability for addressing diverse research ques-
tions.

4.1 Bayesian inference

The model implementation was highly efficient, achieving
simulation times of about 12 s on a 13th Gen Intel® Core™
i9–13 900 K processor with 3.00 GHz and 64 GB of memory
(of which only a small fraction was needed) for a 100 d simu-
lation starting from constant concentration profiles. This effi-
ciency enabled the execution of Markov chains of 20 000 iter-
ations within a few days on the scientific computing centre at
the University of Basel (https://scicore.unibas.ch, last access:
26 February 2025). By combining these chains, samples of
100 000 iterations were generated. The Hamiltonian Monte
Carlo algorithm outperformed the adaptive Metropolis algo-
rithm during burn-in to the core of the posterior distribution.
However, for final posterior sampling with about 60 param-
eters, adaptive Metropolis sampling proved more efficient in
terms of effective sample size per unit of simulation time.
Despite these efforts in getting computational efficiency, and
the use of advanced MCMC algorithms, reaching conver-
gence of the Markov chains remained challenging. We got
five consistent Markov chains without discernible trends for
each scenario; however, some widening of the chains and the
resulting effective sample size on the order of 500 indicate
that we were not able to get a good coverage of the tails of
the posterior distribution. This outcome demonstrates that in-
corporating so many uncertain model parameters pushes the
limits of Bayesian inference in terms of numerical tractabil-
ity. However, the resulting uncertainty estimates are certainly
more realistic than those obtained by fixing many poorly con-
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strained parameters to unique values to reduce the dimension
of the parameter space.

The simulation results of solute concentration and δ15N
profiles in the most plausible Base scenario (Fig. 2) inte-
grate prior knowledge (Appendix C: Prior values for infer-
ence) with observational data through Bayesian inference.
The profiles closely reproduce the available, albeit limited,
data, and conform to expected depth-related trends: oxidants
(i.e., O2, NO3

− and SO4
2−) are readily consumed via aerobic

mineralization and nitrification (O2), denitrification (NO3
−),

and SO4
2− reduction. While mineralization is assumed to in-

volve negligible N isotopic fractionation, the first step of ni-
trification causes significant enrichment in 15N of the resid-
ual NH4

+ pool, yielding δ15N-NH4
+ values up to 11.2 ‰

at 0.15 cm, due to strong N isotope fractionation, estimated
at εNit1= 12.0 ‰ (to NO2

−) and 36.4 ‰ (to N2O). Unfor-
tunately, extremely low NH4

+ concentrations measured in
the top 2 cm hindered the determination and verification of
the modelled δ15N-NH4

+ in this zone with field data. Both
NO2

− and N2O accumulate in the upper 0.5 cm, reaching
up to 0.4 and 2 µM, respectively. Below 0.3 cm, denitrifi-
cation leads to the progressive 15N enrichment of NO3

−,
NO2

− and N2O, while N2-producing mechanisms (i.e., deni-
trification and anammox) cause only minimal changes to the
modelled δ15N-N2 profile, due to the dominance of a large
pre-existing N2 pool. For concentrations, the 95 % credi-
bility intervals of parametric uncertainty are rather narrow,
whereas the much broader total uncertainty is dominated
by the lumped uncertainty term in the likelihood function,
which primarily reflects the model’s structural uncertainty.
The error, beyond the parameter error, is parameterized us-
ing the two sigma values (σC,a and σC,b; see Sect. 2.5), and
exceeds what would arise from measurement and sampling
alone. This suggests that the larger error is attributable to the
model’s structural limitations. Conversely, δ15N profiles ex-
hibit small total uncertainty, as model results for δ15N closely
match observational data, with minimal random and system-
atic deviations (parameterized using the sigma value σδ , see
Sect. 2.5).

The model provides insights into the underlying process
rates (Fig. 3) that shape the simulated profiles (Fig. 2).
Vertical profiles of transformation rates for NH4

+, NO3
−,

NO2
− and N2O clearly illustrate the sequential dominance

of different N-transformation processes with increasing sed-
iment depth and decreasing O2 availability. Aerobic pro-
cesses, namely aerobic mineralization and nitrification, pri-
marily control NH4

+ transformation rates, peaking at 450
and 350 µMd−1, respectively (Fig. 3a). Nitrification sustains
denitrification by producing both NO2

− (up to 350 µMd−1)
and NO3

− (up to 275 µMd−1) in the upper 0.4 cm (Fig. 3b
and c). A strong spatial overlap of nitrification and denitrifi-
cation emerges in the depth distribution of processes affect-
ing the NO2

− pool, suggesting a potential interplay between
these pathways (Fig. 3c).

A key strength of this model is the incorporation of N2O
as a state variable. Our model results reveal that, although
N2O production via nitrification is minimal (not visible in
Fig. 3d), the strong isotopic fractionation associated with this
reaction (εNit1,N2O= 36.4 ‰) generates N2O with δ15N val-
ues of −1.2 ‰ to −2.2 ‰ in the top 0.2 cm (Fig. 2c). At a
depth of approximately 0.35 cm, up to 2.1 µM of N2O ac-
cumulate, coinciding with the highest rates of N2O produc-
tion through denitrification. Conversely, N2O consumption
by the last denitrification step peaks at 0.5 cm, leading to
a progressive increase in δ15N-N2O with depth. This zona-
tion likely reflects the O2 sensitivity of the distinct N2O-
producing and -consuming processes. Specifically, N2O re-
ductases are known to be strongly inhibited by O2, and there-
fore exhibit greater activity below the oxycline (Wenk et al.,
2016). Although the model does not explicitly include the en-
zymes responsible for N-transformation pathways, the cho-
sen and estimated kinetic parameters reflect substrate affinity
and inhibition strength. Consequently, inhibition constants
like KO2,Den2 and KO2,Den3 provide indirect insights into the
O2 dependency of these enzyme-mediated reactions, effec-
tively shaping the modelled redox zonation.

The model adequately captures the concentration and iso-
topic composition of the state variables, in agreement with
field measurement and the expected patterns of underlying
N-transformation processes and reaction coupling (Figs. 2
and 3). One key strength of the step-wise model is its abil-
ity to quantify reaction coupling, which is challenging to in-
fer directly from state variable pools (i.e., reactive intermedi-
ates), if they are rapidly turned over.

To address the variable ranges for the model parameters
found in the literature, and to reduce structural uncertainty
imposed by fixed parameter values, we estimated a large set
of parameters using Bayesian inference. The obtained joint
posterior distribution of model parameters enabled us to as-
sess the knowledge acquired from data. Marginal posterior
distributions of individual parameters, and two-dimensional
marginal distributions of parameter pairs, were particularly
useful in this context (Fig. 4 shows examples for the four cat-
egories defined below; Fig. S1 in the Supplement provides
an overview of all marginal prior and posterior parameter
distributions). By comparing marginal posterior distributions
with their corresponding priors, parameters were classified
as well identifiable or poorly identifiable. While this classifi-
cation involves some subjectivity in determining how much
narrower a posterior distribution should be compared to its
prior distribution to classify such parameter as well identifi-
able, some clear patterns emerged:

1. Well identifiable parameters: The marginal posterior
distribution is clearly narrower than the prior, indicat-
ing that data provide meaningful information about the
parameter’s value. Two cases were observed:

a. The marginal posterior distribution is within the
prior range, suggesting that the information from
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Figure 2. Vertical porewater profiles of concentrations (a, b) and isotopic composition (δ15N) (c) of the state variables for the Base scenario.
Continuous lines represent model simulations, while symbols represent observational data from Lake Lucerne. For NH4

+ concentrations,
filled diamonds represent low-resolution data from Rhizon sampling, while open diamonds represent the high-resolution WCS data, adjusted
to align with absolute concentrations measured in the low-resolution dataset. Dashed lines enclose 95 % credibility intervals resulting from
parametric uncertainty, while thin solid lines represent total uncertainty.

