

Supplement of

A novel laser-based spectroscopic method reveals the isotopic signatures of nitrous oxide produced by eukaryotic and prokaryotic phototrophs in darkness

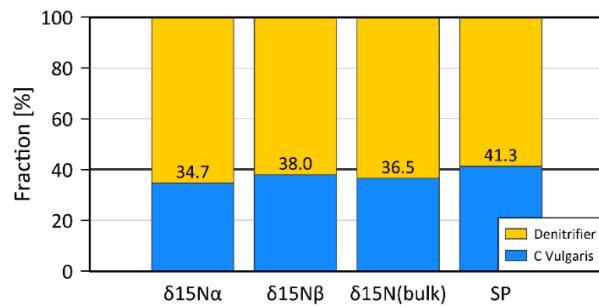
Maxence Plouviez et al.

Correspondence to: Naomi Wells (naomi.wells@lincoln.ac.nz)

The copyright of individual parts of the supplement might differ from the article licence.

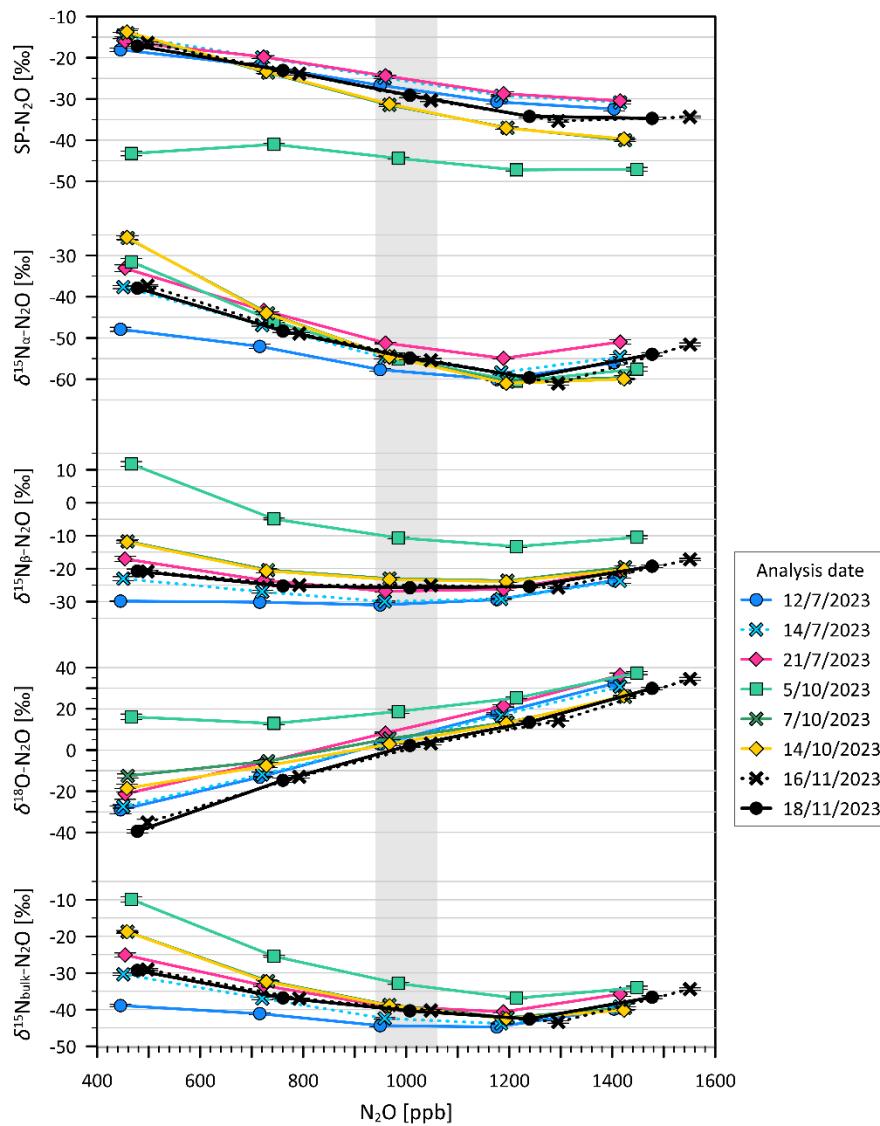
Section S1. Denitrifiers cultures

Denitrifying inocula were cultivated in closed Duran bottles containing simulated domestic wastewater (**Table S1**). These reactors were seeded with a pond sediment suspension (Massey University) and continuously mixed using magnetic agitation at 100 rpm. Once denitrification was confirmed (via nitrate monitoring), the reactors were operated as sequential batch reactors by gradually increasing the feeding rate to reach a hydraulic retention time (HRT) of 10 days. This operation was achieved by i) turning the agitation off and letting biomass to settle for 1 hour before ii) removing 100 ml of culture broth using a syringe (via a sample port) and 3) injecting 100 ml of fresh medium before resuming agitation. The settling period was discontinued once a strong denitrifying ability was evidenced to prevent the excessive accumulation of dead biomass.


