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Abstract. Marine biogeochemistry models are critical for
forecasting, as well as estimating ecosystem responses to cli-
mate change and human activities. Data assimilation (DA)
improves predictions from these models by aligning them
with real-world observations, but marine biogeochemistry
DA faces challenges due to model complexity, non-linearity,
and sparse, uncertain observations. Existing DA methods ap-
plied to marine biogeochemistry struggle to update unob-
served variables effectively, while ensemble-based methods
are computationally too expensive for high-complexity ma-
rine biogeochemistry models. This study demonstrates how
machine learning (ML) can improve marine biogeochemistry
DA by learning statistical relationships between observed
and unobserved variables. We integrate ML-driven balancing
schemes into a 1D prototype of a system used to forecast ma-
rine biogeochemistry in the North-West European Shelf seas.
ML is applied to estimate (i) state-dependent correlations
from free-run ensembles and (ii), in an “end-to-end” fash-
ion, analysis increments from an Ensemble Kalman Filter.
Our results show that ML improves updates for previously
not-updated variables when compared to univariate schemes
akin to those used operationally, particularly in lead times
smaller than 5 d. Furthermore, ML models exhibit some po-
tential for transferability to new locations, a crucial step to-
ward scaling these methods to 3D operational systems. We
conclude that ML offers a clear pathway to overcome cur-
rent computational bottlenecks in marine biogeochemistry
DA and that refining transferability, optimising training data

sampling, and evaluating scalability for large-scale marine
forecasting, should be future research priorities.

1 Introduction

Marine biogeochemistry (BGC) modelling is an essential
tool for understanding global marine elemental cycles (e.g.,
for carbon and nitrogen), as well as for understanding the re-
sponse of marine ecosystems to a range of human and climate
pressures (Heinze and Gehlen, 2013; Ford et al., 2018; Fen-
nel et al., 2022). These pressures include ocean acidification,
marine heat waves, and nutrient pollution which can lead to
a range of consequences, such as deoxygenation, toxic al-
gal blooms and biodiversity loss (Doney et al., 2009; Smith
and Schindler, 2009; Schmidtko et al., 2017; Frolicher and
Laufkotter, 2018; Fennel and Testa, 2019; Gobler, 2020).
Marine BGC modelling could then support management,
policy and planning across a wide range of temporal scales.
Marine BGC models are often constrained by the available
observations through data assimilation (DA) (Ford et al.,
2018; Fennel et al., 2019), providing both multi-decadal re-
analyses of past ecosystem trends and variability, as well as
short-term operational forecasts (on the scale up to 5-10d).
Such operational forecasts are run by marine forecasting cen-
tres in many countries, e.g., by the Copernicus Marine Ser-
vice in Europe covering the global ocean and all the major
European seas (Le Traon et al., 2019).
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However, marine BGC DA faces multiple specific chal-
lenges (Dowd et al., 2014; Ford et al., 2018; Fennel et al.,
2019), compared to assimilation of ocean physics observa-
tions in marine models. Marine BGC models are typically
more complex than physical models (a pelagic model can
have tens of variables and hundreds of parameters), they are
highly non-linear and relatively poorly constrained (e.g., hav-
ing highly uncertain parameters) when compared to ocean
physics models. Furthermore, marine BGC observations are
even fewer, sparser, and more uncertain than physics obser-
vations. This brings several specific challenges for marine
BGC DA, one of those being the need for multivariate DA,
where a large portion of the marine BGC model state vari-
ables is updated by observations of only a small fraction
of the model variables. In the context of operational ma-
rine BGC forecasting, these observations are typically satel-
lite ocean colour-derived chlorophyll (Fennel et al., 2019;
Groom et al., 2019). Furthermore the assimilation of BGC-
Argo observations (including chlorophyll, nitrate and oxy-
gen) in open ocean waters has been recently implemented in
state-of-the-art operational systems (Cossarini et al., 2019;
Teruzzi et al., 2021). Other products are assimilated in re-
analyses or research and development (R&D) versions of
the operational systems, such as optical variables (Shul-
man et al., 2013; Ciavatta et al., 2014; Jones et al., 2016;
Gregg and Rousseaux, 2017; Skdkala et al., 2020) and size-
class chlorophyll (Ciavatta et al., 2018, 2019; Skékala et al.,
2018; Pradhan et al., 2020), as well as types of in situ
data, such as chlorophyll, oxygen and nutrients from gliders
(Skékala et al., 2021). For a broader range of marine BGC
DA work beyond operational applications, see many other
references, e.g., Simon and Bertino (2012), Shulman et al.
(2013), Gehlen et al. (2015), and Simon et al. (2015).

Different DA systems are used across marine BGC fore-
casting centres, including variational (Ford et al., 2012;
Song et al., 2016; Skdkala et al., 2018; Coppini et al.,
2021), Singular Evolutive Extended Kalman filter (SEEK)
(Gutknecht et al., 2019; Ciliberti et al., 2021) and Ensem-
ble Kalman Filter (EnKF) (Bertino et al., 2021) -based meth-
ods. Although ensemble methods (e.g., EnKF) are appeal-
ing for their capability to provide uncertainty quantification
and cross-covariances, the more complex marine BGC mod-
els such as the European Regional Seas Ecosystem Model
(ERSEM) (Butenschon et al., 2016) or the Biogeochemical
Flux Model (BFM) (Cossarini et al., 2017), currently rely on
variational methods as running a sufficiently large ensemble
in the day-to-day operational forecasting context can be com-
putationally expensive. Moreover, for such complex models,
variational methods update only a very limited number of
unobserved variables, typically using very simple balancing
principles based on the simulated structure and stoichiom-
etry of the phytoplankton community (Teruzzi et al., 2014;
Skékala et al., 2018). We will call such systems with cer-
tain approximations “univariate”, and systems that update
(nearly) all model state variables as a direct result of DA
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“multivariate”. The multivariate updates can happen in the
DA step, through ensemble-informed background! error co-
variances (as in the EnKF), through balancing schemes, such
as the scheme of Hemmings et al. (2008) based on nitro-
gen mass conservation applied to Nutrient-Phytoplankton-
Zooplankton-Detritus models (Hemmings et al., 2008; Ford
et al., 2012), or through the tangent-linear and adjoint mod-
els Mattern et al. (2017). However, whenever such multivari-
ate schemes were applied to highly complex marine BGC
models (in reanalyses, or R&D), the improvement of non-
observed variables was typically marginal, with several vari-
ables often systematically degraded by DA (e.g., Ciavatta
et al., 2016, 2018). This provides a warning on the use of
incorrect assumptions in multivariate balancing schemes or
in the EnKFs and the need for better DA and/or ensemble
design.

The field of machine learning (ML) has developed rapidly
during the past few decades, and has seemingly found func-
tion across every level of science and culture, due to the in-
creasing size and availability of datasets and computational
power, together with the continued development of algo-
rithms and theory (Jordan and Mitchell, 2015; Sonnewald
et al., 2021). Within Earth sciences, the flexibility of ML
paradigms has allowed its use in a huge variety of appli-
cations (Reichstein et al., 2019), including extensive use
in physical ocean modelling (van der Merwe et al., 2007;
Nowack et al., 2018; Kochkov et al., 2021). However, us-
ing ML for marine BGC models is comparatively infrequent,
with the most common examples found in parameter estima-
tion (Mattern et al., 2012; Leeds et al., 2013; Mattern et al.,
2014; Schartau et al., 2017). There are only relatively few
applications outside this domain such as using a statistical
emulator to quantify uncertainty (Mattern et al., 2013) and
the prediction of hypoxia in shelf sea environments (Skdkala
et al., 2023).

In this work, we investigate whether ML can capture
the complex, non-linear relationships among biogeochemi-
cal (BGC) variables, and how these relationships depend on
the evolving state of the system (i.e., are flow-dependent).
Here, flow-dependent indicates that the statistical relation-
ships or errors between variables vary with the current flow
or dynamical state, rather than being constant or solely cli-
matological. The relationships learned by the ML model are
then used within a DA scheme, or as a full substitute for
it. Thus, we are not attempting to directly emulate or im-
prove BGC models via ML, but instead use ML to improve
DA, and specifically to cope with the challenging problem of
propagating information from observed to unobserved vari-
ables in single-model deterministic runs that, by definition,
do not have an ensemble to estimate the necessary statistics.
The main goal of this approach is to introduce multivariate

!1n data assimilation, the terms “forecast” and “background” are
often used interchangeably. Strictly, the background refers to the
forecast state used as the prior in the assimilation step.
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DA into the system, whilst benefiting from the relatively low
computational cost of ML. This study falls within a stream of
research aimed at building suitable hybrid ML-DA schemes
(see Buizza et al., 2022; Cheng et al., 2023, and references
therein), and, to our knowledge, it is the first such attempt in
the context of marine BGC.

We first use ML to learn flow-dependent correlations that
are needed within a DA update step. This amounts to merging
DA and ML, whereby the latter is used to accomplish a task
within the DA process. We demonstrate that such an ML-
based multivariate DA is efficient and accurate. As long as
enough suitable data are available for training, ML is able to
learn and map complex non-linear functions for propagating
the information from observed to unobserved portions of the
system’s state.

In a second configuration, instead of merging DA and ML,
DA is used to generate a training dataset, from which ML
learns the full DA step in an “end-to-end” emulation (Barth
et al., 2020; Fablet et al., 2021). In this context, “end-to-end”
refers to a ML model trained to map inputs (such as fore-
cast states and observational information) directly to analysis
increments, bypassing traditional, hand-crafted intermediate
steps. As such, the ML model learns to predict the analysis
increments for unobserved variables, given the surface back-
ground state and the increment for the observed variable. Re-
cent work by Bocquet et al. (2024) has demonstrated that the
entire EnKF analysis step can be learned in this data-driven,
end-to-end manner.

Specifically, we intend to answer the following questions:
(a) Can we make improvements to the existing univariate DA
scheme by updating a limited set of additional variables in
1D water column model, with an ML model to estimate cor-
relations or analysis increments? (b) Can these ML models
be extended to effectively update all unobserved pelagic vari-
ables? (c) Is the ML model transferable to a new location
after being trained on some other location?

