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This supplementary material contains Figure S1-S9 and Table S1-57, which provide additional data
and visualizations in support of the main manuscript.
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Figure S1: MIKE SHE model components used in the Tuse catchment model. Evapotranspiration model by Kristensen and
Jensen (1975)
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Figure S2: Top: spatial distribution of vegetation and drainage classes in the Tuse catchment model. Class definitions can be

seen in Table S1, bottom: Spatial distribution of soil classes in the Tuse catchment model. Class definitions can be seen in
Table S2.
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Figure S3: Vegetation development (Leaf Area Index (LAl) and root depth) of peat, agriculture/open nature and forest.
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Figure S4: Scatterplots of measured soil temperature at Vejrumbro (Nielsen et al., 2026), measured air temperature at
Vejrumbro (Nielsen et al., 2026) and air temperature at Vejrumbro from Climate grid DK (Scharling, 1999a, b).
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Figure S5: Soil CO; flux (Rp) versus WTD (Nielsen et al., 2026) separated in temperature bins.
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Figure S6: Scatterplot of measured soil CO;flux at Vejrumbro (Nielsen et al., 2026) vs. simulated soil CO;flux at Vejrumbro
with the Daily WTD-Tg;r model. r: Pearsons correlatio coefficient, RMSE: root mean square error.
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Figure S7: soil CO; flux, water table depth (WTD) and air temperature from the Vejrumbro dataset (Nielsen et al., 2026)
together with the simulated soil CO; flux from the Daily WTD-T,;» model.
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Figure S8: Water table depth (WTD), air temperature (Tqir) and ranked soil CO; flux (fCO,) accumulated in ascending order
based on fCO; for the historical simulation period. p50 is the proportion of days required to account for 50% of the total
annual fCO,. RM3sgs is the 365-days running mean.
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Figure S9: Soil CO; flux (Ry) versus temperature (Nielsen et al., 2026) separated in water table depth (WTD) bins.



Table S1: Vegetation and Drain Classes in MIKE SHE Tuse catchment model
meaning that the uppermost layer takes precedence in cases of overlap.

. The classes are ranked in descending order,

Vegetation/Drain Class in
Tuse catchment model

Map of organic Carbon Content
(Adhikari et al., 2014)

Landuse BASEMAP
(Levin et al., 2017)
Landuse classes:

Peat

soil with >6% OC

Agriculture and open
nature

Agriculture,
Nature_open_dry,
Nature_open_dry_extensive_agriculture,
Nature_open_wet,
Nature_open_wet_extensive_agriculture,
Road, Rail, Stream, Ressource extraction,
Recreation area, Wind energy park,

Unclassified
Lake - Sea, Lake
Forest - Forest
Urban i Build-up, City centre, Industry,

Airport/runway
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Table S2: Soil classes in MIKE SHE Tuse catchment model. The classes are ranked in descending order, meaning that the
uppermost layer takes precedence in cases of overlap.

Soil class in Tuse
catchment model

Map of Organic Carbon content
(Adhikari et al., 2014)

Danish Digital soil map
(Jakobsen et al., 2021)
Sedimentation layer (letter symbols):

Peat soil with >6% OC -
Sand - DG, DS, FS, HG, FG, HS, ZS, MG, MS
Clay - FL, FT, FP, SK, ML, DL, S@, ZG, HL, BY, ZL
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Table S3: Water retention parameters (Bgrgesen et al., 2009), light grey indicates free calibration parameters. Alpha, N, L,
Kint are van Genuchten parameters, where Alpha, N and L are empirical constants, and Kint represents the van Genuchtern
saturated hydraulic conductivity.

Unit Peat Sand Clay
(model soil: 5038) (model soil: 5077)
horizon horizon
. 3 A 1395 A 1580
Bulk density Kg m 540 B 1260 B 1700
C 1660 C 1670
Saturated moisture A 0.471 A 0.398
content m3m3 0.6 B 0.447 B 0.421
C 0.38 C 0.395
Residual moisture A 0 A 0
m3m3 0.06 B 0.003 B 0
content
C 0.015 C 0
A 0.062 A 0.02
Alpha cm? 0.034 B 0.059 B 0.041
C 0.047 C 0.04
A 1.306 A 1.205
N - 1.312 B 1.341 B 1.227
C 1.375 C 1.2
A -2.137 A -2.285
L - -2.042 B -1.583 B -3.928
C -1.196 C -3.79
A 2.84502-10°% | A 1.98727 - 107
Kint ms*t 1-10° B 4.45463 - 10°® B 4.20255 - 10”7
C 1.31134 - 10°® C 3.30903 - 107
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Table S4: Hydrological model parameters, light grey indicates free calibration parameters.