Table S1: Denitrification medium

Solution/salt	Composition (g/L)	mL added/L
Organic solution	Starch (2.1), milk powder (2), dried yeast (0.9), soy oil (0.5)/L, peptone (0.3)	100
NO₃	KNO ₃ (14.43)	120
Mg	MgCl ₂ ·4H ₂ O (4.19)	100
Phosphate buffer	K ₂ HPO ₄ (2.178) and KH ₂ PO ₄ (0.612)	560
Ca	CaCl ₂ ·2H ₂ O (1.33)	100
Trace element 1	FeSO ₄ 7H ₂ O (9) and EDTA (6)	10
Trace element 2	EDTA (15), ZnSO ₄ ·7H ₂ O (0.43), CoCl ₂ ·6H ₂ O (0.24), MnCl ₂ ·4H ₂ O (0.99), CuSO ₄ ·5H ₂ O (0.25), NaMoO ₄ ·2H ₂ O (0.22), NiCl ₂ ·6H ₂ O (0.19), H ₃ BO ₃ (0.014)	10

Section S2. Analytical blind test using isotope analysis to determine fractions of N₂O from two biological sources in a gas mixture


Aliquots of N₂O produced by denitrifiers (60 %) and *Chlorella vulgaris* (40 %) were mixed following the incubation experiments described in the manuscript. N₂O was analysed has described in the manuscript. Using the isotope measurement of N₂O from the pure cultures, the fractions of each N₂O source were calculated in a blind experiment, to test for the robustness of the method developed.

The fractions determined using all measured tracers $\delta^{15}\text{N}\alpha$, $\delta^{15}\text{N}\beta\alpha$, $\delta^{15}\text{N}(\text{bulk})$ and especially SP-N₂O are in good agreement with the fractions used during the preparation (**Figure S1**), except for $\delta^{18}\text{O}$ (not shown), where the initial values of denitrifiers and *C. vulgaris* are too similar for differentiation with our analysis.