Our work has a potentially important application within
the North-West European Shelf (NWES) operational DA sys-
tem to which it is tailored. Yet we will discuss its generalisa-
tion to other comparable systems, applied to spatial domains
with similar type of marine BGC dynamics. Based on the
transferability of the ML model, we speculate whether it is
feasible to use the ML model trained in 1D on a 3D domain
and propose a methodology for doing so.

The paper is structured as follows. We first give, in Sect. 2,
details on the 1D physical model, the BGC model and the
configuration used. Also, we establish the setups for the DA
workflow, describing the reference univariate scheme (RUS),
and the use of the EnKF. Then, in Sect. 3, we outline the two
ML approaches explored in this work. We also give detail
on the ML architecture and climatological statistics. Next,
in Sect. 4, we present and discuss our results for: updating
nitrate only; updating the entire set of pelagic BGC surface
variables; and testing the transferability of the ML model to
a new location with different BGC behaviour. In Sect. 5, we
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draw concluding remarks, summarise the key findings and
discuss future work.

2 Model and data assimilation setups for
biogeochemistry

2.1 Physical model: GOTM

The Generalised Ocean Turbulence Model (GOTM) (Bold-
ing and Villarreal, 1999) is a 1D water column model for
studying hydrodynamic and biogeochemical processes when
coupled to a biogeochemical model, in marine and limnic
waters. GOTM provides the necessary physical forcing for
the coupled biogeochemical model, offering a balance be-
tween realism and computational cost by using real atmo-
spheric forcing data, relaxation profiles, and coupling at full
BGC complexity, while sacrificing the explicit representa-
tion of 3D processes. This makes the system ideal for this
work, where we are primarily interested in the error rela-
tionships between different biogeochemical quantities (e.g.,
chlorophyll to nitrate), rather than the spatial error character-
istics. GOTM can be used as a stand-alone model for study-
ing dynamics of boundary layers in natural waters, having
hydrodynamic applications in investigations of air-sea fluxes
(Vagle et al., 2010), surface mixed-layer dynamics (Sonntag
and Hense, 2011), dynamics of bottom boundary layers with
or without sediment transport (Umlauf and Burchard, 2011;
Falchetti et al., 2010), and estuarine and coastal dynamics
(Burchard, 2009).

2.2 Biogeochemical model: ERSEM

ERSEM (Baretta et al., 1995; Butenschon et al., 2016) is a
marine biogeochemistry model that simulates lower trophic
levels of the ocean ecosystem, including plankton and ben-
thic fauna (Blackford, 1997), see Table 1. The model divides
phytoplankton into four functional types based on size: pico-
phytoplankton, nanophytoplankton, microphytoplankton and
diatoms (Baretta et al., 1995). ERSEM uses variable stoi-
chiometry for the simulated plankton groups (Baretta-Bekker
et al., 1997; Geider et al., 1997) and represents the biomass
of each functional type in terms of chlorophyll, carbon,
nitrogen, and phosphorus, with diatoms also being repre-
sented by silicon. ERSEM predators consist of three types of
zooplankton (mesozooplankton, microzooplankton, and het-
erotrophic nanoflagellates), with organic material being de-
composed by a single type of heterotrophic bacteria (Buten-
schon et al.,, 2016). The model represents three different
sizes of detritus (small, medium and large) and three types
of dissolved organic matter (DOM: refractory; semi-labile;
labile). The inorganic component of ERSEM includes nu-
trients such as nitrate, phosphate, silicate, ammonium, and
carbon, as well as dissolved oxygen. The carbonate sys-
tem is also included in the model (Artioli et al., 2012).
ERSEM has been used for many applications including
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Figure 1. Map of the Western English Channel, marking the L4
model-training location with a black cross and the CWEC (Central
Western English Channel) with a red cross, where we evaluated the
model portability.

NWES and Mediterranean Sea biogeochemistry reanalyses
(Ciavatta et al., 2016, 2018, 2019), NWES operational fore-
casts (Skdkala et al., 2018; McEwan et al., 2021), and NWES
climate projections (Wakelin et al., 2015, 2020; Galli et al.,
2024).

The coupler known as the “Framework for Aquatic Bio-
geochemical Models” (FABM) (Bruggeman and Bolding,
2014) allows for the smooth combination of hydrodynamic
and biogeochemical models, and is used to couple GOTM
with ERSEM in this work. The coupling of GOTM to marine
BGC models using FABM has allowed for a wide range of
applications that include modelling of phytoplankton growth
(Kerimoglu et al., 2021), examining the implications of sea-
ice BGC for oceanic emissions (Hayashida et al., 2017), as-
sessing the highly intermittent spatial variability of phyto-
plankton on sub-grid scales (Mandal et al., 2016), and en-
hancing stoichiometry in existing BGC models (Anugera-
hanti et al., 2021).

2.3 Model configuration and synthetic data setup

We configure the GOTM-FABM-ERSEM setup for two
different locations in the English Channel (see Fig. 1)
and use synthetic observations of each. The first loca-
tion, known as L4 (50.25°N, 4.217°W), is a highly bio-
logically productive site with seasonally stratified dynam-
ics (Pingree and Griffiths, 1978), influenced significantly
by the outflow of the nearby Tamar and Plym rivers. Ni-
trate acts as the primary limiting nutrient for phytoplank-
ton growth. It is monitored by the Western Channel Ob-
servatory (WCO) (https://www.westernchannelobservatory.
org.uk/, last access: 3 September 2024) and SmartSound
Plymouth (https://www.smartsoundplymouth.co.uk/, last ac-
cess: 1 September 2024).

Besides the L4 site, we configure a setup for an additional
location, that we shall refer to as the Central Western En-
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glish Channel (CWEC), at 49.40° N, 4.217° W. This point is
less biologically productive and it is much less influenced by
riverine outflow than L4. These differences are evident when
looking at the distributions of biogeochemical signals in the
models applied at these two locations (see Fig. Al in Ap-
pendix A). The differences make CWEC a reasonable alter-
native test site for assessing the application of the ML model,
and its suitability to generalise the results of this study under
different marine BGC conditions.

The physical and biogeochemical models for each loca-
tion are forced with data appropriate for the study area, us-
ing the following datasets: the General Bathymetric Chart
of the Oceans 2023 (1/240° resolution) for water depth; the
ECMWEF ERAS5 dataset (0.25°h~! resolution) for meteorol-
ogy; the TPXO9-atlas (1/30° resolution) for tides; and the
World Ocean Atlas 2018 (0.25° resolution) for temperature,
salinity and nutrient fields (nitrate, phosphate and silicate)
for biogeochemical relaxation profiles. A nutrient relaxation
timescale of 3 months towards the World Ocean Atlas data
is required to prevent significant trends forming that cause
the 1D model to gradually accumulate nutrients. This relax-
ation is significantly longer than the assimilation cycle of
7d, and so has little impact on forecast errors at the surface.
However, the relaxation profiles could contribute to control-
ling behaviour below the mixed layer in our setup (which is
not updated during assimilation). This could help to mitigate
some long-term biases in these areas. This is a potential limi-
tation for operational scale systems which do not have or use
these relaxation profiles.

Ensemble runs, whether as free runs or for the EnKF (see
Sect. 2.4.2) are configured and run using the Ensemble and
Assimilation Tool (EAT) in Python (Bruggeman et al., 2024).
Each ensemble is given a spin-up period of 10 years to settle
the biogeochemistry appropriately and provide well-spread
initial conditions. Each ensemble member is perturbed by
temporally correlated random noise to scale the ECMWF
ERA wind forcing at the location. This is used to scale the
wind forcing and has a correlation timescale of 7 d, a mean of
1 and a standard deviation of 0.5. The resulting variation in
wind strength across the ensemble members increases their
spread over time, and prevents ensemble collapse (at least
within the mixed layer) induced by the previously mentioned
nutrient relaxation, or lack of representation of error growth
processes like horizontal advection which are absent in a 1D
set-up.

For the purposes of training ML models, and generating
climatological statistics, time periods for the L4 location are
partitioned as follows: training data (2000-2014), validation
(2015-2017), offline test (2018-2020), online test (2022—
2023). Offline refers here to a setup in which the DA analysis
is not then cycled as the initial condition for the next forecast,
and so it does not impact successive DA cycles. Online refers
to a setup in which assimilation updates are cycled, and so
can have dynamical impact on later DA cycles as the model
integrates in time. Climatological correlations and variances
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Table 1. Reference table for ERSEM pelagic variables used in this study. Chemical components are represented by the following symbols:
x is chlorophyll; C is carbon; N is nitrogen; P is phosphorus and Si is silicon. Note that we also use total chlorophyll (denoted as chl in this
work), which is a diagnostic variable calculated as the sum of chlorophyll concentrations from all PFT classes.

Functional Group Class/Type Chemical Components
Phytoplankton Functional Types (PFT)  Diatoms Xdia>» C, N, P, Si
Microphytoplankton Xmicros Cs N, P
Nanophytoplankton Xnano> C, N, P
Picophytoplankton Xpicos C, N, P
Zooplankton Mesozooplankton C
Microzooplankton C,N,P
Heterotrophic Flagellates C, N, P
Bacteria - C,N,P
Detritus Small C,N, P
Medium C,N, P, Si
Large C,N, P, Si
Dissolved Organic Matter (DOM) Labile C,N,P
Semi-labile C
Refractory C
Nutrient Nitrate (NO3) N
Phosphate (Poi_) P
Ammonium (NH}) N
Silicate (Si0} ") Si
Other Temperature -

Oxygen Oy -

are calculated using a free-run ensemble over the training pe-
riod. Because the forecasts extends seven days into the fu-
ture, the number of available samples for any specific cal-
endar day was limited, even though forecasts were issued
throughout the full training period. To address this, the cli-
matological statistics were computed as daily values, defined
by averaging the statistics for a given day across all years
in the training set. To increase the sample size and smooth
out variability, a £30d window around each calendar day
was applied. The CWEC location uses a run spanning 2000—
2010 to generate climatological statistics, and the online test
is performed for (2022-2023). No validation or offline test
period is required for CWEC in this work, as we are primar-
ily interested in a “naive transferability” of the model trained
and evaluated at L4.

