Supplement of Biogeosciences, 23, 477-495, 2026
https://doi.org/10.5194/bg-23-477-2026-supplement
© Author(s) 2026. CC BY 4.0 License.

Supplement of

Spatiotemporal variability and environmental controls on aquatic
methane emissions in an Arctic permafrost catchment

Michael W. Thayne et al.

Correspondence to: Michael W. Thayne (m_thayne @me.com)

The copyright of individual parts of the supplement might differ from the article licence.



00 N O Ul b W N

o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

o

logg(Flux, 2024)

oo @

1
—_
.

-2 -1 0 1 2
logqo(Flux, 2023)

Figure S1 Quantile—quantile (Q—Q) plot comparing logie-transformed diffusive CH, fluxes measured
in 2023 (x-axis) and 2024 (y-axis). Each point represents a quantile-matched flux from the two years.
The red dashed line indicates the 1:1 relationship. Fluxes align closely across most of the
distribution, particularly in the mid-to-upper ranges, with minor divergence at the lower quantiles.
These results support the conclusion that chamber construction differences between years did not
substantially bias flux estimates.

Ebullition Detection

The algorithm has several parameters which are used to set the “ebullition” detection
settings. We use quotations for ebullition as not all non-linear concentration increases are a result of
gas bubbles entering into the chamber space, which is generally represented by abrupt step change
in gas concentrations. More broadly speaking, the algorithm uses these parameters to classify non-
linear concentration increases using the results of BRT. Before running the algorithm, the user will
need to set a vector of ‘learning_rates’, ‘tree_complexity’, and ‘bag_fraction’ for BRT training, where
default values for ‘tree_complexity’ and ‘bag_fraction” are 5 and 1, respectively. Bag fraction is set to
1, so the model is deterministic. Learning rates for the work presented here were 0.001, 0.002,
0.003, 0.004, and 0.005. To avoid false detection and to compensate for issues related to problems
that are often encountered in the field such as leakage, or the chamber fan not functioning, the user
can set the parameter ‘window_size_concentration_smoother’ which is used to set a moving
average window which smooths out the concentration time series before fitting the BRT. BRT
training and parameter optimization were conducted using 10-fold cross-validation (Elith etal.
2008). Each BRT was fit with time of chamber measurement, chamber volume and area, air
temperature and air pressure, and the gas temperature and pressure as measured by the gas
analyzer. The user can define any vector of ‘predictors’ they would like, including other
environmental variables that may help in classifying non-linear concentration increases, as this is the
sole purpose of this algorithmic function. Final model selection was based on the combination of
model hyper parameters; number of trees (i.e. = 1000), tree complexity, and learning rate which
results in the lowest mean deviance standard error. Residuals from the selected model were
calculated by subtracting the model predictions from the observed concentrations, thus highlighting
discrepancies between observed and predicted values.
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To facilitate detection of data points which significantly deviate from one another, residuals
from the selected model are smoothed using a moving average window with a default width of 5
data points. The moving average window is user-defined and can be changed by setting
‘window_size_residual_smoother’. The standard deviation of the smoothed residuals is calculated
and then used to create a dynamic threshold by multiplying it with a ‘dynamic_multiplier’, which has
a default value of 2. The dynamic threshold is used to identify significant deviations in the smoothed
residuals. The dynamic multiplier can be thought of as a handle on a water faucet; if the user
increases the value, the algorithm becomes more restrictive on what data points will be classified as
significant deviations. The algorithm then computes the absolute differences between consecutive
concentration values. Using the stored absolute differences, the algorithm checks to see if the
concentration differences exceed a default quantile value of 0.95 (Hoffman et al. 2017).
Consequently, the algorithm by default considers the top 5% of the greatest concentration
differences as significant deviations from the linearly increasing concentrations. However, the user is
able to define the quantile by setting the parameter ‘quantile_threshold’. Thus, a gas concentration
data point is classified as significantly deviating from linearly increasing concentrations when either
of these two conditions are met: (1) the absolute value of the smoothed residuals exceeds the
dynamic threshold and/or (2) the concentration difference between two consecutive points exceeds
the quantile threshold. Lastly, the algorithm generates a range diagnostic plots (Figures $2-56), for
example one showing which points during the chamber measurement met one or both of the
conditions (Figure S2 and S5). The plot is saved for review in the user-defined ‘save_directory’. The
algorithm then initiates code to handle the classification of data sequences, or non-linear events,
which are comprised of the points classified during the process described above, and may
potentially indicate ebullition events.