Figure 3. Vertical profiles of transformation rates for distinct N-cycling processes affecting the NH4
+, NO3

−, NO2
−, and N2O pools.

Dashed lines enclose 95 % credibility intervals resulting from parametric uncertainty. Positive reaction rate values indicate production,
negative values indicate consumption of a given DIN species.

the data is in agreement with prior knowledge
(Fig. 4a). Examples include: f factors for anam-
mox (fAnam,Den2= 0.2) and both DNRA steps
(fDNRA1,Den1= 0.005, fDNRA2,Den2= 0.005), esti-
mated using 15N-tracer incubation experiments
for the investigated system, and parameters such
as KNO3,Den1 and KO2,MinOx, constrained from
clearly defined oxidant declines. Maximum con-
version rates for aerobic mineralization, denitrifi-
cation, SO4

2− reduction, and anaerobic mineraliza-
tion, as well as the NH4

+ flux from deeper sediment
layers, also belong to this category, although we ap-

proximated very wide priors by uniform priors (see
Sect. 2.4), making it less visible in the plot.

b. The marginal posterior distribution significantly de-
viated from the prior range (Fig. 4b), suggesting
that the information from the data is in conflict
with prior knowledge. The most striking exam-
ple is εDen1, estimated at 2.8± 1.1 ‰ for the Lake
Lucerne dataset, far lower than the typical 15 ‰–
25 ‰ reported in the literature for NO3

− reduction
(Lehmann et al., 2003; Rooze and Meile, 2016),
suggesting a reduced N-isotopic fractionation (or at
least, of its expression) at the porewater level. This
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Figure 4. Prior (dashed line) and posterior marginal distributions (continuous line) for illustrative parameters, which could be identified
and showed (a) good (fAnam,side) and (b) poor agreement (εDen1) with prior knowledge, and (c) for parameters that could not be identified
(aN2O,Nit1); 2D correlation plot for γNH4,MinSulfRed versus FNH4 (d).

finding contrasts with model-derived values for the
cellular isotope effect of NO3

− reduction observed
in the porewater of marine sediments (εDen> 10 ‰)
(Lehmann et al., 2007). While a detailed investi-
gation of the biological mechanisms behind such
reduced expression across benthic environments is
beyond the scope of this study and will be ad-
dressed separately by the authors, the potential role
of reaction couplings in modulating benthic N iso-
tope dynamics is discussed in Sect. 4.4.

2. Poorly identifiable parameters: The marginal posterior
distribution resembles the prior distribution, suggesting
poor identifiability. This can occur for two possible rea-
sons:

a. The parameter exerts negligible influence on the
model output that corresponds to observational data
(Fig. 4c). For example, parameters like the N2O
yield during nitrification, aN2O,Nit1 and bN2O,Nit1,
could not be constrained without specific data on
N2O production. The current model encompasses
several processes and state variables, which, at
times, were hard to corroborate with the limited
dataset in hand (a situation that may apply regularly
to environmental studies, particularly in benthic
environments). Therefore, their values were taken
from previous studies (Ji et al., 2018). For other pa-
rameters, such as γNH4,DNRA1 and γNH4,DNRA2, lit-
tle knowledge was acquired from the data in hand,
due to the relatively low maximum rates of DNRA
compared to other processes. In such cases, the pos-
terior distribution may remain close to the prior, not
because the prior range was incorrect, but because
the available data could not further constrain it.

b. Although data are available and the model output
is sensitive to the parameter, other parameters in-
fluence the output similarly. This leads to param-
eter correlation in the posterior distribution and re-
duces identifiability, as observed for γNH4,MinSulfRed
and FNH4 (Fig. 4d), which exhibit correlation, mak-
ing their estimates interdependent (Guillaume et al.,

2019). Here, the estimate of the NH4
+ flux from

the lower boundary of the model depends on the
estimate of the amount of NH4

+ released via OM
mineralization coupled to SO4

2− reduction.

The comparison of marginal priors and posteriors of the
parameters (Fig. S1) demonstrates that excellent agreement
between model outputs and observational data (Fig. 2) can
be achieved for 54 of the 58 estimated parameters compat-
ible with their priors. Exceptions include: the higher-than-
expected rate for the second denitrification step relative to
the first (expressed by the factor fDen2,Den1), the large half-
saturation constant for SO4

2− reduction (KSO4,MinSulfRed),
and smaller-than-expected N isotope effects for the first
steps of denitrification and nitrification (εDen1 and εNit1,NO2

− ,
respectively). The largest deviation is observed for εDen1,
which is further examined in the next subsection.

Notably, the seven parameters, for which a uniform prior
was chosen to approximate a very wide prior (kMinOx, kDen1,
kMinSulfRed, kMinAnae, kNit1, FNH4 , δ15N, FNH4 ), were identifi-
able, indicating that highly system-specific prior knowledge
is not crucial for these estimates. Most of the other model pa-
rameters showed limited narrowing of the marginal posterior
relative to the prior, reflecting the rather limited information
gain that can be obtained from data. The three model error
parameters (σC,a , σC,b, σδ) were well identifiable and will
be used in the following sections to compare the fit quality
across different modelling scenarios.

4.2 Scenario analysis

Building on the findings discussed in the previous section,
we explored the apparent prior-data conflict regarding εDen1
in greater detail. Additionally, we assessed whether the esti-
mated process rates overlooked potential reaction coupling,
which might go undetected through 15N-tracer incubation ex-
periments, by exploring the variability in contributions of
anammox and DNRA (i.e., fAnam, fDNRA1 and fDNRA2).
Lastly, given the uncertainty regarding solute-diffusion en-
hancement by bioturbation, we investigated a scenario with
increased bioturbation. These considerations led to four key
scenarios:
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A. Narrow priors for ε. This scenario investigated the ef-
fects of restricting ε variability to a narrower range
(prior standard deviation of 1 ‰ instead of 5 ‰). The
aim was to test whether the marked reduction in the
marginal posterior of εDen1 persisted under stricter prior
assumptions, and whether this decreased flexibility sig-
nificantly impacted the quality of the model fit.

B. Fixed ε. Here, the model output was assessed under the
assumption that the literature data regarding N isotope
effects are correct (i.e., ε values not estimated). This
scenario complemented Scenario (A) by testing whether
a good fit to the data could still be achieved by fixing
the εDen1 value (and all other isotope effects) at its prior
mean.

C. Wider priors for f . In this scenario, greater variability
in DNRA and anammox contributions (prior standard
deviation of 100 % instead of 25 %) was allowed to test
the impact of relaxed prior assumptions on the relative
contributions of these processes in the model output.