2.4 Data assimilation setups

We examine five data assimilation (DA) setups in this work:
a simple univariate scheme representative of current oper-
ational marine BGC systems, a scheme that uses climato-
logical statistics to update unobserved variables, an EnKF
for comparison, and two novel hybrid DA schemes which
are hybridised with ML techniques. Before describing each
scheme, we give the basic equations of conventional DA, in-
troduce the state vectors that the DA uses, the observation
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type that we assimilate, and other adjustments that are done
post assimilation.

The update equation that is central to DA is sometimes
called the best linear unbiased estimator (BLUE, Asch et al.,
2016; Carrassi et al., 2018) and is given by

x*=x"+K(y — H(x)), (1)
—,__/

analysis increment
where K is the Kalman gain matrix
K=P'H'(HP°’H' + R)~!, )

x? is the analysis (updated) state, x® is the background state
(which in this work is the state of the system after a seven-
day forecast period), y are the observations,  is the obser-
vation operator (with Jacobian H), PY is the background er-
ror covariance matrix, and R is the observation error covari-
ance matrix. The matrix PP is of special interest to this work.
Ideally this matrix should be appropriately flow-dependent,
but in practice it is often not, such as in many operational
schemes where a fixed climatological estimate is used. For
instance, in marine BGC, we would expect the onset of a phy-
toplankton bloom to trigger changes in nutrient concentra-
tions, which in turn affect the correlations between the two.
This response cannot be captured by climatological statistics

Biogeosciences, 23, 315-344, 2026
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alone. The purpose of this work is to introduce such flow-
dependency to PP, or to the analysis increments Ax, with
ML techniques. While each of the DA schemes described
later will use different methods to update unobserved vari-
ables, all schemes will update total chlorophyll, the observed
variable, and it’s associated PFTs in the same way (using the
RUS scheme described in Sect. 2.4.1).

In this work, the state vectors of the DA system, x° and
x?, consists of the surface values of total chlorophyll and
a set of chosen unobserved pelagic ERSEM variables (with
chosen variable setups detailed in Sect. 3). While a state vec-
tor only considers surface values (0D), the entire DA pro-
cess itself is 1D, using an idealised structure function to
spread increments uniformly throughout the mixed layer. The
mixed layer consists of a number of vertical GOTM grid
cells, which can vary throughout the year based on the phys-
ical drivers determining mixed layer depth, such as tempera-
ture and salinity. This approach assumes that surface condi-
tions are representative of the mixed layer as a whole (which
is broadly true in this model configuration, where vertical
mixing is strong enough to ensure that surface and mixed
layer conditions remain well-coupled). As a result, the incre-
ments derived at the surface also provide a reasonable cor-
rection at depths/other grid cells within the mixed layer. We
do not update the variables below the mixed layer, as they
are decoupled or weakly coupled with the surface. Extend-
ing increments deeper would risk introducing spurious verti-
cal structures, distorting stratification, or interfering with bio-
geochemical processes that are driven by different controls
(e.g., remineralisation). By restricting updates to the mixed
layer, the assimilation scheme ensures consistency with the
available observations and avoids imposing unsupported cor-
rections in the sub-mixed layer. Strategies for updating below
the mixed layer may therefore require additional observation
types (e.g., from floats or sea-gliders) or bias-correction ap-
proaches, rather than relying solely on surface observations
combined with DA.

We assimilate only observations of total chlorophyll, y, at
the surface. Total chlorophyll in the model, xp, is a diag-
nostic variable obtained by summing the chlorophyll content
of all phytoplankton functional types (PFTs, see Table 1),
which are themselves prognostic variables. In principle, one
could keep only the PFT chlorophyll concentrations in the
state and represent total chlorophyll via the observation oper-
ator. However, this would require explicitly summing across
PFTs at every assimilation step, making the DA equations
more cumbersome. Instead, we treat surface total chlorophyll
directly as part of the state vector. This simplifies the presen-
tation of the analysis equations, since the observation opera-
tor then reduces to a simple selection operator:

H=[1,04,...,0x], 3

with the state ordered as (xcp, X1,...,Xn). The system di-
mension is therefore N +1, with the first element correspond-
ing to surface total chlorophyll, and the remaining elements
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corresponding to the unobserved variables to be updated. H
is a row vector, as there is only one observation per DA up-
date.

The individual PFTs themselves are excluded from the
state, and instead updated after the main analysis step in
Eq. (1). The surface total chlorophyll increment is redis-
tributed across PFTs in proportion to their background con-
tribution to total chlorophyll xp;:

X0
xg, = b+ - (e —xhy). o)
Xehl
where x; stands for the chlorophyll component of each PFT,
i, as in Table 1.
The associated chemical components of each PFT (C, N,
P, and for diatoms also Si) are then updated in proportion to
their background stoichiometric ratios with PFT chlorophyll:

xb
a _ b Sij a b 5
xCi,j_x§i,j+ ) '<xXi_xXi)’ o)
Xi

where ¢; ; represents the non-chlorophyll components, j, of
each PFT, i. This constrained redistribution scheme (Teruzzi
et al., 2014; Skékala et al., 2018) ensures that phytoplankton
updates preserve forecast stoichiometric ratios and remain
physiologically consistent, rather than allowing a statistical
method (such as the EnKF) to update PFTs freely. While we
would expect an unconstrained EnKF to eventually converge
towards similar balances, this explicit approach guarantees
that assimilation respects acclimation dynamics and main-
tains the community structure of the model. Importantly, the
same ratio-based balancing scheme can also be applied out-
side an ensemble framework in single-model runs, where
it provides a consistent way of updating PFTs from a total
chlorophyll correction.

The above observation operator, and updates to the PFTs
are used in all DA schemes in this paper. The specific DA
schemes (conventional and ML-based) are now described. A
summary of the methods is given in Table 2.

2.4.1 Reference univariate DA scheme (RUS)

We call our baseline DA method the reference “univari-
ate” DA scheme (RUS, Table 2, row 4). Its purpose is to
mimic existing DA systems used by several operational cen-
tres (Teruzzi et al., 2014; Skékala et al., 2018), although our
scheme is not variational. The background error covariances
are based on climatological information and so do not adapt
to the state.

The RUS is based on an evaluation of Eq. (1), but only
to directly update the total chlorophyll variable. The simple
structure of the observation operator in Eq. (3) means we can
rewrite the update Eq. (1) to show how the total chlorophyll
(index chl) is updated from the total chlorophyll observation:
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Table 2. An overview of the different run-types and schemes used in this work. Index chl refers to total chlorophyll, while index i refers
to an unobserved variable (e.g., nitrate). The truth run refers to a single-model run with no updates. We sample synthetic observations from
this run and feed these into each DA scheme. The ensemble of free-runs means the model is left to run without assimilation. The EnKF uses
an ensemble to model background error covariance in the DA update of all state variables (Sect. 2.4.2). The RUS is the ‘univariate’ scheme
(Sect. 2.4.1), which is used as a benchmark for the performance of other schemes. It updates only the total chlorophyll state variable. The
ML-OI estimates background correlations of variables beyond the total chlorophyll with an ANN (Sect. 3.1). The ML-EtE estimates the
analysis increments of variables beyond the total chlorophyll produced by an EnKF using an ANN (Sect. 3.2). The CliC is similar to ML-OI
but uses purely climatological background statistical estimates of the correlations to update the state of unobserved variables (Sect. 3.3). n/a

stands for not applicable.

Run/scheme Description/purpose chl variance i variance chl-i Axcp Ax;
correlation
source
Preparation/training runs
(1) Truth run To synthesise observations and  n/a n/a n/a n/a n/a
for analysis evaluation
(2) Ensemble  To determine climatological n/a n/a n/a n/a n/a
of free-runs correlations and training for
ML-OI
(3) EnKF Update all chosen surface ensemble- ensemble- ensemble- Eq. (1) Eq. (1)
variables/gold standard based based based
run/training for ML-EtE
Conventional assimilation runs
(4) RUS Reference univariate scheme climatology n/a n/a Eq. (6) Zero
(TC + stoichiometrical PFT
update)/baseline for extensions
RUS extension assimilation runs (update to variable i with ML methods)
(5) ML-OI ML correlation hybrid climatology climatology ML of free As RUS Eq. (7)
run
(6) ML-EtE ML end-to-end EnKF climatology n/a n/a As RUS ML
emulation
RUS extension assimilation runs (update to variable i with non-ML methods)
(7) CliC Climatological correlations climatology climatology climatology As RUS Eq. (7)
All further DA schemes described in this work (apart from
. pbh1 . . the EnKF below, which uses ensemble-derived covariances)
cnl,c . .
x4y =xg + I (¥ —xgpp)s (6) start with an update of the total chlorophyll using Eq. (6), and
chtchi T will attempt to update additional pelagic variables using the
b ) ) new ML-based approaches.
where Py, ., is the background error variance of total

chlorophyll’ and R is the observation error variance. Climato-
logical variances, which are used to estimate Pcbhl! chl» are cal-
culated from the same period of the EnKF run (Sect. 2.4.2)
used to train the ML models. Details on the training runs
can be found in Sect. 3.1 and 3.2. Updates to the surface
PFT chlorophyll, to the associated chemical components, and
throughout the mixed layer are made separately as described
previously in Sect. 2.4.

Note that we call this scheme “univariate” as only a sin-
gle variable (total chlorophyll) is updated according to the
background and observational errors as described in Eq. (6).
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2.4.2 The EnKF-based scheme

The stochastic EnKF scheme, see e.g., Evensen (2003), ap-
proximates the update Egs. (1) and (2) with an ensemble
to estimate the flow-dependent background error covariance
matrix PP, Table 2, row 3. For each ensemble member there
is a different update and a different perturbed observation
(the perturbations are sampled from the normal distribu-
tion A (0, R)). The EnKF updates all elements of the sur-
face state described previously using the ensemble version
of Eq. (1), but still performs the stoichiometric balancing
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scheme and duplication of the analysis increments from the
surface throughout the mixed layer, as described in Sect. 2.4.
This is done so that there is a one-to-one correspondence be-
tween the strategy used to generate the training data, and the
strategy applied in the single-model schemes.