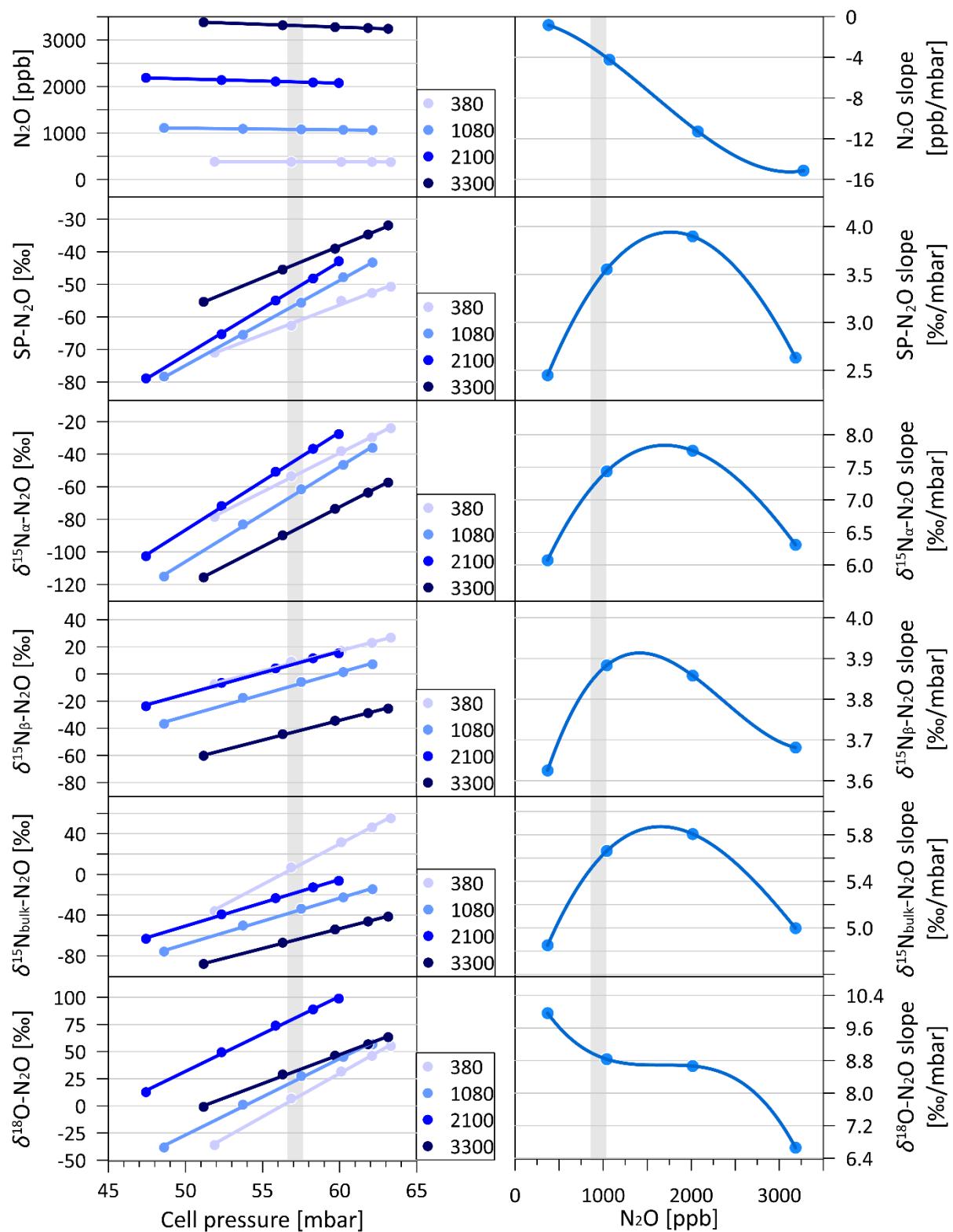


Figure S1: Bar plot showing fractions of N₂O from *Chlorella vulgaris* and denitrifiers synthetic gas mixture prepared during incubation experiments. Fractions are calculated based on isotope ratios measured in pure N₂O from the respective culture. The thick black line shows the target in this blind test.

Section S3. N₂O and isotopomers measurements bias due to N₂O amount and cell pressure dependence

Figure S2. Day-to-day variation in isotopomer measurements due to N₂O amount dependence. This was determined with USGS51-in-air at the start of each measurement sequence. Error bars indicate the standard deviation (1 σ) of the isotope measurements at the respective N₂O level. The grey bar indicates the typical N₂O mole fraction range of samples and reference gases.

Figure S3: Left - Analyser response dependence on cell pressure changes at N_2O mole fractions of 0.33, 1.08, 2.1 and 3.3 ppm. The response is linear across the typical measurement range (grey box). Right - Polynomial fits of the pressure dependence on N_2O or isotopomers. The slope of the linear response change varies with N_2O mole fractions following a 3rd order polynomial.

Section S4. Measurements sequence followed

Block #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
Gas	WT	USGS51-in-air	WT	USGS52-in-air	WT	USGS51-in-air	S1	USGS51-in-air	USGS51-in-air	S2	USGS51-in-air	WT	USGS51-in-air	S3	USGS51-in-air	USGS51-in-air	S4	USGS51-in-air	WT
N ₂ O amount	1080	400-1500	1080	400-1500	1080	match S1	1000	match S1	match S2	1000	match S2	1080	match S3	1000	match S3	match S4	1000	match S4	1080
purpose	drift	N ₂ O amount	drift	N ₂ O amount	drift	S1 drift correction	10	10	S2 drift correction	10	S2 drift correction	drift	S3 drift correction	10	S3 drift correction	S4 drift correction	10	S4 drift correction	drift
n repetitions	5	5 x 5	5	5 x 5	5												10	10	5

Figure S4: The measurement sequence combines blocks of measurements of air from the working tank (1080), the USGS51-in-air and USGS52-in-air standards used to define the correction for the N₂O amount effect as well as scaling for a two-point calibration of SP-N₂O values, up to four samples (S1-S4) and bracketing blocks of USGS51-in-air measurements with N₂O amounts that match the N₂O amount in their respective sample.