D. Enhanced bioturbation. This scenario simulated a
faster solute-diffusive transport due to higher infau-
nal activity by doubling the bioturbation coefficient
(Dbio= 2 cm2 d−1 instead of 1 cm2 d−1), to investigate
the sensitivity of the results to this uncertain parame-
ter, which was not included in the Bayesian analysis. In
the model, the bioturbation strength at the sediment sur-
face is defined by the parameter Dbio, and it decreases
exponentially with depth, with the typical bioturbation
depth parameter, depthbio. As the diffusion enhance-
ment by bioturbation is highly uncertain, this scenario
aims to assess solely the sensitivity of the model output
to changing bioturbation magnitude.

The results demonstrate a strong dependence of the esti-
mated parameters on the chosen prior assumptions (Fig. 5).
Across all scenarios, marginal posterior distributions for the
selected parameters are generally narrower than the prior dis-
tributions, though results vary substantially. In Scenario (A)
(Narrow priors for ε), restricting the prior range signifi-
cantly constrained εDen1, limiting its deviation from the prior
(Fig. 5m; note that the prior for Scenario (A) is 5 times nar-
rower than the one shown, which represents the prior for
all other scenarios). These results closely resemble those
from Scenario B (Fixed ε), where no deviation was pos-
sible (Figs. 5 and S2 in the Supplement). Both scenarios
exhibit lower denitrification rates than the Base scenario
(Fig. 5b), but comparable fit quality for total (14N+ 15N)
concentration, quantified by σC,a (i.e., the dominant term
of standard deviation of the model error for concentrations,
see Sect. 2.5) (Fig. 5x). On the other hand, scenarios (A)
and (B) display poorer fit quality for δ15N profiles, indicated
by a large value of σδ (Fig. 5z), suggesting that the model
structure cannot adequately reproduce the δ15N-NO3

− pro-

files without adapting the εDen1 value. While biological iso-
tope effects of 15 ‰–30 ‰ are typical for NO3

− reduction
(Lehmann et al., 2007), lower values under almost-complete
NO3

− consumption have been reported (Thunell et al., 2004;
Wenk et al., 2014). This finding is further confirmed by
comparable marginal posteriors for εDen1 across all scenar-
ios considered in this study, besides scenarios (A) and (B).
To test the robustness of our model, we ran a base scenario
simulation for marine sediments in the Bering Sea (station
MC16) (Lehmann et al., 2007) (data not shown). Moreover,
a manuscript currently in preparation presents an extensive
comparison of model application across different sites and
demonstrates a much wider range of 15εDen1 values, exceed-
ing 20 ‰.

In Scenario (C) (Wider f ), allowing greater variability
in anammox and DNRA contributions results in the lowest
fAnam,Den2 values, although such deviation is not substan-
tial compared to the Base scenario output (Fig. 5i). The es-
timated fDNRA1,Den1 and fDNRA2,Den2 values in Scenario (C)
mostly align with those of the Base scenario, corroborating
the marginal role of DNRA in Lake Lucerne. Such findings
confirm the accuracy of the rate measurements performed
with 15N tracer incubations.

Scenario (D) (Enhanced bioturbation) stands out with the
highest conversion rates (i.e., kMinOx, kMinSulfRed, and kNit1)
(Fig. 5a, e, and g) to ensure sufficient oxidant consumption at
higher supply/flux rates (reproducing the observed gradient
despite higher diffusivity). Despite these changes, bioturba-
tion had negligible effects on porewater N isotope dynamics,
with estimated isotope effects and fit quality for δ15N profiles
(σδ) comparable to those of the Base scenario.

The obtained concentration depth profiles for the four sce-
narios are generally comparable, as newly estimated param-
eters ensured good fitting of the data (Fig. S2). However, in
Scenarios A and B, stricter constraints on prior knowledge
for parameter estimation result in little to no suppression of
all isotope effects (i.e., relatively strong N isotopic fractiona-
tion), leading to great variability in the δ15N profiles. Poor
fits to the δ15N data are observed under these conditions,
as evidenced by the greater 15N enrichment of the NO3

−

pool compared to the measured-data profiles (Fig. S2). Sim-
ilarly, the δ15N-N2O profiles exhibit sharp declines to ap-
proximately −15 ‰ in the upper 0.5 cm under scenarios (A)
and (B), driven by the strong expression of εNit1,N2O (40.1 ‰
and 40.0 ‰, respectively). In contrast, Scenarios (C) and (D)
closely resemble the Base scenario, with only minor δ15N-
N2O variations.

4.3 Importance of modelled processes and their impact
on porewater N isotope signatures

The importance of modelled processes and their impact on
N isotope signatures were investigated by selectively deacti-
vating individual processes and comparing the model outputs
to the Base scenario. Aerobic mineralization, denitrification,
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Figure 5. Marginal probability densities across the five considered scenarios for selected estimated parameters, showing both prior (dashed
line) and posterior distributions (continuous lines): Base scenario (SDf= 25 %, SDε = 5 ‰, Dbio= 1 cm2 d−1), Narrower ε (SDε = 1 ‰),
Fixed ε (i.e., ε taken from bibliography), Wider f (SDf= 100 %) and Enhanced bioturbation (Dbio= 2.0 cm2 d−1). Of the ∼ 60 estimated
parameters, those shown here were selected for their relevance to the discussion. See main text for further details.

and SO4
2− reduction were considered essential to preserve

redox zonation (e.g., sequential decline of O2, NO3
−, and

SO4
2−) and N dynamics. The following processes were indi-

vidually turned off: (a) nitrification (“NitOff”); (b) anammox
(“AnamOff”); and (c) DNRA (“DNRAOff”). Initially, each
process was simply inactivated to assess its impact on model
outputs (Fig. 6). Subsequently, inference was conducted after
deactivating each process, to investigate their importance for
model performance, parameter and flux estimation, and for

the identifiability of rate parameters by evaluating the quality
of the fit to the data, especially on the δ15N profiles (Fig. 7,
Figs. S3 and S4 in the Supplement).

Switching off nitrification significantly alters the model
output compared to the Base scenario (Fig. 6a, b, e, and f),
indicating its central role in the benthic N dynamics. Key
effects include NH4

+ accumulation throughout the inves-
tigated depths, with a flattening of the δ15N-NH4

+ pro-
file (i.e., less curvature towards higher δ15N values) in the

Biogeosciences, 23, 283–314, 2026 https://doi.org/10.5194/bg-23-283-2026



A. Mazzoli et al.: A comprehensive porewater isotope model for simulating benthic nitrogen cycling 297

Figure 6. Vertical concentration (a–d) and isotopic composition (e–h) profiles for state variables. Model output obtained with all processes
included (a, e) are compared with model simulations where individual processes are switched off: nitrification (b, f), anammox (c, g), and
DNRA (d, h), without running inference again. Continuous lines represent the model output, while symbols represent measured data from
Lake Lucerne. For NH4

+, open diamonds represent the high-resolution dataset, adjusted to align with absolute concentrations measured in
the low-resolution dataset (filled diamonds).

upper 0.5 cm, as the only other source of 15N-enriched
NH4

+ besides nitrification would be anammox, which is
inhibited under oxic conditions. Furthermore, nitrification-
denitrification coupling via NO2

− weakens in this scenario,
resulting in lower overall N2 production (as indicated by
the lower maximum N2 concentration of 734 µM compared
to 745 µM in the Base scenario). These results suggest that
partially reducing, or fully eliminating, nitrification lowers
the system’s capacity to act as an efficient N sink. In other
words, the findings confirm that nitrification is a critical pro-
cess that, when closely coupled to denitrification, helps to
enhance the ecosystem’s potential to remove fixed N. All
other N-isotopic state variables also show a flatter δ15N pro-
file, with only a progressive enrichment in 15N below 0.5 cm,
primarily driven by denitrification (NO3

−, NO2
−, and N2O).

