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S1 Supplementary information
S1.1 Supplementary tables

Table S1: Sediment cores taken in Germany, Malaysia and Columbia in all four ecosystems: SG (seagrass), UV (unvegetated),

SM (saltmarsh) and MG (mangrove). Information on sampling location, date and time.

Country Location Ecosystem Point  Longitude Latitude Date and time

Germany NES SG P4 7.335864  53.686188 2022-08-16T08:43:00
Germany NES SG P5 7.335658  53.686212 2022-08-16T08:59:00
Germany NES SG P6 7.335419  53.686239 2022-08-16T09:13:00
Germany  NES uv P4 7.336820  53.685264 2022-08-17T07:02:00
Germany NES uv P5 7.336531  53.685304 2022-08-17T07:13:00
Germany NES uv P6 7.336299  53.685328 2022-08-17T07:26:00
Germany NES pioneer SM P3 7.335585  53.684371 2022-08-15T10:46:00
Germany NES low SM P6 7.335641  53.684276 2022-08-15T11:32:00
Germany NES high SM P8 7.335455  53.683768 2022-08-15T13:59:00
Germany  NES high SM P9 7.335623  53.683454 2022-08-15T13:42:00
Germany HAH SG P4 8.823788  54.612684 2021-11-09T09:31:03
Germany HAH SG P6 8.823431  54.612663 2021-11-09T09:14:41
Germany HAH SG P8 8.822986  54.612680 2021-11-09T09:01:44
Germany HAH uv P4 8.811397  54.605695 2021-11-10T09:10:14
Germany HAH uv PS5 8.811318  54.605757 2021-11-10T09:20:28

Germany HAH uv P6 8.811194  54.605855 2021-11-10T09:29:10
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Columbia 1 uv P2 -75.682109 10.137113 2022-05-03T16:57:00

Columbia 1 uv P3 -75.682165 10.137153 2022-05-03T16:56:00
Columbia 1 uv P4 -75.682178 10.137119 2022-05-03T16:55:00
Columbia 1 MG P7 -75.682718 10.136688 2022-05-01T14:44:00
Columbia 1 MG P8 -75.682815 10.136645 2022-05-01T14:45:00
Columbia 1 MG P9 -75.682996 10.136577 2022-05-01T14:46:00
Columbia 2 SG P3 -75.630319 10.192668 2022-05-05T15:43:00
Columbia 2 SG P4 -75.630338 10.192487 2022-05-05T15:39:00
Columbia 2 SG P5 -75.630355 10.192527 2022-05-05T15:41:00
Columbia 2 uv P1 -75.630572 10.192642 2022-05-07T15:54:00
Columbia 2 (MY P2 -75.630508 10.192592 2022-05-07T15:53:00
Columbia 2 uv P3 -75.630435 10.192557 2022-05-07T15:52:00
Columbia 2 MG P6 -75.630144  10.191658 2022-05-04T15:44:00
Columbia 2 MG P3 -75.629953 10.191859 2022-05-04T15:29:00
Columbia 2 MG P2 -75.630129 10.192157 2022-05-04T14:26:00
Columbia 3 SG P1 -75.655608 10.171513 2022-05-08T21:21:00
Columbia 3 SG P6 -75.655606  10.171255 2022-05-08T21:17:00
Columbia 3 uv P1 -75.655774 10.171481 2022-05-09T14:50:00
Columbia 3 uv P2 -75.655756 10.171415 2022-05-09T14:57:00
Columbia 3 uv P5 -75.655592 10.171073 2022-05-09T14:56:00
Columbia 3 MG P5 -75.655710  10.171036 2022-05-08T16:26:00
Columbia 3 MG P6 -75.655767 10.170866 2022-05-08T16:21:00

Table S2: Porewater samples taken in North Sea, Germany: SG (seagrass), UV (unvegetated) and SM (saltmarsh). Information

on sampling location, date and time.