3 Hybrid machine learning data assimilation for
marine biogeochemistry

In this section, we describe how we hybridise the DA, de-
scribed above, with ML to provide flow-dependent estimates
of the statistics/increments that are better than the climato-
logical values. In particular, we take two approaches that dif-
ferently replace parts of, or fully, the update equation. We
now show the mathematical framework that the ML schemes
will emulate, which is derived from Eqgs. (1)-(3).

The ML-based DA schemes are summarised in Table 2,
rows 5 and 6. They both build upon RUS, extending it to
become multivariate. The total chlorophyll analysis is com-
puted using the RUS update Eq. (6), while the remaining
variables (1 <i < N) have updates according to

P il,)chl

— T (y— x5, ©)
b ¢l
Pepten TR

x?:x?—i—

analysis increment

where P}”Chl is the background error covariance between vari-
able i and total chlorophyll defined as

b
P} b1 = Pi.chl - Oi - Ochl, (8)

where p; cn1 is their background error correlation, and o; and
ocn are their respective background error standard devia-
tions. In Eq. (7) the analysis increment of the update is la-
belled.

An important aspect of any DA scheme is its ability to
adapt with the flow. A conventional way to introduce flow-
dependency is via Monte Carlo-like methods such the EnKF,
which comes with substantial computational cost. The two
proposed ML-DA schemes below are designed with the
above in mind and provide flow-dependency cost-effectively
without the need for an ensemble (apart from at the training
stage, as shall be clarified). The two ML-DA schemes are
described in Sect. 3.1 and 3.2.

Regardless of the specific ML-DA scheme, each ML
model is a fully connected artificial neural network (ANN)
optimized using AutoKeras (Jin et al., 2019) over 100 trial
configurations. AutoKeras uses Bayesian optimisation in a
network search algorithm to determine optimal hyperparam-
eters such as layer depth, layer width, dropout rate, learn-
ing rate, and optimiser selection. The input features of each
model are standardised to have unit variance and a mean of
zero, using data from the L4 training period during training.

Each ML approach is tested in the following scenarios:
(1) a set-up where the only unobserved variable that is up-
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dated is nitrate, (2a) a set-up where we update the full set of
pelagic variables, and (2b) a set-up where we update a par-
tial set of the pelagic variables, eliminating poorly estimated
variables based on the results of (2a). The progression from
(1) to (2a) allows us to move from a controlled test of a single
key limiting variable to a comprehensive update of the full
system, while (2b) represents a refinement step that is only
possible after evaluating the performance of (2a). In this way,
the experimental design not only tests the limits of updating
all variables, but also demonstrates how excluding problem-
atic variables can improve robustness without discarding the
broader benefits of multivariate updates. In each setup, the
number of outputs to be estimated by the ML model corre-
sponds to the number of unobserved variables. In the case of
ML-OI (see Sect. 3.1), the standard deviations must also be
estimated from climatology.

3.1 Hybrid machine-learning optimal interpolation
(ML-0OI)

This approach first updates the observed total chlorophyll
and associated PFTs in an identical manner to the RUS de-
scribed in Sect. 2.4.1. Then, an ANN estimates the state-
dependent correlations p; cn between observed and unob-
served quantities in Eq. (8) as a function of the background
state (even though the EnKF update of state variables from
other state variables is linear, the relationship between state
variables and correlations is likely non-linear). Together with
climatologically estimated values of o; and o¢p (estimated
using a free-run ensemble over the training period as de-
scribed in Sect. 2.3), the correlations are substituted into
Eq. (8) and then Eq. (7) to provide updates to the unobserved
variables in the system. We call this approach ML-OI (“op-
timal interpolation”, Table 2, row 5). For each variable in-
put into the ML-OI model to estimate the correlation, the
background state is additionally divided by its climatologi-
cal maximum at the corresponding location (before the reg-
ular standardisation procedure is applied to the data). This
normalisation accounts for differences in the amplitude of
seasonal variability while making an assumption that the un-
derlying correlative relationships between variables remain
consistent across locations. Since correlations are dimen-
sionless, this scaling does not affect their interpretation, and
the subsequent analysis increments (which are constructed
by combining the estimated correlations with the location-
specific climatological variances) remain physically consis-
tent. Apart from correlation, the other aspect of covariance to
determine are the variances. Since each variance is a single-
variable statistic that can be estimated more reliably than cor-
relations from long climatological records, we assume they
are sufficiently robust to provide a stable basis for use in the
Kalman gain. In contrast, correlations describe joint variabil-
ity and therefore require the more sophisticated, data-driven
approach described above, and cannot be approximated in
the same way.
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As with every approach used in this work, the resulting
surface increments of the unobserved variables are then prop-
agated to the other levels in the mixed layer, as described
previously.

In order to generate training data for this approach, we run
a 100-member ensemble of free-runs, configured according
to Sect. 2.3 (Table 2, row 2). We generate training samples
at seven day intervals across these free-runs, covering the
period from 2000-2014. The features are the surface states
of individual ensemble members at a given time, across all
pelagic model variables. For the first application of ML-OI
in Sect. 4.2, the targets are time dependent/ensemble-derived
correlations between total chlorophyll and nitrate. In the later
application in Sect. 4.3 onwards this is extended from just ni-
trate to a wider set of variables.

While the field of hybrid ML-DA is growing rapidly, there
exists relatively few works in which ML-estimated back-
ground error covariances are so closely coupled with existing
DA systems. However, a few particularly relevant examples
stand out such as Quala et al. (2018), in which a Kalman-
like analysis update is applied to satellite-derived sea sur-
face temperature fields using ANN-estimated background er-
ror covariances. Additional examples of this can be seen in
Sacco et al. (2022), which aim to learn different sources of
uncertainty using ANNs on both toy models and sea level
pressure forecasts. Further work (Sacco et al., 2024) uses an
EnKF to generate flow dependent background error covari-
ances, and then learns them using a convolutional neural net-
work.

3.2 End-to-end machine learning of EnKF updates
(ML-EtE)

This approach again first updates the observed total chloro-
phyll and associated PFTs in an identical manner to the RUS
described in Sect. 2.4.1. Nevertheless, as opposed to ML-OI,
ML is used here to estimate the analysis increments for un-
observed variables, given the analysis increment of the ob-
served variable (total chlorophyll) and the complete back-
ground state. This obviously requires running a DA system
to learn from. This is achieved here using the updates pro-
duced by an EnKF training run (see below). We call this ap-
proach ML-E(E (“end-to-end”, Table 2, row 6), as it emulates
an existing DA system.

In ML-EtE, the analysis increment is predicted directly.
By contrast, ML-OI predicts correlations, which are then
combined with climatological standard deviations to form
a Kalman gain, and only then applied to the innovation to
yield the increment. The ML-OI scheme introduces potential
sources of error — both from the uncertainty of data-driven
correlation estimates and from the reliance on climatologi-
cal statistics. Directly estimating the analysis increment (a
vector) is also naturally more scalable for high-dimensional
applications (e.g., operational 3D systems), where manipu-
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lating the full error covariance matrix (or even reduced or
reformulated versions) becomes computationally costly.

To generate the training data for this approach, we first
generate a nature run for the training period (Table 2, row
1), to generate synthetic surface observations of total chloro-
phyll concentration at weekly intervals. The observation un-
certainty is equal to 10 % of the observed value. These are
then assimilated into the EnKF run over the same period.
The features of each training sample consist of an individual
ensemble member’s background state and its corresponding
total chlorophyll increment from the EnKF run. The targets
are the corresponding analysis increments for the unobserved
variables at the surface. As described previously, the result-
ing surface increments of the unobserved variables are then
propagated to the other levels within the mixed layer.

This approach follows other non-marine BGC work in a
similar direction, such as Bonavita and Laloyaux (2020),
who used ANNs to emulate the main features of an opera-
tional weak-constraint 4D-Var scheme, while Bocquet et al.
(2024) pursued a similar end-to-end replacement of the anal-
ysis step. Likewise, several studies have demonstrated the
emulation of analysis increments to estimate and correct
model error (Brajard et al., 2020; Gregory et al., 2024). A
common feature of these works is their reliance on an ex-
isting DA system or, more generally, on a robust reanalysis.
The need for such a reanalysis represents a key limitation of
this approach — one we revisit in the conclusion. Here, how-
ever, our primary goal is to examine the feasibility of ML-
EtE and its ability to learn the EnKF updates effectively. Us-
ing this approach, the increments still ultimately come from
the “analysis—background” of an EnKF, which provides a lin-
ear update to the system (even if the relationship between the
state at the analysis increments is non-linear). Going beyond
this limitation would require either training on increments
relative to the true state (e.g., truth-background) or employ-
ing a non-linear DA system, such as a particle filter, to cap-
ture more complex, non-linear corrections.

3.3 Purely climatological updates

A further non-ML-based scheme is used to update the nitrate
to mirror ML-OI, but using only climatological correlations
derived from the EnKF run (CliC, Table 2, row 7) over the
training period. This serves as another comparison point, a
benchmark, to check whether the additional complexity of
an ML model is needed.

3.4 Skill metric and machine learning model evaluation
3.4.1 Skill metric

For a system that runs for 7 cycles (where a cycle represents
a complete 7 d forecast and analysis), we represent the trajec-

tory for a member i of ensemble X at cycle ¢ as X! . The truth
is denoted as T;. The expected RMSE (root mean square er-
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ror) over M ensemble members (or a set of M single-model
runs), is calculated as:

1 M
RMSE:MZ

T
i=1 =

! i 2
=Yy xi -1 ©))
T

t=1

This is a sensible metric to use when calculating the expected
error across a set of independent single-model runs, such as
in the RUS, ML-OI, ML-EtE, and CliC approaches. It is also
convenient for calculating the expected error of the ensemble
members in the EnKF runs.