The impact of disabling nitrification is clearly reflected in

the δ15N-N2O profile across the upper 0.3 cm, where the typ-
ical nitrification-induced dip is absent, and δ15N-N2O values
remain relatively constant (∼ 7 ‰–8 ‰). In contrast, the ef-
fects of turning off anammox or DNRA are more subtle, ow-
ing to their generally lower reaction rates in Lake Lucerne
(Fig. 6c, d, g, and h). Notably, in the absence of anam-
mox, N2O exhibits lower δ15N values in the upper 0.3 cm
compared to the Base scenario, likely due to higher N2O
yields via nitrification, as reduced competition for NH4

+

with anammox provides more substrate for nitrification.
Upon running inference for each case, concentration and

N isotope profiles for the NitOff, AnamOff, and DNRAOff
scenarios are generally similar to those of the Base sce-
nario (Fig. S3), with notable exceptions in the NitOff case.
In the absence of nitrification, NH4

+ accumulates and the
δ15N-NH4

+ profile remains largely flat, since anammox,
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Figure 7. Posterior marginal probability distributions of modelled sediment-water interface fluxes (in nmolcm−2 d−1) for all state variables,
generated from inference runs, across the four scenarios considered for model validation against experimental data from Lake Lucerne.

the only other NH4
+-consuming process, is minimal under

oxic conditions. No δ15N-NH4
+ measurements are avail-

able for the top 1 cm, so the model output could not be
verified with field data. The N2O pool systematics also di-
verge between the NitOff and Base scenarios. Specifically,
in the NitOff case, no nitrification-derived N2O accumu-
lates in the upper 0.4 cm, and consequently, the δ15N-N2O
profiles lacks the typical nitrification-associated decline in
this layer. Instead, N2O becomes progressively enriched in
15N below 0.4 cm. While most estimated parameters and
fluxes are consistent across the four scenarios, the NitOff sce-
nario stands out again, exhibiting strong effects on the anam-
mox rates and associated isotope effects (e.g., fAnam,Den2,
εAnam,NH4 ) (Fig. S4), as well as on benthic fluxes of NH4

+,
NO2

−, NO3
− and N2O (Fig. 7). Nonetheless, the NH4

+

concentration profile is well-captured, as indicated by a low
σC,a , reflecting a good match between model and concen-
tration data even in the absence of nitrification. This finding
implies that the model cannot resolve the relative contribu-
tions of nitrification versus anammox to NH4

+ consumption
based on the concentration and isotope data, highlighting the
importance of prior knowledge regarding fAnam,Den2.

The comparison of process rates across these four scenar-
ios provides insights, unveiling the extent of process cou-
pling and competition (Fig. S5 in the Supplement) (Hines
et al., 2012). For instance, anammox and nitrification com-
pete for both NH4

+ and NO2
− as substrates, causing the rate

of one process to be enhanced, when the other is switched
off. The NH4

+ oxidation and NO2
− production rates via ni-

trification (Nit1) are higher (∼ 0.2 cm depth) in the AnamOff
scenario than in the Base scenario. Even more obviously, en-
hanced rates of NH4

+ oxidation, NO2
− consumption, and

NO3
− production via anammox are observed in the NitOff

scenario than in the Base scenario. Process coupling, specif-
ically nitrification-denitrification, is further confirmed by
lower rates for NO2

− reduction via denitrification (Den2)
in the absence of nitrification. In general, the influence of
DNRA on production and consumption rates of the consid-
ered state variable appears minimal, owing to the limited en-
vironmental relevance of DNRA in Lake Lucerne. Overall,
the similarly good fits obtained across these three scenarios
and the Base scenario reflect the poor identifiability of the
switched off processes. This suggests that the data can be
well-fitted even without these three processes, emphasizing
the importance of prior knowledge about their environmen-
tal relevance.

4.4 The role of process coupling via NO2
−

Previous models of benthic N isotope dynamics have focused
on individual reactions or overlooked the role of intermediate
species, such as NO2

− (Kessler et al., 2014; Lehmann et al.,
2007). Our study confirms that NO2

− plays a critical role in
coupling multiple N-transformation processes and shaping
benthic N isotope dynamics, including that of δ15N-NO3

−.
While such process coupling has been examined in the wa-
ter column (Frey et al., 2014), it remains, to our knowledge,
largely unexplored in sedimentary environments.

To assess the significance of this coupling, we imple-
mented a one-step denitrification approach that bypasses
NO2

− as an intermediate, replacing the three-step pathway
used throughout this paper (Fig. 8). In this simplified model,
NO2

− concentrations and isotopic signatures are shaped
solely by nitrification (and to a marginal extent, DNRA
and anammox), as denitrification no longer contributes to
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Figure 8. Depth profiles of NO3
− and NO2

− concentrations and N isotopic composition (a, c), and rates of NO2
−-producing and -consuming

processes (b, d), as simulated by the Base scenario (a, b), and the one-step denitrification approach (c, d). In the one-step approach, NO3
−

is reduced directly to N2, omitting NO2
− as an intermediate; thus, no NO2

− is produced or consumed through denitrification. Dashed lines
enclose 95 % credibility intervals resulting from parametric uncertainty.

NO2
− production. This modification leads to significantly

reduced NO2
− accumulation, restricted to the upper 0.3 cm,

and lower anammox activity, due to a lack of NO2
− substrate

below the oxycline. The absence of denitrification-derived
NO2

− has profound effects on the N isotope dynamics. First,
a consistent ∼ 15 ‰ offset between δ15N-NO3

− and δ15N-
NO2

− is evident across all modelled depths (Fig. 8c). This
offset is ascribed to the isotope effect of the second nitrifi-
cation step (εNit2=−13.7 ‰), and the lack of 15N enrich-
ment in the NO2

− pool from denitrification. Second, the es-
timated isotope effect for NO3

− reduction (εDen) increases
to 5.5± 0.9 ‰, nearly double than in the Base scenario, indi-
cating that elevated δ15N-NO3

− values in the field data may,
to some extent, reflect NO2

− isotope dynamics, rather than
solely the effect of NO3

− reduction (Fig. 1).
These findings emphasise the importance of both NO2

−-
producing and -consuming processes in modulating δ15N-
NO3

−, and consequently, estimates of εDen1. Although ni-
trification is typically aerobic and denitrification anaerobic,
evidence exists that indicates spatial overlap of these two
processes at the bottom of oxyclines in natural aquatic en-
vironments (Frey et al., 2014; Granger and Wankel, 2016).
In this transition zone, NO2

− produced by either pathway
can be oxidised to NO3

− or reduced to N2O, NH4
+ or N2

(Fig. 3), significantly affecting its δ15N signature (depend-
ing on the N-branching). For instance, NO2

− reduction to
N2O enriches the residual NO2

− pool in 15N. If this 15N-
enriched NO2

− is subsequently oxidized to NO3
− (a reaction

that exhibits an inverse kinetic isotope effect), the resulting

NO3
− will be markedly enriched in 15N (Fig. 1). Such inter-

actions have been shown to influence apparent isotope effects
for NO3

− in the water column (Frey et al., 2014), and likely
exert similar effects in sediments, where sharp redox gradi-
ents create overlapping zones of nitrification and denitrifica-
tion. This coupling may explain the discrepancy in estimated
εDen1 values between the Base scenario (2.8± 1.1 ‰) and the
one-step denitrification model approach (5.5± 0.9 ‰).