Country Location Ecosystem  Point Longitude Latitude Date and time

Germany MET uv P8 8.965385406  54.50309346 2021-11-11T11:56:13
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Germany NES
Germany NES

Germany NES

pioneer SM P2 7.335256734  53.68429143

2022-08-15T10:34:00

low SM P5 7.335258637  53.68421474  2022-08-15T10:59:00

low SM P6 7.335641285  53.68427579  2022-08-15T11:32:00

Table S3: List of tested relative antibody signal to sediment extracts with described recognized epitope and origin;

adapted from (Vidal-Melgosa et al., 2021).

Antibody name  Recognized epitope Origin  Reference
(Torode et al., 2015; SeaProbes

BAMI1 Un-sulphated epitope present in sulphated fucan Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2015; SeaProbes

BAM?2 Sulphated epitope present in sulphated fucan Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2015; SeaProbes

BAM3 Possibly sulphated epitope present in sulphated fucan  Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2015; SeaProbes

BAM4 Sulphated epitope present in sulphated fucan Rat Station Biologique de Roscoff, 2025)

JIMS Partially methyl-esterified/de-esterified HG Rat (Clausen et al., 2003)

JIM7 Partially methyl-esterified HG Rat (Clausen et al., 2003)

LM18 Partially methyl-esterified/de-esterified HG Rat (Verhertbruggen et al., 2009)

LM19 Partially methyl-esterified/de-esterified HG Rat (Verhertbruggen et al., 2009)

LM20 Partially methyl-esterified HG Rat (Verhertbruggen et al., 2009)

LM7 Non-blockwise partially methyl-esterified HG Rat (Willats et al., 2001)

LM8 Xylogalacturonan Rat (Willats et al., 2004)

INRA-RU2 Rhamnogalacturonan I backbone Mouse (Ralet et al., 2010)

INRA-RU1 Rhamnogalacturonan I backbone Mouse (Ralet et al., 2010)

LM13 Linearised (1—5)-0-L-arabinan Rat (Verhertbruggen et al., 2009)

LMI16 Rhamnogalacturonan I arabinosyl side chains Rat (Verhertbruggen et al., 2009)

LMS5 (1—4)-B-D-galactan Rat (Jones and Knox, 1997)

LM6 (1—5)-a-L-arabinan Rat (Willats et al., 1998)

LM6-M (1—5)-a-L-arabinan Rat (Cornuault et al., 2017)

CBM3a Cellulose His (Blake et al., 2006)

BS-400-2 (1—3)-B-D-glucan Mouse (Meikle et al., 1991)

BS-400-3 (1-3)(1—4)-B-D-glucan Mouse (Meikle et al., 1994)

BS-400-4 (1—4)-B-D-(galacto)(gluco)mannan Mouse (Pettolino et al., 2001)

LM21 (1—4)-B-D-(galacto)(gluco)mannan Rat (Marcus et al., 2010)

LM22 (1—4)-B-D-(galacto)(gluco)mannan Rat (Marcus et al., 2010)

LM15 Xyloglucan (XXXG motif) Rat (Marcus et al., 2008)

Xyloglucan (XXXG motif, both galactosylated and
LM25 non-galactosylated) Rat (Pedersen et al., 2012)




LM26 branched (1,6-Gal) (1—4)-B-D-galactan Rat (Posé et al., 2018)

LM28 Glucuronoxylan Rat (Cornuault et al., 2015)

LM30 Arabinogalactan protein glycan Rat (Sanhueza et al., 2024)

LMI10 (1—4)-B-D-xylan Rat (McCartney et al., 2005)

LMI11 (1—4)-B-D-xylan/arabinoxylan Rat (McCartney et al., 2005)

INRA-AXI1 (1—4)-B-D-xylan/arabinoxylan Mouse (Guillon et al., 2004)

LM23 Xylosyl residues Rat (Pedersen et al., 2012)