of urban

Initial Log-
. . Lower Upper Tied to
Abbreviation Unit parameter . W _PP transfor ! . /
limit limit equation
value med
= | Maximum root depth at vegetation
g P g RDmax_peat mm 1000
s 2 class areas of peat
g5
Z,' 8 | Maximum root depth in vegetation
® § | class areas of agriculture and open RDmax_agri mm 1950
==
% % nature
Z Maximum root depth in vegetation RD_forest mm 1290
= | class areas of forest
Maximum root depth in vegetation RD_urban mm 400
class areas of urban
el
8z
§ 2 | Detention storage detentionS mm 15.5936
o
o
c 2
& 2 | Stream-aquifer leakage coefficient Leak ms? | 1-10° 1-107 1-10° log10
=
o
an Genuchten a at soil class areas
v Y ! Alpha_peat cm? 0.034
of peat
van Genuchten n at soil class areas
N_peat - 1.312
of peat
Shape factor for hydraulic
conductivity at saturation at soil L_peat - -2.042
class areas of peat
Water content in peat soil at
. I. P I ThetaS_peat - 0.6
saturation at soil class areas of peat
__ | Factor of residual moisture content | ThetaResidual_pe | 05
ué g at soil class areas of peat at_factor :
N @ | Hydraulic conductivity at saturation .
o g | Y ¥ Kint ms? | 1-10° 1-10% | 1.10% log10
2 © | at soil class areas of peat
— @© .
. . . . ThetaResidual
é ,‘—3' Residual moisture content at soil ThetaResidual_pe -
3 o - 0.06 peat_factor -
c v | class areas of peat at
=) ThetaS_peat
Maximum bypass fraction at soil -
vp maxBypass_peat - 0.5 0.25 0.5
class areas of peat
Bypass constant for water content 0.6-
for reduced bypass flow at soil class | THR1 - 0.3 maxBypass_pe
areas of peat at
Bypass constant for limit on water 0.2:
content for bypass flow at soil class | THR2 - 0.1 maxBypass_pe
areas of peat at
Drain time constant at drainage b e o1 1.10% 1.10° 1.10% log10
class areas of peat
Drain time constant at drainage
class areas of agriculture and open dt_agri st 1-10% 1-10° 1-10° log10
nature
Drain time constant at drainage dt_forest 1 1.10% dt_agri
class areas of forest
Drain time constant at drainage dt_urban o 1.10® dt_agri
@ class areas of urban
£ = -
J< Drain depth at drainage class areas £ e m 1.0 A 02
of peat
Drain c.jepth at drainage class areas dd_agri m 1.0
of agriculture and open nature
Drai -
rain depth at drainage class areas dd_forest m 1.0
of forest
Drain depth at drainage class areas dd_urban m 1.0
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Horizontal hydraulic conductivity of

Kx_top2m_peat ms? | 1-10°
2m top soil, peat _topsm_p

Anisotropy of 2m top soil, peat Aniso - 10

Horizontal hydraulic conductivity of

Kx_top2 lay* -1 9.75-107
2m top soil, clay X_top2m_clay ms

Horizontal hydraulic conductivity of

* -1 . -3
2m top soil, sand Kx_top2m_sand ms 1.22-10

Horizontal hydraulic conductivity of " 2 2 1-10° 5-106 log10
_ e v Kx_kl1 ms 1.190 - 10
3 Horizontal hydraulic conductivity of 1-106 | 1-103 log10
o * =il . 105
% eHemar e Kx_ks1 ms 2.438- 10
2 - - —
5 I-|Ior|z|onta|kf;2ydrau||c conductivity of Kx_KI2* mst | 1.189-10-7 Kx_ki1
& clay-layer
Horizontal hydraulic conductivity of Kx ks2* mst | 3.181-10° 1-10° 1-103 log10
sand-layer ks2 - ’
Horizontal hydraulic conductivity of Kx KI3* mst | 1.5.10% 1-10° | 1-10° log10
clay-layer kI3 - :
" - " . 106 . 103
Horizontal hydraulic conductivity of Kx_ks3* mst | 5327.10° 1-10 1-10 log10

sand-layer ks3

Vertical hydraulic conductivity of Kx_top2 t
: y ui i Kz_top2m_peat ms? | 1-107 2x.fopem peat _m‘pea
2m top soil, peat aniso

*Vertical hydraulic conductivity is a factor 10 lower
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Table S5: Climate model projections (Jacob et al., 2014; Pasten-Zapata et al., 2019). Climate model projection no. 5 was
used as forcing data for the Tuse catchment model in Figure 8 of the main manuscript.