Anammox further complicates these dynamics, as it de-
pends on NO2

− excreted into the environment. Without deni-
trification, which releases NO2

− (Sun et al., 2024), anammox
is substrate limited (Fig. 8). Thus, while previous benthic
studies estimated denitrification isotope effects using one-
step denitrification approaches (Lehmann et al., 2007), our
findings call for the adoption of a stepwise modelling ap-
proach (Sun et al., 2024) that better captures the interdepen-
dence of N-transformation pathways, and their integrated ef-
fects on NO3

− isotope dynamics. A more detailed examina-
tion of these interactions is essential for refining our under-
standing and quantification of isotope effects associated with
NO3

− reduction in sedimentary systems.

4.5 Model applicability in distinct scenarios

Beyond applying and testing the developed diagenetic N iso-
tope model at our site of interest (Lake Lucerne), we be-
lieve its strength hinges on its versatility to address distinct
research questions and objectives. We explored two scenar-
ios as examples of how the model can be adapted to pro-
vide insights into the N cycle in benthic environments and

https://doi.org/10.5194/bg-23-283-2026 Biogeosciences, 23, 283–314, 2026



300 A. Mazzoli et al.: A comprehensive porewater isotope model for simulating benthic nitrogen cycling

Figure 9. Depth profiles of process rates, solute concentrations and δ15N values for the two idealized case scenarios investigated: (i) NO3
−

reduction via DNRA and denitrification (a–d), (ii) N2 production via anammox and denitrification (e–h). Shadings represent different model
scenarios within each case, as defined in the legend. For case (i), colour shading lightens with increasing contribution of DNRA (rela-
tive to denitrification) to total NO2

− reduction. DNRA accounts for 0 % (fDNRA = 0), 33 % (fDNRA = 0.5), 50 % (fDNRA = 1) and 66 %
(fDNRA = 2) of total NO2

− reduction (a). The resulting effects on the production rates of NH4
+ and N2 (b), as well as on their concentra-

tions and N isotopic composition (c, d), are shown. For case (ii), colour shading lightens with increasing contribution of anammox (relative
to denitrification) to total NO2

− consumption and associated N2 production. Anammox contributes 0 % (fAnam = 0), 33 % (fAnam = 0.5),
50 % (fAnam = 1) and 66 % (fAnam = 2) of total NO2

− consumption (e, f). The resulting impacts on N2 and NO2
− concentrations and

δ15N values are shown in panels (g) and (h).

the N isotopic fingerprints that the combined N-cycling pro-
cesses leave behind (Fig. 9). Understanding these fingerprints
and how they might be modulated in natural environments
(e.g., through the variable balance between individual pro-
cesses constrained by environmental conditions) is important
for correctly interpreting the distribution of 15N/14N ratios in

N species as biogeochemical tracer, helping to pinpoint and
disentangle individual N-turnover processes where they co-
occur.

For comparison purposes, we used the estimated param-
eters from the Base scenario and modified the relative im-
portance of NO3

− or NO2
− reduction via (i) denitrification
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vs. DNRA, and (ii) denitrification vs. anammox. This was
done by progressively increasing the factors that define the
contributions of DNRA (fDNRA1,Den1 and fDNRA2,Den2) and
anammox (fAnam,Den2) from 0 (i.e., no DNRA/anammox)
to 2 (corresponding to DNRA and anammox accounting for
2/3 of the total NO3

− and NO2
− reduction, respectively). Si-

multaneously, the rates of the first two steps of denitrification
(kDen1 and fDen2,Den1) were adjusted to maintain consistent
overall NO3

− and NO2
− reduction rates across scenarios.

These model results were not validated against observational
data and should therefore be considered as illustrative exam-
ples of the model’s sensitivity to selected parameters, rather
than as predictions with direct environmental relevance.

i. N removal versus N retention. The model results con-
firm the spatial co-occurrence of DNRA and denitrifi-
cation, with peak NO3

− (data not shown) and NO2
−

(Fig. 9a) reduction activities localized between 0.4–
0.6 cm depth. In contrast, NH4

+ and N2 production ex-
hibit subtle differences in depth distribution: NH4

+ pro-
duction via DNRA extends across a broader sediment
layer than N2 production via denitrification (Fig. 9b).
This pattern likely reflects the inhibitory effect of O2 on
N2O reduction, the final denitrification step, pushing N2
production to deeper, anoxic layers below the oxycline.

Reduction of NO3
− exhibits distinct iso-

tope effects depending on the pathway: den-
itrification (εDen1 ≈ 2.8± 1.1 ‰) and DNRA
(εDNRA1 ≈ 20.0± 2.9 ‰), according to our model
estimates (Fig. 5m and v). This large difference reflects
the difficulty of constraining DNRA isotope effects
through Bayesian inference, due to its low environ-
mental relevance in the top 1 cm of Lake Lucerne
sediments. Although not proven so far, this isotope
offset implies that NO3

− reducers impart distinct iso-
topic fractionation depending on the pathway, which is
rather implausible. However, if true, increasing DNRA
activity would lead to a stronger 15N enrichment in
the residual NO3

− pool (Fig. S6d in the Supplement),
with downstream impacts on the product pools (N2 and
NH4

+) (Fig. 9c and d).

Denitrification-derived N2 mixes with a large ambient
N2 pool (717 µM; δ15N ∼ 0 ‰), resulting in slightly
elevated δ15N-N2 values in the top 1 cm. While this
increase is subtle (1δ15N< 0.1 ‰), it becomes more
pronounced as a larger fraction of NO3

− (and subse-
quently NO2

−) is reduced to N2 (denitrification) rather
than to NH4

+ (DNRA) (Fig. 9c) due to the distinct iso-
tope effects associated with NO3

− reduction via deni-
trification and DNRA. Under full expression of the den-
itrification isotope effect (i.e., εDen1 ≈ 20 ‰), δ15N-N2
much lower than 0 ‰ would be expected; in contrast,
εDen1 ≈ 2.8 ‰ likely suppresses such isotopic dynam-
ics, resulting in only subtle δ15N-N2 changes. As more
NO3

− is reduced via DNRA (εDNRA1 ≈ 20.0 ‰) than

via denitrification (εDen1 ≈ 2.8 ‰), a stronger 15N de-
pletion is expected in the NO2

− pool; if this NO2
− is

then reduced to N2 will lead to lower δ15N-N2 than
in a purely-denitrifying case. Such interaction can ex-
plain the shift toward lower δ15N-N2 values as NO3

−

is increasingly reduced via DNRA with a strong iso-
tope effect recorded in our model. Thus, the slightly el-
evated δ15N-N2 values observed in our model confirms
that denitrification dominates over DNRA, and operates
with a reduced isotope effect (2.8 ‰), likely due to dif-
fusive limitation.
In contrast, enhanced DNRA activity leads to NH4