3.4.2 SHAP analysis

Shapley values are a well known and widely used metric for
understanding the importance and contributions of individ-
ual input features in ML models (Lundberg and Lee, 2017).
A Shapley value represents the average marginal contribu-
tion of a feature across all possible subsets of features, en-
suring a fair allocation of importance. In this work, we use
Kernel SHAP (SHapley Additive exPlanations) as a model-
agnostic approach to estimate mean Shapely values across a
dataset. Kernel SHAP approximates Shapley values by train-
ing a weighted linear model on perturbations of the input
data. By calculating the mean absolute Shapley values, we
measure the magnitude of influence for individual features to
the model’s estimations.

By understanding the importance of each input feature, we
gain insight into the correlative links of dynamical behaviour
in the system. This can help to identify how-and-when a
model will translate well to new conditions. For example,
if the primary predictive feature of an ML model is similar
in two separate locations, one trained and one unseen, then
we may expect the ML model to perform reasonably well
in the new scenario, even if the other non-predictive features
exhibit an entirely different distribution. We emphasise that
we cannot infer causality from this analysis alone but un-
derstanding the data-driven feature importance and feature
contribution for an ML model, combined with expert under-
standing of the system dynamics, can help to unveil connec-
tions and insights into the complex processes of the marine
BGC model.

It also also worth noting that these metrics can also be
used for feature selection with the idea that if a feature con-
tributes little-to-nothing to the predictions, it can probably
be eliminated from the feature set. This then requires the
expensive processes of iteratively re-training and re-testing
the neural networks and so is not an avenue that we explore
in this work. SHAP is somewhat limited in the presence of
highly correlated features because Shapley values assume in-
dependent feature contributions. This can lead to arbitrary or
shared attributions when features provide redundant informa-
tion, making it difficult to disentangle their true individual
impacts. However, the correlation structures of the marine
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BGC have been studied previously (Higgs et al., 2024), and
so can be more effectively accounted for during analysis.

4 Results and discussion
4.1 System dynamics

As discussed in Sect. 2.3, the L4 location is a highly biologi-
cally productive site with seasonally stratified dynamics. Ni-
trogen is a key component of organic matter and is generally
the limiting nutrient to primary production by phytoplank-
ton in coastal marine ecosystems (National Research Coun-
cil and Commission on Geosciences and Water Science and
Technology Board and Ocean Studies Board and Committee
on the Causes and Management of Coastal Eutrophication,
2000), which includes the L4 location (Smyth et al., 2010).
This leads to a strong, potentially exploitable dynamical link
between phytoplankton and nitrate that varies with a clear
seasonal cycle. Figure 2 demonstrates this seasonality, and
how it can be broken down into three distinct regimes across
any given year:

— The light-limited regime approximately spans the period
from October to the start of the next spring bloom. Here,
there is little-to-no phytoplankton growth due to the re-
duced light-levels at this time of year, meaning nutrients
can be mixed throughout the water column without be-
ing used by the phytoplankton. During this period, phy-
toplankton concentrations are very low and mostly de-
coupled from nutrient dynamics?.

— The bloom regime can occur throughout spring (from
March until May), and is the period when phytoplank-
ton reaches its yearly maximum. During this time, light
levels no longer limit phytoplankton growth and there is
a high availability of nutrients that have accumulated in
the water column during the “light-limited” period. This
results in a rapid increase of phytoplankton concentra-
tion, and an exhaustion of nutrients.

— The nutrient-limited regime refers to the period roughly
spanning from early summer until late September where
nutrients, and more specifically nitrate, have been ex-
hausted by the phytoplankton during bloom and so con-
centrations are generally very low. During this time,
phytoplankton relies on processes such as storms to mix

2The model is constrained to physically non-negative values,
so any negative values that arise during the data assimilation (DA)
step, though extremely rare, are clipped to zero. This occurs infre-
quently and only in very localized instances. As such, this treatment
has a negligible impact on the overall state and statistical distribu-
tions. Additionally, due to strong surface forcing, the model tends to
quickly redistribute any localized anomalies, minimizing the persis-
tence or propagation of these clipped values. Therefore, we are con-
fident that this approach does not significantly influence the model
performance or results.

https://doi.org/10.5194/bg-23-315-2026



I. Higgs et al.: Hybrid machine learning data assimilation for marine biogeochemistry 325

nutrients into the upper water column. Consequently,
phytoplankton growth is sporadic and less intense than
during the spring bloom.

4.2 Estimation and update to a single pelagic variable

In this section, we explore the performance of ML-OI and
ML-E'E in updating only nitrate as an unobserved variable.
Recall however that the observed total chlorophyll and as-
sociated PFTs are updated according to the RUS scheme
in Sect. 2.4.1. We choose nitrate for these initial experi-
ments because it is a limiting nutrient at the L4 location
(see Fig. A2 and Smyth et al., 2010), and therefore has a
clear, explainable relationship with total chlorophyll as dis-
cussed in Sect. 4.1 (see also Fig. 2). Since nitrate is the key
driver limiting primary production among nutrients, address-
ing it through DA could have a significant knock-on effect
on the whole model state (through dynamical evolution from
the corrected state). Moreover, this also provides the simplest
proof-of-concept system to analyse initially, before we later
extend the updates to more than 30 additional pelagic vari-
ables (see Table 1) in a higher complexity scenario. However,
as will become clear in Sect. 4.3, this strategy for assigning
importance to variables in the DA scheme does not necessar-
ily reflect their true dynamical role in the model, highlighting
the need to evaluate how different assimilation strategies and
variable-update choices affect performance.

Figure 3 shows the correlation between total chlorophyll
and nitrate as a function of time in the period 2018-2020 for
the “offline” ML-OI experiment. The performance of ML-
OI is compared to the “true correlation” computed over an
ensemble of 100 members and to the correlation estimated
using daily climatology.

The ML-OI model shows clear improvements over cli-
matological estimates of correlation across most of the an-
nual cycle. It is important to note, however, that the RMSE
here only reflects the capability of a method to estimate the
ensemble-derived chlorophyll-nitrate correlations. Such im-
provements do not necessarily translate directly to perfor-
mance in an online, cycled data assimilation system (shown
later) where past estimates can influence future states through
the model’s dynamical evolution.

Most clearly, ML-OI is better than climatology for esti-
mating the highly distinctive correlative pattern between total
chlorophyll and nitrate during the bloom regime, showing a
moderate to significant RMSE reduction in every bloom pe-
riod. This pattern consists of a sharp drop to a strongly nega-
tive correlation, before an almost instantaneous increase to a
strong positive correlation. These correlation patterns can be
simply explained. During the bloom, phytoplankton growth
exhausts nutrients, leading to negative correlations between
chlorophyll and nutrients, whilst the end of the bloom, and
the following period, phytoplankton growth is nutrient lim-
ited, leading to positive correlation. The precise timing of the
bloom (and hence this correlation pattern) has notable inter-

https://doi.org/10.5194/bg-23-315-2026

annual variability — varying within a period of approximately
5 weeks each year, in this model. The climatological cor-
relations estimate this pattern poorly as they are smoothed
over this period of inter-annual variability, but the ML-OI
model, which estimates correlations from the state of the ma-
rine BGC model, captures the pattern much more accurately.

During the nutrient-limited regime, we see a generally
strong positive correlation between total chlorophyll and ni-
trate, which has some local variability primarily driven by
changes in wind strength, such as a weather front passing
over the location and mixing nutrients into the surface. The
ML-OI scheme clearly reduces the RMSE during this period,
perhaps capturing some of the local variability in this “true”
signal and so responds more accurately to these changes in
state. Though, it is clear that the correlations of the ensem-
ble still vary more strongly than the climatological and ML-
based correlation estimates.

Finally, we also see that during the light-limited regime,
the system can exist in either a “weakly positive or no cor-
relation” state, or a “moderately negative correlation” state.
However, both the climatological and ML estimates fail to
capture these possible states (both predicting a weakly neg-
ative correlation over the period). During this time, total
chlorophyll and nitrate are generally decoupled, and there is
no clear link between the state of the system and the corre-
lations estimated. Furthermore, as the concentrations of to-
tal chlorophyll are very near zero at this time of year (both
in the ensemble and observations) and there is little spread
in the ensemble — the resulting DA updates are small and
have very little impact. This means that any improvement or
degradation in correlation estimates at this time of year are
less likely to result in any great improvement to the system,
as there is weak relationship between chlorophyll and nitrate
DA increments and the updates are small. However, updates
at the start of this period can be important, as the resulting
store of nitrate in the upper water column could have dynam-
ical impact in later DA cycles when light is no longer limiting
and the next bloom period starts.

After demonstrating the capability of the ML model to es-
timate the chlorophyll-nitrate relationship in an “offline” set-
ting in Fig. 3, in Fig. 4 we compare the performance of a
standard EnKF at different ensemble sizes with the schemes
previously summarised in Sects. 2.4 and 3. This is done in an
“online” setting, so that any update to the system can have
dynamical impact on later DA cycles as the model integrates
forward in time.