The data sequence classification code first initializes variables to track the start and end of
possible non-linear concentration increases and creates a buffer index to store up to 5 non-event
points, or points which briefly interrupt an ongoing non-linear event. The algorithm loops through
each data point of the chamber measurement, marking the start and end of events while resetting
the buffer index each time a new event point is detected. When non-event points are encountered
during an ongoing event sequence, they are added to the buffer index, where if the buffer reaches
capacity, the event sequence length is checked against a user-defined ‘min_ebullition_sequence’
parameter, which has a default of value of 8 seconds. Event sequences are classified based on this
length check, and ongoing events at the end of the dataset are handled similarly to account for edge
effects. This process ensures ongoing events are not broken up by data points, and only sequences
meeting the minimum length can be classified as events. The algorithm then stores each sequence in
two data frames, one for diffusive (i.e. linear concentration increases) and another for ebullition
events (i.e. non-linear concentration increases). Each sequence is given a numerical i.d. based on
when it was encountered during the chamber measurement. For example, if CH, concentration
increases linearly for the 240 seconds of the chamber measurement and then broken up by an
ebullition event for 40 seconds, the first sequence will be labelled diffusive-1 and the second
ebullition-2 (Figure S2). Thus, numerical values are given based in temporal order. At this stage the
user is prompted by the algorithm to “review the combined plot” saved in the ‘save_directory’ to
ensure the algorithm has accurately classified the sequences (Figure S3).
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Figure S2. Diagnostic plot of for chamber ID istr24 over a period of 561 seconds. Time of the
chamber measurement is given on the x-axis, while CH, concentration is given on the y-axis. The
blue dots and corresponding numerical id represent those concentration sequences which the
algorithm has deemed as linear diffusion, while the red dots represent concentration sequences that
may represent ebullition. Overall, we see a linear increase in concentration which is disrupted by a
step change in concentration increase. In the end the algorithm handles each concentration
sequence independently from one another and calculates flux accordingly.

The user is asked if the classified sequences are correct, where the user can respond
accordingly; yes, no, reclassify, or skip. If the user responds yes, each classified sequence will be



independently handled, flux calculations made, and results stored following the methods previously
described (Figure S3 or S4 when linear).
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Figure S3. Diagnostic plot showing the flux data included for each sequence (black dots) and the
predicted concentration given by the GAM (red line) for ID istr24 shown in figure 1. Time is given on
the x-axis for each sequence, while CH, concentration is given on the y-axis. Overall, the figure
shows that the GAM has robustly predicted the concentration increases from each sequence.

If the user responds no, they will be asked if they would like to manually enter sequences. If they
respond yes they will enter a time range, whether the sequence is diffusive (D) or ebullition (E), and
a numerical label is given to the sequence (e.g. 0-250,D,1; 251-290,E,2; 291-600,D,3) (Figure S2). The
user is then prompted to ensure the sequences have been classified and labelled correctly and if so,
fluxes are calculated for each sequence and results are stored in the results directory. When the user
responds reclassify, they will be given the opportunity to reclassify a sequence from diffusive to
ebullition, or vice versa. If a sequence is reclassified the user is prompted to review the updated plot
and confirm sequences are correct before moving forward with flux calculations (Figure S6). All flux
calculations are stored alongside the measurement i.d., whether it is diffusive or ebullitive flux, and
the R? value and the root mean squared error for the GAM fits.
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Figure S4. Diagnostic plot showing the outcome of a fitted GAM where the chamber measurement
met the condition to be considered a linear concentration increase and sufficient for further flux
calculations. Time steps of the chamber measurement are given on the x-axis and CH, concentration
is given in moles on the y-axis. The red line shows the model prediction, while the green dots labeled
false in the legend, are those that do not meet the requirements to be considered significant
deviations from the linear concentration increase. The number 541 in the main figure title
represents the maximum time interval recorded during the chamber measurement, in this case 541
S.
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Figure S5. Diagnostic plot showing the outcome of a trained BRT used to detect data points which
meet the conditions for a data point which significantly deviates from what is expected. Time steps
of the chamber measurement are given on the x-axis and CH, concentration is given in moles on the
y-axis. The red line shows the model prediction, while the orange dots represent those points that
have been considered by the algorithm to have truly met one or both of the two conditional criteria,
while green represent data points which have not met the conditional criteria (see legend). The
number 601 in the main figure title represents the maximum time interval recorded during the
chamber measurement, in this case 601s.
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Figure S6. Diagnostic plots showing how the reclassify function works if one chooses to reclassify, for
example, ebullition to diffusive as seen in the figures. In the top figure we see that the initial
sequence was considered ebullition (labeled 1), as it is a non-linear rise in CH, concentrations.
However, the concentration rise is not reflective of an ebullition event, but rather a rapid rise in
concentrations to a steady linear rise in concentrations, reflective of a diffusive flux. Thus, in this
case the user can reclassify the initial rise from ebullition to diffusive.
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Figure S7. lllustrates the trend of water column conditions in the lake (green lines) and in the
streams (blue lines).