+ ac-
cumulation and a progressive decrease in δ15N-NH4

+

in the upper 0.5 cm, consistent with strong isotopic frac-
tionation during DNRA (Fig. 9d). This NH4

+ pool ap-
pears to promote nitrification, as indicated by higher
NH4

+ and NO2
− oxidation rates (Fig. S6a and b),

resulting in the production of 15N-depleted NO2
−

(Fig. S6c). Notably, if this isotopically light NO2
− is

subsequently reduced via denitrification, it can lead
to the formation of N2 with unusually low δ15N val-
ues, even if denitrification itself operates with a modest
isotope effect. This secondary effect underscores how
DNRA not only alters substrate availability but also
indirectly influences the isotopic composition of deni-
trification end products. The strong spatial overlap of
DNRA, denitrification and nitrification highlights the
central role of DNRA in fuelling internal N recycling
(Wang et al., 2020) with implications that extend to the
δ15N of both intermediate and terminal N pools.
Thus, if NO3

− reduction via DNRA and denitrification
occurs with distinct isotope effects, our model has the
potential to disentangle their respective contributions
based on δ15N profiles of NO3

− and NH4
+, and to a

lesser extent of N2 and NO2
−. Importantly, our results

underscore a potentially critical, yet underappreciated,
coupling between DNRA and nitrification in benthic en-
vironments. If verified, this interaction, largely invisible
in concentration profiles alone, can significantly influ-
ence isotopic signatures and must be considered when
interpreting sediment N dynamics through an isotope
lens.

ii. N removal via denitrification versus anammox. The
results for this case scenario reveal, somewhat unex-
pectedly, some similarities between denitrification and
anammox with respect to NO2

− reduction to N2 and as-
sociated N isotope signatures. The isotope effects asso-
ciated with denitrification are low (2.8 ‰ for NO3

− re-
duction and 7.9 ‰ for NO2

− reduction), whereas anam-
mox imparts stronger isotopic fractionation (14.4 ‰ for
NO2

− reduction to N2 and −30.0 ‰ for its oxida-
tion to NO3

−). These values reflect parameter estima-
tions specific to Lake Lucerne’s surface sediments (up-
per 1 cm), where anammox activity is low. Both NO2

−
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reduction and N2 production peak around 0.5 cm depth,
with minor differences in the thickness of the active
layer due to variations in substrate affinity between
modelled processes (Fig. 9e and f). The total rate of
NO2

− reduction to N2, via either anammox or den-
itrification, remains consistent across all case scenar-
ios. Nonetheless, slight differences can be observed in
some N pools as anammox becomes the dominant fixed-
N loss path. Increased anammox activity leads to el-
evated N2 and NO2

− concentrations (Fig. 9g and h),
likely due to the use of NH4

+ as a substrate, which
mitigates substrate limitation under low NO2

− avail-
ability (i.e., 1.3 molNO2

− needed to produce 1 mol N2
via anammox versus 2 mol NO2

− via denitrification).
When anammox prevails, δ15N-NO2

− values increase
due to the stronger isotope effect associated with NO2

−

reduction via anammox relative to denitrification. This
enrichment is partially counterbalanced by the inverse
kinetic isotope effect during NO2

− oxidation to NO3
−

(Brunner et al., 2013), leading to 15N-enriched NO3
−

below 0.8 cm; notably, this isotopic shift occurs with-
out significant changes in total NO3

− concentrations
(Fig. S6g and h). Lastly, substantial differences emerge
in the NH4

+ pool: higher anammox activity correlates
with lower NH4

+ concentrations and elevated δ15N-
NH4

+ values throughout most of the sampled depths
(Fig. S6e and f). This isotopic enrichment likely over-
laps with the effect of nitrification on the NH4

+ pool in
the upper 0.3 cm.

While some differentiation between denitrification and
anammox is evident in the isotope signatures of
NO3

− and NH4
+, the expected contrasts in the NO2

−

and N2 pools are surprisingly muted. This near-
indistinguishability in isotopic outcomes suggests a de-
gree of functional and isotopic redundancy between the
two pathways under the modelled conditions. These re-
sults highlight the need for further investigation, partic-
ularly through refined isotope-based methods (e.g., in-
clusion of NOx O-isotopes or clumped nitrate isotopes)
and more mechanistic modelling, to distinguish the re-
spective contributions of denitrification and anammox
to N removal in sedimentary systems.

5 Conclusions

We developed a comprehensive diagenetic N isotope model
that integrates multiple N transformations in benthic envi-
ronments. The model’s complexity requires the use of prior
knowledge in addition to the observed data, in order to
achieve the most plausible descriptions of the ongoing pro-
cesses. To address uncertainty in prior knowledge, and to re-
duce structural errors associated with fixed parameter val-
ues, we applied Bayesian inference for a large parameter
set (∼ 60) for data analysis. The computational demands of

this approach were met by implementing the model in Ju-
lia, with compatibility for automatic differentiation to allow
for advanced Markov chain Monte Carlo algorithms needed
for Bayesian inference. Despite these optimization efforts to
enhance efficiency, inference runs still took 2–3 weeks of
computation time (in addition to preceding simulations to
reduce burn-in) to achieve sufficiently good convergence of
the Markov chains of the posterior parameter distribution.
Alongside concentrations and δ15N values for different N
species, the model provides depth profiles of process rates
and all fluxes, including their uncertainties. These outputs
enable a detailed assessment of the processes shaping N cy-
cling (i.e., concentration profiles) and isotope patterns in sed-
iments.

Application of the developed model to a test dataset from
Lake Lucerne successfully reproduced measured profiles of
O2, SO4

2−, NH4
+, NO2

−, NO3
−, δ15N-NH4

+, and δ15N-
NO3

−. The model also produced realistic vertical distribu-
tions of conversion rates, revealing clear depth-dependent
zonation. Most marginal posterior distributions of estimated
parameters were in good agreement with their priors. Yet,
strong deviations were observed for the N isotope effect asso-
ciated with the first step of denitrification, εDen1, which was
estimated at ∼ 2.8± 1.1 ‰, significantly lower than the ex-
pected∼ 20 ‰. These findings were confirmed by additional
simulations performed using narrower priors and a fixed
εDen1 value of 20 ‰, both of which resulted in a substantial
deterioration in the model’s ability to reproduce δ15N-NO3

−

profiles. This, in turn, can be taken as indication for a sup-
pressed denitrification NO3

− isotope effect at the porewater
level in Lake Lucerne, potentially due to process coupling
via NO2

−. The model’s ability to quantify such interactions,
which can be difficult to discern in situ or from field data
alone, is a key strength of this stepwise model framework.
A manuscript assessing such dynamics across distinct sites
is currently being prepared to further corroborate these find-
ings.

Further sensitivity tests highlighted that the model could
still achieve good fits to the observational data even when
certain individual processes were excluded, demonstrating
the critical role of prior knowledge regarding estimated pa-
rameters and their associated uncertainties.