Figure 4 displays the performance of the EnKF, the RUS
scheme, the climatological statistics scheme (CliC), and the
ML schemes. Each panel shows the mean expected error
of ensemble members for ensemble sizes ranging from 4
to 96. In the left panel for total chlorophyll, the relative
RMSE is calculated as a ratio of the observation error. The
EnKF achieves near-optimal performance for ensemble sizes
greater than 16, after which the mean expected error reaches
a plateau. The relative analysis error of total chlorophyll ex-
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Figure 2. The top panel shows a time series for the surface concentrations of total chlorophyll (green) and nitrate (purple) during 2023 at
the L4 location. The bottom panel presents correlations between total chlorophyll and nitrate derived from a 96-member ensemble (black)
and from a daily varying climatology (red; calculated over the 2000-2014 training period). Shading indicates the dominant seasonal system
regimes: “light-limited” (dark grey), “bloom” (light grey) and “nutrient-limited” (white).
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Figure 3. Estimates of correlation between total chlorophyll and nitrate, at weekly intervals across the 3-year offline test period. The target
correlation (black) is calculated from the 100-member free-run ensemble (Table 2, row 2). Correlation estimates are shown for ML-OI
(blue) and the daily climatology correlations (red; calculated over the 2000-2014 training period). The root mean square errors between the
estimated and target correlations are given at the top of the figure, calculated separately over each regime window and for both estimation
methods (with corresponding colour). The seasonal regimes of Fig. 2 are repeated.

ceeds a value of 1 because it is based on the expected error of
ensemble members, not the ensemble mean (see Sect. 3.4.1).
This reflects the additional stochastic error introduced by the
EnKF’s generation of perturbed observations. We also see,
in the right panel, that the error decreases with ensemble size
for the unobserved nitrate, indicating that the system con-
verges towards more correct nitrate updates at larger ensem-
ble sizes.
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As expected, the analysis error in the observed total
chlorophyll is generally comparable across each scheme be-
cause they all use the same method, the RUS scheme of
Sect. 2.4.1, to update the observed total chlorophyll. How-
ever, there are more noticeable differences in the schemes
that extend the updates to nitrate as well. We can clearly see
that both the RUS scheme (no update to nitrate) and the CliC
scheme (update of nitrate using climatological covariances
in Eq. 8) perform similarly poorly for nitrate — meaning that
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Figure 4. The relationship between analysis RMSE (Eq. 9) and ensemble size for EnKFs with different ensemble sizes, as well as the per-
formance of the different single-model run schemes. The left panel shows the RMSE of the observed variable, total chlorophyll, normalised
relative to the observational error. The right panel shows the RMSE of the unobserved variable, nitrate. The black dashed line represents the
mean expected ensemble member error, from an aggregated pool of ensemble members taken from 20 repeat experiments of an EnKF at
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standard deviation of 64 independent single-model runs are also given for each of the methods summarised in Sects. 2.4 and 3. An extended
version of the plot, showing a wider range of unobserved, not updated variables is given in Fig. B1 in Appendix B.

the information provided by the observation has not propa-
gated well to the unobserved variable. In contrast to this, both
ML approaches result in a significant improvement in perfor-
mance, reducing analysis error by between 8 %—12 %. This
means that the information from observations can effectively
propagate to the unobserved variables in a single-model run,
without the need for an expensive ensemble to model the
statistics at run time. ML-EtE shows similar improvements
during the online testing period as those observed in the of-
fline experiment (Fig. 3), indicating that the benefits persist
even when the updates from each DA cycle feed into sub-
sequent ones. Moreover, ML-EtE exhibits a lower standard
deviation than ML-OI, indicating reduced sensitivity.

These single-model schemes are then investigated further
in Fig. 5, looking at the analysis increments generated in the
“online” setting, and their differences to the truth.

While Fig. 4 shows that they improve on average, Fig. 5
gives detail on when improvements are made. The runs
shown here receive the same observations of the truth, and
use the same initial conditions and forcing. However, the
cycled “online” DA implies that the background state of a
given time step will differ between methods. Nevertheless,
we can see when ML-OI, or ML-EtE, make improvements
over CliC. A clear example of this is the improved esti-
mations during the bloom period, where the ML-estimated
methods both provide a lower RMSE than the CliC. This
shows that both ML methods are able to react to the tim-
ing of the bloom event much more accurately than climatol-
ogy can. During the nutrient-limited period, we generally see
comparable performance across the methods, as the expected
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correlations are generally high, and the ML-OI method can
only weakly estimate the variation over this period (as seen
previously in Fig. 3). ML-EtE provides no obvious advan-
tage in this case, and explains why all methods struggle to
make good increments in the second year of analyses (where
the 7d forecast errors are typically larger than in the first
year). We can also see that each approach makes little to no
adjustment during the majority of the light-limited regime.
However, the increments by both ML-OI and ML-EtE at the
start of this regime appear to yield a prolonged benefit once
the system becomes inactive over winter. While these incre-
ments are unlikely to have any major impact on the system, it
is interesting to note that the increments from each approach
accurately reflect the expected “decoupling” of total chloro-
phyll to nitrate at this time of year. This corroborates with
offline experiments of Fig. 3, where the ML-OI model (and
indeed, the climatological estimates) struggle to replicate the
correlations over winter, as there is no strong dynamical re-
lationship between the variables at this time.

Finally, Fig. 6 shows analysis and forecast errors in ni-
trate in each scheme where errors are normalised against the
error in the RUS scheme. The daily climatological correla-
tions scheme (CIliC, red line) degrades the analysis error and
then makes worse forecasts at every lead time when com-
pared to the RUS scheme, which does not update the nitrates
at all. As previously noted, both ML approaches provide an
analysis state that is approximately 8 %—12 % better than the
not-updated RUS nitrate. Improved forecasts then persist for
approximately 4-5 d of lead time, only reaching an increased
relative error after 5d. For all lead times, ML-EtE outper-
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outlined in Sect. 4.1: “light-limited” (dark grey), “bloom” (light grey) and “nutrient-limited” (white).

forms ML-OI. While this is a net benefit to the forecasts of
the system, it highlights the difficulty with partially updating
a highly non-linear system. In this, it is clear that each at-
tempt to update the nitrate results in an eventual error growth
beyond simply not updating the system. Part of this could
stem from the role of nitrate as a limiting nutrient; in that
it is either available to allow phytoplankton growth, or not.
This means that when estimating an increment for nitrate,
we can know that some nitrate should be present or not, but a

Biogeosciences, 23, 315-344, 2026

precise, continuous quantity that should be added or removed
is not information that can necessarily be inferred from the
observation of total chlorophyll. However, this error growth
could also result from the analysis increments introducing
some additional imbalance in other quantities of the system
that also need correcting, and the complex marine BGC pro-
cesses are inter-dependent. These imbalances and forecast er-
ror growths are discussed further in the following Sect. 4.3,
when updating the additional marine BGC variables.
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Figure 6. The forecast RMSE of each scheme relative to that of
the RUS scheme at daily lead time intervals at the surface. For
each scheme, the dot indicates the relative analysis error, while the
crosses shows the relative forecast error for each day of lead time
until a maximum lead time of 7 d — which is the total time between
observations of total chlorophyll in these experiments.

In the context of operational systems, such as those im-
plemented by the UK Met Office, total chlorophyll is assim-
ilated on a daily cycle, and then a forecast is produced for
up to six days of lead time from these improved initial con-
ditions. These results imply that there are huge gains to be
made not only in short term forecasting (before errors sat-
urate again), but also in reanalysis products that assimilate
data with higher frequency, as the ML approaches substan-
tially outperform the RUS scheme at this point.

4.3 Extending the set of updated variables

In this section, we demonstrate the additional benefit of esti-
mating updates not just for nitrate, but for nearly all marine
BGC variables. In Fig. 7, we compare the different ML ap-
proaches for updating an extended set of unobserved marine
BGC variables, as well as the previous system that only up-
dates nitrate.

The RUS scheme, described in Sect. 2.4.1, is used as a
benchmark for the extended schemes, and so values shown
in Fig. 7 are RMSEs for 7 d forecasts relative to the RMSE of
the RUS method (averaged across the 104 forecast-analysis
cycles of the entire test period). Again, we recall that the
RUS does not update any variables beyond total chlorophyll
(shown) and its constituent PFTs (not shown). The ML-EtE
(NO3) scheme (green), which updates only nitrate, is carried
over from the previous section (as it performed best), to act as
another point of comparison for the extended schemes. Be-
fore discussing the extended schemes, we can see from Fig. 7
the dynamical impact that the updates of ML-EtE (NO3) have
on other (i.e. non-updated) marine BGC variables in the sys-
tem. Generally, the change in RMSE for these non-updated
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variables is very small, with the largest improvement being to
phosphate and the largest degradation to zooplankton types —
particularly microzooplankton. It also slightly worsens the
forecast error for ammonium and silicate concentrations that
are not updated during the analysis. While this shows that up-
dating a key nutrient, such as nitrate, can have wider impact
on the system through dynamical adjustment, the generally
beneficial results of the extended schemes (discussed below)
point towards needing a DA system that can make reasonable
adjustments to a wider set of marine BGC variables.

Our next scheme, ML-EtE (ALL) (orange), again follows
the approach described in Sect. 3.2, but extends updates to all
shown pelagic variables by estimating analysis increments
directly from each background state and total chlorophyll
increment. In this L4 setup, this is generally the best per-
forming scheme, improving unobserved forecast and analy-
sis RMSEs by between 10 %—50 %. We emphasise that while
many of the 7 d forecast RMSEs are similar or even degraded
compared with RUS, many of the benefits from an improved
analysis persist over a significant portion of the forecast win-
dow (as is shown and discussed later). The most notable ex-
ceptions are the zooplankton which, despite having analy-
sis increments in the correct direction, still return noticeably
higher forecast/analysis RMSEs than most other schemes.
Zooplankton have more interactions with other system com-
ponents, existing at a higher trophic level, which result in
a wider range of uncertainty for their behaviour. This also
suggests they have generally weaker correlations with total
chlorophyll. In our configuration, the RMSEs of the zoo-
plankton group are clearly highly sensitive to updates in other
variables, whether only nitrate is assimilated or a broader
set is considered. When correlations between total chloro-
phyll and zooplankton are weak (as seen in Fig. A2), chloro-
phyll increments contribute little information for correcting
the zooplankton field, which is already strongly influenced
by changes elsewhere in the system.

The ML-OI (ALL) scheme (brown) described in Sect. 3.1,
extends updates to all shown pelagic variables by estimat-
ing the inter-variable correlation from the background state
only. This estimation is then combined with daily varying cli-
matological variances to update the marine BGC state. This
method is also shown to be somewhat effective, generally
providing similar behaviour to the ML-EtE (ALL) scheme, or
at least reducing the RMSE from forecast to analysis (even
if it is still worse that the RUS in some cases). It does suf-
fer from the same difficulty in estimating zooplankton up-
dates, to an even greater degree, which causes some further
imbalance in the system. This becomes clear when we ex-
clude the zooplankton types from the updating in the ML-
OI (Excl. Zoo) approach (purple), since it generally equals
or makes small improvements over the ML-EtE (ALL) and
ML-OI (ALL) schemes.