LM24 Galactosylated Xyloglucan Rat (Pedersen et al., 2012)

LM27 unknown epitope associated with grass xylan Rat (Cornuault et al., 2015)

JIM19 Extensin Rat (Knox et al., 1995)

JIM4 Arabinogalactan protein glycan Rat (Knox et al., 1989)

JIMS Arabinogalactan protein glycan Rat (Pennell et al., 1991)

JIM13 Arabinogalactan protein glycan Rat (Knox et al., 1991)

JIM15 Arabinogalactan protein glycan Rat (Knox et al., 1991)

JIM16 Arabinogalactan protein glycan Rat (Knox et al., 1991)

JIM20 Extensin Rat (Smallwood et al., 1994)

LMI Extensin Rat (Smallwood et al., 1995)

LM2 B-linked GIcA in arabinogalactan protein Rat (Yates et al., 1996)

LM12 Feruloylated polymers Rat (Pedersen et al., 2012)
(Moller et al., 2008; Pedersen et al.,

LM14 GIcA in arabinogalactan protein Rat 2012)

MAC207 Arabinogalactan protein glycan Rat (Pennell et al., 1989)
(Torode et al., 2016; SeaProbes

BAM6 Alginate - mannuronate-rich epitope Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2016; SeaProbes

BAM7 Alginate - mannuronate-guluronate Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2016; SeaProbes

BAMS Alginate - mannuronate-guluronate Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2016; SeaProbes

BAM9 Alginate - mannuronate-guluronate Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2016; SeaProbes

BAMI10 Alginate - mannuronate-guluronate Rat Station Biologique de Roscoff, 2025)
(Torode et al., 2016; SeaProbes

BAMI11 Alginate - ~7 guluronate residues Rat Station Biologique de Roscoff, 2025)

JIMI11 Extensin Rat (Smallwood et al., 1994)

JIM12 Extensin Rat (Smallwood et al., 1994)

JIM14 Arabinogalactan protein glycan Rat (Knox et al., 1991)
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S1.2 Supplementary figures
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Fig.S1: Global sampling map of sediment cores of coastal vegetated ecosystems. Bathymetrie is increasing with darker
blue scale, bathymetry data is from NOAA (2022), plotted with R packages ‘marmap’ (Pante and Simon-Bouhet, 2013) and
‘sf” (Bivand, 2021). A) Sampling locations along the North and Baltic Sea, Germany. NES: Nessmersiel, HAH: Hamburger
Hallig, MET: Mettgrund, SCH: Schleimiinde, WEN: Wendtorf, HEI: Heiligenhafen, B) in Columbia: COL sites 1 to 3 and C)
in Malaysia, LAN: Langkawi, SET: Setiu, PAK: Paka. D) Example transect map, plotted with QGIS 3.22, of analysed transect
point in ecosystems sampled in Setiu, Malaysia: mangroves (yellow), seagrass (green), saltmarsh (maroon), unvegetated (blue).

Further information on analysed sampling points with locations are shown in supplementary table S1.
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30 Fig. S2: Relative abundances of monosaccharides in sediment cores in Germany, shown by sampling site and point and

ecosystems (SG: seagrass, SM: saltmarsh, UV: unvegetated ecosystems). Sediment cores were split visually according to

visible physicochemical layers, represented by depth in cm. A) Sampling at Hamburger Hallig (HAH), North Sea site; B)
Nessmersiel (NES), North Sea site; C) Mettgrund (MET), North Sea site; D) Wendtorf (WEN), Baltic Sea; E) Heiligenhafen
(HEI), Baltic Sea; F) Schleimiinde (SCH), Baltic Sea.
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Malaysia; C) Paka (PAK), Malaysia; D) Columbia site 1 (COL), E) Columbia site 2 (COL), F) Columbia site 3 (COL). COL1

40 mangroves cores sampled and analyzed, but due to missing depths abundance cannot be displayed.
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