Overall, this study presents one of the first comprehensive
diagenetic N isotope models that explicitly incorporate mul-
tiple N transformation pathways in a stepwise manner and
are validated against field measurements. Rather than serving
as a purely predictive tool, this model is intended to stimulate
scientific discussion on the quantification of N transforma-
tions and isotope dynamics in sediments based on observed
data. Future developments could focus on improving iden-
tifiability through additional, targeted observations, expand-
ing model validation across distinct benthic environments,
and incorporating additional isotope tracers, such as δ18O of
NO3

− and NO2
−, to further strengthen the model structure

and improve its reliability.
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Appendix A: Model processes and stoichiometry

The following equations were developed based on the infor-
mation reported in Table A1.

rMinOx = kMinOx

[
O2
]

KO2,MinOx+
[
O2
]

rMinAnae = kMinAnae
KNO3,MinAnae

KNO3,MinAnae+
[

14NO3
−
]
+
[

15NO3
−
] KO2,MinAnae

KO2,MinAnae+
[
O2
]

rMinSulfRed = kMinSulfRed

[
SO4

2−]
KSO4,MinSulfRed+

[
SO4

2−] KNO3,MinSulfRed

KNO3,MinSulfRed+
[
NO3

−
] KO2,MinSulfRed

KO2,MinSulfRed+
[
O2
]

r ′Anam = kAnam
1

KNH4,Anam+
[

14NH4
+
]
+
[

15NH4
+
] 1
KNO2,Anam+

[
14NO2

−
]
+
[

15NO2
−
] KO2,Anam

KO2,Anam+
[
O2
]

r ′Nit1a = kNit1
(
1− fN2O,Nit1

) 1
KNH4,Nit1+

[
14NH4

+
]
+
[

15NH4
+
] [

O2
]

KO2,Nit1+
[
O2
]

r ′Nit1b = kNit1fN2O,Nit1
1(

KNH4,Nit1+
[

14NH4
+
]
+
[

15NH4
+
])2

[
O2
]

KO2,Nit1+
[
O2
]

r ′Nit2 = kNit2
1

KNO2,Nit2+
[

14NO2
−
]
+
[

15NO2
−
] [

O2
]

KO2,Nit2+
[
O2
]

r ′Den1 = kDen1
1

KNO3,Den1+
[

14NO3
−
]
+
[

15NO3
−
] KO2,Den1

KO2,Den1+
[
O2
]

r ′Den2 = kDen2
1(

KNO2,Den2+
[

14NO2
−
]
+
[

15NO2
−
])2 KO2,Den2

KO2,Den2+
[
O2
]

r ′Den3 = kDen3
1

KN2O,Den3+
[

1414N2O
]
+
[

1415N2O
]
+
[

1515N2O
] KO2,Den3

KO2,Den3+
[
O2
]

r ′DNRA1 = kDNRA1
1

KNO3,DNRA1+
[

14NO3
−
]
+
[

15NO3
−
] KO2,DNRA1

KO2,DNRA1+
[
O2
]

r ′DNRA2 = kDNRA2
1

KNO2,DNRA2+
[

14NO2
−
]
+
[

15NO2
−
] KO2,DNRA2

KO2,DNRA2+
[
O2
]

fN2O,Nit1 = bN2O,Nit1
aN2O,Nit1

aN2O,Nit1+
[
O2
]

kDen2 = fDen2,Den1kDen1 kDen3 = fDen3,Den1kDen1 kNit2 = fNit2,Nit1kNit1

kAnam = fAnam,Den2kDen2 kDNRA1 = fDNRA1,Den1kDen1 kDNRA2 = fDNRA2,Den2kDen2
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Table
A

1.O
verview

of
allm

odelled
N

-transform
ation

pathw
ays,including

their
stoichiom

etry
and

governing
equations.

R
denotes

the
15N

/
( 14N
+

15N
)

ratio
derived

from
O

M
.T

he
γ

param
eter

defines
the

fraction
of

N
H

4
+

released
during

O
M

m
ineralization

for
each

reaction.A
nam

m
ox

encom
passes

both
the

com
proportionation

of
N

H
4
+

and
N

O
2
−

to
N

2 ,
defined

as
the

m
ain

(“m
”)reaction,and

the
production

ofN
O

3
−

from
N

O
2
−

,defined
as

the
side

(“s”)reaction.

Process
Step

N
H

4
+

N
O

2
−

N
O

3
−

N
2 O

N
2

O
2

SO
4 2
−

R
ate

14N
15N

14N
15N

14N
15N

14N
14N

14N
15N

15N
15N

14N
14N

14N
15N

15N
15N

O
xic

m
in.

γM
inO

x
(1
−
R
)

γM
inO

x
R

−
1

rM
inO

x

D
enitrification

[1]
γD

en1
(1
−
R
)

γD
en1
R

1
−

1
r
′D

en1 [14N
O

3
− ]

γD
en1
(1
−
R
)

γD
en1
R

1
−

1
r
′D

en1 [15N
O

3
− ](1
−
εD

en1
)

[2]
2
γD

en2
(1
−
R
)

2
γD

en2
R

−
2

1
r
′D

en2 [14N
O

2
− ][14N

O
2
− ]

2
γD

en2
(1
−
R
)

2
γD

en2
R

−
1
−

1
1

2
r
′D

en2 [14N
O

2
− ][15N

O
2
− ](1
−
εD

en2
)

2
γD

en2
(1
−
R
)

2
γD

en2
R

−
2

1
r
′D

en2 [15N
O

2
− ][15N

O
2
− ](1
−
εD

en2
) 2

[3]
γD

en3
(1
−
R
)

γD
en3
R

−
1

1
r
′D

en3 [1414N
2 O ]

γD
en3
(1
−
R
)

γD
en3
R

−
1

1
r
′D

en3 [1415N
2 O ](1

−
εD

en3
)

γD
en3
(1
−
R
)

γD
en3
R

−
1

1
r
′D

en3 [1515N
2 O ](1

−
εD

en3
)

Sulfate
reduction

γM
inSulfR

ed
(1
−
R
)

γM
inSulfR

ed
R

−
1

rM
inSulfR

ed

A
naerobic

m
in.

1
−
R

R
rM

inA
nae

N
itrification

[1]
−

1
1

−
1
.5

r
′N

it1a [14N
H

4
+ ]

−
1

1
−

1
.5

r
′N

it1a [15N
H

4
+ ](1
−
εN

it1
,N

O
2 )

−
2

1
−

2
r
′N

it1b [14N
H

4
+ ][14N

H
4
+ ]

−
1

−
1

1
−

2
2
r
′N

it1b [14N
H

4
+ ][15N

H
4
+ ](1
−
εN

it1
,N

2 O
)

−
2

1
−

2
r
′N

it1b [15N
H

4
+ ][15N

H
4
+ ](1
−
εN

it1
,N

2 O
) 2

[2]
−

1
1

0.5
r
′N

it2 [14N
O

2
− ]

−
1

1
0.5

r
′N

it2 [15N
O

2
− ](1
−
εN

it2
)

A
nam

m
ox

[m
]
−

1
−

1
1

r
′A

nam [14N
H

4
+ ][14N

O
2
− ]

−
1

−
1

1
r
′A

nam [14N
H

4
+ ][15N

O
2
− ](1
−
εA

nam
,N

O
2 )

−
1

−
1

1
r
′A

nam [15N
H

4
+ ][14N

O
2
− ](1
−
εA

nam
,N

H
4 )

−
1

−
1

1
r
′A

nam [15N
H

4
+ ][15N

O
2
− ](1
−
εA

nam
,N

O
2 )(1
−
εA

nam
,N

H
4 )