Figure A2 shows that correlations between surface total
chlorophyll and silicate (or phosphate) are as strong as those
with nitrate. This suggests that updates of similar magnitude
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class/type follow the same order (left to right) as Table 1.

might be expected for the other nutrients as well. However, it
is not straightforward to infer how the system would evolve
when all nutrients are updated simultaneously, based solely
on the behaviour observed when only nitrate is updated. For
example, Fig. 7 reveals clear differences in the forecast and
analysis RMSE for nitrate between the two ML-EtE config-
urations: one updating only nitrate and the other updating all
nutrients. In the case for ML-EtE (ALL), updating all nu-
trients degrades the nitrate RMSE in the forecast and pro-
vides negligible impact on the analysis, while improving the
analysis RMSEs for phosphate, ammonium and silicate. This
outcome is notable, as it may point to assimilation biases in-
troduced by the choice of update strategy.

Figure 8 shows the mean RMSE at multiple forecast lead
times, for each method relative to the RUS scheme. A vari-
ety of variables have been selected from Fig. 7 to represent
the different behaviours observed across each variable group.
For many variables, there are notable improvements made
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over the first 3-5 forecast lead times (e.g., most schemes for
phosphate, ML-EtE (ALL) and ML-OI (Excl. Zoo) in sili-
cate, and the particulate organic matter variables), even if the
gains do not persist for the entire forecast window of 7d. It is
also important to note that the rate at which gains are lost is
not necessarily quasi-linear for some variables. For example,
small particulate organic matter loses around half of its 20 %
gain from the analysis time to 1 d forecast time. Interestingly,
the total chlorophyll shows similar error relative to the RUS
scheme for each other scheme at the analysis time (they all
handle the observations in the same way, so this should be
expected), but each scheme then makes improvements at es-
sentially every other forecast lead time. This is likely due
to the dynamical adjustment of the model (where gains have
been made in other variables) propagating through to the total
chlorophyll values as the model evolves. It is through this dy-
namical complexity, however, that we see other variables do
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not improve or degrade monotonically as lead time increases
(e.g., bacteria and flagellates).

In summary the experiments from Figs. 7 and 8 show that
the impact of DA analysis updates on the model forecast is
not straightforward due to the non-linear and complex na-
ture of the BGC model. Although in general it is true that
increasing the number of updated variables benefits the fore-
casts, especially at shorter lead times (e.g., less than 5 d), this
is definitely not true for every variable. Some variables, for
instance, show similar or worse forecast RMSE at a 7d lead
time than the RUS, which highlights the need to evaluate how
different assimilation strategies and variable-update choices
affect performance.

In Fig. 9, we interrogate the ML models using Shapley
values (Sect. 3.4.2) to identify important ML-model features
that are key to making accurate estimations, and drive the
connections between observed total chlorophyll and unob-
served variables. Such a Shapley analysis also has the poten-
tial to help reduce the number of features needed for training
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future models (though this was not the aim of our experi-
ments).

Figure 9 shows the grouped mean absolute Shapley val-
ues for both the extended ML-OI (upper panel) and ML-EtE
(lower panel) approaches. These are grouped as the sepa-
rate chemical components of any class/type, and the result-
ing Shapley values, are very highly correlated. It is impor-
tant to note that Shapley values differ from a pure correla-
tion between the input and output variables. This is because
they capture both direct and interaction effects, account for
non-linear relationships, and can explain a model’s decision-
making rather than just measuring statistical association.

The ML-OI (ALL) Shapely values indicate that a broad
range of input variables are important to the estimation of
total chlorophyll correlations with unobserved variables, and
highlight the general complexity of these interactions. We see
that the state of temperature and total chlorophyll are mod-
erately important across a broad set of variable groups. This
makes sense as this ML model is estimating the correlation
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of a given variable with total chlorophyll, which is gener-
ally dependent on the state of total chlorophyll. However,
this also implies that the seasonal regimes play a significant
role in the estimations, as temperature is a clear identifier for
the current time in the seasonal cycle. We note that the sea-
sonal signal of other variables could also be important for
the estimation of correlations as, in some cases, we see that
at least one of the state variables in a group can be impor-
tant to estimating the correlation between total chlorophyll
and a state variable of the same group. For example, the state
of small detritus is highly important to the entire group of
detritus correlations, the states of some nutrients are gener-
ally important to the estimation of nutrients, and the semi-
labile DOM is somewhat important to the wider DOM cor-
relations. Each of the nutrients show moderate to strong im-
portance across a wide variety of outputs, with the strongest
being phosphates. The elevated Shapley importance of phos-
phate likely reflects interdependencies among nutrient vari-
ables, particularly given their correlated seasonal behaviour,
highlighting a limitation of the Shapley framework when ap-
plied to features with shared temporal dynamics. Some input
features show no strong importance to any output targets. In
particular, the zooplankton types seem largely unimportant
in estimation their own correlation with total chlorophyll and
the variables with a stronger signal have no obvious direct re-
lationship. This may partially explain why zooplankton per-
forms poorly when they are updated by the ML-DA schemes,
as seen previously in Fig. 7, and points towards the difficulty
and uncertainty associated with zooplankton in marine BGC
modelling. This is further evidenced as the zooplankton types
are unimportant as input features for all other correlation es-
timations as well. We also see that oxygen is largely unim-
portant to the estimation of the correlations. This observation
is consistent with the known weak impact of oxygen assimi-
lation in ERSEM on other modelled variables (Skékala et al.,
2021). This would imply that both zooplankton and oxygen
could be removed from the input feature set with little impact
on the overall model performance.

The ML-EtE (ALL) Shapley values take on a distinctly
different structure to those of the ML-OI (ALL). Recall that
ML-EtE (ALL) has a different target than ML-OI (ALL), as
it emulates analysis increments directly. It also has an addi-
tional input feature, the analysis increment of total chloro-
phyll, which is readily available in both the training dataset
and at run-time. The most striking difference is that the total
chlorophyll analysis increment dominates the estimation im-
portances, showing the highest mean absolute value in almost
all estimations. This is to be expected, as the total chloro-
phyll increment contains information about the observation,
observational error and background model covariance, which
are all necessary components of the unobserved analysis in-
crement as described in Eq. (1). This makes sense consider-
ing the seasonal variation of the model and that total chloro-
phyll represents this variation quite reliably according to the
regimes discussed in Sect. 4.1. The state variable input fea-
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tures show much less importance in ML-EtE (ALL) than in
ML-OI (ALL), but they are sometimes still non-zero. These
non-zero values seem to correlate somewhat with the most
important input features seen in the ML-OI (ALL) approach,
even if they are significantly reduced overall, suggesting that
the state still contributes to the inherent flow dependencies of
the analysis increments.

Given the dominant role of the total chlorophyll analysis
increment in ML-EtE (ALL), it is important to note that the
influence of observations could differ when using real ob-
servations rather than synthetic ones, owing to potential dif-
ferences in error characteristics, representativeness, or sys-
tematic biases. We would still expect the analysis increment
of the observed variable to exhibit comparable importance
if trained on increments derived from real observations, as
demonstrated in this experiment. However, because of the
strong influence of total chlorophyll increments, the overall
structure and nature of the resulting updates may change, re-
flecting the impact of more complex and realistic observa-
tional error structures.

4.4 Generalisation of machine learned-correlations to
an unseen location

In this section, we test the performance of the extended ML
approaches from Sect. 4.3 trained for L4, but applied to the
CWEC location (see Sect. 2.3 and Fig. 1), which exhibits dif-
ferent marine BGC behaviour than the L4 training location.
In Fig. 10, we assess the performance of these ML models
according to their 7 d forecast and analysis RMSEs. We then
compare some general differences between the climatology
of the two locations in Fig. 11, and then, with reference to the
Shapley values shown previously in Fig. 9, we shall discern
why the ML model might struggle extrapolating to the new
location.

Figure 10 again uses the RUS scheme as a comparison
point for the ML model approaches, so all RMSEs are given
as a ratio of the RUS’s RMSE value at the new location.
The ML-EtE (ALL) approach (orange) performs extremely
poorly in this new location, with a large portion of the RM-
SEs exceeding 1.5 x the RUS background error (off the scale
of Fig. 10). This is because the emulated analysis increments
of the EnKF at the L4 location fit the variability and scale
of that (trained) location and so, do not translate well to the
new location. This means that, while the ML-EtE (ALL) ap-
proach works well at the trained location (and fits the ex-
pected distribution of input data), in practice its extendabil-
ity to a new location is limited by both availability of train-
ing data and to the new location’s similarity to the orig-
inal training location. The ML-OI (ALL) (brown) makes
a marked improvement over the ML-EtE (ALL) scheme,
which is the reverse of the previous scenario at the L4 lo-
cation. This is likely because the correlations estimated by
the ML-OI scheme represent a more location-agnostic rela-
tionship in the marine BGC variables, which can be used in
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Figure 10. As Fig. 7, with the ML methods trained on L4, but applied to the new location CWEC. Dots and arrows that do not appear are off

the scale.

combination with the climatological variances of CWEC to
produce more location-appropriate increments (though this
is not true for ammonium, bacteria and labile DOM, which
produce a worse analysis than forecast). Furthermore, this
scheme still struggles to estimate zooplankton correlations,
and so not updating the zooplankton as in the ML-OI (Excl.
Z00) scheme (purple) reduces the damage compared to ML-
OI (ALL) — with any improvements being marginal at best.
In both ML-OI (ALL) and ML-OI (Excl. Zoo), we see that
the analysis for detritus is generally improved relative to the
RUS scheme (though these improvements are marginal, and
of similar magnitude to the worsened forecasts). Figure 11
shows that the climatological correlations for these variables
are generally similar in both locations (compare Fig. A2 and
Fig. A3 to see how these vary with time), with small detritus
(originating largely from species with size < 20 um) show-
ing similarity in both climatological correlation and standard
deviation. Since small detritus is the most important input
feature, in Fig. 9, for the estimation of detritus correlations
in the ML-OI models, it is reasonable to see why the im-
provements persist between the two locations. We also see
in Fig. 10 that both ML-OI models (brown and purple) make
improvements to the analysis RMSEs of nitrate, phosphorus
and semi-labile DOM, which show relatively similar clima-
tological behaviour to L4 in Figs. 11 and A1l.
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As all training is performed at one location, it is easy to
hypothesise that the ML models are over-specialised to the
characteristics of L4, specifically with regards to their use at
other locations. Here, 14 is coastal and the CWEC is in a
more open area of ocean. This does not rule out the possi-
bility that ML models trained on a limited number of loca-
tions could extend their estimations to spatial locations be-
yond their set of training locations. However, it indicates that
sparse training locations would need to be chosen carefully,
to appropriately cover the spread of behaviour in the system.