No. Climate model projections Periode

1 CCCma-CanESM2_rcp85_rlilpl_GERICS-REM02015_v1 1971-2100
2 CNRM-CERFACS-CNRM-CM5_rcp85_rlilpl_CLMcom-CCLM4-8-17_v1 1971-2100
3 ICHEC-EC-EARTH_rcp85_rlilpl_KNMI-RACMO22E_v1 1971-2100
4 ICHEC-EC-EARTH_rcp85_r3ilpl_DMI-HIRHAMS5_v1 1971-2100
5 ICHEC-EC-EARTH_rcp85_r12i1p1_KNMI-RACMO22E_v1 1971-2100
6 IPSL-IPSL-CM5A-MR_rcp85_rl1ilpl_SMHI-RCA4_v1 1971-2100
7 MIROC-MIROC5_rcp85_rlilpl_GERICS-REM02015_v1 1971-2100
8 MOHC-HadGEM2-ES_rcp85_rlilpl_CLMcom-CCLM4-8-17_v1 1971-2099
9 MOHC-HadGEM2-ES_rcp85_r1ilpl_DMI-HIRHAMS_v1 1971-2099
10 MOHC-HadGEM2-ES_rcp85_rlilpl_GERICS-REM02015_v1 1971-2099
11 MOHC-HadGEM2-ES_rcp85_rlilpl_KNMI-RACMO22E_v2 1971-2099
12 MOHC-HadGEM2-ES_rcp85_rlilpl_SMHI-RCA4_v1 1971-2099
13 MPI-M-MPI-ESM-LR_rcp85_r1ilp1l_MPI-CSC-REM0O2009_v1 1971-2100
14 MPI-M-MPI-ESM-LR_rcp85_rl1ilpl_SMHI-RCA4_vla 1971-2100
15 MPI-M-MPI-ESM-LR_rcp85_r2ilpl_MPI-CSC-REM02009_v1 1971-2100
16 NCC-NorESM1-M_rcp85_rlilpl_DMI-HIRHAMS5 v2 1971-2100
17 ICHEC-EC-EARTH_rcp85_r12i1pl_SMHI-RCA4_v1 1971-2100
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Table S6: Analysis of spatial variability. Pearsons’s correlation coefficient r between a number of spatial variables and

observed and simulated annual mean water table depth (MEwrp).

Correlation coefficient r

No. of observed mean | simulated
spatial variable Source observation | annual WTD mean annual
wells MEwm MEwrtp
Observed thickness of This paper 13 -0.34 0.27
peat layer
TWI (20m grid) (Klimadatastyrelsen, 2025) 22 -0.21 0.21
T in sl 2
gfigf'” Sl At (Klimadatastyrelsen, 2025) 22 0.10 0.01
Horizontal distance to | . 1o actyrelsen, 2025) 22 0.09 -0.25
drain ditches
Hori | di
orizontal distance to | .o actyrelsen, 2025) 22 0.11 -0.18
nearest river/ lake
Vertical distance to .
drain ditches (Klimadatastyrelsen, 2025) 22 -0.20 0.20
Yertlcal distance to (Klimadatastyrelsen, 2025) 22 -0.18 0.19
river/lake
ine hi .
Cropping history (Koch et al., 2023) 22 -0.18 0.17

rankede wetness
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Table S7: Model performance and variable correlation. Coefficient of determination (R?) between soil CO; flux observed at
Vejrumbro and soil CO; flux simulated with Daily WTD-T,;y model and three empirical CO, emission models from (Rigney et
al., 2018) (fitted to observed CO; flux at Vejrumbro), respectively, as well R? between the modelled soil CO; flux and input
variables Tqiy and WTD. [6], [7] and [8] refer to the equation number in (Rigney et al., 2018).

R20bs R%air R%wrp
Equation (simulated (simulated (simulated
. O, vs CO5 Vs Tar) | CO2 vs WTD)
observed CO»)
Daily
WTD-Tair b Ty WTD +c-WTD 0.61 0.34 0.54
model
1 1
[6] a-exp (b - <ﬁ - ﬁ)) + (WTD - ¢)? 0.62 ~0 0.94
ref — 1o air — 1o
1 1
[7] a+ (b-WTD) - exp (c . (T -7 T )) 0.62 0.10 0.86
ref — 1o air — 1o
8 : (1 b-WTD 0.61 ~0 ~1
[ ] arexpie Tref - TO B Tair - TO * ’
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