Soil Temperature at Different Depths Over Time
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Figure S8. lllustrates 6-year time series (x axis) of soil temperature (y axis) measured at 5, 10, 20, and
40 cm. Soil Temperatures at each depth rarely reach below -10 °C, but in 2023, soil temperatures
dropped to between 15-20 °C (red box). The relative importance of soil temperatures suggest they

play a significant role in regulating CH, fluxes from the catchment.



Time Period: 2023-07-03 to 2023-07-16 Time Period: 2023-07-17 to 2023-07-30

8 8
50 S 60
20 g
£30 £40
020 [
> =
iﬁiﬂﬁ.ﬁ. o | E
2 o L. : 2 0 ﬁﬁﬁ-—hﬁ-ﬁ-:l:-&—L4,
c c - - . . N
© S o o > > 2 & S & s & s 2 S8 & D o s o & oo
D & F R 2 & & < Resiy 9 & e SEFSIILS
2 § & &2 R &£ RS o &P & 5 Q SIS
X & o & & & o S5 X & 5§ & g Q@
& & ¢ S ) & e D & QNS > @ &
Y ¥ 9@ 5 - Rl Y \@é\Q N 5 - .T§ 9 & >
& < @ OJO\§§'} £ S \c‘}’gg‘? &P ~ & £ )
9 & %)
e Environmental Conditions e Environmental Conditions
5 Time Period: 2023-07-31 to 2023-08-13 § Time Period: 2023-08-14 to 2023-08-27
(8]
5 540
£ 75 =
=¥ 830
E50 E
° g20 ‘
£25 £10 ‘
o K |
e I i 2 ie ‘
© o i sl . e i L Iz . [ I 1
c = = Z N c 3 £ & = = X
] S 20 2 D & 5 @ T o 2 2 & £ o o $ S L LD L o
o & &L LS 9 g < & 2 9 Q& AR A
g & § & & F K. & & & § QL o & Q s & .5 & Q
¥ SO o » £ ISR ) LR y @ £ ¥ & ¢ IS
[} S § ) 2 & N § [} 2 & )
v @ T - \$§ & & o9 3> \ N @ §$ 3 \S 2N 58
& S < S @ % g 2 S S &
& 9 o & § - % 9 &
S 2 2 S
Environmental Conditions Environmental Conditions

Figure S9. The figure illustrates the relative importance of environmental conditions predicting
diffusive CH, fluxes using bar-plots and standard error bars. Each predictor variable is on the x-axis,
while it’s percent importance for its inclusion in a fitted BRT is given on the y-axis. Each bar color
represents a specific environmental condition. Overall, we see that without water column
characteristics that fluxes were strongly dependent on whether we were measuring in the lake
versus the streams. While we expected water temperature to play a primary role in regulating fluxes
from the catchment, we see in the figure that local climate and soil conditions influencing the
catchment generally played a greater role in regulating fluxes from the water bodies.



Spatial variabilitiy in diffusive lake emissions
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Figure S10. Boxplot of diffusive CH,4 fluxes (y-axis) across different lake zones at Sanningasup Tasia.
Zones are classified as East Shore, West Shore, North Shore, South Shore, and Lake Interior (x-axis).
Each point represents an individual chamber measurement. The figure highlights consistent spatial
variability in emissions, with elevated fluxes generally observed near shorelines.
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Figure S11. lllustrates a Pearson’s correlation matrix showing the relationships among local
meteorology, soil characteristics, and water parameters, with warmer orange-to-red cells indicating
positive correlations and cooler blue cells indicating negative correlations.