4.5 Viewpoint on scaling multivariate data assimilation
to 3D models

We have shown that ML methods can make improvements
to the DA schemes of marine BGC models when coupled to
a 1D physical model — particularly shown in improved fore-
casts for shorter lead times (< 4 d) at the training location.
The natural next question is how these results would scale
when the marine BGC model is coupled to a 3D physical
model, such as NEMO (Nucleus for European Modelling of
the Ocean). A seemingly simple solution would be to run
(once) a well-tuned, large EnKF, which can then be used
to train an ML model to be used operationally in an analo-
gous 3D DA system that presently updates only total chloro-
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phyll. A reanalysis product with comprehensive statistics, or
all ensemble members available so statistics can be gener-
ated, would be ideal (Bonavita and Laloyaux, 2020; Bra-
jard et al., 2021; Gregory et al., 2024). This circumvents
the need to run an expensive DA scheme operationally as
the ML model could be trained offline, and then run sig-
nificantly faster while retaining the benefit of the statistics
learned from a large ensemble. This would also allow the
analysis increments to be estimated directly. However, state-
of-the-art ensemble marine BGC systems are still limited in
scale and may not (yet) accurately represent the statistics
needed for multivariate DA (Skakala et al., 2024). Also, this
approach would need to be repeated if/when the observation
network changes, which is likely given new observation mis-
sions and strategies (Telszewski et al., 2018). A cheaper al-
ternative would be to calculate the correlations in a free-run
ensemble dataset, as per the methods described in Sect. 3.1.
This would be cheaper to create as there would be no need
to store and calculate both background and analysis states.
However, this approach cannot calculate the analysis incre-
ments directly and instead must rely on the hybridisation of
background covariances/correlations into existing DA frame-
works. Nevertheless our results on the 1D scenario suggests
that this is feasible and a good alternative to estimating the
increments directly.

It is also worth considering how the data for these ML
models should be sampled spatially in the 3D case. In this,
we suggest that a sparse forest of 1D models could be gener-
ated across the 3D domain, which aims to cover each region
of sufficiently different biogeochemical behaviour. Previous
work by Higgs et al. (2024) has split the North-West Euro-
pean Shelf into dynamically connected ecoregions, and this,
or similar analysis, could be used as a guideline for generat-
ing these 1D models. Furthermore, ML models could handle
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local multivariate aspects (a 0D transformation), while tra-
ditional DA methods (such as spatial correlations functions)
manage 3D reconstruction (just as they manage the 1D re-
construction in our setup). A limitation of our two test loca-
tions is that they are not directly coupled, and could only be
considered weakly coupled in the sense that their forcing data
is extracted from the same 3D weather model. This could
mean that 3D models have an advantage in locations hav-
ing similar behaviour, as model grid points are much more
likely to strongly correlate due to advection and ocean cur-
rents. However, the inverse could also be true, as the 1D mod-
els do not consider riverine input which can have substantial
effects at the coast. Either way, the results suggest that some
sparsity could be applied in extracting training data for these
models, as long as each regime of BGC behaviour is rep-
resented in the selection. Introducing spatial variables like
longitude and latitude could also improve the models abil-
ity to estimate increments or correlations across the different
horizontal locations.

An additional avenue worth exploring is whether training
ML models on data from multiple, sufficiently different loca-
tions could improve their generalisability. Such an approach
would allow for testing whether a more generalised model
can (i) perform as well as a specialised model at its train-
ing locations, and (ii) transfer more successfully to new, un-
seen locations. While this is beyond the scope of the present
study, it represents an interesting line of future work, partic-
ularly when combined with transfer learning strategies. For
instance, a model trained at one location could be used as pre-
conditioning for training at a new site, with the expectation
that the pre-conditioned model would require less additional
data to adapt effectively (e.g., Hu et al., 2016). Together,
these directions highlight the importance of balancing spe-
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cialisation and generalisation when scaling ML-assisted DA
from idealized 1D configurations to realistic 3D systems.

5 Conclusions

Marine biogeochemistry (BGC) models aim to represent the
complex BGC processes necessary to understand and fore-
cast ecosystem behaviour. Data assimilation (DA) plays a
crucial role in ensuring model trajectories remain closely
aligned with real-world observations, along with the need
for continuous improvement of numerical estimations. In
this study, we used a synthetic “perfect model” setup as a
first step to explore ML-assisted DA under controlled con-
ditions, but a natural direction for future work is to apply
these approaches to real observations to assess their practi-
cal value. The ML-based methods considered in this study
extend a conventional univariate DA system (RUS, see Table
2), which observes only total chlorophyll. One ML method
(ML-OI) estimates the flow-dependent background error cor-
relations between total chlorophyll and other model variables
(which are then used in an otherwise conventional DA update
step). The other ML method (ML-EtE) directly estimates the
analysis increments of other model variables (bypassing the
conventional DA update equations for these variables).

Both numerical modelling and DA are computationally ex-
pensive for marine BGC (dealing with great complexity and
many variables), requiring well-tuned and accurately sam-
pled statistics to be effective. These statistics are often poorly
estimated in the undersized ensemble-based methods that are
affordable operationally. In turn, this leads to the use of cli-
matological background error covariance matrices in deter-
ministic models, or simply not updating unobserved vari-
ables. This section concludes our work in relation to the re-
search questions set out towards the end of Sect. 1 (repro-
duced below in italics).

(a) Can we make improvements to the existing univari-
ate scheme by updating a limited set of additional variables
with an ML model to estimate correlations or analysis in-
crements? In this study, we have demonstrated that neural
networks can effectively learn statistical relationships be-
tween total chlorophyll (the only observed variable) and var-
ious pelagic BGC model variables. With machine learning
(ML), we achieve improvements over climatological statis-
tics in the nitrate-only update framework. Our analysis of
ML-estimated nitrate updates illustrates that the ML methods
behave in a largely coherent and meaningful manner. While
ML can degrade forecast skill in some unobserved variables
compared to RUS or nitrate-only ML schemes, they nonethe-
less show promise, with their usefulness in more complex
assimilation settings requiring further assessment.

(b) Can these ML models be extended to effectively up-
date all unobserved pelagic variables? ML models can up-
date almost all unobserved pelagic variables, supporting the
broader applicability of ML in DA. In our configuration,
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zooplankton does not update well using either of the ML
methods extended to all state variables (ML-OI (ALL) and
ML-EtE (ALL)), and is better treated in hybrid DA schemes
without being updated directly (as in ML-OI (Excl. Zo00)).
This limitation may reflect the particular parameterisations of
zooplankton—phytoplankton interactions, grazing, and mor-
tality in the underlying BGC model, and may not generalise
to other model setups. More broadly, we expect that variables
less directly linked to or less sensitive to the observed quan-
tity will be more difficult to update well. Since parameteri-
sation choices can alter these relationships, new parameteri-
sations would likely require retraining emulators, or alterna-
tively, more flexible ML strategies such as transfer learning.
Exploring such approaches in more diverse configurations re-
mains an important avenue for follow-on investigations.

(c) Is the ML model transferable to a new location after
being trained on some other location? While a neural net-
work trained in one water column exhibits partial transfer-
ability to other locations, challenges remain in fully gener-
alising the model across spatial domains. This partial trans-
ferability is valuable, given the difficulty and cost of acquir-
ing high-quality training data across large oceanic regions,
and should be explored further in the context of 3D models.
We discuss the feasibility of this, and propose a methodol-
ogy for doing so. Future work should focus on refining trans-
ferability strategies, effective sampling strategy to allow for
ergodic coverage (i.e., ensuring statistical representativeness
over space and/or time), and further evaluating the scalability
of ML-driven DA in complex marine environments.

Appendix A: Characterisation of location
biogeochemistry

Figure Al shows the variability of each ERSEM variable
over the online testing period for the L4 and CWEC loca-
tions. It shows that the CWEC is clearly less biologically pro-
ductive than L4 with surface concentrations of total chloro-
phyll having a significantly lower median value, and a max-
imum that is approximately 50 % of L4’s maximum. Each
exhibits similar temperature values, as they are both located
within the English Channel. In the nutrients group, nitrate
and phosphate values cover a similar range in each location,
but ammonium and silicate have little overlap. Bacteria and
DOM concentrations also show little similarity between lo-
cations. The small detritus concentrations are very similar
between both locations, but the medium and large detritus
differ significantly, with CWEC covering a much wider range
of values than L4. Zooplankton concentrations also differ be-
tween the locations, with CWEC producing much lower con-
centrations of zooplankton than the more biologically active
L4 location.

The climatological correlations between total chlorophyll
and other pelagic variables at the L4 location, shown in
Fig. A2, vary significantly according to the season. Variables
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of the same class (see Table 1) generally exhibit very sim-
ilar correlations. Correlations are much stronger during the
spring and summer months, as this period is more biologi-
cally active, and so the different model components are go-
ing to be more closely coupled. Some variables, such as zoo-
plankton, show a much weaker correlative relationship with
total chlorophyll.

Figure A3 shows the climatological correlations between
total chlorophyll and other pelagic variables at the CWEC lo-
cation. As with L4, the correlations of most variables show
a much stronger correlation with total chlorophyll during
the spring and summer, when the system is much more ac-
tive. The correlations of nitrate are similar to those seen at
the L4 location in Fig. A2, following the pattern described
Sect. 4.1. Zooplankton shows a weak correlation with total
chlorophyll.
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Appendix B: Dynamical impact of updating only nitrate

Figure B1 is an extension of Fig. 4, with a representative set
of variables that are unobserved and not updated (unlike ni-
trate which is also unobserved, but updated in this experi-
ment). This clearly shows that the improvement of nitrate
does not necessarily translate to an improvement in other
variables, regardless of the method used to update the ni-
trate. This highlights the need to evaluate how different as-
similation strategies and variable-update choices affect per-

formance.
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in the model.
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