[s]
−

1
1

f
side r

′A
nam [14N

H
4
+ ][14N

O
2
− ]

−
1

1
f

side r
′A

nam [14N
H

4
+ ][15N

O
2
− ](1
−
εA

nam
,N

O
2 )(1
−
εA

nam
,side )

−
1

1
f

side r
′A

nam [15N
H

4
+ ][14N

O
2
− ](1
−
εA

nam
,N

H
4 )

−
1

1
f

side r
′A

nam [15N
H

4
+ ][15N

O
2
− ](1
−
εA

nam
,N

O
2 )(1
−
εA

nam
,N

H
4 )(1
−
εA

nam
,side )

D
N

R
A

[1]
γD

N
R

A
1
(1
−
R
)

γD
N

R
A

1
R

1
−

1
r
′D

N
R

A
1 [14N

O
3
− ]

γD
N

R
A

1
(1
−
R
)

γD
N

R
A

1
R

1
−

1
r
′D

N
R

A
1 [15N

O
3
− ](1
−
εD

N
R

A
1
)

[2]
1
+
γD

N
R

A
2
(1
−
R
)

γD
N

R
A

2
R

−
1

r
′D

N
R

A
2 [14N

O
2
− ]

γD
N

R
A

2
(1
−
R
)

1
+
γD

N
R

A
2
R

−
1

r
′D

N
R

A
2 [15N

O
2
− ](1
−
εD

N
R

A
2
)

Biogeosciences, 23, 283–314, 2026 https://doi.org/10.5194/bg-23-283-2026



A. Mazzoli et al.: A comprehensive porewater isotope model for simulating benthic nitrogen cycling 305

Appendix B: Reaction-diffusion model

Nomenclature

t time [d]
z depth coordinate within sediment (0 at the sed-

iment surface, d at the lower boundary of the
modelled sediment layer) [cm]

d depth of the modelled sediment layer [cm]
C(z, t) substance concentration (mass per volume of

water) as a function of depth and time
p(z) porosity of the sediment (water volume divided

by sediment volume) as a function of sediment
depth

D(z) diffusivity of the substance in the water as a
function of depth (usually constant and equal
to the molecular diffusion coefficient; however,
bioturbation could be modelled as an increase in
diffusivity close to the sediment surface)

r(C) transformation rate of the substance (mass per
volume of water per unit of time)

C0 substance concentration at the sediment surface
Fd substance flux from deep sediment into the

modelled sediment layer at the lower boundary
of the modelled sediment layer (mass per unit of
total sediment surface and per unit of time)

Partial Differential Equation for Sediment Layer

Mass balance within the sediment layer:

p
∂C

∂t
−
∂

∂z

(
Dp

∂C

∂z

)
= pr

Differential equation for concentration:

∂C

∂t
=

1
p

∂

∂z

(
Dp

∂C

∂z

)
+ r

Diffusion (molecular diffusion corrected for tortuosity,
and bioturbation):

D =
Dmol

atortp1−mtort
+Dbioe

−
z
dbio

Boundary conditions:

C(0, t)= C0,D(d, t)p(d, t)
∂C

∂z
(d, t)= Fd

For N compounds with a single N atom, the boundary
conditions are calculated from total concentrations, Ctot,
and δ15N as follows:

r =

(
δ15N
1000

+ 1
)
Rstd

C14N =
1

1+ r
Ctot

C15N =
r

1+ r
Ctot

For N compounds with two N atoms, the boundary condi-
tions are calculated from total concentrations, Ctot, and δ15N
as follows (Drury et al., 1987):

r =

(
δ15N
1000

+ 1
)
Rstd

C14N14N =
1

1+ 2r + r2Ctot

C15N14N =
2r

1+ 2r + r2Ctot

C15N15N =
r2

1+ 2r + r2Ctot
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Appendix C: Prior values for inference
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Appendix D: Model discretization

We discretize the partial differential equations outlined in
Appendix B using the Method of Lines. This approach in-
volves explicit discretization in space, followed by the appli-
cation of an ODE solver to the resulting system of ODEs.

Spatial discretization

Numerical discretization of sediment layer (n cells, cell ex-
pansion factor f ):

Visualization:

Cell boundaries (i = 1, . . .,n+ 1):

zbi =
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Explanation for the cell expansion factor:
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Comparing these cell sizes at the lower and upper bound-
aries leads to
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This expression clarifies the meaning of the cell expansion
factor (approximately equal to the ratio of cell size of lowest
to uppermost cell).

Discretized Ordinary Differential Equations

Mass balance within sediment layer cells (i = 2, . . .,n− 1):
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Differential equation for concentrations at cell midpoints
of inner cells (i = 2, . . .,n− 1):
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Differential equations for concentrations at cell midpoints

of top and bottom cell (i = 1, i = n):
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Appendix E: Model implementation

The model was implemented in Julia (Bezanson et al., 2017)
(https://julialang.org, last access: 11 July 2024). The im-
plementation is available with open access at https://gitlab.
com/p.reichert/Nsediment (last access: 19 January 2025).
The version used for this study corresponds to commit
7afecdf1af871e8f8030360d658ec1cf54d20716.

The partial differential equations described in Appendix B
were spatially discretized according to the approach outlined
in Appendix D. The resulting ordinary differential equations
were then numerically solved by the Method of Lines using
the package DifferentialEquations.jl (Rackauckas and Nie,
2017). Discretizing the modelled sediment layer into 50 cells,
and considering 14 state variables, resulted in a system of
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700 ordinary differential equations. The performance of sev-
eral ODE solvers was compared, resulting in the use of the
adaptive order and adaptive time step backward-differencing
solver FBDF to account for the stiffness of the ODE system.

Maintaining compatibility with automatic differentiation
while allowing flexible parameter selection for inference was
a key implementation challenge. This was addressed by us-
ing separate arrays for parameter values and names, and by
prepending the parameters to be estimated, ensuring a con-
tiguous array of the parameters. To avoid inefficiencies re-
lated to the search of parameter names, the association of
parameter names to array indices was resolved within the
differential equation solver function. This solver, which in-
cludes the function to calculate the right-hand side of the
differential equation as an internal function, ensures that the
index resolution has to be done only once and remains avail-
able for all calls of the integrator by the solver. This approach
enabled compatibility of our implementation with the auto-
matic differentiation package ForwardDiff.jl (Revels et al.,
2016).

Bayesian inference was implemented with both an adap-
tive Metropolis sampler from the AdaptiveMCMC package
(Vihola, 2020) and the Hamiltonian Monte Carlo algorithm
from the AdvancedHMC.jl package (Xu et al., 2020).

All model outputs were written to text files and post-
processed using R version 4.4.2 (https://www.r-project.org,
last access: 31 October 2024).

Code and data availability. The code for the isotope model pre-
sented in this manuscript is available at https://gitlab.com/
p.reichert/Nsediment (last access: 19 January 2025) (commit
7afecdf1af871e8f8030360d658ec1cf54d20716). Field data, model
outputs and re-processing scripts are available through Zenodo at
https://doi.org/10.5281/zenodo.14913873 (Mazzoli et al., 2025).

Supplement. The supplement related to this article is available on-
line at https://doi.org/10.5194/bg-23-283-2026-supplement.
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